
Towards a Provably Correct Hardware
Implementa t ion of Occam

He Jifeng*, Ian Page and Jona than Bowen**

Oxford University Computing Laboratory, Programming Research Group
11 Keble Road, Oxford OX1 3QD, England

Emalh { Ji:feng. He,Ian. Page,Jonathan. Bowen} @comlab. ox. ac. uk

Abs t r ac t . This paper shows how to compile a program written in a
subset of occam into a normal form suitable for further processing into
a netlist of components which may be loaded into a Field-Programmable
Gate Array (FPGA). A simple state-machine model is adopted for spec-
ifying the behaviour of a synchronous circuit where the observable in-
cludes the state of the control path and the data path of the circuit.
We identify the behaviour of a circuit with a program consisting of a
very restricted subset of o c c a m . Algebraic laws are used to facilitate
the transformation from a program into a normal form. The compiling
specification is presented as a set of theorems that must be proved cor-
rect with respect to these laws. A rapid prototype compiler in the form
of a logic program may be implemented from these theorems.

1 I n t r o d u c t i o n

The development of systems containing software and hardware requires many
levels of abstract ion from requirements, through design and compilation to the
underlying hardware itself. For confidence in the overall design, each level must
be related and its correctness demonstrated [2, 3]. This is especially impor tant in
safety-critical systems where mistakes could cost lives [4]. Reduction in the over-
all complexity of the system is a key to increasing its likelyhood of correctness.
One way to do this is to compile high-level programs directly into hardware,
thus spanning several levels of abstraction at a stroke.

Here we show how to compile programs written in a subset of occam [17]
(a particularly convenient language for the description of hardware because of
its parallel programming constructs [8]) into a form suitable for implementat ion
directly in hardware via a series of provably correct transformations. Crucial to
our method is the use of normal form occam programs which refine the seman-
tics of the user program and yet provide a representation close to the desired
hardware. A final t ransformation is from the normal form into a nellisl (a list of
logic gates and latches, together with their interconnections) which is a s tandard
form of hardware description. These netlists can be implemented in hardware

* Funded by ESPRIT Basic Research P roCoS project (3104 and 7071).
** Funded by the UK Science and Engineering Research Council (SERC) under the

Information Engineering Directorate SAFEMOS project (IED3/1/1036).

215

in many ways. Currently, we use FPGAs which can be dynamically reconfigo
ured by software [22, 28]. This enables us to build hardware implementations of
modest-sized programs entirely by a software process.

Our source language is a small subset of occam which can be compiled ef-
ficiently into hardware and which can also serve as a target for a front-end
compiler for a fuller version of occam, or indeed any other convenient language.
Our compilation process preserves true concurrency which is represented in the
user program by expressions, simultaneous assignment, and explicit parallelism.
A significant feature of our hardware implementations is that only assignment
and (ready-to-run) communication take time to execute, and they each take pre-
cisely one clock cycle. A particularly simple and elegant timing calculus results
which enables our programs to meet real-time guarantees.

1.1 Background
This work builds upon previous results on provably correct compilation [13, 15,
16]. There is a strong relationship between our method and that used by Hoare in
software compilation. However, our method handles communication and parallel
composition and preserves true concurrency in the implementations.

Related work has shown that an occam program can be implemented as a set
of special-purpose computers (one per process), each with just sufficient resources
and Inicrocode [20]. Martin has developed a method of compiling a concurrent
program into a circuits using semantic-preserving program transformations [19].
A project at Cornell University aims to produce a multipass compiler through
several levels of abstraction, but with much the same goal in mind [18]. Brown has
suggested the possibility of compiling CSP or occam into asynchronous delay-
insensitive circuits [5]. Further work on a process algebra called Joy has produced
encouraging results [27]. Another working example of a 'silicon compiler' that
synthesizes asynchronous circuits is [26].

Page has developed a prototype compiler in the functional language Standard
ML which converts an occam-like language, somewhat more expressive than the
one presented here, to a netlist [22]. This has been successfully applied to the
control of a robot arm, amongst other applications. After further processing by
vendor software, the netlist can be loaded into a Xilinx FPGA [28]. However, the
normal form approach in this paper offers the significant advantages of providing
a provably correct compiling method, and it is also expected to support a wide
range of design optimization strategies.

