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Abstract

We propose and mathematically examine a theory of calcium profile formation in unwounded

mammalian epidermis based on: changes in keratinocyte proliferation, fluid and calcium ex-

change with the extracellular fluid during these cells’ passage through the epidermal sub-

layers, and the barrier functions of both the stratum corneum and tight junctions localised in

the stratum granulosum. Using this theory, we develop a mathematical model that predicts

epidermal sublayer transit times, partitioning of the epidermal calcium gradient between in-

tracellular and extracellular domains, and the permeability of the tight junction barrier to

calcium ions. Comparison of our model’s predictions of epidermal transit times with experi-

mental data indicates that keratinocytes lose at least 87% of their volume during their disinte-

gration to become corneocytes. Intracellular calcium is suggested as the main contributor to

the epidermal calcium gradient, with its distribution actively regulated by a phenotypic switch

in calcium exchange between keratinocytes and extracellular fluid present at the boundary

between the stratum spinosum and the stratum granulosum. Formation of the extracellular

calcium distribution, which rises in concentration through the stratum granulosum towards

the skin surface, is attributed to a tight junction barrier in this sublayer possessing permeabili-

ty to calcium ions that is less than 15 nm s−1 in human epidermis and less than 37 nm s−1 in

murine epidermis. Future experimental work may refine the presented theory and reduce the

mathematical uncertainty present in the model predictions.

Introduction

The calcium distribution within the mammalian epidermis is both an indicator of the skin bar-

rier function [1] and a regulator of epidermal structure [2]. Here, using a mathematical model,

we propose and examine a theory of the key mechanisms that control the calcium profile in un-

wounded epidermis.
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The epidermis and its calcium profile

The epidermis consists predominantly of keratinocytes [3]. These cells are continuously being

produced at the bottom of the epidermis, driven to passively migrate towards the skin surface,

and are sloughed away during everyday activity [4]. During this life cycle, keratinocytes express

distinct phenotypic changes which characterise the boundaries of four sublayers of the

epidermis:

1. The stratum basale (SB): Keratinocytes proliferate. The exact pattern of proliferation is still

a matter of debate [5], and is suggested to involve either one [6, 7] or two cell types [8]. The

single progenitor theory posits that a single population of slowly-cycling cells maintains epi-

dermal homeostasis, whilst the more traditional two progenitor theory proposes that the SB

consists of two keratinocyte subpopulations: (1) stem cells, which proliferate slowly and

indefinitely, each time producing one stem cell and one transit amplifying (TA) cell, and

(2) TA cells, which divide symmetrically 3–5 times before leaving the SB [9, 10].

2. The stratum spinosum (SS): Keratinocytes increase in volume [11] and passively migrate to-

wards the skin surface, displaced from the SB by proliferation there.

3. The stratum granulosum (SG): Keratinocytes become flattened and disintegrate, reducing

their volume [12] and expelling lamellar bodies [13].

4. The stratum corneum (SC): Denucleated and highly flattened keratinocytes, called corneo-

cytes, combine with lipids from the lamellar bodies exocytosed in the SG, in a “bricks and

mortar” architecture [14] that forms the primary skin barrier [4]. Transepidermal water loss

(TEWL) experiments, which involve progressive tape-stripping of the SC to identify the

thickness that must be removed to cause fluid flow to significantly increase across this sub-

layer, suggest that this barrier is only strongly impermeable in the top 4–8 μm of the SC

[15–17]. Hence we subdivide this epidermal sublayer into the lower SC (progressive barrier)

and upper SC (impermeable barrier). At the top of the upper SC, intercorneocyte linking

structures degrade and corneocytes are shed from the skin surface [18].

Epidermal calcium is present in three different localisations: the extracellular fluid (ECF),

intracellular cytosol and intracellular organelles [19]. Calcium concentrations in the ECF and

organelles are significantly higher than in the cytosol [20, 21]. These concentration differences

are maintained by calcium pumps present on the membranes of keratinocytes and their intra-

cellular structures, which actively remove calcium from the cytosol [22]. If we consider calcium

in the ECF as “extracellular”, and calcium in cytosol and organelles together as “intracellular”,

then it is the action of the calcium pumps on the keratinocyte membrane that is crucial for con-

trolling intracellular and extracellular calcium levels [23].

The total epidermal calcium profile, which is a summation of calcium from intracellular and

extracellular localisations, has been quantitatively measured using proton-induced X-ray emis-

sion (PIXE) [24–28], and in unwounded skin these measurements typically adhere to the profile

shown in Fig. 1a. The total calcium concentration is low in the SB, rises gradually to a peak in

the SG (the so-called “epidermal calcium gradient”), and drops to near-negligible levels in the

SC. Because the PIXE technique has a resolution of*10 μm [29], it is unclear whether the calci-

um drop towards the skin surface occurs at the SG-SC interface or further into the SC: the latter

interpretation is quite feasible since the skin’s primary barrier might only be fully formed in the

upper SC, based on the previously discussed TEWL experiments. PIXE cannot distinguish be-

tween the intracellular and extracellular contributions to the epidermal calcium profile.

On the other hand, the intracellular and extracellular epidermal calcium profiles have been

measured separately using ion capture cytochemistry [30, 31], but only semi-quantitatively
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[32–34]. As indicated in Fig. 1b, both intracellular and extracellular profiles qualitatively agree

with the total profiles obtained from PIXE, but it is difficult to make additional interpretations

from this semi-quantitative data.

For the past decade, the presence of the epidermal calcium profile has been attributed solely

to the presence of the SC barrier [35], which is thought to act as a sieve, selectively allowing

water but not calcium to leave the viable epidermis [36]. When the epidermis is wounded, its

calcium profile disappears rapidly then reappears gradually with restoration of the skin’s barri-

er function [1, 37, 38]. This observation fits easily within the conventional sieve view of epider-

mal calcium profile formation, as the removal of the SC simply removes the impetus for the

calcium gradient to form.

