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Abstract We study the scattering of the light-flavor pseu-

doscalar mesons (π, K , η) off the ground-state charmed

mesons (D, Ds) within chiral effective field theory. The

recent lattice simulation results on various scattering lengths

and the finite-volume spectra both in the moving and center-

of-mass frames, most of which are obtained at unphysical

meson masses, are used to constrain the free parameters in

our theory. Explicit formulas to include the S- and P-wave

mixing to determine the finite-volume energy levels are pro-

vided. After a successful reproduction of the lattice data, we

perform a chiral extrapolation to predict the quantities with

physical meson masses, including phase shifts, inelastici-

ties, resonance pole positions and the corresponding residues

from the scattering of the light pseudoscalar and charmed

mesons.

1 Introduction

The spectroscopy of the open charmed mesons is an active

and interesting research topic in hadron physics. The dis-

covery of the scalar charm-strange meson D∗
s0(2317) [1–

3] challenges the quark model description [4], which pre-

dicts a mass around 160 MeV heavier than the experimental

value. Another puzzle is that the mass of D∗
s0(2317) is almost

the same as the mass of its non-strange partner D∗
0(2400).

The scattering process of the ground-state charmed mesons
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(D, Ds) and the light pseudoscalar mesons (π, K , η) offers

an excellent environment to explore the properties of the

scalar charmed resonances D∗
s0(2317), D∗

0(2400) and possi-

ble resonances with other quantum numbers as well.

Chiral effective field theory provides a useful theoretical

framework to perform such studies. Many works along this

research line have been done by several different groups in the

last decade [5–24]. In order to constrain the unknown param-

eters, one usually needs scattering information as input. How-

ever, experimental observables from the scattering of the

light pseudoscalar and ground-state charmed mesons, such

as phase shifts and inelasticities, are still not available nowa-

days.

Fortunately, lattice QCD provides an alternative way to

obtain such kinds of data [24–29]. In Ref. [24], the scat-

tering lengths of five scattering channels: isospin-3/2 Dπ ,

Dsπ , Ds K , isospin-0 DK̄ and isospin-1 DK̄ , are calculated

at four different values of unphysical pion (quark) masses.

The DK scattering amplitude is obtained indirectly from uni-

tarized chiral perturbation theory (ChPT) with the relevant

low-energy constants (LECs) determined from the aforemen-

tioned five channels. The direct lattice calculation of DK

scattering is performed in Refs. [25–27] and the I = 1/2

Dπ scattering length is calculated in lattice QCD in Ref.

[29]. In these works, the effects of the coupled channels are

ignored. Recently, a sophisticated lattice calculation of the

coupled-channel scattering of Dπ, Dη and Ds K̄ was pre-

sented in Ref. [28], in which a large amount of energy levels

in the finite volume are obtained by using many interpolating

operators and various moving frames. These lattice data have

been extensively used in ChPT studies to constrain the chiral

amplitudes [13–16,19,20,22,24]. However, all of these stud-

ies used only a small part of the available lattice data up to
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now. A more complete data set is expected to be able to deter-

mine the chiral amplitudes more precisely. In this work, we

perform an extensive study of the light pseudoscalar mesons

scattering off the ground-state charmed mesons in unitarized

ChPT. All of the 2+1 flavor lattice results, including the finite-

volume energy levels and the scattering lengths obtained in

Refs. [24–26,28], are used to determine the parameters in

the unitarized ChPT. Note that the 2-flavor lattice data in

Refs. [25–27,29] are not used in our analysis. We follow the

theoretical framework in Refs. [30–32] to analyze the lattice

finite-volume spectra. The essential difference between this

approach and the K -matrix assisted Lüscher method [33]

used in Ref. [28] is that Ref. [28] relies on a given algebraic

parameterization of the K -matrix, whereas in this paper the

scattering amplitude (and hence the multichannel K -matrix)

is obtained through the solution of dynamical equations with

the kernel calculated in ChPT. Therefore, not only can we

extract the scattering parameters and the resonance proper-

ties at unphysical meson masses, but we can also predict these

quantities at physical meson masses by performing a chiral

extrapolation.

This article is organized as follows. The relevant chi-

ral Lagrangians, the perturbative scattering amplitudes and

their unitarization are discussed in Sect. 2. The finite-volume

effects in the chiral effective field theory are elaborated on in

Sect. 3. The fits to the finite-volume spectra and the scattering

lengths are presented in Sect. 4. The scattering phase shifts,

inelasticities, resonance pole positions and the residues are

discussed in detail in Sect. 5. A short summary and conclu-

sions are given in Sect. 6.

2 Chiral amplitudes and unitarization

We take into account the chiral Lagrangians involving the

light pseudoscalar and the ground-state charmed mesons up

to next-to-leading order (NLO). Detailed discussions on chi-

ral Lagrangians up to next-to-next-to-leading order can be

found in Refs. [13,16]. In the SU (3) chiral Lagrangian the

octet state η8 is identified as the physical η meson [34]. The

U (3) chiral theory allows one to simultaneously include the

physical η and η′ mesons, by explicitly incorporating the sin-

glet η0 [35]. The generalization of the U (3) chiral study in the

scattering of the charmed and the light pseudoscalar mesons

is carried out in Ref. [14]. It is found that the massiveη′ meson

plays a minor role in the energy region considered, therefore

we work in the conventional SU (3) chiral Lagrangian in this

work.

We briefly introduce the relevant SU (3) chiral Lagrangians

to set up our notations. The ground-state charmed-meson

triplet P = (D0, D+, D+
s ) is incorporated in the chiral

Lagrangians as a matter field. The light pseudoscalar mesons

π, K and η are treated as pseudo-Nambu-Goldstone bosons

(pNGBs). The leading-order (LO) chiral Lagrangian describ-

ing the interactions between the pNGBs and the charmed

mesons reads

L
(1)

Pφ
= DμPD

μ
P

† − M
2

DPP
† , (1)

where M D denotes the mass of the charmed-meson triplet in

the chiral limit. The covariant derivative Dμ is given by

DμP = P(
←
∂μ + Ŵ†

μ) , DμP
† = (∂μ + Ŵμ)P† , (2)

where

Ŵμ = 1

2

(
u†∂μu + u∂μu†

)
,

u2 = ei
√

2�
F ,

� =

⎛
⎜⎜⎝

1√
2
π0 + 1√

6
η8 π+ K +

π− − 1√
2
π0 + 1√

6
η8 K 0

K − K
0 −2√

6
η8

⎞
⎟⎟⎠ . (3)

Here, F denotes the weak decay constant of the pNGBs in

the chiral limit, with the normalization Fπ = 92.1 MeV. The

NLO Lagrangian, with six additional low energy constants

hi=0,...,5, takes the form [7,9]

L
(2)

Pφ
= P

(
− h0〈χ+〉 − h1χ+ + h2〈uμuμ〉 − h3uμuμ

)
P

†

+DμP

(
h4〈uμuν〉 − h5{uμ, uν}

)
DνP

†, (4)

with

χ+ = u†χu† + uχ†u, uμ = i
(

u†∂μu − u∂μu†
)

,

χ = 2B(s + i p), (5)

where s and p denote the scalar and pseudoscalar external

sources, respectively. By taking (s + i p) = diag(m̂, m̂, ms),

with m̂ the average of up- and down-quark mass and ms

the strange quark mass, one can introduce the light-quark

masses in the chiral Lagrangian. We do not consider any

isospin violation effect in this work. At leading order, the

quantity B in Eq. (5) is related to the light-quark condensate

through 〈0|q̄ i q j |0〉 = −F2 Bδi j . The LO squared masses of

the pNGBs are then given by

m2
π = 2Bm̂, m2

K = B(m̂ + ms), m2
η = 4m2

K − m2
π

3
.

(6)

With different combinations of the strangeness (S) and

isospin (I ), the scattering amplitudes of the ground-state

charmed mesons and the pNGBs are classified into seven

different cases. See the first and second columns of Table 1

for the specific channels involved in each case. For the pro-

cess D1(p1) + φ1(p2) → D2(p3) + φ2(p4) with definite
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Table 1 The coefficients Ci in

the amplitudes

V
(S,I )
D1φ1→D2φ2

(s, t, u) of Eq. (7).

The quantum numbers of

different channels are classified

by strangeness (S) and isospin

(I ), as shown in the first column

(S, I ) Channels CLO C0 C1 C24 C35

(−1, 0) DK̄ → DK̄ −1 m2
K m2

K 1 −1

(−1, 1) DK̄ → DK̄ 1 m2
K −m2

K 1 1

(2, 1
2
) Ds K → Ds K 1 m2

K −m2
K 1 1

(0, 3
2
) Dπ → Dπ 1 m2

π −m2
π 1 1

(1, 1) Dsπ → Dsπ 0 m2
π 0 1 0

DK → DK 0 m2
K 0 1 0

DK → Dsπ 1 0 −(m2
K + m2

π )/2 0 1

(1, 0) DK → DK −2 m2
K −2m2

K 1 2

DK → Dsη −
√

3 0
−5m2

K +3m2
π

2
√

3
0 1√

3

Dsη → Dsη 0
4m2

K −m2
π

3

4(m2
π −2m2

K )

3
1 4

3

(0, 1
2
) Dπ → Dπ −2 m2

π −m2
π 1 1

Dη → Dη 0
4m2

K −m2
π

3

−m2
π

3
1 1

3

Ds K̄ → Ds K̄ −1 m2
K −m2

K 1 1

Dη → Dπ 0 0 −m2
π 0 1

Ds K̄ → Dπ −
√

6
2

0
−

√
6(m2

K +m2
π )

4
0

√
6

2

Ds K̄ → Dη −
√

6
2

0
5m2

K −3m2
π

2
√

6
0 −1√

6

strangeness and isospin, the general scattering amplitude

takes the form

V
(S,I )
D1φ1→D2φ2

(s, t, u) = 1

F2
π

[
CLO

4
(s − u) − 4C0h0 + 2C1h1

−2C24 H24(s, t, u) + 2C35 H35(s, t, u)

]
,

(7)

where s = (p1 + p2)
2 = (p3 + p4)

2, t = (p1 − p3)
2 =

(p4 − p2)
2, u = (p1 − p4)

2 = (p3 − p2)
2 correspond

to the standard Mandelstam variables, and the functions

H24(s, t, u) and H35(s, t, u) are given by

H24(s, t, u) = 2h2 (p2 · p4) + h4 [(p1 · p2)(p3 · p4)

+(p1 · p4)(p2 · p3)], (8)

H35(s, t, u) = h3 (p2 · p4) + h5 [(p1 · p2)(p3 · p4)

+(p1 · p4)(p2 · p3)]. (9)

The coefficients Ci in Eq. (7) have been given in many works

[9,21,22] and we show their expressions in Table 1 for the

sake of completeness. The results from the generalization to

the U (3) case with explicit η′ meson have been given in Ref.