2 A L a n g u a g e o f C o m m u n i c a t i n g P r o c e s s e s

In this section we present a simple language of communicating processes and pro-
vide a set of semantic-preserving program transformation rules. Our language is
a subset of occam [17] from which local declarations have been excluded. Fur-
thermore we do not consider skip-guarded alternatives. This subset is sufficient
to illustrate our compiling method.

2.1 Syn tax

For clarity of exposition and algebraic manipulation, the syntax of our language
does not follow that of occam. In the following BNF-style syntax description, ch

216

will stand for a channel name, e for an expression, b for a Boolean expression,
and x for a program variable.

P : : = s k i p l s t o p l x : = e l ch ? z I ch ! e I

P ; P I P II P I P<~b l>P[b * P l a l t (G)

G : : = c h ? z - - * P I G[]G
Informally, the process terms stand for the following processes:

sk ip is a process which terminates immediately with all variables unchanged.
s t o p is the deadlock process, which may lose the values of its variables.
x := e is a process which assigns the value of e to variable x, and its execution

time is unspecified.
ch ? x is an input process which is willing to accept an input from channel ch

and assigns it to variable z.
ch ! e is a process which is ready to output the value of e to channel ch.
P ; Q is the sequential composition of P and Q.

P I I Q is the concurrent composition of P and Q. All communications between
P and Q are concealed.

P <3 b I> Q is a process which first evaluates b; then if b is true it executes P,
otherwise it executes Q .

b �9 P is a process which is executed by first evaluating b; if b is false, execu-
tion terminates successfully, and nothing is changed. If b is true, it executes
P ; (b . P) .

al t (G) is an alternation of guarded commands. G can be either ch ? z ---* P or
G1 [] G2. In the first case the process is prepared to input along channel ch
and then behaves like P. Otherwise a choice is made between input actions
on either side of the operator rn. The standard interpretation is that the first
guarded command to become ready is selected for execution.

Legal occam programs must satisfy further syntactic restrictions. In particular,
no program variable can be shared by two concurrently executed processes if
either of them can possibly modify it, and furthermore parallel processes can
share neither input channels nor output channels.

2.2 A l g e b r a i c Laws

The basic laws defining occam programs are given in [25]. This section lists some
example algebraic laws relating to normal form reduction selected from [11]. For
simplicity we assume that all expressions always deliver a value.

Law 1: Refinement. We define a relation -7 between programs P and Q such
that P ~_ Q holds whenever, for any purpose, the observable behaviour of P is
as good as, or better than, that of Q. _ is an w-complete partial order, i.e. it
is reflexive, transitive and antisymmetric, and any ascending chain {P ,} has a
least upper bound tan Pn satisfying

I lnPn E Q iff for all i : Pi E Q .
The aborting program _L is the bot tom of the relation ~ , and the miracle pro-
gram 3- is the top. ~ has a greatest lower bound operator n, representing non-
deterministic choice:

217

(P 2_ R and Q ~_ R) iff (P n Q) ~ R
All occam constructors are continuous; i.e., they preserve the least upper bound
of the ascending chain.

Law 2: Assumption and Assertion. We define an assertion as causing abortion
if false

dey
ba. = skip<l b I > l

and define an assumption as a miracle if false
b T def = sk ip<lb I>T.

The following laws apply:
2.1 b T 2_ skip 2_ b•
2.2 bT; b• 2_ skip 2_ b.c; b T
2.3 If e does not mention z then

x : = e = (z : = e ; (x = e)• a n d x : = e = (x : = e ; (x = e) T)

Law 3: Loop Merge. The loop program b �9 P is defined as the least fixed point
of the following equation

X = (P ; X)<I b 1> skip
The following law is surprisingly important , mainly in proving the correctness
of sequential composition:

3.1 (b V c) , P 2_ (b* P) ; (b V c) , P

Law 4: Loop Simplification. The notation , (b --* P [] c -* Q) represents the
loop program (b V c) * (i fb -* P [] c --* Qfi) .