However, recent measurements of the epidermal calcium distribution using fluorescent life-

time imaging [36, 39] have brought this view into question. These measurements demonstrated

that the bulk of free calcium is present in intracellular organelles [36], and that epidermal

barrier disruption triggers a mobilization of high amounts of calcium from these stores [39].

This prompted the questioning of this conventional view that the epidermal calcium profile is

regulated only passively by the SC. In previous work, using a mathematical model, we found

that this profile is largely intracellular and regulated by sublayer-specific changes in the action

of keratinocyte membrane pumps [23]. In the current paper, we extend this analysis further, to

propose that there are three key mechanisms that control epidermal calcium profile formation

in unwounded skin: the passive impermeable barrier of the SC, tight junction-limited calcium

diffusion in the SG, and a phenotypic switch in calcium exchange between keratinocytes and

extracellular fluid at the SS-SG boundary. We also investigate the contribution of the stem and

Figure 1. The epidermal calcium distribution. (a) Typical shape of the total profile found quantitatively using PIXE (for examples in the experimental
literature, see [26, 28]). (b) Typical shape of the semi-quantitative intracellular ([Cai]) and extracellular ([Cae]) profiles measured using ion capture
cytochemistry (for examples in the experimental literature, see [32–34]).

doi:10.1371/journal.pone.0116751.g001
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TA cell subpopulations of the SB, volume changes of keratinocytes in the SS, and calcium

located in the lower SC, to the formation of the calcium profile of unwounded epidermis.

Proposed key mechanisms regulating the calcium profile

Our proposed theory is presented schematically in Fig. 2. We treat the calcium present in the

cytosol and organelles within keratinocytes together as intracellular calcium, with the majority

of this calcium likely to be confined to the keratinocyte organelles [21]. Most epidermal

calcium is present in this intracellular calcium [36], which possesses a distinct spatial profile

that forms as follows. Membrane pumps on keratinocytes act to accumulate calcium intracellu-

larly from the ECF in the SB and SS, and in the SG this behaviour reverses to calcium expulsion

into the ECF [23], emptying the intracellular stores [39] so that corneocytes in the upper SC

contain negligible levels of intracellular calcium. These mechanisms yield an intracellular calci-

um profile that is low in the SB, rises gradually towards a peak in the SG, and drops rapidly in

the SC, in agreement with the experimental observations for both the total and intracellular

profiles (see Figs. 1a and 1b).

The extracellular calcium profile, which possesses far less calcium due to the small volume

of the epidermis occupied by the ECF [36, 40], forms as follows. The ECF is essentially water

[41], and hence extracellular calcium in the SB and SS diffuses rapidly to near-constant levels

throughout these sublayers [23]. In the SG, cell-cell adhesions known as tight junctions (TJs)

are located apically between the lateral membranes of neighbouring keratinocytes [42, 43], and

form a permeability barrier to calcium ions [44, 45] that reduces the rate of extracellular calci-

um diffusion there. Because calcium is continuously being expelled by keratinocytes near the

skin surface, this TJ-limited calcium diffusion in the SG causes the extracellular calcium con-

centration to be slightly elevated there, negligibly affecting the calcium levels in the underlying

SB and SS [46]. Lipids cannot be responsible for this elevated extracellular calcium concentra-

tion in the SG because they are localised only at the SG-SC boundary prior to their contribution

as the “mortar” of the SC barrier. Extracellular calcium cannot enter the upper SC due to its

barrier function, in agreement with the TEWL experiments [15–17]. These mechanisms to-

gether yield an extracellular calcium profile which is nearly constant in the SB and SS, rises in

the SG, and drops rapidly in the SC, in agreement with experimental observations of the extra-

cellular profile (see Fig. 1b).

Materials and Methods

Main equations

Wemathematically model the epidermis as a saturated porous medium [47]. This modelling

strategy has been used previously to consider avascular tumour growth [48–50] and cell behav-

iour within an artificial scafffold [51], justified for the viable sublayers of the epidermis in our

previous paper [23], and proposed for modelling the SC of the epidermis by Kitson and The-

walt [52].

As a porous medium, we assume that the keratinocytes behave uniformly and are analogous

to soil particles, and the surrounding ECF is analogous to the water that saturates the soil sys-

tem. We assume that keratinocytes and ECF are comprised of an identical, incompressible

fluid. Calcium is always dissolved in the cells or ECF. Calcium contained in the cytosol and in-

tracellular organelles of cells are considered together simply as intracellular calcium. This sim-

plification means that we do not specifically consider the intracellular dynamics of calcium

exchange between the cytosol and organelles. We cannot discount the possibility that the intra-

cellular calcium dynamics may play an important role in the partitioning of calcium between

intracellular and extracellular domains, although investigating this is beyond the scope of the
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Figure 2. Proposed conceptual model of epidermal calcium profile formation in unwounded skin. The mathematical model presented in this paper
simplifies the progressive barrier in the lower SC to a distinct barrier at the lower-upper SC boundary.

doi:10.1371/journal.pone.0116751.g002
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present work. As we are only interested here in identifying the extracellular and intracellular

contributions to the epidermal calcium profile, consideration of cytosolic and organelle

calcium separately is not necessary to investigate our proposed theory. Experimentally, intra-

cellular calcium waves are known to propagate between adjacent keratinocytes [53], but these

waves negligibly affect the epidermal calcium profile. Hence, in our model calcium cannot trav-

el directly between keratinocytes, but rather can only be exchanged between cells and the sur-

rounding ECF.