[14].

In the present work we mainly focus on the S-wave scat-

tering of the pNGBs and the charmed mesons. In order to

obtain the partial-wave amplitudes, we need to perform the

partial-wave projection of the full amplitudes in Eq. (7) with

angular momentum J . The explicit formula reads

V
(S,I )
J, D1φ1→D2φ2

(s) = 1

2

∫ +1

−1

d cos ϕ PJ (cos ϕ)

×V
(S,I )
D1φ1→D2φ2

(s, t (s, cos ϕ)), (10)

where ϕ is the scattering angle of the incoming and outgoing

states in the center-of-mass (CM) frame, and the Mandelstam

variable t is related to ϕ through

t (s, cos ϕ) = m2
D1

+ m2
D2

− 1

2s

(
s + m2

D1
− m2

φ1

) (
s + m2

D2
− m2

φ2

)

−cos ϕ

2s

√
λ

(
s, m2

D1
, m2

φ1

)
λ

(
s, m2

D2
, m2

φ2

)
,

(11)

with λ(a, b, c) = a2 +b2 +c2 −2ab−2bc−2ac the Källén

function. The S-wave amplitude can be obtained by taking

J = 0 in Eq. (10). In later discussions the subscript J in the

partial wave amplitude V
(S,I )
J, D1φ1→D2φ2

(s) will be omitted for

simplicity.

The nonperturbative strong interactions of the pNGBs

and the ground-state charmed mesons, which manifest them-

selves in the emergence of bound states or resonances, can

be accounted for by restoring unitarity and the analytical

properties associated with the unitarity cut of the perturba-

tive partial-wave amplitudes in Eq. (10). In this work we use

the unitarization approach that has been widely used to dis-

cuss the pNGBs and charmed mesons scattering in Refs. [8–

10,20,22]. The unitarized amplitude for the two-body scat-

tering process takes the form [36,37]
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T (s) =
[
1 − V(s) · G(s)

]−1 · V(s), (12)

where V(s) denotes the partial-wave amplitude in Eq. (10)

and for simplicity both the superscripts and subscripts are

omitted. By construction, the G(s) function includes the two-

body unitarity/right-hand cut and it can be given by the loop

function

G(s) = i

∫
d4q

(2π)4

1(
q2 − m2

1 + iǫ
) [

(P − q)2 − m2
2 + iǫ

] ,

s ≡ P2 . (13)

One can use a once-subtracted dispersion relation or dimen-

sional regularization by replacing the divergence by a con-

stant to calculate the explicit form of the G(s) function, which

reads [36]

G(s)DR = 1

16π2

{
a(μ) + ln

m2
1

μ2
+ s − m2

1 + m2
2

2s
ln

m2
2

m2
1

+ σ

2s

[
ln
(
s − m2

2 + m2
1 + σ

)
− ln

(
−s + m2

2 − m2
1 + σ

)

+ ln
(
s + m2

2 − m2
1 + σ

)
− ln

(
−s − m2

2 + m2
1 + σ

) ]}
,

(14)

where

σ =
√

λ
(
s, m2

1, m2
2

)
, (15)

and μ is the regularization scale. The superscript DR in

Eq. (14) stresses that the G(s) function in this equation cor-

responds to the form obtained in dimensional regularization.

The function G(s)DR does not depend on the regularization

scale μ, since the explicit μ dependence in Eq. (14) is can-

celed by that from the subtraction constant a(μ). In later

discussion we take μ = 1 GeV in order to allow for a com-

parison with the previous works [9,13–15,20,22,24].

The unitarized partial-wave amplitude in Eq. (12) can be

easily extended to coupled-channel scattering, where one

should promote V(s) and G(s) to n × n matrices in case of n

channels. The matrix elements for V(s) are given by Eq. (10).

G(s) becomes a diagonal matrix, with its diagonal elements

given by Eq. (14) with the masses m1 and m2 in question.

For easy comparison, we follow the previous works [14,24]

for the convention of scattering the length. The S-wave scat-

tering length is related to the unitarized chiral amplitude in

Eq. (12) through

aDφ→Dφ = − 1

8π(m D + mφ)
TDφ→Dφ(sthr),

sthr =
(
m D + mφ

)2
, (16)

where the superscripts for isospin and strangeness and the

subscript for J = 0 are omitted for simplicity.

3 Chiral amplitudes in the finite volume

One of the main novelties in this work is to fully exploit

the rich finite-volume spectra from the lattice simulations

given in Ref. [28], in order to constrain the unitarized chiral

amplitudes. In order to do so, we use the method proposed

in Refs. [30,31] to introduce the finite-volume effects into

the unitarized chiral amplitudes. As it was demonstrated in

Ref. [38], this framework is quite efficient to fit the lattice

finite-volume spectra for the coupled-channel scattering of

πη, K K̄ and πη′. In this work, we use the same method to

study the coupled-channel Dπ, Dη and Ds K̄ system.

Below, we briefly describe the method. The loop function

G(s) in Eq. (13) is ultraviolet divergent and needs to be reg-

ularized. One way to do this is to perform the integral with

the three-momentum cutoff qmax. After integrating over the

variable q0 analytically, one gets

G(s)cutoff =
∫ |
q|<qmax d3 
q

(2π)3
I (|
q|), (17)

where

I (|
q|) = w1 + w2

2w1w2 [E2 − (w1 + w2)2] ,

wi =
√

|
q|2 + m2
i , s = E2. (18)

To obtain the above results when integrating out q0, it is

convenient to choose the CM frame, by taking the total four-

momentum Pμ of the two-particle system as (P0, 
P = 0).

Since the G(s) function in the infinite volume, i.e. Eqs. (13) or

(17), is a Lorentz scalar, its final expression is the same in dif-

ferent frames. However due to the breaking of Lorentz invari-

ance in the finite volume, one should distinguish the finite-

volume quantities defined in different frames. The quantities

in the CM frame will be denoted with an asterisk in the fol-

lowing.

The finite-volume effects are introduced into the uni-

tarized chiral amplitudes by discretizing the above three-

momentum integral, defining the loop function. The allowed

momenta 
q ∗ in the cubic box of length L with periodic

boundary conditions take the discrete values


q ∗ = 2π

L

n, 
n ∈ Z

3. (19)

The three-momentum integral in Eq. (17) should be replaced

by the sum of the allowed momenta. Hence, the finite-volume

loop function reads

G̃ = 1

L3

|
q ∗|<qmax∑


n
I (|
q ∗|). (20)

Here we introduce a tilde on top of a symbol to distinguish

it from the same quantity in the infinite volume.
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The finite-volume correction �G in the CM frame to the

loop function G(s) is then given by

�G = G̃ − Gcutoff

= 1

L3

|
q ∗|<qmax∑


n
I (|
q ∗|) −

∫ |
q|<qmax d3 
q
(2π)3

I (|
q|).

(21)

It should be stressed that, as L → ∞, the quantity �G is

independent of the three-momentum cutoff due to the can-

cellation of the qmax-dependences of the two terms in this

equation and, up to the terms that vanish exponentially at

large L , can be related to the pertinent Lüscher zeta-function.

In practice, for finite L , it was verified numerically (see Ref.

[38]) that the cutoff dependence of �G is indeed rather weak.

The final expression of the function G(s), used in our finite-

volume analysis, takes the form

G̃DR = GDR + �G, (22)

where GDR and �G are explicitly given in Eqs. (14) and

(21), respectively.

As mentioned previously, although the loop function

GDR(s) in the infinite volume is Lorentz invariant, the corre-

sponding finite volume expression in Eq. (22) is not Lorentz

invariant any more. As a result, one has to explicitly work out

the different expressions for the loop functions in different

frames, which are considered in Refs. [31,32,39,40]. Here

we recapitulate the main results to set up the notation.

For the two-body system, moving with the four-momentum

Pμ = (P0, 
P), the CM energy squared is s = E2 =
(P0)2 − | 
P|2 and the three-momenta of the particles in the

moving frame are 
q1 and 
q2, respectively, with 
q1 + 
q2 = 
P .

The corresponding three-momenta in the CM frame are

denoted by 
q1
∗ and 
q ∗

2 , respectively, with 
q ∗
1 = −
q ∗

2 = 
q∗.

By performing the standard Lorentz boost, one obtains


q ∗
i = 
qi +

[(
E

P0
− 1

) 
qi · 
P
| 
P|2

− q∗ 0
i

P0

]

P, (23)

where the on-shell energies q ∗ 0
1 and q ∗ 0

2 take the form

q ∗ 0
1 = E2 + m2

1 − m2
2

2E
, q ∗ 0

2 = E2 + m2
2 − m2

1

2E
. (24)

With these definitions, the finite-volume loop function in the

moving frame reads [31],

G̃MV = E

P0 L3

|
q ∗|<qmax∑


q
I (|
q ∗(
q)|), (25)

with,


q = 2π

L

n, 
P = 2π

L

N , (
n, 
N ) ∈ Z

3. (26)

It is obvious that the expression in Eq. (25) in the moving

frame recovers the formula of Eq. (20), defined in the CM

frame with 
P = 0. In analogy with Eq. (22) in the CM frame,

the final expression for the loop function used in the moving

frame takes the form

G̃DR,MV = GDR + �GMV, (27)

where,

�GMV = G̃MV − Gcutoff , (28)

with GDR, G̃MV and Gcutoff given in Eqs. (14), (25) and (17),

respectively.1 In order to account for the higher partial waves

in the determination of the finite-volume energy levels, the

generalized G(s) functions are introduced [31],

G̃MV
ℓm,ℓ′m′ = 4π

L3

E

P0

| 
q ∗|<qmax∑


n

( | 
q ∗|
| 
q on∗|

)k

×Y ∗
ℓm(q̂∗)Yℓ′m′(q̂∗) I (| 
q ∗|), (29)

where |
qon∗| denotes the on-shell value for | 
q ∗|, q̂∗ =

q ∗/| 
q ∗|, k = 0 (1) for ℓ + ℓ′ = even (odd), and the Yℓm

denote the spherical harmonics functions with the normal-

ization
∫ 2π

0

dφ

∫ π

0

sin θdθYℓm(θ, φ)Y ∗
ℓ′m′(θ, φ) = δℓℓ′δmm′ . (30)

One can establish the relation of G̃MV
ℓm,ℓ′m′ in Eq. (29) with

Mℓm,ℓ′m′ (the linear combination of the Lüscher zeta func-

tions) in Eq. (39) of Ref. [32]. See also Refs. [41,42] for

further details on Mℓm,ℓ′m′ .