4.1 If hA c = false t h e n * (b - * P) = b* (if b--* P D c - - , Qfi)

Law 5: Scope. The command va r x introduces a new variable, and the command
e n d x ends the scope of x. Variable introduction and end commands obey the
following laws:

5.1 e n d x ; v a r x ___ skip = v a r x ; e n d x
5.2 If P does not mention variable x then

v a r x ; P -- P ; v a r x
e n d x ; P = P ; e n d x

Law 6: Assignment. Assignment obeys the following laws:
6.1 (x := e ; x := f) = (~ : = f [e / x])
6.2 (x , y : - ' e , y) = x : = e
6.3 x := e; v a r y ; y : = f ; e n d y = (x : = e)

2.3 T i m e d P r o c e s s e s

In the normal form used to describe the behaviour of a synchronous circuit
we need to specify the execution time (in clock cycles) of assignments which
mediate the state change of both control path and data path of the circuit. This
allows reasoning about the real-time properties of the implemented programs.
Let n > 0, the notation (x : - e) , stands for the assignment x :-- e whose
execution takes n clock cycles. Let skipn stand for a process which does nothing
but delays execution for n clock cycles, and (x := e)0 for the assignment which
terminates immediately. We then have

218

(z : = e) . = s k i p . ; (x : = e) o .
The t imed assignment (x := e). can be regarded as a refinement of the un-
t imed assignment x := e since the latter does not impose any restriction on its
execution time, thus

(z : = e) = n . (x : = e) . .

Law 7: Timed Assignment. Timed assignment obeys the following laws:
7.1 (x : = e) U (x : = e) ,

The notat ion P <~ b t>n Q represents a conditional which takes n clock cycles to
evaluate its condition b.

P <1 b t>, Q ~ (s k i p , ; P) , a b I> (s k i p , ; Q)
In a similar way we define

b *, P ~ p X . (P ; X)<i b t> s k i p ,
Further algebraic laws relating to real-time programming language aspects may
be found in [9].

3 NOrmal Form I m p l e m e n t a t i o n of Occam

Normal form programs are a bridge between programs in a subset of occam and
hardware implementat ions of them. The theorems presented in this section are
sufficient to reduce a user program to normal form, where the normal form pro-
gram is in an even more restricted subset of occam. Normal form programs can
be interpreted as 'netl ist ' hardware specifications via a further transformation,
which can be implemented using FPGAs, or by other conventional methods.

3.1 N o r m a l F o r m D e f i n i t i o n

A normal form program comprises three sequential programs where the first one
designates the initial control state of the circuit, and the last one the final state.
The other program is a loop with a simultaneous assignment as its body which
specifies state changes of the computat ion, and the t ime delay caused by those
changes. The normal form is essentially a state machine model for the system
behaviour of a synchronous computat ion where the observables correspond to
the following variables:

- a variable c representing the state of the control pa th of the circuit, which
ranges over a set K of possible control states,

- a variable v representing the state of the data pa th of the circuit (for sim-
plicity we assume v is of type integer),

- a K-indexed family C of expressions describing the next control state,

- a K-indexed family V of expressions specifying the new value of v.

A circuit with initial control state s and final control s tate f ~ K can then be
described by

X'(s , f , K, C, V) de_] v a r c ; (c = s) "r ;

*(I:]IeK c = i ---+ ((e, v := C(l), V(/)) ,) ;

(c = f) • e n d e
where

219

- the assumption (c = s) r means the circuit must be activated in state s,
- the assignment ((e, v := C(l), Y(l)), states that C(l) is the successor of

the control state l, and V(l) is the value of v at that new state. Here the
expression V(l) does not mention variable c,

- the assertion (c = f) • guarantees that if the circuit terminates it will do
so in state f .

The following lemma states that the real behaviour of the circuit is more pre-
dictable than that described by the normal form.

Lemma.
N (s , I , K, C, V) c var c ; (c = s) r ;

(c O f) �9 (o,~K c = Z ~ ((c, v := C(0 , V(t))l) ;

e n d c

The theorems given in the following section enable the automatic transfor-
mation of a user program to normal form. A compiler soundly based on these
theorems can make some claim to being provably correct.

3.2 N o r m a l F o r m R e d u c t i o n T h e o r e m s

This section presents some of the reduction theorems by which an occarn pro-
gram can be transformed into a normal form, together with two sample proofs.
The first three theorems handle primitive processes, and illustrate how to con-
struct the corresponding normal forms directly. The remaining theorems deal
with constructed processes with normal form programs as their operands.