We assume that both the structure and calcium profile of the epidermis have reached a dis-

tribution that is stable and unchanging with time. Because of this we consider only one spatial

direction z perpendicular to the skin surface. For this simplification, we ensured that any

model parameters recorded for the three-dimensional case are also appropriate for the one-

dimensional case. The main equations of our model, derived from mass conservation equations

for the fluid and calcium present both in cells and ECF, are identical to those from our previous

paper [23], but with one important exception. We do not specify the ECF velocity, because it

will be unpredictably modified by TJs [54] and aquaporins [55, 56], neither of which were con-

sidered in [23]. With all these considerations in mind, the main equations of our model are

d

dz
ð�uiÞ ¼ f ; ð1aÞ

d

dz
ðrciuiÞ ¼ g; ð1bÞ

d

dz
ðrceuceÞ ¼ �g; ð1cÞ

where ϕ is the cell volume fraction, ρci and ρce are the superficial intracellular and extracellular

calcium concentrations respectively, ui and uce are the physical velocities of the cells and extra-

cellular calcium respectively, f is the rate of change of cell volume fraction due to fluid exchange

between ECF and cells, and g is the rate of change of superficial intracellular calcium concen-

tration due to calcium exchange between ECF and cells. Functions f and g are positive when

fluid and calcium respectively are being transferred from ECF to cells, and negative when fluid

and calcium respectively are being transferred from cells to ECF. We next use equations

(1a)–(1c), together with defined boundary conditions, to derive equations for calculating: kera-

tinocyte velocity profiles ui(z) and transit times through the epidermis, the intracellular calci-

um profile ρci(z) and pattern of calcium exchange between keratinocytes and the ECF g(z), and

the dependence of the extracellular calcium profile ρce(z) on the permeability of the TJ barrier

to calcium ions.

Model domain and boundary conditions

In this section, we define the model domain and provide two boundary conditions each for

ui(z), ρci(z) and ρce(z) as part of our proposed theory, although not all of these conditions will

be necessary for our subsequent analysis. The epidermal sublayers shown in Fig. 2 are defined

as follows: the SB in 0� z� z1, the SS in z1 < z� z2, the SG in z2 < z� z3, the lower SC in

z3 < z� z4 and the upper SC in z4 < z� z5. We assume that the two progenitor theory holds

for human and murine epidermis [8]. In the two progenitor theory, the SB consists of stem cell

and TA cell subpopulations which are suggested to form two spatially separate compartments

[57, 58]. Hence we subdivide the SB into compartments consisting of stem cells, 0� z� θz1,

and TA cells, θz1 < z� z1, where θ is the volume fraction of the SB occupied by stem cells.

AQuantitative Theory of Epidermal Calcium Profile Formation
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In our model, equation (1a) defines the dynamics of epidermal cells, whilst equations (1b)

and (1c) define the dynamics of epidermal calcium. Because keratinocytes occupy all sublayers

of the epidermis, the model domain for equation (1a) is 0� z� z5. Keratinocytes cannot pass

through the BM (z = 0) but are continuously expelled at the skin surface (z = z5), sloughed

away during everyday activity [4]. Hence the boundary conditions for equation (1a) are

uið0Þ ¼ 0; ð2aÞ

uiðz5Þ > 0: ð2bÞ

Our description of epidermal calcium profile formation treats the lower SC as a progressive

barrier and the upper SC as an impermeable barrier to fluid and ion flow, based on TEWL ex-

periments [15–17] and the observation of non-negligible calcium levels in the lower SC [33]. In

our model we simplify this to treat the boundary between the lower and upper SC, denoted z4,

as the impermeable barrier to transport of fluid and ions. Hence the model domain for equa-

tions (1b) and (1c) is 0� z� z4.

Intracellular calcium cannot travel across the BM because it is contained within keratino-

cytes, and is completely absent in the corneocytes of the upper SC [34, 37]. Hence the boundary

conditions for equation (1b) are

rcið0Þuið0Þ ¼ 0; ð2cÞ

rciðz4Þ ¼ 0: ð2dÞ

The calcium present in the epidermis originates from movement of fluids and calcium

across the BM [59], which at steady state must therefore act as a source of extracellular calcium

with constant and positive concentration. Extracellular calcium is prevented from entering

the upper SC by the impermeable barrier acting at z4. Hence the boundary conditions for equa-

tion (1c) are

rceð0Þ ¼ 0; ð2eÞ

rceðz4Þuceðz4Þ ¼ 0: ð2fÞ

For the analysis performed in this paper, we will only explicitly require two of the six boundary

conditions listed here, equations (2a) and (2f).

Calculating keratinocyte velocity profiles and transit times

Using equation (1a), the keratinocyte velocity profile ui(z) is estimated from profiles that we

now define for the cell volume fraction, ϕ(z), and volume exchange between cells and ECF, f(z).

We specify f(z) as

f ðzÞ ¼

s
0
�; 0 � z � yz

1
;

s
1
�; yz

1
< z � z

1
;

s
2
�; z

1
< z � z

2
;

�s
3
�; z

2
< z � z

3
;

0; z
3
< z � z

5
:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð3Þ
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This form expresses the different proliferation rates s0 and s1 of stem and TA cells in the SB

[60], the rate of volume increase s2 for keratinocytes migrating through the SS [11], the rate of

volume decrease s3 for keratinocytes migrating through the SG [12], and the relative structural

inertness of corneocytes in the SC [61].