Further, it is convenient to introduce the quantity

G̃MV
ℓm =

√
4π

2ℓ + 1

1

L3

E

P0

| 
q ∗|<qmax∑


n

( |
q∗|
|
qon∗|

)ℓ

Yℓm(q̂∗) I (| 
q ∗|),

(31)

which, up to the exponentially suppressed terms, is related

to the quantity wℓm , defined in Eq. (40) of Ref. [32], through

G̃MV
ℓm = −|
q on∗|

8π E
wℓm . (32)

In analogy to Eq. (27), we define

G̃
DR,MV
ℓm = GDRδℓ 0δm 0 + �GMV

ℓm , (33)

where

�GMV
ℓm = G̃MV

ℓm − Gcutoffδℓ 0δm 0, (34)

with GDR, G̃MV
ℓm and Gcutoff given in Eqs. (14), (31) and (17),

respectively. It is easy to show that by taking ℓ = 0, m = 0

and 
P = 0, Eq. (33) reduces to the CM formula of Eq. (22),

1 The equation (17) is written down in the rest frame. The corresponding

expression in the arbitrary moving frame is the same, only the energy

E in the denominator is replaced by
√

s.
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as it should be. In order to simplify the notation, we will

denote G̃
DR,MV
ℓm in Eq. (33) by G̃ℓm in the following.

Due to the rotational invariance, different partial waves do

not mix in the infinite volume. However, this feature is lost

in a finite volume, and the different partial-wave amplitudes

VJ (s) in Eq. (10) get mixed. A more subtle issue is that

the mixing patterns of the partial-wave amplitudes vary in

different moving frames. In the following, we shall retain

only the S- and P-wave amplitudes of the Dπ, Dη and Ds K̄

system, which should be a reasonable approximation up to

the Ds K̄ threshold energy region [28].

The projection of the two-body quantization condition

onto the irreducible representations of the different little

groups of the octahedral group Oh , corresponding to the dif-

ferent moving frames, has been carried out in all details in

Ref. [32]. In this paper, we wish to adapt these results for the

case of the unitarized ChPT in a finite volume. The pertinent

formulas can be directly read off from Ref. [32], replacing

wℓm by the quantity G̃ℓm introduced above, and keeping track

of the normalization factors. Of course, in the present work

we consider the coupled-channel scattering, but this does not

change the symmetry properties of the equation as, simply,

in addition, the amplitudes become matrices in the channel

space.

Below, we display the explicit equations in different

frames. In the CM frame, there is no mixing between S-

and P-wave scattering amplitudes. For the S-wave in the A+
1

irreducible representation, the finite-volume energy levels are

given by the solutions of the equation [31,32]

det
[
I − V0(s) · G̃00

]
= 0, (35)

where I is the unit matrix and the matrix elements of V0(s)

and G̃00 can be calculated via Eqs. (10) and (33), respec-

tively.

Further, according to Ref. [28], there exists a bound state

in the P-wave Dπ scattering. In order to consider the con-

tribution of the P-wave to the energy levels, we use a simple

ansatz to include the bound state

V1(s) = g2
V [s − (m D + mπ )2][s − (m D − mπ )2]

4s(s − m2
D∗)

, (36)

where the superscripts (0, 1
2
) of V1 are omitted for later con-

venience, and gV and m D∗ shall be adjusted to reproduce

the lattice energy levels. For the P wave in the T −
1 irre-

ducible representation, the finite-volume energy levels are

determined by [31]

det[I − V1(s) · G̃00] = 0, (37)

where V1(s) and G̃ℓm are given in Eqs. (36) and (33), respec-

tively. We mention that the determinant in the above equation

is in fact trivial, since the single-channel approximation is

used for the P-wave scattering.

In the moving frame with the total three-momentum 
P =
(2π/L) 
N , the S- and P-wave amplitudes will get mixed.

For the moving frame with 
N = (0, 0, 1), the equation to

determine the discrete energy levels in the irreducible repre-

sentation A1 is

det[I − V0,1 · M
A1

0,1] = 0, (38)

where

V0,1 =
(

V0 0

0 V1

)
, (39)

M
A1

0,1 =
(

G̃00 i
√

3G̃10

−i
√

3G̃10 G̃00 + 2G̃20

)
. (40)

Here, V0, V1 and G̃ℓm should be understood as matrices in the

scattering-channel space. To be more specific, the S-wave V0

corresponds to a 3 × 3 matrix, spanned by the Dπ, Dη and

Ds K̄ channels. For V1 it is an ordinary function, since the

single-channel approximation is taken for the P wave. As a

result, the 4 × 4 matrix of V0,1 ·MA1

0,1 in Eq. (38) is given by

V0,1 · M
A1

0,1

=

⎛
⎜⎜⎜⎜⎝

V0,11G̃00,1 V0,12G̃00,2 V0,13G̃00,3 i
√

3V0,11G̃10,1

V0,21G̃00,1 V0,22G̃00,2 V0,23G̃00,3 i
√

3V0,21G̃10,1

V0,31G̃00,1 V0,32G̃00,2 V0,33G̃00,3 i
√

3V0,31G̃10,1

−i
√

3V1G̃00,1 0 0 V1(G̃00,1 + 2G̃20,1)

⎞
⎟⎟⎟⎟⎠

,

(41)

where i and j in the subscripts of V0,i j and G̃ℓm,i are the

channel indices. The Dπ, Dη and Ds K̄ channels are labeled

by 1, 2, and 3, respectively.

For other moving frames, the corresponding equations to

determine the discrete energy levels for the irreducible rep-

resentation A1 can be obtained by replacing the M
A1

0,1 in

Eq. (38) with the proper ones, which are given in Ref. [32].

We quote the explicit results below for completeness. For

N = (1, 1, 0), it is

M
A1

0,1 =
(

G̃00 −
√

6(1 − i) Re[G̃11]
−

√
6(1 + i) Re[G̃11] G̃00 − G̃20 − i

√
6G̃22

)
.

(42)

For 
N = (1, 1, 1), it is

M
A1

0,1 =
(

G̃00
3√
2
(1 − i)G̃10

3√
2
(1 + i)G̃10 G̃00 − i2

√
6G̃22

)
. (43)

The partial-wave scattering amplitudes V0 and V1 are the

same as those in Eq. (38) for different moving frames and

different irreducible representations.

For the irreducible representations E when 
N = (0, 0, 1),

B1 and B2 when 
N = (1, 1, 0) and E when 
N = (1, 1, 1),

the S-wave amplitudes are decoupled and only the P wave

enters. The general equation to determine the discrete energy
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levels is given by the solution of

det[I − V1(s) · M1] = 0. (44)

According to Ref. [32], M1 takes different forms for differ-

ent representations. For the irreducible presentation E when

N = (0, 0, 1), it reads

M1 = G̃00 − G̃20. (45)

For the irreducible presentation B1 when 
N = (1, 1, 0), it

reads

M1 = G̃00 + 2G̃20. (46)

For the irreducible presentation B2 when 
N = (1, 1, 0), it

reads

M1 = G̃00 − G̃20 + i
√

6G̃22. (47)

For the irreducible presentation E when 
N = (1, 1, 1), it

reads

M1 = G̃00 + i
√

6G̃22. (48)

The partial-wave amplitude V1(s) in different representations

takes the same expression in Eq. (36).

All formulas, which are relevant for further discussions,

were listed above. The formulas for other irreducible repre-

sentations will not be explicitly given here. We refer to Ref.

[32] for further details.

4 Fits to the finite-volume spectra and scattering

lengths from lattice calculations

In order to precisely determine the scattering amplitudes

of the charmed and light pseudoscalar mesons, we perform

global fits to the discrete finite-volume spectra and the scat-

tering lengths from several lattice calculations [24–26,28].

To be more specific, we include the finite-volume spectra,

which were used in Ref. [28] to study the S- and P-wave

Dπ, Dη and Ds K̄ coupled-channel scattering with I = 1/2,

and which amount to 47 data points in total (38 data points

below the Ds K̄ threshold).2 In addition, the elastic scatter-

ing lengths obtained with mπ < 600 MeV from Ref. [24],

which amount to 15 data points, are incorporated in our fits.

The 2+1 flavor lattice calculation of the DK scattering length

and the two energy levels well below the Dsη threshold with

(S, I ) = (1, 0) from Refs. [25,26] are also considered in the

global fits, which amount to 3 additional data points. In the

previous reference, the DK scattering lengths with relatively

small statistical uncertainties are obtained from the low-

est two energy levels within the effective-range-expansion

framework, which provides an efficient method to determine

2 We greatly appreciate the Hadron Spectrum Collaboration (HSC) to

kindly provide us the lattice data with correlation coefficients.

quantities at thresholds. We have also tried to only fit the

lowest two energy levels, which turn out to be quite close to

the present results.

Regarding the finite-volume spectra from the S- and P-

wave coupled Dπ, Dη and Ds K̄ scattering with I = 1/2,

in one fit strategy we use exactly the same 47 data points

as those in Ref. [28] to determine the scattering amplitudes,

which amounts to 65 data points in total. The present study is

based on the chiral amplitudes with NLO local interactions

and all the bound states or resonances are generated through

the unitarization procedure. Therefore it is not expected that

we can reliably describe the strong dynamics well above the

scattering threshold. To make an estimate of the systematic

error, in another fit strategy we only include the 38 points

below the Ds K̄ threshold among the overall 47 data from

Ref. [28] in our study, which amounts to 56 data points in

total.