Theorem 1: Skip.
skip C A/'(s, s, 0, 0, 0)

Theorem 2: Stop.
s t o p C .h/'(s, f , {s}, {s ~ s}, {s ~ v})

Theorem 3: Assignment.
v := e _c :,:(s,/, {s}, {s ,--, f}, {s ,--, e})

Proof:

where s # f .

where s # f .

v : - - e

= { laws 6.3, 5.2 }

v a r p ; v := e; p := s ; e n d p

-- { laws 6.1, 6.2 }

v a r p ; v, p : - e, s ; e n d p

C { laws 2.1, 2.3 }

v a r p ; (p = s) r ; p , v : = f , e ; (p = f) •

= { law 7.1 and definition of loop)

v a r p ; (p - - s) " r ; , (p = s ~ (p, v : = f , e) l) ; (p = f) •
= { definition of Af }

X (s , / , {s}, {s ~ / } , {s ~ e})

220

Theorem 4: Sequence. In this and following theorems we state that language
constructors are closed in the set of normal forms in the sense that if all the
components of a constructor are in normal form, their composition can be re-
duced to normal form.

Af(s, h, g i , Ci, Vi); Af(h, f , Ks, Cs, V2)
E AZ(s, f , g i u g 2 , Ci g Cs, Vl U Vs)

provided that /(1 n K~ = 0 and f ~ Ki.
Proof:

LHS
= { law 4.1 }

X(s, h, K1, C1U G, V~U V2); X(h, I, Ks, C lUG, VlU Vs)
E { law 2.2 and assumption }

Af(s, h, K1, C1U Cs, Vi U Vs) ; .Af(h, f , K~, Ci U Cs, V1U 1/2);

X(I, I, Ks, CI u G, Vl u Ys)
{ laws 2.2, 3.1 }

RHS
Theorem 5: Loop.

b(v) *l .N'(sa, fi, gi , Ci, Vl) E Af(s, f , K, C, V)
if s, f ~ {sl, fi} U Ki, and

A" ~ {s, fi} u K1

C de~'~{s~--~Sl<:l b DI} U {fl ~'+ Sl <:l b I>f} U Ci

v ~'{s~ v} u {f~ ~ v} u Vl

Theorem 6: Conditional. If IQ r) If2 = 0, and fi q~ K2, and f2 ~ Ki, and
s, f ~ {si, fi, s2, f2} U tQ U/(2, then

J~f(Sx, 11, KI, C1, Vl) <:3 b(v) D1 J~(s2, f2, g2, C2, V2)
E_ .N'(s, f , K, C, V)

where
Kde-J {s, fl, f2} U K1 U K2

cde----f{s~ "-~ Sl<l b Ds2} U {fl ~-'+ f} U {f2 ~'-~ f} U 61 U C2

V ~ { s ~ + v} U {fi~-+ v} U { f s ~ v} g Vi U V2
The theorems for communication, alternation and the parallel construct (and

their proofs) are considerably more complicated that those presented here and
thus cannot be included because of lack of space. However they are presented in
the report on which this paper is based [11], for those who are interested in the
full language.

4 R a p i d P r o t o t y p e C o m p i l e r

The compiling theorems shown here may easily be transformed into Horn clauses.
Thus it is feasible to prototype them as a logic program [1]. However, to produce

221

an executable compiler, it is necessary to constructively generate each of the
constructs of the language. This is relatively easy for the sequential aspects of
the language. Theorems 1 to 3 may be transliterated very directly into a language
such as Prolog [7]:
Clause 1: Skip.

skip <= n(S,S, [], [], []).

Clause 2: Slop.
stop <= n(S,F,[S],[S->S],[S->v]) :- {S\=F}.

Clause 3: Assignment
v:=E <= n(S,F,[S],[S->F],[S->E]) :- {S\=F}.

Constraints are encoded in curly brackets {... } for clarity.

Theorems 4 to 6 apply if all the components of the constructs are in normal
form. However sequence, loop and conditional are monotonic w.r.t. _E:

If PC_ R and Q c_S then P; Q E_ R; S.
If P C R and Q _ S then P <3 b(v) Dn Q a_ R < b(v) ~,,, S.
If P C Q then b(v) *n P K_ b(v) , , Q.

Also [-" is transitive:
I f P C Q a n d Q_ERthen P_ER.

From these laws and theorems 4 to 6 we can derive the following new theorems:
Theorem 4a: Sequence.