The cell volume fraction ϕ is assumed to be constant and equal to ϕv throughout both the vi-

able sublayers (SB, SS and SG) and the lower SC [62]. The “bricks and mortar” architecture of

the upper SC [14] constitutes a slow-moving relatively impenetrable barrier to fluid transport

[63], equivalent to a sublayer consisting solely of keratinocyte-derived contents (ϕ = 1). Hence

the cell volume fraction profile ϕ(z) is specified as

�ðzÞ ¼
�v; 0 � z � z

4
;

1; z
4
< z � z

5
:

(

ð4Þ

The superficial keratinocyte velocity ϕui is assumed to be continuous at each of the sublayer

boundaries, to ensure that cell mass flow is continuous throughout the epidermis. This consid-

eration, together with equations (1a), (2a), (3) and (4), yield the keratinocyte velocity profile

ui(z) as

uiðzÞ ¼

s
0
z; 0 � z � yz

1
;

uiðyz1Þ þ s
1
ðz � yz

1
Þ; yz

1
� z � z

1
;

uiðz1Þ þ s
2
ðz � z

1
Þ; z

1
� z � z

2
;

uiðz2Þ � s
3
ðz � z

2
Þ; z

2
� z � z

3
;

uiðz3Þ; z
3
� z � z

4
;

�vuiðz4Þ; z
4
< z � z

5
:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð5Þ

Rates s2 and s3 are obtained from empirical observations of the ratio of keratinocyte volumes

between the upper and lower boundaries of the SS, V1 > 1 (net volume increase from lower to

upper boundary), and the SG, V2 < 1 (net volume decrease from lower to upper boundary), re-

spectively, by use of the equations

s
2
¼

uiðz1Þ

z
2
� z

1

ðV
1
� 1Þ; ð6aÞ

s
3
¼

uiðz2Þ

z
3
� z

2

ð1� V
2
Þ: ð6bÞ

Equations (6a) and (6b) can be obtained using mathematical procedures similar to the deriva-

tion of s2(R) provided in Appendix B of [23].

Using the cell velocity profiles ui(z) defined by equations (5), (6a) and (6b), transit times

through the various epidermal sublayers are calculated via

tðza; zbÞ ¼

Z zb

za

dz

uiðzÞ
; ð7Þ

where τ(za, zb) is the average time taken for a keratinocyte to move from height above the BM

za to height zb. We assume that the transit through the SB can be approximated by the transit

through the TA cell compartment, because the volume of SB occupied by stem cells is negligi-

ble compared to TA cells [64], and stem cells possess theoretically infinite transit time because
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they may never leave the SB. Hence, from equations (5) and (7) the epidermal transit times are

given by

tSB � tðz
0
; z

1
Þ ¼

1

s
1

ln
uiðz1Þ

uiðz0Þ

� �

; ð8aÞ

tSS ¼ tðz
1
; z

2
Þ ¼

1

s
2

lnðV
1
Þ; ð8bÞ

tSG ¼ tðz
2
; z

3
Þ ¼ �

1

s
3

lnðV
2
Þ; ð8cÞ

tSC ¼ tðz
3
; z

5
Þ ¼

1

uiðz3Þ
z
4
� z

3
þ
z
5
� z

4

�v

� �

: ð8dÞ

Calculating profiles of intracellular calcium and calcium exchange

In this section we show how the intracellular calcium profile ρci(z) and calcium exchange be-

tween keratinocytes and ECF g(z), can be estimated from the total epidermal calcium profile

ρ(z).

The total calcium profile is a summation of intracellular and extracellular calcium profiles,

rðzÞ ¼ rciðzÞ þ rceðzÞ; ð9Þ

but extracellular calcium provides only a small contribution (2–10 mg/kg) to the total calcium

profile in the epidermis (100–1100 mg/kg) [23, 36]. Hence, to estimate the intracellular calcium

profile ρci(z) from the total calcium profile ρ(z) using equation (9), at the scale of ρ(z) we ap-

proximate the extracellular calcium distribution by a constant equal to its mean value through-

out the epidermis,

rceðzÞ � rrceð0Þ: ð10Þ

Here, r is a nondimensional factor equal to the ratio of the mean extracellular calcium concen-

tration of all sublayers enclosed by [0, z4] to its concentration at the BM, and whose uncertainty

bounds express the variation of the extracellular calcium concentration throughout these sub-

layers. The BM levels of total and extracellular calcium are related by

rð0Þ ¼
rceð0Þ

1� �v

; ð11Þ

an equation that was derived in Appendix C of [23] under two assumptions: (1) the motion of

calcium across the BM only involves transfer between the free dermal and extracellular epider-

mal calcium, and (2) the BM provides no barrier for this transfer.

Combining equations (9)–(11), the intracellular calcium profile can be estimated from the

total calcium profile via

rciðzÞ � rðzÞ � rð1� �vÞrð0Þ: ð12Þ

Equations (5) and (12) can be used to estimate the keratinocyte velocity profile ui(z) and intra-

cellular calcium profile ρci(z). The pattern of calcium exchange g(z) between cells and ECF can
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then be calculated from these two profiles using equation (1b) [23],

gðzÞ ¼
d

dz
ðrciðzÞuiðzÞÞ:

In the following, we derive equations that link the extracellular calcium distribution to the per-

meability of the TJ barrier.

The effect of tight junctions on extracellular calcium diffusion

TJs regulate the extracellular flow of calcium ions in the SG [44, 45], and we model this as a re-

duction in the rate of extracellular calcium diffusion there. This effect is introduced through

the term representing extracellular calcium flux, ρce uce, that appears in equation (1c). The ex-

tracellular calcium flux ρce uce may consist of contributions from both diffusion and advection,

the latter of which we expect to be negligible in epidermal sublayers where TJs are not present

[23]. However, in epidermal sublayers where TJs are present, for advection to be negligible

compared to diffusion we must ensure explicitly that the Péclet number, Pe, satisfies

Pe ¼
ẑ juej

D
� 1; ð13Þ

where ẑ � z
4
is the characteristic length scale over which the effects of diffusion and advection

are being compared, juej is the ECF velocity that characterises the advective contribution, and

D is the Fickian diffusion coefficient that characterises the diffusive contribution. In this paper

we limit our analysis to cases for which inequality (13) is satisfied. We specify the extracellular

calcium diffusion coefficient as

DðzÞ ¼

DCa; 0 � z � z
2
;

eCaDCa; z
2
< z � z

3
;

DCa; z
3
< z � z

4
;

8

>

<

>

:

ð14Þ

where DCa is the physical diffusion coefficient of calcium in the ECF in the absence of TJs, and

εCa represents the factor reduction in diffusion coefficient DCa induced by the presence of TJs.