Before going to the details of the fits, we comment on

the value of pion decay constant Fπ appearing in Eq. (7).

One approach is to use the physical value Fπ = 92.1 MeV

when fitting the lattice results calculated at unphysical pion

masses, as done in Refs. [14,24]. Another approach is to use

the unphysical Fπ values at the corresponding unphysical

pion masses. For the lattice data in Ref. [24], the values of

Fπ have been calculated in Ref. [43] and we take the values

therein. The Fπ value for the lattice used in Ref. [28] has not

been given from lattice calculation. We take the chiral extrap-

olated value Fπ = 105.9 MeV determined in our previous

work [38]. The physical Fπ value is used to study the lattice

data of Refs. [25,26], since the pion mass used in the lattice

calculation is quite close to the physical value. From the chi-

ral power counting point of view, there is no preference as to

which approach to use up to the order considered in this work.

The discrepancy resulting from the two approaches can be

considered as a systematic uncertainty. One may also think

of introducing different pNGB decay constants, such as Fπ

and FK , to different channels. In practice we do not expect

this effect as important as the differences between the physi-

cal and unphysical values of Fπ when performing the chiral

extrapolation in next section. This has been explicitly veri-

fied in Ref. [38], where we have carried out the calculation

to study the effects by using different pNGB decay constants

in different channels, which indeed turn out to be small. One

of the reasons is that the shift of FK when extrapolating mπ

from 391 MeV [28] to the physical value is very moderate,

which is estimated to be from 115 MeV to 110 MeV in Ref.

[38]. As a result, we do not introduce another type of fit to

distinguish different pNGB decay constants in this work.

Four different types of fits are performed in our study by

using different data sets and different Fπ values as discussed

above. In the following we denote the four fits by Fit-1A,

Fit-1B, Fit-2A and Fit-2B. In the notations, 1 and 2 stand for

the two different data sets. 1 is for the 56 data points and 2 the
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Table 2 Fitting results of the

four types of fits. See the text for

the details about the four fits.

The results from Ref. [24] are

presented in the last column for

comparison. The asterisks for

the corresponding subtractions

denote that their values are

simply imposed to be equal to

the fitted elastic channel result

aEC

Fit-1A Fit-1B Fit-2A Fit-2B Table V [24]

h24 −0.50+0.12
−0.11 −0.64+0.17

−0.11 −0.42+0.18
−0.15 −0.14+0.10

−0.14 −0.10+0.05
−0.06

h′
4 −1.45+0.68

−0.61 −1.30+0.50
−0.68 −0.49+0.23

−0.23 −0.02+0.34
−0.36 −0.32+0.35

−0.34

h35 0.83+0.13
−0.19 0.77+0.14

−0.21 0.76+0.16
−0.22 0.05+0.16

−0.12 0.25+0.13
−0.13

h′
5 0.74+0.78

−0.68 0.68+0.56
−0.51 −0.49+0.17

−0.17 −0.81+0.33
−0.32 −1.88+0.63

−0.61

a
0,1/2
Dπ −1.73+0.21

−0.19 −1.45+0.19
−0.14 −2.00+0.13

−0.12 −1.52+0.07
−0.06 −1.88+0.07 ∗

−0.09

a
0,1/2
Dη −2.68+0.21

−0.19 −2.53+0.24
−0.25 −2.43+0.21

−0.24 −2.02+0.08
−0.10 −1.88+0.07 ∗

−0.09

a
1,0
DK −1.58+0.17

−0.22 −1.62+0.16
−0.18 −1.86+0.18

−0.27 −1.60+0.11
−0.17 −1.88+0.07 ∗

−0.09

aEC −2.72+0.20
−0.21 −2.69+0.18

−0.20 −2.45+0.23
−0.19 −1.91+0.18

−0.25 −1.88+0.07
−0.09

χ2/d.o.f 116.7/(56 − 8) 124.1/(56 − 8) 221.8/(65 − 8) 215.5/(65 − 8) 1.06

65 data points. A and B stand for the two different choices of

the Fπ values. A means using the unphysical Fπ values for

the lattice data at the unphysical pion masses, while B means

using physical Fπ for all lattice data.

When only fitting the elastic scattering lengths from the

lattice simulations in Refs. [24–26], it was found that for all

the channels one common subtraction constant, defined in

Eq. (14), is able to satisfactorily reproduce the lattice results

[13,14,16,20,22,24]. The same value of the subtraction con-

stant a(μ) determined from the elastic channels [24] was also

used in the coupled-channel Dπ, Dη and Ds K̄ S-wave scat-

tering to predict resonance poles of D∗
0(2400) in Ref. [15].

However, it is found that one common subtraction constant

is not sufficient any more when simultaneously including the

finite-volume spectra [28] and the elastic scattering lengths

[24–26] in the global fits. For the S-wave coupled-channel

Dπ, Dη and Ds K̄ scattering with I = 1/2, two subtraction

constants a
0,1/2
Dπ and a

0,1/2
Dη are needed to reasonably describe

the finite-volume spectra. We fix the subtraction constant in

the Ds K̄ channel to be the same as in the Dη channel since,

as seen a posteriori, the fit quality does not improve in gen-

eral by introducing a free Ds K̄ subtraction constant. Further,

in our study we use the single-channel formula to fit the two

energy levels well below the Dsη threshold in analogy to

the lattice study of the I = 0 DK scattering [25,26], which

did not consider the coupling of Dsη channel. We find that

a common subtraction constant a
1,0
DK for both the DK and

Dsη channels is able to well reproduce the lattice scattering

length. For all other channels listed in Table 1, a common

subtraction constant aEC is used and we find it is sufficient

to describe the scattering lengths given by the lattice calcu-

lation [24].

The elastic P-wave scattering amplitude in Eq. (36) is

incorporated in our study to describe the finite-volume spec-

tra in Ref. [28]. According to the energy levels in Fig. 3 of

that reference, clearly there is a bound state well below the

Dπ threshold in the P-wave amplitude. Furthermore, the

similarities of the lowest levels in Figs. 2 and 3 in Ref. [28],

indicate that the S- and P-wave mixing effects are weak,

which also justifies the elastic approximation of the P-wave

amplitude. The lowest energy levels in Fig. 3 of Ref. [28]

are dominated by the P-wave amplitude, which determines

m D∗ = 2009 MeV in Eq. (36). For the coupling gV , we find

that the fits are rather insensitive to its value. Therefore we

fix m D∗ = 2009 MeV and gV = 3 in the following discus-

sions. It is verified that the fits are barely affected by varying

gV in a wide range from 0.5 to 5. The subtraction constant

in the P-wave amplitude is fixed to be equal to the value in

the S-wave case.

There are six LECs hi=0,...,5 in the NLO scattering ampli-

tude. The values of h0 and h1 can be fixed to be h0 = 0.033

and h1 = 0.43 from the masses of D and Ds [14], comparing

with the slightly different values h0 = 0.014 and h1 = 0.42

used in Ref. [24]. We still have 8 parameters, i.e. the remain-

ing four LECs hi=2,3,4,5 and the four subtraction constants

a
0,1/2
Dπ , a

0,1/2
Dη , a

1,0
DK and aEC , which need to be determined

from the fits to the lattice data. As has been done in Refs.

[14,24], we redefine the LECs hi=2,3,4,5 as follows in order

to reduce the correlations in the fits:

h24 ≡ h2 + h′
4 , h35 ≡ h3 + 2 h′

5 , h′
4 ≡ h4 M̂2

D ,

h′
5 ≡ h5 M̂2

D , (49)

where M̂D ≡ (M
phys
D + M

phys
Ds

)/2. Unlike the subtraction

constants that each of them can only enter in a specific chan-

nel, every single chiral LEC could appear in all the scattering

amplitudes. This is another reason that urges us to perform

global fits by including the finite-volume energy levels of the

coupled-channel Dπ, Dη and Ds K̄ scattering [28] as well

as the scattering lengths of various channels given in Refs.

[24–26]. The values of the parameters from the four types of

fits are collected in Table 2. The results from Ref. [24] are

also presented in the last column for comparison.

We would like to mention that the correlations between

different energy levels within the same volume from Ref.

[28] are included in our fits. If the correlations are neglected,

the resulting χ2 will be greatly reduced, which turn out to
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be 75.5, 87.6, 134.6 and 132.0 for Fit-1A, Fit-1B, Fit-2A

and Fit-2B, respectively. Further, three sets of data from dif-

ferent lattice collaborations using rather different ensembles

are included in our fits and they may introduce potentially

large systematical uncertainties, which are difficult to esti-

mate and hence are not included in this work. This pro-

vides another explanation of the somewhat large χ2 from

our fits. In fact, we have tried to only fit the 47 data from

the HSC for the coupled Dπ, Dη and Ds K̄ scattering with

I = 1/2. By releasing all the six chiral low energy con-

stants in Eq. (4), it is possible for us to obtain much smaller

χ2 values for the HSC data [28]. However the resulting val-

ues of h0 and h1, are significantly different from the results

of Refs. [14,24], which are determined by properly repro-

ducing the masses of the grounds-state charmed mesons.

Given the fact that the χ2/d.o.f. for the Fit-2A and Fit-

2B are around 4 one could consider the possibility to dou-

ble the relative errors of the data fitted in order to estimate

the precision achieved by employing our parameterization

based on unitarized ChPT. By taking into account that the

relative errors for the data of Ref. [28] range in an inter-

val of around 0.05 − 0.6%, this would imply that we are

able to give a fair reproduction of the lattice QCD data at the

level of a 0.1−1.2%, which indeed is a great achievement for

a parameterization based on unitarized SU (3) NLO ChPT.