P; Q E_ Af (s, f , KI U K2, Ci U C2, VI U V2)
provided that P E A/(s, h, K1, C1, Vi), and Q _E Af(h, f , K2, C2, V2), and the
constraints of Theorem 4 apply.
Theorem ha: Loop.

b(v) *1 P ~ .]~f(s, f , K, C, V)
if P _E Af(sl, fl, K1, C1, V1), and the constraints and definitions of Theorem 5
apply.
Theorem 6a: Conditional. If the constraints and definitions of Theorem 6 apply,
and P _E A/(si, fi, K1, Ci, V1), and Q _c Af(s2, f2,/(2, C2, V2), then

P <I b(v) I>i Q K Af(s, f , K, C, V)
From these we can formulate Prolog program equivalents very directly:
Clause 4: Sequence.

(P;Q) <= n(S,F,K,C,V) "-
P<=n(S,H,KI,C1,V1), Q<=n(H,F,K2,C2,V2),
{KI disjoint K2}, {F notin K1},
{K=KIk/K2}, {C=CI\/C2}, {V=VI\/V2}.

Clause 5: Loop.
B*P <= n(S,F,K,C,V) :-

P<=n(S1,FI,KI,CI,V1),
{[S,F] no t in [SI,FI]\/KI},
{K= [S,FI] \/KI},
{C= [S->S IF] \/[FI->SIF] \/Cl},
{V= [S->v] \/[Fl->v] \/Vl}.

222

Clause 6: Conditional.
Pq <= n(S,F,K,C,V) "-

P<=n(SI,FI,KI,CI,VI), Q<=n(S2,F2,K2,C2,V2),
{KI disjoint K2}, {FI notin K2}, {F2 notin KI},
{IS,F] notin [SI,FI,S2,F2]\/KI\/K2},
{K= [S, F1, F2] \ /KI \ /K2},
{C= [S->SIS2] \/[Fl->F] \/[F2->F] \/Ci\/C2},
{V= [S->v] \/[F1->v] V [F2->v] \/VI\/V2}.

Note that in the normal mode of usage, the high-level program will be sup-
plied and the normal form derived. Without the disjointness constraints on vari-
ables, free (uninstantiated) variables will be returned. To satisfy the disjointness
constraints, it is simply necessary to instantiate these to different values. Many
versions of Prolog (e.g., Quintus [23]) provide a built-in clause to do just this.
Using this technique avoids the otherwise very computationally expensive prob-
lem of checking the disjointness constraints. This results in a usable compiler in
practice, at least for experimental purposes.

Compilation of the constructs associated with parallelism is less direct than
from the theorems presented in this paper. However we plan to produce a fuller
compiler based on proven theorems for hardware compilation. We feel that this
is tractable since an unverified hardware compiler for the majority of occam,
including all the constructs presented here, has already been produced in Stan-
dard ML [22], and is proving very successful in the practical production of netlist
descriptions for FPGAs. The fact that logic (and other) programs can be consid-
ered as representing predicates [14] is a great help in producing a provably correct
compiler. Logic program synthesis and transformation is a very active topic of
research [6] and application of these results is likely to increase the confidence
in and efficiency of the prototype hardware compiler. Prolog has been shown to
be relatively efficient for compilation [21] and has even been used successfully in
the compilation of the VHDL hardware description language [24].

5 M a p p i n g N o r m a l F o r m i n t o H a r d w a r e

There are a number of ways in which a normal form program can be mapped
into hardware. We have been using Xilinx FPGA chips to implement globally
synchronous circuits which directly mimic the normal form programs. Firstly,
we allocate latches corresponding to both control variables P and program vari-
ables v which together record the total state of the computation at each instant.
Secondly, a set of combinational logic gates is generated to implement expres-
sions V and C. It is also straightforward to develop theorems which refine the
arithmetic and other operators in the language into Boolean operations only, so
that the translation into hardware becomes trivial. Every latch in the implemen-
tation is triggered by the rising edge of the global clock and the clock cycle is
defined such that the (loop-free) combinational hardware has settled well before
the next rising edge which latches the next program state.

In practice the designer may adopt a specific method tailored to the physical
resources at hand. For example, each control state can be given a latch when

223

the combinational circuits are the main concern in the implementation. Another
extreme case is a set of combinational gates will be allocated to encode the
control states.