In equation (14) we have assumed that TJs are evenly spread throughout the SG, which rep-

resents a simplification to the dynamic model we proposed for skin equivalent construct

growth [46, 65], and that they are mostly absent in other sublayers. Whilst structures similar to

the disassembly of TJs have been observed at the SG-SC interface [66] and TJ-like structures

have been observed in the SC [67], for simplicity we assume that these structures provide no re-

striction on extracellular calcium ion flow there.

The permeability of a barrier can be written as a ratio of the diffusion coefficient of the sub-

stance within the barrier to the barrier’s width [68]. Hence the permeability of the TJ barrier to

calcium, PCa, which spans the SG z2 to z3, and has local diffusion coefficient there of εCaDCa ac-

cording to equation (14), is

PCa ¼
eCaDCa

z
3
� z

2

: ð15Þ

Combining equations (13)–(15), we find that the inequality

PCa � juej; ð16Þ

is identical to the requirement given by inequality (13). Inequality (16) demonstrates that the

permeability of the TJ barrier must be significantly larger than the local ECF velocity in order

to disregard the contribution of advection to extracellular calcium dynamics. From [23] we
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expect that max{juej} isOð1nms�1Þ in the absence of TJs and aquaporins and hence we require

PCa � Oð1nms�1Þ; ð17Þ

which effectively places a lower limit on the possible values of PCa that we investigate here. In

summary, we include the effect of tight junctions on extracellular calcium dynamics in our

model by assuming that the extracellular calcium flux ρce uce in equation (1c) is dominated by

Fickian diffusion with coefficient D defined by equation (14), and this approach is valid if the

permeability of the TJ barrier in the SG satisfies inequality (17).

Calculating the extracellular calcium profile

To derive an expression for the extracellular calcium profile ρce(z), we first equate (1b) and (1c)

through the common term g, and assume that Fickian diffusion is the dominant contribution

to the extracellular calcium flux, ρce uce = −D dρce/dz, to obtain

d

dz
ðrciuiÞ ¼

d

dz
D
drce

dz

� �

: ð18Þ

Both sides of equation (18) are then integrated with limits z and z4. We thereafter substitute

boundary condition (2f), which yields

drce

dz
ðzÞ ¼

1

DðzÞ
ðrciðzÞuiðzÞ � rciðz4Þuiðz4ÞÞ: ð19Þ

In epidermal sublayers where TJs are not present (i.e. everywhere except the SG), extracellular

calcium kinetics are sufficiently dominated by diffusion that ρce is constant [23]. Hence, replac-

ing z by z0 in equation (19), integrating this equation with limits 0 and z, and substituting equa-

tions (14) and (15), yields

rceðzÞ ¼

rceð0Þ; 0 � z � z
2
;

rceð0Þ þ

Z z

z2

rciðz
0Þuiðz

0Þ � rciðz4Þuiðz4Þ

ðz
3
� z

2
ÞPCa

dz0; z
2
� z � z

3
;

rceðz3Þ; z
3
< z � z

4
:

8

>

>

>

<

>

>

>

:

ð20Þ

In this equation, ρci(z) can be calculated from ρ(z) using equation (12). Hence, equation (20)

expresses the extracellular calcium profile ρce(z) in terms of ρ(z), ui(z) and PCa, if inequality

(17) is satisfied.

Relationship between tight junctions and the extracellular calcium profile

Finally, to clearly demonstrate the effect of the TJ barrier on the extracellular calcium profile,

we define Rce as the rise in extracellular calcium through the SG,

Rce ¼
rceðz3Þ

rceðz2Þ
: ð21Þ

From equations (20) and (21), the relationship between the rise in extracellular calcium con-

centration through the TJ barrier in the SG, Rce, and the permeability of this barrier, PCa, can

be written in the elegant form

Rce ¼ 1þ
P
0

PCa

; ð22Þ
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where P0 is a constant that depends on the epidermal keratinocyte velocity and calcium pro-

files,

P
0
¼

1

ðz
3
� z

2
Þrceð0Þ

Z z3

z2

ðrciðzÞuiðzÞ � rciðz4Þuiðz4ÞÞdz: ð23Þ

Using equations (22) and (23), the effects of a range of values for the permeability of the TJ bar-

rier to calcium PCa on the defining feature of the extracellular calcium profile (its rise through

the SG, Rce) can be easily investigated, once the value of P0 is known.

Results

The key predictions of our model are presented here. All mathematical equations were stated

and derived in Materials and Methods. All parameters were obtained from experimental litera-

ture (see S1 Text) and are stated in Table 1. In our calculations we also used the total calcium

profiles ρ(z) for human and murine epidermis reported in [28] and [26] respectively. All uncer-

tainty bounds were calculated using error propagation formulae from [69, 70] under the as-

sumption that the error distributions of all parameters were independent (i.e. zero covariance).

Epidermal transit times and keratinocyte velocities

Using equations (5)–(8) of our model, transit times through individual sublayers of human

and murine epidermis were calculated. Our model’s predictions of transit times mostly com-

pared favourably with the literature values, as shown in Fig. 3, although it is difficult to quanti-

tatively compare these values due to the large uncertainty present in the transit times both

Table 1. Model Parameters.