The latter is expected to be affected by errors from higher-

order corrections at the level of [(mπ ∼ mK )/1 GeV]3, i.e.

around 6 ∼ 15% for the unphysically large meson masses

used here. One should take into account that by unitariz-

ing ChPT the resulting parameterization is expected to be

more precise, particularly if the data reflect the presence

of resonances that are properly reproduced with the non-

perturbative approach. One possible way to improve the

discussions is to generalize the present study to next-to-

next-to-leading order [13,16], which is clearly beyond the

scope of this work. As a result, we shall focus on the more

constrained fits shown in Table 2 in the following discus-

sions.

As shown in Table 2, the χ2 values resulting from Fit-2A

and Fit-2B, which include the finite-volume energy levels

above the Ds K̄ threshold from Ref. [28], are clearly larger

than those from Fit-1A and Fit-1B that only include the finite-

volume spectra below the Ds K̄ threshold. We further verify

that the extra amounts of the χ2 from Fit-2A and Fit-2B are

mainly contributed by the finite-volume energy levels from

the Dπ, Dη and Ds K̄ coupled-channel scattering. Compar-

ing the four types of fits with the results in the last column

in Table 2, we observe that the parameters from Fit-2B are

the closest to the values given in Ref. [24]. According to

the large NC arguments, h2 is expected to be 1/NC sup-

pressed comparing with h3. The same expectation is also

applied to h4 and h5. In Ref. [45], it provides another use-

ful theoretical criteria to discriminate different parameter

sets, which relies on the positive constraints of the scat-

tering amplitudes. If one considers the NC argument and

the positivity bound, it is plausible that Fit-2B is the pre-

ferred one comparing with the other three fits in Table 2.

We also find an additional solution for Fit-2A, which gives

similar total χ2. However, the additional solution gives a

worse description of the elastic scattering lengths in Ref.

[24] and the energy levels of the DK scattering in Refs.

[25,26] than the other fits in Table 2. In this respect, the

other additional solution of Fit-2A is considered to be dis-

favored and we refrain from discussing the results from that

solution.

With all the parameters determined from the fits, we can

reproduce the finite-volume energies of the scattering chan-

nels considered in this study. The reproduced energy levels as

a function of the box size L in various channels together with

the lattice data are presented in Figs. 1, 2 and 3. Figure 1 is

for the I = 1/2 coupled-channel scattering of Dπ, Dη and

Ds K̄ . Figure 2 is for the I = 1/2 P-wave Dπ scattering and

the I = 0 S-wave DK scattering. Figure 3 is for the I = 3/2

S-wave Dπ scattering, which is not included in the fits and

is a prediction of our study. One can see that our theoreti-

cal formalism can well reproduce the lattice results. In these

figures, we provide both the central values and one-sigma

statistical error bands for Fit-2B. In order not to overload the

figures, only the central-value results from Fit-1A, Fit-1B

and Fit-2A are given.

Similarly, we can also reproduce the scattering lengths

given by the lattice calculations [24,26]. This is shown in

Fig. 4. Notice that only the data points with mπ < 600 MeV

from Ref. [24] are included in the fits. We explicitly show

the fit results from Fit-1B and Fit-2B, where Fπ is fixed at

its physical value. Both the central values and one-sigma sta-

tistical error bands from Fit-2B are explicitly given. In order

to not overload the figures, we only show the central-value

curves for Fit-1B. It is clear that our theoretical formalism

can also well describe the various scattering lengths from the

lattice calculations.

Having determined all the unknown parameters and veri-

fied the reliability of our fits, we proceed to discuss the res-

onance structures in the scattering amplitudes in the next

section.

5 Phenomenological discussions in the infinite volume

5.1 Scattering amplitudes and resonances at unphysical

meson masses

In this part, we study the infinite-volume amplitudes of the

Dπ, Dη and Ds K̄ coupled-channel scattering obtained at

the unphysically large meson masses used in Ref. [28]. The

phase shifts (δ) and inelasticity parameters (ε) are related
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Fig. 1 Finite-volume energy

levels in different frames for the

Dπ, Dη and Ds K̄ scattering

with (S, I ) = (0, 1/2). Cyan

downward triangles, blue

upward triangles and brown

pentagons correspond to the

central-value results of Fit-1A,

Fit-1B and Fit-2A, respectively.

Red squares denote the results

from Fit-2B and the gray shaded

areas denote the corresponding

one-sigma error bands. The

lattice data are taken from Ref.

[28]
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Fig. 2 Finite-volume energy levels of the P-wave Dπ scattering with

(S, I ) = (0, 1/2) (the first five panels) and the energy levels of the

elastic S-wave DK scattering with (S, I ) = (1, 0) (the last panel in the

right bottom corner). The lattice data for the Dπ and DK scattering are

taken from Refs. [28] and [26], respectively. For notations, see Fig. 1

to the S matrix, which is given by the unitarized scattering

amplitude T in Eq. (12) through

S = 1 + 2i
√

ρ(s) · T (s) ·
√

ρ(s), (50)

with

ρ(s) = σ(s)

16πs
. (51)

To be more specific, the phase shifts δkk and δkl and the

inelasticity parameters εkk and εkl , with k �= l, are related to

the matrix elements Skk and Skl through

Skk = εkke2iδkk , Skl = iεkle
iδkl . (52)

For the inelasticity parameters εkk , one has 0 ≤ εkk ≤ 1.

The phase shifts and inelasticities of the S-wave coupled-

channel Dπ , Dη and Ds K̄ scattering with (S, I ) = (0, 1/2)
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Fig. 3 Prediction of the

finite-volume energy levels of

the S-wave Dπ scattering with

(S, I ) = (0, 3/2). The lattice

data are extracted from

Ref. [28]. For notations, see

Fig. 1
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Fig. 4 Reproduction of various scattering lengths. The last panel in

the right bottom corner denotes the results of the S-wave DK scatter-

ing with (S, I ) = (1, 0) and the lattice data are taken from Ref. [26],

where only the 2 + 1 flavor lattice simulation is considered. The lattice

data in the other five panels are taken from Ref. [24]. The red solid lines

and the surrounding shaded areas correspond to the central results and

the one-sigma error bands from Fit-2B. The blue dotted lines show the

central-value results from Fit-1B

are given in the left and right panels in Fig. 5, respectively.

We show the representative results with both central values

and the statistical uncertainties at the one-sigma level from

Fit-2B. Within uncertainties, we observe that there are two

branches of the Dπ phase shifts in the energy region around

E > 2530 MeV. The two branches of phase shifts in fact

correspond to similar physical dynamics, since they differ by

180 degrees. Although the Dπ phase shifts around 2530 MeV

show large uncertainties, the inelasticities in the same energy

region almost vanish, indicating that the underlying dynam-

ics of the S matrix in this region shows a unique feature.

The central-value plots and uncertainties for the phase shifts

and inelasticities of the Dη and Ds K̄ channels from Fit-2B

are also shown in Fig. 5. In order to not overload the fig-
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Fig. 5 Phase shifts (δ) and inelasticities (ε) of the coupled-channel

Dπ, Dη and Ds K̄ S-wave scattering with (S, I ) = (0, 1/2) obtained

at mπ = 391 MeV as in Ref. [28]. The red solid, blue dashed and

black dotted lines in the left panel denote the phase shifts obtained

with the central values from Fit-2B for the Dπ, Dη and Ds K̄ channels,

respectively. The surrounding shaded areas denote the uncertainties at

the one-sigma level. The right panel shows the results for the inelastici-

ties. In order to not overload the figures, we only give the central-value

curves for the Dπ channel from Fit-1A, Fit-1B and Fit-2A

ure, we only give the central-value phase shifts and inelas-

ticities for the Dπ channel from Fit-1A, Fit-1B and Fit-2A.

Roughly speaking, the Dπ phase shifts below the first inelas-

tic channel from different fits are quite compatible. In the

region above 2450 MeV, the Dπ phase shifts and inelas-

ticities start to show different behaviors from different fits.

The results from Fit-1A and Fit-1B, which include the same

lattice simulation data up to the Ds K̄ threshold, show some-

what similar behaviors. The results from Fit-2A and Fit-2B,

which includes the lattice data above the Ds K̄ threshold from

Ref. [28], are clearly different from those from Fit-1A and

Fit-1B in the energy region above 2450 MeV. The resulting

plots from Fit-2A and Fit-2B, which include the same data

sets, are compatible with each other within the uncertainties.

The scattering amplitudes in the inelastic energy region are

clearly affected by the different data included in the fits. In

contrast, the amplitudes in the elastic energy region show

quite consistent behaviors.

In order to study the resonance poles, we need to perform

the analytical continuation of the scattering amplitudes to the

complex energy plane. In our formalism, this can be easily

achieved by modifying the G(s) function in Eq. (14). For each

channel, one can define two Riemann sheets (RS’s) for the

G(s) function. The formula in Eq. (14) is the corresponding

expression on the first RS. The expression on the second RS

is given by [46],

G(s)DR
II (s) = G(s)DR + i

σ(s)

8πs
, (53)

with G(s)DR and σ(s) defined in Eqs. (14) and (15), respec-

tively. In this convention σ(s) has to be calculated with

Im σ(s) > 0 in the complex s plane. This implies that the

signs of Im G(s) along the real s axis above the threshold

on the first and second RS’s are opposite. For a n-channel

problem, one can then define 2n RS’s. The first RS will be

denoted as (+,+,+, · · · ,+). The second, third and fourth

RS’s are labeled as (−,+,+, · · · ,+), (−,−,+, · · · ,+)

and (+,−,+, · · · ,+), respectively. The plus and minus

signs correspond to the G(s) function of this channel eval-

uated on the first and second RS’s, respectively. Apart from

the pole position sP itself, one can also calculate the residues

γ at sP , which are given by,

T (s) = − lim
s→sP

γ γ T

s − sP

, (54)

with γ an n row vector and its transpose γ T = (γ1, γ2, · · · ,

γn). The residues correspond to the coupling strengths of

the resonance pole to the interacting channels and encode

important information of the resonance.

With the pole position and its residues, one can then further

discuss the composition of the resonance. In Ref. [47], the

calculation for the compositeness coefficient is generalized

to the resonances by extending Weinberg’s bound-state com-

positeness relation [48]. Then one can interpret the values of

the compositeness X as the probabilities to find the two-

body components inside the resonances and bound states.