Note that the mapping from normal form into hardware must also be proved
correct for complete confidence in the compilation process. However the decom-
position of the task into two or more phases helps to make the overall problem
more tractable.

6 C o n c l u s i o n s

We have presented a normal form which acts as a bridge between a user program
and its realization in a particular style of synchronous circuit. The normal form
consists of very simple occam commands. We have shown some of the algebraic
laws and theorems for transforming a user program into normal form. In pro-
cessing synchronous communications, we have also extended the programming
language by introducing the notation of state-based parallel which mimics the
true concurrency of the underlying digit circuits [11].

It is possible to develop a hardware simulation program for the netlist inter-
pretation of normal form programs. If this program is shown to refine the normal
form program then we have a proof of correctness of the hardware netlist itself
using the simulation as the defining semantics of the hardware components.

We have built an ad hoc compiler which directly generates hardware de-
scriptions in a manner at least consistent with these theorems. We have also
prototyped a small compiler in Prolog where there is very little code to obscure
the application of the transformation theorems. We hope to build on this work
to produce a compiler which is soundly based on our transformation laws and
which can be trusted, with a high degree of confidence, to apply them validly.
Even with such a compiler, it is prudent that we have another route by which
the output of the compiler can be proven to refine its input. We will investigate
ways in which we might also provide this facility.

Our objective is to produce a set of provably correct compiling theorems
which enables us to implement occam programs as hardware circuits. Instru-
mental in our success for this study is the use of a simple normal form, which
we have developed as an extension of some earlier work dealing with compiling
specification in the P r o C o S project [15, 16]. Our experience with this s tudy
is that while it was very difficult to establish the link between the event-based
parallel paradigm and the state-based parallel one, the use of algebraic laws has
aided this process.

The techniques above allow a microprocessor such as a transputer to be com-
piled into hardware from an interpreter description (specification) of the pro-
cessor. What is more, the design may easily parameterized for different word
lengths, sets of instructions, etc. Since the compiling process itself may be proved
correct, confidence in all the processors produced is increased. This is in marked
contrast to the more traditional formal verification techniques, in which only a
single processor is proved correct, and represents a novel aspect of the proposed
work. The approach is also derivational rather than proof-oriented in nature.

224

For our future work we plan to also consider hardware/software co-design.
Currently only relatively small programs can be fully compiled in programmable
hardware. Realistically, many programs will need to be compiled into a combi-
nation of machine object code and hardware. The split could be automated to
some extent, although human guidance may well be desirable as well. An advan-
tage of the approach is that new compilation strategies, such as optimizations,
may be included as new theorems, without affecting existing theorems [10]. The
ultimate aim is to provide a good interface with the engineer.

We see hardware compilation becoming increasingly important over the next
decade. Currently FPGAs are mostly used for the implementation of glue logic.
However, we envisage many more possible applications, such as direct implemen-
tation of algorithms in hardware to rival the speed of conventional supercom-
puters at a fraction of the cost. It will be important that appropriate software
support is available to allow the convenient programming of such hardware.
Currently size is a limiting factor, but since the technology is improving expo-
nentially this will be of less concern in the future.

Acknowledgement. Sincere thanks are due to Prof. C.A.R. Hoare and Wayne
Luk at Oxford University for comments and encouragement.

R e f e r e n c e s

1. J.P. Bowen, From programs to object code using logic and logic programming, in R.
Giegerich and S.L. Graham (eds.), Code Generation- Concepts, Tools, Techniques,
Springer-Verlag, Workshops in Computer Science, pp. 173-192, 1992;

2. J.P. Bowen (ed.), Towards Verified Systems, Elsevier, Real-Time Safety Critical
Systems Series, 1993. In preparation.

3. J.P. Bowen, M. Frs E.-R. Olderog and A.P. Ravn, Developing correct systems,
Proc. 5th Euromicro Workshop on Real-Time Systems, Oulu, Finland, 22-24 June
1993. IEEE Press, 1993. To appear.

4. J.P. Bowen and V. Stavridou, Formal methods and software safety, in H. Frey (ed.),
Safety of Computer Control Systems 1992 (SAFECOMP'92), Pergamon Press, pp.
93-98, 1992.

5. G.M. Brown, Towards truly delay-insensitive circuit realizations of process alge-
bras, in G. Jones and M. Sheeran (eds.), Designing Correct Circuits, Springer-
Verlag, Workshops in Computing, pp. 120-131, 1991.