Parameter Value and Reference

Human Murine

Stem cell volume fraction of the SB, θ 0.055±0.045 [64] 0.055±0.045 [64]

Height of the SB-SS boundary above the BM, z1 45 μm [95] 20 μm [26]

Height of the SS-SG boundary above the BM, z2 75 μm [95] 60 μm [26]

Height of the SG-SC boundary above the BM, z3 105 μm [95] 90 μm [26]

Height of the inner SC-outer SC boundary above the
BM, z4

118.5±1.5 μm [15–16, 28] 94±2 μm [17, 26]

Thickness of the epidermis, z5 125 μm [28] 100 μm [26]

Ratio of keratinocyte volumes SG:SB, V1 1.9±0.5 [96] 2.8±1.4 [97, 98]

Ratio of keratinocyte volumes SC:SG, V2 0.54±0.10 (original) [12]
0.100±0.026 (modified) [96,

99]

0.068±0.03 [97–99]

Proliferation rate of stem cells in the SB, s0 5.6 × 10−7 s−1 [60] 1.4 × 10−6 s−1 [60]

Proliferation rate of TA cells in the SB, s1 (1.7±1.1) × 10−6 s−1 [88,
100]

(2.8±1.3) × 10−6 s−1

[101]

Physical diffusion coefficient of calcium in the ECF,
DCa

1 × 10−9 m2 s−1 [102–
104]

1 × 10−9 m2 s−1 [102–
104]

Cell volume fraction in viable epidermis and lower
SC, ϕv

0.955±0.025 [36] 0.9925±0.0025 [40]

Ratio of the extracellular calcium distribution to its
BM value, r

1.1±0.6 [33, 34] 1.25±0.75 [32]

Parameters used for the numerical solutions in this paper. Justification is provided in S1 Text.

doi:10.1371/journal.pone.0116751.t001
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from the literature and predicted by our model. The uncertainty in our model predictions of

transit time is due to the uncertainty present in model parameters (Table 1), all of which were

obtained from the experimental literature. Hence, a better quantitative comparison of transit

times from the literature and model requires experimental data possessing reduced uncertainty.

We could not find literature values of transit time through murine SB so did not include com-

parisons for these.

The model prediction of transit time through human SC was much smaller than two of the

three corresponding literature estimates. We attributed this discrepancy to our parameter esti-

mate for human V2 = 0.54±0.10, which was much larger than the estimate for murine V2 =

0.068±0.034, the latter of which led to reasonable predictions of murine transit times. Hence,

we modified our estimate of human V2 to 0.100±0.026, a value which was calculated from

Figure 3. Comparison of epidermal sublayer transit times predicted by our model with experimental
literature values. (a) Human literature values from [87–91]. (b) Murine literature values from [92–94]. *Model
prediction in the SB was independent of the value of V2. **Value may include some residence time in the SB.

doi:10.1371/journal.pone.0116751.g003
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division of literature values for murine V1 × V2 by human V1 (see S1 Text). The resulting pre-

dicted transit time for human SC agreed far better with the literature values for this transit time

(Fig. 3a). Because this modification of V2 created agreement between estimates of keratinocyte

volume size changes and transit times through our model, our analysis suggests that keratino-

cytes lose at least 87% of their volume during their disintegration in the SG, in both human

and murine epidermis.

Keratinocyte velocity profiles ui(z) calculated using equations (5), (6a) and (6b) are shown

in Fig. 4. For the calculation of the human ui(z) profile, the modified V2 was used. Regardless

of the value of human V2, in our model results there was little difference between the keratino-

cyte velocity distributions in the lower sublayers of human and murine epidermis. This conclu-

sion extends to the upper sublayers if the keratinocyte volume decrease through human SG

agrees with our modified value for V2 (i.e. 90.0±2.6% volume reduction).

The extracellular calcium rise mediated by tight junctions

Figs. 5a and 5b show the relationships between the rise in extracellular calcium through the SG

and the permeability of the TJ barrier there, for human and murine epidermis respectively, that

Figure 4. Keratinocyte velocity profiles predicted by our model. For (a) the human keratinocyte velocity
profile, the modified V2 = 0.100±0.026 was used in its calculation. The solid and dashed lines represent the
mean values and uncertainty bounds (±SD) respectively.

doi:10.1371/journal.pone.0116751.g004

Figure 5. Extracellular calcium rise through the SG vs TJ permeability to calcium predicted by our
model. The solid and dashed lines represent the mean values and uncertainty bounds (±SD) respectively.

doi:10.1371/journal.pone.0116751.g005
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were predicted by our model using equations (22) and (23). Results are only shown for PCa �

5 nm s−1 in order to satisfy applicability condition (17). As indicated by equation (22), each of

these plots is characterised by one parameter P0 which depends on the epidermal keratinocyte

velocity and calcium profiles; to construct Figs. 5a and 5b we obtained P0 = 3.8±3.2 nm s−1

and P0 = 10±8 nm s−1 for human and murine epidermis respectively. From these values, we

calculated the permeability of the TJ barrier by assuming that the extracellular calcium concen-

tration rises by at least 50% across the SG (i.e. Rce = 1.5), based on experimental data for extra-

cellular calcium distributions (see S1 Table). This calculation yielded TJ barrier permeabilities

to calcium ions of PCa < 15 nm s−1 for human epidermis and PCa < 37 nm s−1 for murine

epidermis.

Extracellular and intracellular calcium profiles

Extracellular and intracellular epidermal calcium profiles, predicted from total calcium profiles

ρ(z) and keratinocyte velocity profiles ui(z) using the equations of our model, are shown in

Figs. 6a and 6b for human and murine epidermis respectively. The intracellular calcium pro-

files ρci(z) were nearly identical to the experimental total calcium profiles [26, 28] from which

they were calculated. The extracellular calcium profiles ρce(z), calculated using equation (20),

possessed constant concentration in the SB and SS due to rapid diffusion of this calcium

throughout the ECF, and a rise through the SG due to the presence of TJs (see Fig. 2). In Figs.