The prescription to calculate the compositeness coefficient

X i contributed by the i th channel in Ref. [47] is,

X i =
∣∣γi

∣∣2
∣∣∣∣
dG(s)i

ds

∣∣∣∣
2

s=sP

, (55)

where the function G(s) is given in Eqs. (14) or (53), depend-

ing on the location of the pole. The total compositeness X is

then given by X = ∑
i X i , with the sum only spanning on

the open channels for the resonance in question, which are

the channels below the real part of the pole. We mention that

the prescription in Eq. (55) only applies to the canonical res-

onance, in the sense that the resonance pole should reside in

the RS that can be directly accessed from the physical RS. For

a near-threshold bound state, Eq. (55) recovers the Weinberg
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Table 3 Poles and their residues obtained at unphysical meson masses

(mπ = 391 MeV) used in the lattice simulation [28] from the S-

wave coupled Dπ, Dη and Ds K̄ scattering amplitudes with (S, I ) =
(0, 1/2). The indices of the residues γi=1,2,3 correspond to the chan-

nels Dπ, Dη and Ds K̄ in order. The thresholds of the Dπ, Dη and

Ds K̄ channels are 2276.5, 2472.4 and 2500.5 MeV, respectively. For

the definition of different RS’s, see the text for details

Fit RS M (MeV) Ŵ/2 (MeV) |γ1| (GeV) |γ2/γ1| |γ3/γ1|

Fit-1A I 2275.0+0.9
−1.0 0 4.8+0.6

−1.0 0.31+0.08
−0.10 0.92+0.08

−0.09

Fit-1A III 2430.5+46.1
−52.4 119.7+27.1

−33.7 7.8+0.7
−0.9 0.92+0.11

−0.08 1.84+0.29
−0.21

Fit-1B I 2275.4+0.7
−1.1 0 4.5+0.8

−1.0 0.33+0.08
−0.09 0.93+0.05

−0.08

Fit-1B III 2432.2+59.0
−48.6 157.8+30.4

−30.1 8.2+1.2
−0.9 0.79+0.08

−0.06 1.85+0.21
−0.24

Fit-2A I 2276.1+0.4
−0.6 0 3.6+0.9

−1.9 0.09+0.04
−0.04 0.70+0.03

−0.03

Fit-2A III 2490.9+24.8
−21.9 104.2+23.6

−17.1 7.1+0.6
−0.6 1.00+0.10

−0.09 1.82+0.16
−0.15

Fit-2B I 2275.8+0.5
−0.8 0 3.9+0.8

−1.4 0.14+0.04
−0.05 0.70+0.04

−0.04

Fit-2B III 2486.7+29.9
−28.5 126.6+29.0

−21.5 7.7+0.6
−0.6 0.95+0.11

−0.11 1.79+0.15
−0.14

compositeness [48]. We refer to Ref. [47] for further details

and also to Ref. [49], where the general framework for the

calculation of the compositeness for poles is developed.

In Table 3, we give both the resonance pole positions and

their residues for the coupled-channel Dπ, Dη and Ds K̄

S-wave scattering with (S, I ) = (0, 1/2) obtained at the

unphysically large meson masses used in Ref. [28]. The

most robust conclusion from Table 3 is that there is a bound

state just below the Dπ threshold. Within uncertainties the

four fits lead to compatible results for the pole positions and

also the corresponding residues. Our determinations of the

bound state pole are close to the value in Ref. [28], which is

2275.9±0.9 MeV. Furthermore, the results from Fit-2A and

Fit-2B, which include exactly the same lattice data of the

Dπ coupled-channel scattering as Ref. [28], are perfectly

compatible with the value given in the former reference.

This presents a nice crosscheck with our chiral amplitudes

assisted finite-volume study, comparing with the K -matrix

assisted Lüscher formula in Ref. [28]. While in Ref. [15],

the bound state pole is predicted to be 2264+8
−14 MeV, with

much larger error bars than ours and those in Ref. [28]. The

possible reason is that the values of the chiral LECs and the

subtraction constant used in Ref. [15] are taken from Ref.

[24], which were determined by only including the elastic

scattering lengths of the latter reference. Regarding the cou-

pling strengths of the bound state, our study shows that this

pole is more strongly coupled to the Ds K̄ channel than to the

Dη one, which is also the case of Ref. [15] but differs from the

results of Ref. [28]. By applying Eq. (55), the compositeness

coefficients of the bound state contributed by Dπ, Dη and

Ds K̄ are 0.91+0.03
−0.02, 0.01+0.00

−0.00 and 0.04+0.02
−0.02, respectively.

Therefore we quantitatively verify that the Dπ component

overwhelmingly dominates the bound state in the S-wave

(S, I ) = (0, 1/2) channel at mπ = 391 MeV.

The other robust pole is the one appearing between 2.4

and 2.5 GeV. All the four fits lead to the resonance pole on

the third RS with a mass around 2450 MeV and a half width

around 130 MeV. For Fit-1A and Fit-1B, we also find shadow

poles on the second RS, with the mass around 2490 MeV and

a half width around 35 MeV. For Fit-2A and Fit-2B, not all

of the parameter configurations within one-sigma uncertain-

ties can generate a shadow resonance pole on the second

RS around 2500 MeV. Since the poles on the second RS

are mostly off the resonant ranges, we do not explicitly show

their positions and residues in Table 3. Our results for the res-

onance poles on the third RS and their residues are consistent

with the determinations in Ref. [15]. However the resonance

poles, either on the second or the third RS’s, are not reported

in Ref. [28]. Apart from the poles shown in Table 3, we find

that there are also other heavier poles in the region around

or above 2600 MeV. The heavier poles appear in different

RS’s depending on the different fits and the uncertainties of

their masses are usually large. Since these heavier resonances

are much less constrained in our fits and show large model

dependences, we refrain from discussing further about their

properties.

According to Ref. [47], the prescription in Eq. (55) can

be applied to the third-sheet poles from Fit-2A and Fit-2B in

Table 3, since they are above the Dη threshold. The resulting

compositenesses of the pole from Fit-2A are 0.17+0.02
−0.02 (Dπ )

and 0.29+0.04
−0.04 (Dη). The results for the pole from Fit-2B

are 0.20+0.03
−0.03 (Dπ ) and 0.29+0.06

−0.05 (Dη). Therefore, we can

conclude that the resonance pole around 2.4 GeV obtained

at unphysically large meson masses contain other important

components apart from the Dπ and Dη.

For the P-wave Dπ scattering, a bound state pole with the

mass in the range 2008.2–2009.8 MeV is found by combining

the results from the four fits. Our determination is in good

agreement with the value 2009 ± 2 MeV in Ref. [28].

Having shown the scattering amplitudes and the resonance

structures at the unphysical meson masses, we proceed the

study for the physical meson masses in the following section.
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Fig. 6 Phase shifts (δ) and

inelasticities (ε) of the

coupled-channel Dπ, Dη and

Ds K̄ S-wave scattering with

(S, I ) = (0, 1/2) obtained at

physical meson masses. For

notaion, see Fig. 5
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Fig. 7 Magnitudes squared of

the scattering amplitudes of the

S-wave Dπ, Dη and Ds K̄

scattering with

(S, I ) = (0, 1/2) obtained at

physical meson masses from the

four types of fits. The red solid,

cyan dashed and blue dotted

lines denote the Dπ → Dπ ,

Dη → Dη and Ds K̄ → Ds K̄

amplitudes, respectively. The

surrounding shaded areas

correspond to the uncertainties

at the one-sigma level
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5.2 Chiral extrapolation to the physical meson masses

By assuming that the free parameters in Table 2 are indepen-

dent on the light-flavor meson masses, it is straightforward to

perform the chiral extrapolation to the physical meson masses

in our study. The phase shifts and inelasticities of the S-wave

coupled-channel Dπ , Dη and Ds K̄ scattering obtained at

physical meson masses are given in Fig. 6. The central-value

plots and the statistical uncertainties at the one-sigma level

from Fit-2B are shown. As in Fig. 5, we give the central-

value curves for Fit-1A, Fit-1B and Fit-2A in Fig. 6. In order

to clearly demonstrate the resonance structures, the magni-

tudes of the scattering T matrices are provided in Fig. 7. One

can clearly see the discrepancies from different fits.

Another subtlety issue on the chiral extrapolation is about

the pion mass dependences of the parameters in Table 2. Note

that the strange-quark mass is basically kept fixed to its phys-

ical value in the lattice QCD here considered. Clearly the chi-

ral LECs by definition are independent of the pion mass. The

subtraction constant a, on the contrary, could possibly vary

with different pion masses, although many previous works

simply assume the constant behavior of a when performing

the chiral extrapolation [13–16,19,20,22,24]. One possible

way to estimate the pion mass dependences is by comparison

of the function G DR(s) in Eq. (14) to the three-momentum-

cutoff version of G(s) [50].

First, the on-shell three-momentum is denoted by q(s)

with,

q(s) = λ
(
s, m2

1, m2
2

)

2
√

s
. (56)

We introduce the function δG(s) by rewriting G DR(s) in

Eq. (14) as,

G DR(s) = a

16π2
+ δG(s). (57)
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Next, we denote by GC (s) the function that results by evaluat-

ing the divergent integral of Eq. (13) with a three-momentum

cutoff qmax. An algebraic expression for GC (s) can be found

in Ref. [50]

Now, let us consider the possible pion mass dependence

of the subtraction constants. One can work out explicitly the

(nonrelativistic) limit of the functions G DR(s), Eq. (14), and

GC (s) [50] for s → (m1 + m2)
2, which implies |q(s)| ≪

m1, m2, qmax. In this limit these functions are simply a con-

stant plus −iq(s)/8π(m1 + m2) plus quadratic and higher-

order terms in three-momentum. Therefore, we can write,

G DR(s) − GC (s) = α

16π2
+ O(q2), (58)

where α is a constant. For the case q(s) = 0, the following

expression for the subtraction constant a is obtained,

a(μ) = α + GC
(
(m1 + m2)

2
)

− δG
(
(m1 + m2)

2
)

= α − 2
1

m1 + m2

⎡
⎣m1 log

⎛
⎝1 +

√
1 + m2

1

q2
max

⎞
⎠

+m2 log

⎛
⎝1 +

√
1 + m2

2

q2
max

⎞
⎠
⎤
⎦+ log

μ2

q2
max

. (59)

The constant α does not depend on μ, since a(μ)− log μ2 is

μ independent, cf. Eq. (14). Equation (59) reflects the split-

ting in the mechanisms underlying the contributions to the

subtraction constant a. On the one hand, the last two con-

tributions in this equation stem from rescattering effects (by

taking qmax around 1 GeV), associated with the unitarity cut.