6. T.P. Clement and K.-K. Lau (eds.), Logic Program Synthesis and Transformation,
Springer-Verlag, Workshops in Computing, 1992.

7. W.F. Clocksin and C.S. Mellish, Programming in Prolog, Springer-Verlag, 3rd edi-
tion, 1987.

8. G.V. Collis and E.J. Kappos, Occam as a hardware description language, Software
Engineering Journal, 2(6), 213-219, November 1987.

9. He Jifeng and J.P. Bowen, Time interval semantics and implementation of a real-
time programming language, Proc. 4th Euromicro Workshop on Real-Time Sys-
tems, IEEE Press, pp. 110-115, June 1992.
He Jifeng and J.P. Bowen, Specification, Verification and Prototyping of an Opti-
mized Compiler, Draft, Oxford University Computing Laboratory, 1992. Submitted
for publication.

10.

225

11. He Jifeng, I. Page and J.P. Bowen, A Provably Correct Hardware Implementa-
tion of Occam, ESPRIT P roC oS project document [OU HJF 9/5], Draft, Oxford
University Computing Laboratory, UK, November 1992.

12. C.A.R. Hoare (ed.), Developments in Concurrency and Communication, Addison-
Wesley, University of Texas at Austin Year of Programming Series, 1990.

13. C.A.R. Hoare, Refinement algebra proves correctness of compiling specifications,
in C.C. Morgan and J.C.P. Woodcock (eds.), 3rd Refinement Workshop, Springer-
Verlag, Workshops in Computing, pp. 33-48, 1991.

14. C.A.R. Hoare, Programs are predicates, in ICOT (ed.), Proc. International Con-
ference on Fifth Generation Computer Systems, Tokyo, Japan, pp. 211-218, 1-5
June 1992.

15. C.A.R. Hoare, He Jifeng, J.P. Bowen and P.K. Pandya, An algebraic approach to
verifiable compiling specification and prototyping of the ProCoS level 0 program-
ming language, ESPRIT '90 Conference Proceedings, Kluwer Academic Publishers,
pp. 804-818, 1990.

16. C.A.R. Hoare, He Jifeng and A. Sampaio, Normal form approach to compiler
design, Acta Informatica, 1993. To appear.

17. Inmos Ltd., Occam 2 Reference Manual, Prentice Hall International Series in Com-
puter Science, 1988.

18. M.E. Leeser et al., BEDROC91: The Cornell Hardware Synthesis Project, Technical
Report EE-CEG-91-9, School of Electrical Engineering, Cornell University, Ithaca,
New York, USA, 1991.

19. A.J. Martin, Programming in VLSI: from communicating processes into delay-
insensitive circuits, chapter 1, in [12].

20. D. May, Compiling Occam into silicon, chapter 3, in [12].
21. J. Paakki, Prolog in practical compiler writing, The Computer Journal, 34(1),

64-72, 1991.
22. I. Page and W. Luk, Compiling Occam into field-programmable gate arrays, in W.

Moore and W. Luk (eds.), FPGAs, Abingdon EE&CS Books, 15 Harcourt Way,
Abingdon OX14 1NV, UK, pp. 271-283, 1991.

23. Quintus Prolog - Sun 4 User Manual, Release 2.5, Quintus Computer Systems,
Inc., Mountain View, California, USA, 1990.

24. P.B. Reintjes, A set of tools for VHDL design, in K. Furukawa (ed.), Logic Pro-
gramming: Proc. 8th International Conference, The MIT Press, pp. 549-562, 1991.

25. A.W. Roscoe and C.A.R. Hoare, Laws of Occam programming, Theoretical Com-
puter Science, 60, 177-229, 1988.

26. C.H. van Berkel, J. Kessels, M. Roncken, R.W.J.J. Saeijs and F. Schalij, The VLSI-
programming language Tangram and its translation into handshake circuits, Proc.
European Design Automation Conference, 1991.

27. S. Weber, B. Bloom and G. Brown, Compiling Joy into silicon, in T. Knight and J.
Savage (eds.), Advanced Research in VLSI and Parallel Systems, The MIT Press,
1992.

28. Xilinx Inc., The Programmable Gate Array Data Book, San Jose, California, USA,
1991.