6a and 6b we chose the permeability of the TJ barrier to calcium as PCa = 8 nm s−1 and PCa =

20 nm s−1 for human and murine epidermis respectively, as these values yielded a calcium rise

through the SG of Rce� 1.5 in qualitative agreement with the experimental data (S1 Table).

These values of TJ permeability barrier (8 nm s−1 for human epidermis and 20 nm s−1 for mu-

rine epidermis) also clearly satisfy the previously stated inequalities of PCa < 15 nm s−1 for

human epidermis and PCa< 37 nm s−1 for murine epidermis.

Patterns of calcium exchange g(z) between keratinocytes and the ECF, predicted using equa-

tion (1b), are shown in Figs. 7a and 7b for human and murine epidermis respectively. In both

plots, a distinct switch in calcium exchange from cellular influx (positive) to outflux (negative)

was predicted at the SS-SG boundary, in agreement with our theory (Fig. 2).

Figure 6. Physical intracellular ([Cai]) and extracellular ([Cae]) epidermal calcium profiles predicted
by our model. These profiles are calculated from experimental total calcium profiles reported in [26, 28].
[Cae] profiles are shown for TJ barriers that yield a calcium rise through the SG of Rce� 1.5: (a) PCa =
8 nm s−1 for human epidermis and (b) PCa = 20 nm s−1 for murine epidermis.

doi:10.1371/journal.pone.0116751.g006
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Discussion

In this paper we investigated the hypothesis that the intracellular and extracellular epidermal

calcium profiles in unwounded skin are attributed to three key mechanisms: (1) the primary

SC barrier which selectively allows water but not calcium to leave the epidermis [35], (2) pro-

gressive intracellular calcium accumulation through the lower epidermal sublayers [36] fol-

lowed by a phenotypic switch at the SS-SG boundary to expulsion of intracellular calcium to

the ECF above this boundary [23], and (3) reduced diffusion of extracellular calcium ions in

the SG due to the secondary TJ barrier [43] which together with the aforementioned expulsion

of calcium from intracellular stores causes the extracellular calcium concentration to become

elevated towards the skin surface [44, 46]. This hypothesis was formulated in a mathematical

model (described in Materials and Methods) that predicts intracellular and extracellular

calcium profiles in human and murine epidermis (Fig. 6) which agree well with semi-quantita-

tive experimental data available for these profiles [32–34].

We first parameterised the keratinocyte velocity profiles in human and murine epidermis,

which is a requirement for the proper investigation of intracellular calcium dynamics. The cal-

culation of these velocity profiles improves over our previous model [23] by including consid-

eration of the slower cycling stem cell subpopulation of the SB [60] and the keratinocyte

volume changes through the SS [11], and validating the velocity profiles against several sources

of experimental data for keratinocyte transit times in the SB (human only) and the three supra-

basal sublayers (SS, SG and SC).

The presence of stem cells in interfollicular epidermis is currently a hotly debated topic

[6, 8]. Stem cells have little effect on the keratinocyte velocity profiles and subsequent calcula-

tions due to their small potential occupancy of the SB (1–10%, [64]), but their inclusion in the

present model is advantageous as it allows validation of these profiles against transit times in

the SB. Although our model assumed that the traditional two progenitor theory holds, it can be

reduced to the single progenitor theory by setting θ = 0, in which case s1 is the proliferation

rate of these progenitors.

The validation of keratinocyte velocity profiles against epidermal transit time data (Fig. 3)

was made somewhat difficult by the uncertainty in both our predicted velocity profiles and the

data. Despite this, the validation clearly supported the modification of one of our parameters,

the volume change in keratinocytes through the SG for human epidermis (V2), from its value

used in our previous model of unwounded epidermis (R = 1−V2, [23]). Our results suggested

Figure 7. Keratinocyte calcium influx profiles g(z) in the epidermis predicted by our model. These
profiles are calculated from experimental total calcium profiles reported in [26, 28].

doi:10.1371/journal.pone.0116751.g007

AQuantitative Theory of Epidermal Calcium Profile Formation

PLOS ONE | DOI:10.1371/journal.pone.0116751 January 27, 2015 16 / 23



that keratinocytes in human epidermis may reduce their volume by approximately 10-fold dur-

ing terminal differentiation and that this reduction may be even larger in murine epidermis.

We next investigated the effect of the permeability of the TJ barrier to calcium ions, PCa, on

the extracellular calcium distribution. Our model predictions of PCa carry large uncertainty due

to the cumulative uncertainty in all parameters used to calculate them, and are only applicable

if PCa is significantly greater thanO(1 nm s−1). Despite these limitations, we found that a value

of PCa that is less than 15 nm s−1 for human epidermis and less than 37 nm s−1 for murine epi-

dermis is sufficient to cause the extracellular calcium distribution to rise by at least 50% across

the SG, which is a typical pattern seen in the experimental semi-quantitative calcium profiles

measured using ion capture cytochemistry [32–34]. Kirschner et al. [45] recently reported that

the permeability of the TJ barrier to calcium ions in cultured primary human keratinocytes was

40–80 nm s−1 within 1–4 days after a switch to high calcium medium (this switch is the key

step in triggering keratinocytes to stratify in vitro[2]). These larger experimentally-found values

of PCa, which indicate a reduced TJ barrier to calcium ions, may be attributable to the impaired

barrier formation demonstrated by cultured keratinocytes compared to native skin [33].

To further elucidate this point, the transepithelial resistance (TER) of the TJ barrier in the

submerged human keratinocytes reported by Kirschner et al.[45] reached a steady-state value

of*150 O cm2 after 4 days. In contrast, Sun et al. [71] and Petrova et al. [72] reported that the

TER of the TJ barrier in human epidermal equivalents grown at an air-liquid interface (which

yields a better representation of native epidermis than submerged keratinocytes [73]) rose to

over 1000 O cm2 prior to formation of the lipid barrier. TER is the most common experimental

measure of TJ barrier permeability [74], and is inversely related to it [75]. These considerations

together suggest that the permeability of the TJ barrier should be less in native epidermis than

in submerged keratinocytes grown in vitro. This agrees with our model prediction of a TJ barri-

er permeability to calcium ions in human epidermis that is less than the TJ barrier permeability

to calcium ions experimentally observed in cultured human keratinocytes [45].