On the other hand, the former contribution (α) is associated

with properties of contact terms (short-range physics). The

crossed-channel contributions involving the explicit degrees

of freedom in the effective field theory will be accounted for

order by order in V(s) (12). Thus, the variation of α with the

masses is at least quadratic in the pion mass. There is some

remnant cut-off dependence in the splitting of Eq. (59) that

could be ascertained by varying qmax around qmax ≃ 1 GeV,

the typical scale for hadronic rescattering.

The fact that the leading correction to Eq. (59) is linear in

m2 implies a linear change in the pion mass for the Dπ sub-

traction constants, as mπ/m D . Differently, for the other chan-

nels involving a K or an η the change will be just quadratic

in mπ and, therefore, much less important. The linearized

version of Eq. (59) with respect to the smaller mass m2 for

two sets of values of the masses m1 and m2 (a′ and a for m′
i

and mi , in order) gives,

a′ − a = 2
m′

2 − m2

m1
log

1 +
√

1 + m2
1/q2

max

2
+ O

(
m2

2

)
.

(60)

The subtraction constant a is said to have its natural value

[37] when the constant α has an absolute value much smaller

than 1 for qmax ≃ 1 GeV. One then has [37],

a(qmax) = −2 log

⎛
⎝1 +

√
1 + m2

1

q2
max

⎞
⎠+ · · · ≃ −2.3, (61)

where the ellipses indicates higher order terms in the non-

relativistic expansion and in m2/m1 with m2 ≪ m1, as it

follows directly from Eq. (59).

We take the Fit-2B as a concrete example to check the

shifts of a by varying pion masses. When Eq. (60) is applied

to a Dπ subtraction constant from a pion mass of 391 MeV to

its physical value of 138 MeV we have a variation in the sub-

traction constant of −0.12. Compared to the value reported

in Table 2 for a
0,1/2
Dπ , we obtain a mild effect of around a

10%. For the subtraction constants in the Dη and Ds K̄ chan-

nels, their values are kept fixed. In Fig. 8, we explicitly show

the results by taking the extrapolated value a
0,1/2
Dπ = −1.64

obtained from Eq. (60), together with the figures by assum-

ing pion mass independence of the subtraction constants from

Fit-2B and also the results from Ref. [24]. The three differ-

ent sets of plots in Fig. 8 reveal qualitatively similar resonant

behaviors, although the heights of the peaks around the res-

onances at 2.1 GeV and 2.45 GeV are different. Comparing

the curves from Fit-1A, Fit-1B and Fit-2A in Fig. 7 with

those in Fig. 8, we observe that the discrepancies among the

three different types of plots in Fig. 8, which include the addi-

tional uncertainties of the chiral extrapolation and the fitting

results from the previous work [24], are clearly smaller than

the differences of the four types of fits in the present work.

Therefore in the following discussions, we shall concentrate

on the results from the four types of fits in Table 2 with-

out introducing the pion mass corrections to the subtraction

constants.

In Fig. 9, we show the phase shifts and inelasticities of the

DK channel obtained at physical meson masses. In this case,

the central-value results from Fit-1A and Fit-1B are almost

identical, which lead to a sharp rise of the phase shifts near

the DK threshold. The central-value behavior from Fit-1A

and Fit-1B indicates a virtual pole near the DK threshold. In

contrast, the phase shifts from Fit-2A and Fit-2B fall rapidly,

which implies a bound state pole near the threshold.3

The resonance poles and the corresponding residues from

the S-wave coupled-channel Dπ , Dη and Ds K̄ scattering

with (S, I ) = (0, 1/2) obtained at physical meson masses

are collected in Table 4. The first lesson we learn is that all the

four fits give robust resonance poles on the second RS with

3 This statement is clear if one considers an effective range expansion

including only the scattering length a, so that t (q) = 1/(1/a − iq),

with q the CM three-momentum. The case a <(>)0 corresponds to a

bound (virtual) state.
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Fig. 8 Comparison of the

magnitudes squared of the

S-wave amplitudes of the

Dπ, Dη and Ds K̄ scattering

with (S, I ) = (0, 1/2) at

physical meson masses using

the parameters from Ref. [24]

and Fit-2B w/o including the

pion mass correction to the

subtraction constant a
0,1/2
Dπ . The

results from Fit-2B without and

with introducing the pion mass

correction to a
0,1/2
Dπ are labeled

as Fit-2B and a′, respectively.

See the text for details. The

results using the parameters

from Ref. [24] are labeled as
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Fig. 9 Phase shifts (δ) and

inelasticities (ε) of the S-wave

DK scattering with

(S, I ) = (1, 0) obtained at

physical meson masses. The red

solid lines and the surrounding

areas correspond to the central

values and uncertainties at the

one-sigma level obtained from

Fit-2B, respectively. Similar as

Figs. 5 and 6, only the

central-value results are shown

for Fit-1A, Fit-1B and Fit-2A
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the mass around 2100 MeV and the half width lying between

100 and 200 MeV. Furthermore, for all the four fits we also

find their shadow poles on the third RS, whose masses and

widths are quite close to the values on the second RS. Heav-

ier resonance poles lying around 2.4 GeV are found as well.

In Table 4, the relevant poles that are mostly responsible for

the resonant behaviors on the physical sheet are given. For

Fit-1A, the relevant pole is located on the second RS, and its

shadow pole lies on the third RS. While for the other three fits,

the relevant poles lie on the third RS and the corresponding

shadow poles are found on the second RS. The masses and

half widths of the shadow poles around 2.4 GeV on other RS’s

are somewhat different from the relevant poles. For exam-

ple, the shadow pole from Fit-1A lies on the third RS, with

the pole position (2291.3+49.1
−41.6 − i 54.9+22.2

−20.4) MeV. Both the

shadow poles from Fit-1B and Fit-2A are found on the second

RS, with the positions of (2445.2+23.7
−18.9−i 12.3+7.3

−7.8) MeV and

(2443.1+13.7
−12.1 − i 12.0+8.5

−6.5) MeV, respectively. For the case of

Fit-2B, only the relevant poles on the third sheet are found

and we do not see the nearby shadow poles on other RS’s. In

the energy region around 2.4 GeV we only observe bumps,

instead of poles, on the second RS for Fit-2B. The resonance

contents from Fit-2B resemble the results in Ref. [15]. We

stress that the poles and their residues in Table 4 are only

slightly affected by the pion mass dependences of the sub-

traction constants. We also take Fit-2B to demonstrate this

point. Taking the chiral extrapolated value a
0,1/2
Dπ = −1.64

as explained previously, the pole around 2.1 GeV on the sec-

ond RS is found at (2112.5− i127.0) MeV, with the residues

|γ1| = 9.9 GeV, |γ2/γ1| = 0.08, |γ3/γ1| = 0.58. The pole

around 2.4 GeV on the third RS is at (2475.7− i108.9) MeV,

with the residues |γ1| = 6.7 GeV, |γ2/γ1| = 1.15, |γ3/γ1| =
2.07. These results are consistent with the values from Fit-2B

that assumes the pion mass independence of the subtraction

constants given in Table 4.

Next we discuss the compositeness for the resonance poles

obtained at physical meson masses. According to Ref. [47],

the prescription in Eq. (55) can be applied to the poles

around 2.1 GeV on the second RS in Table 4. The com-
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Table 4 Poles and their

residues obtained at physical

meson masses from the S-wave

coupled-channel Dπ, Dη and

Ds K̄ scattering with

(S, I ) = (0, 1/2). The physical

thresholds of the Dπ, Dη and

Ds K̄ channels are

2005.3, 2415.1 and

2463.9 MeV, respectively. For

the definitions of different RS’s

and notations, see the text and

Table 3 for details

Fit RS M Ŵ/2 (MeV) |γ1| (GeV) |γ2/γ1| |γ3/γ1|

Fit-1A II 2097.7+6.8
−6.1 112.2+16.5

−14.2 9.6+0.3
−0.3 0.10+0.05

−0.04 0.78+0.08
−0.08

Fit-1A II 2384.4+26.4
−23.6 36.0+9.9

−10.0 4.8+0.5
−0.6 1.51+0.15

−0.16 2.09+0.18
−0.18

Fit-1B II 2106.4+5.1
−5.0 170.6+12.5

−13.0 10.1+0.3
−0.2 0.11+0.07

−0.07 0.79+0.07
−0.07

Fit-1B III 2409.0+22.7
−24.5 78.6+20.5

−15.2 6.1+0.7
−0.6 1.22+0.19

−0.19 2.72+0.48
−0.49

Fit-2A II 2095.7+5.2
−6.8 97.1+10.3

−10.7 9.4+0.2
−0.2 0.10+0.02

−0.02 0.63+0.03
−0.03

Fit-2A III 2401.3+20.4
−19.6 55.0+14.5

−10.8 5.1+0.5
−0.5 1.31+0.19

−0.15 2.50+0.31
−0.28

Fit-2B II 2117.7+3.8
−3.4 145.0+8.0

−6.8 10.2+0.2
−0.1 0.09+0.03

−0.03 0.58+0.04
−0.03

Fit-2B III 2470.5+25.1
−24.9 104.1+16.0

−12.5 6.7+0.7
−0.6 1.14+0.12

−0.12 2.06+0.16
−0.16

Table 5 Poles and their residues obtained at physical meson masses

from the S-wave coupled-channel DK and Dsη scattering amplitudes

with (S, I ) = (1, 0). For Fit-1A and Fit-1B, parts of the parameter

configurations within one-sigma uncertainties give bound state poles

for the D∗
s0(2317) and others give virtual poles. In these cases, we sim-

ply show the ranges for the bound- and virtual-state poles obtained for

the parameter configurations from Fit-1A and Fit-1B within one-sigma

uncertainties. For Fit-2A and Fit-2B, all the parameter configurations

within one-sigma uncertainties give bound state poles. The indices of

the residues γi=1,2 correspond to the channels DK and Dsη in order.

The physical thresholds of the DK and Dsη channels are 2362.8 and

2516.2 MeV, respectively. For the definition of the different RS’s, see

the text

Fit RS M (MeV) Ŵ/2 (MeV) |γ1| (GeV) |γ2/γ1|

Fit-1A I 2356.7−2362.8 0 1.3−6.9 1.03−1.20

Fit-1A II 2316.7−2362.8 0 0.4−10.1 1.14−1.50

Fit-1B I 2357.1−2362.8 0 0.5−6.7 1.05−1.22

Fit-1B II 2316.0−2362.8 0 0.6−10.3 1.12−1.56

Fit-2A I 2345.1+14.7
−41.5 0 8.3+2.3

−2.6 0.96+0.06
−0.08

Fit-2B I 2350.7+9.0
−25.7 0 7.7+2.1

−2.0 0.83+0.08
−0.06

positeness coefficients contributed by the Dπ channel in

Fit-1A, Fit-1B, Fit-2A and Fit-2B are 0.43+0.02
−0.02, 0.47+0.03

−0.01,

0.42+0.01
−0.01 and 0.47+0.01

−0.01, respectively. This implies that both

the Dπ component and other degrees of freedom are impor-

tant for the broad scalar resonance around 2.1 GeV in the

(S, I ) = (0, 1/2) channel. Equation (55) is also valid for

the second sheet pole around 2.4 GeV from Fit-1A, which

gives the Dπ compositeness 0.06+0.02
−0.02, indicating that the

role of the Dπ in the scalar resonance pole around 2.4 GeV

is marginal. Although, rigorously speaking, the prescription

in Eq. (55) can not be applied to other poles in Table 4, the

poles on the third RS from Fit-1B, Fit-2A and Fit-2B are not

far away from the region of validity according to Ref. [47]. As

a rough estimate, we also use Eq. (55) to calculate the com-

positeness coefficients for those poles. The compositenesses

for the pole from Fit-1B are 0.10+0.02
−0.02 (Dπ ) and 0.38+0.11

−0.09

(Dη). The corresponding values for the pole from Fit-2A

are 0.06+0.01
−0.01 (Dπ ) and 0.35+0.06

−0.05 (Dη). For the pole from

Fit-2B, the compositeness coefficients are 0.11+0.02
−0.02 (Dπ )

and 0.31+0.04
−0.04 (Dη). This tells us that the other degrees of

freedom beyond the Dπ and Dη components play important

roles in the scalar charmed resonance pole around 2.4 GeV.

For the D∗
s0(2317) in the S-wave coupled-channel DK

and Dsη scattering, its poles and residues obtained at physi-

cal meson masses are summarized in Table 5. First we stress

that each of the parameter configurations from all of the fits

only gives one pole for the D∗
s0(2317), either a bound state

or a virtual state. For the parameters from Fit-2A and Fit-2B

within one-sigma uncertainties, all the parameter configura-

tions only give the bound state poles on the first RS. While

for Fit-1A and Fit-1B, within one-sigma uncertainties parts

of the parameter configurations give the bound state poles on

the first RS and others give the virtual poles on the second

RS. E.g., with the central values of the parameters from Fit-

1A and Fit-1B we only obtain the virtual poles. This tells us

that the interactions are strong enough to produce a promi-

nent enhancement around the DK threshold. However at the

present stage we can not definitely conclude that the enhance-

ment is caused by a bound or a virtual state. The findings of

the bound and virtual states are consistent with the behaviors

of the phase shifts shown in Fig. 9.

For the bound state poles, we can use Eq. (55) to calculate

the compositeness coefficients for the D∗
s0(2317). The com-

positeness coefficients contributed by the DK and Dsη for

the Fit-2A case are 0.72+0.14
−0.13 and 0.16+0.04

−0.07, respectively.

The corresponding values from Fit-2B are 0.77+0.11
−0.13 and
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Table 6 Predictions of the S-wave scattering lengths for various channels obtained at the physical meson masses. The values are given in units of

fm. For the entries marked by asterisks, only the central values are given. See the text for details

Channels Fit-1A Fit-1B Fit-2A Fit-2B

a
(−1,0)

DK̄→DK̄
−4.53 ∗ 0.96+1.44

−0.44 21.9 ∗ 0.68+0.17
−0.16

a
(−1,1)

DK̄→DK̄
−0.18+0.01

−0.01 −0.18+0.01
−0.01 −0.20+0.01

−0.01 −0.19+0.02
−0.02

a
(2, 1

2 )

Ds K→Ds K −0.19+0.01
−0.01 −0.19+0.01

−0.01 −0.20+0.01
−0.01 −0.19+0.01

−0.01

a
(0, 3

2 )

Dπ→Dπ −0.098+0.005
−0.004 −0.101+0.005

−0.003 −0.103+0.003
−0.003 −0.099+0.003

−0.004

a
(1,1)
Dsπ→Dsπ

0.012+0.005
−0.005 0.005+0.003

−0.003 0.012+0.003
−0.003 0.003+0.002

−0.002

a
(1,1)
DK→DK −0.19+0.12

−0.17 + i 0.55+0.08
−0.07 0.06+0.05

−0.03 + i 0.30+0.09
−0.05 −0.01+0.05

−0.03 + i0.39+0.04
−0.04 0.05+0.04

−0.03 + i0.17+0.03
−0.03

a
(1,0)
DK→DK 2.16 ∗ 2.36 ∗ −1.51+0.72

−2.35 −1.87+0.85
−1.98

a
(1,0)
Dsη→Dsη

−0.54+0.06
−0.03 + i 0.25+0.17

−0.12 −0.54+0.07
−0.03 + i 0.24+0.15

−0.12 −0.39+0.05
−0.03 + i0.06+0.02

−0.02 −0.33+0.03
−0.05 + i0.07+0.02

−0.02

a
(0, 1

2 )

Dπ→Dπ 0.39+0.03
−0.03 0.31+0.01

−0.01 0.40+0.03
−0.02 0.34+0.00

−0.03

a
(0, 1

2 )

Dη→Dη −0.50+0.07
−0.06 + i 0.27+0.36

−0.15 0.20+0.10
−0.29 + i 0.57+0.62

−0.28 0.29+0.15
−0.22 + i0.61+0.30

−0.26 0.16+0.11
−0.06 + i0.13+0.07

−0.03

a
(0, 1

2 )

Ds K̄→Ds K̄
−0.56+0.05

−0.05 + i 0.09+0.08
−0.03 −0.73+0.21

−0.27 + i 0.43+0.08
−0.11 −0.57+0.06

−0.04 + i0.35+0.08
−0.07 −0.26+0.05

−0.10 + i0.52+0.06
−0.03

0.11+0.03
−0.04, which are compatible with those found in Ref.

[47]. The robust conclusion from these numbers is that the

DK component is the dominant one inside the D∗
s0(2317).

Before ending the phenomenological discussion, we give

the predictions for the S-wave scattering lengths of var-

ious channels at the physical meson masses in Table 6.

Only the central values of the DK̄ scattering lengths with

(S, I ) = (−1, 0) from Fit-1A and Fit-2A and the DK scat-

tering lengths with (S, I ) = (1, 0) from Fit-1A and Fit-1B,

which are marked with asterisks, are given. For other entries

in Table 6, we provide the values with statistical uncertain-

ties. This is because within the one-sigma fitted parameter

configurations the scattering lengths for these four channels

vary from huge negative values to huge positive values. The

reason behind is that for these channels parts of the parameter

configurations could lead to bound state poles near thresh-

old, which correspond to large negative scattering lengths,

and others could give virtual poles near threshold, which cor-

respond to large positive scattering lengths. These findings

are consistent with the pole contents discussed in Table 5 for

the D∗
s0(2317). We also verify that similar situations hap-

pen for the S-wave DK̄ scattering with (S, I ) = (−1, 0).

The results from Fit-2B in Table 6, which gives the closest

values of the parameters to Refs. [14,24], are qualitatively

compatible with the numbers of the former references within

uncertainties.

6 Conclusions

In this work we simultaneously analyzed the lattice finite-

volume energy levels and the scattering lengths for the scat-

tering of the charmed and light pseudoscalar mesons from

Refs. [24–26,28] within the chiral effective field theory. Sev-

eral different fit strategies, by using different values for the

pion decay constant and including different data sets in the

fits, are explored in our study. Through the fits of the lattice

data, we fix the values the chiral low-energy constants up to

the next-to-leading order and the subtraction constants intro-

duced in the unitarization procedure. The updated values for

the low energy constants and subtraction constants are col-

lected in Table 2, which provide a useful starting point for

future study on the charmed resonance dynamics in various

processes.

The scattering amplitudes and the resonance poles obtained

at the physical meson masses provide the most important

outputs of this work. Regarding the resonance poles in the

coupled-channel Dπ, Dη and Ds K̄ S-wave scattering with

(S, I ) = (0, 1/2), a robust conclusion in our study is that

there is pole with the mass around 2100 MeV and the width

more than 200 MeV, see Table 4. Another type of heavier

poles lying between 2300 and 2500 MeV, depending on dif-

ferent fits, are also found, with their widths varying from

70 to 200 MeV. According to Fig. 6, the physical S-wave

Dπ phase shifts and inelasticities with I = 1/2 show some-

what different behaviors from different fits, specially in the

energy region above 2350 MeV. To implement the scattering

amplitudes obtained here in the semileptonic charmed meson

decays [51] or the phenomenological study of B decays [44]

may offer us another way to further discriminate the different

fits.

For the phase shifts and inelasticities of the S-wave

coupled-channel DK and Dsη scattering with (S, I ) =
(1, 0), we find two different types of solutions. In one solu-
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tion, i.e. the lower branch of the phase shifts in Fig. 9, the

D∗
s0(2317) corresponds to a bound state. While the upper

branch of the phase shifts in the former figure implies a vir-

tual state nature of the D∗
s0(2317). Future lattice simulations

with more energy levels in this channel may enable us to

discriminate the two different solutions.
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