Finally, we calculated profiles of intracellular calcium, extracellular calcium and the ex-

change between these two (Figs. 6 and 7), from experimentally-reported total calcium profiles

for human epidermis [28] and murine epidermis [26]. For the calculation of extracellular calci-

um profiles, we set the value of the calcium permeability of the epidermal TJ barrier so that it

approximates an extracellular calcium concentration rise of 50% through the SG. The resulting

profiles (Fig. 6) indicate that the physical intracellular calcium concentration is typically greater

than the physical extracellular calcium concentration. Bearing in mind that intracellular and

extracellular calcium are present in cells and ECF which occupy�93% and�7% of the epider-

mal volume respectively [36, 40], our model clearly predicts that intracellular calcium is the

main source of the epidermal calcium profile [23].

The predicted pattern of calcium exchange between keratinocytes and the ECF (Figs. 6a and

6b) is significantly modified from our previous calculations of this pattern (Figs. 4c and 4d in

[23]), due to the improved parameterisations used here for the keratinocyte volume changes

through the SS and the SG, the former of which was assumed to be negligible in our previous

models [23, 46]. The updated predictions cast doubt over the assertions in [23] that calcium

influx is constant in the SB and SS and that there is a calcium influx peak in the lower SG

potentially due to loss of plasma membrane Ca2+-ATPase [76]. However, the improved para-

meterisations confirmed the key finding of [23] that a change in calcium exchange from cellu-

lar influx to outflux actively regulates the epidermal calcium profile. The present theoretical

work provides stronger evidence that this active regulation is caused by a phenotypic switch

located at the SS-SG boundary (Fig. 7). The origin of this distinct switch in calcium exchange is

currently being investigated with time-dependent continuum models developed by members

of our research group [77].
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Whilst our quantitative theory is able to predict the key features of intracellular and extracel-

lular calcium profiles in unwounded epidermis, it has some potential weaknesses. We have as-

sumed that the SC and TJ barriers are inert entities which regulate the epidermal calcium profile

without any existing feedback processes, which is reasonable for considering unwounded epi-

dermis as it represents a steady state condition. However, the formation of these barriers is likely

to be dependent both on each other [78] and on the presence of the local calcium concentration

[79, 80]. Hence this model cannot be immediately extended to consider temporal dynamics of

wounded skin without specifying additional assumptions about the effects of epidermal calcium

on the TJ and SC barriers. This is especially important since the rapid secretion by keratinocytes

of lamellar bodies (the precursor to lipids that form the “mortar” component of the SC barrier)

following barrier disruption is primarily controlled by calcium ions in the SG [13]. Whilst our

conceptual model provides a feasible explanation for the formation of the calcium profile,

especially as model parameters were obtained from experimental data, we cannot rule out the

possibility of the contribution to this profile from other factors, such as the lipid barrier [78],

electrophoresis [81], or binding of calcium to molecules such as profilaggrin [82]. In addition, if

the factors that contribute substantially to the epidermal calcium profile occur on length scales

of cells or smaller, our mathematical treatment of the epidermis as a porous mediummay not

be appropriate, and individual cell-based models (e.g. [83, 84]) are more suitable.

Our estimates of the TJ barrier permeability to calcium may require revision if the width of

this barrier is larger or smaller than the SG. The effective TJ barrier may be larger than the SG

if the TJ-like structures observed in the SC [67] reduce the extracellular calcium diffusion rate

sufficiently there to yield protrusion of the extracellular calcium rise into the lower SC. On the

other hand, the width of the TJ barrier may be smaller than the thickness of the SG, as recent

experiments in mouse ear epidermis have suggested that only the TJs forming apically between

the second of three cell monolayers of the SG are primarily responsible for its barrier [85]. Fu-

ture experimental work may resolve this question about the localisation of TJ barrier function.

The investigations of the TJ barrier with our model were also limited to values for its perme-

ability to calcium that satisfy inequality (17), which mathematically states the assumption that

the TJ barrier permeability is significantly larger than the local ECF velocity in the absence of TJs.

ECF flow is likely to be important for maintaining healthy unwounded epidermis, as occlusion of

wounded skin by a vapour-permeable dressing (which permits low rates of transcutaneous water

movement) is an adequate substitute for the SC whilst a vapour-impermeable dressing is not

[35]. Future direct measurements of the TJ barrier permeability to calcium ions in native epider-

mis will hopefully confirm the applicability of inequality (17) and our subsequent mathematical

theory relating the TJ barrier permeability to the extracellular calcium profile.

In conclusion, we have proposed and mathematically investigated a theory of calcium profile

formation in unwounded mammalian epidermis governed by: the impermeable barrier of the

SC, TJ-limited calcium diffusion in the SG, and a phenotypic switch in calcium exchange be-

tween keratinocytes and ECF at the SS-SG boundary. Future experimental results gained from

improved measurement techniques [39, 86] may refine the presented theory and reduce the un-

certainty in our model predictions. There are many possibilities for future theoretical work, in-

cluding the investigation of temporally changing epidermal states for which calcium plays a

major role (e.g. wound healing [35], psoriasis [34], and stratification of keratinocyte cultures

[2]), and the consideration of our proposed calcium kinetics in individual cell-based models of

epidermal homeostasis [83]. We intend that this paper provides a conceptual and quantitative

model for future experimental and theoretical research to examine, modify and update, as our

understanding of epidermal calcium profile formation becomes increasingly advanced.
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