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Spin waves have risen as promising candidate information carriers for the next generation of
information technologies. Recent experimental demonstrations of their detection using electron
spins in diamond pave the way towards studying the back-action of a controllable paramagnetic
spin bath on the spin waves. Here, we present a quantum theory describing the interaction between
spin waves and paramagnetic spins. As a case study we consider an ensemble of nitrogen-vacancy
spins in diamond in the vicinity of an Yttrium-Iron-Garnet thin film. We show how the back-
action of the ensemble results in strong and tuneable modifications of the spin-wave spectrum and
propagation properties. These modifications include the full suppression of spin-wave propagation
and, in a different parameter regime, the enhancement of their propagation length by ∼ 50%.
Furthermore, we show how the spin wave thermal fluctuations induce a measurable frequency shift
of the paramagnetic spins in the bath. This shift results in a thermal dispersion force that can
be measured optically and/or mechanically with a diamond mechanical resonator. In addition, we
use our theory to compute the spin wave-mediated interaction between the spins in the bath. We
show that all the above effects are measurable by state-of-the-art experiments. Our results provide
the theoretical foundation for describing hybrid quantum systems of spin waves and spin baths,
and establish the potential of quantum spins as active control, sensing, and interfacing tools for
spintronics.

I. Introduction

In the last years spin waves have become the focus of
intense research because of the following reasons. First,
spin waves can be integrated into optical, microwave,
and acoustic technological platforms [1–11]. Second, spin
waves act as carriers for next-generation information pro-
cessing in the field of magnon spintronics [12–15]. This
is due to their low loss as compared to electronic cur-
rents, especially in ferromagnetic insulators (e.g. YIG –
Yttrium-Iron-Garnet) [14, 16, 17]. Third, spin waves and
their quanta (magnons) display a rich and tuneable phe-
nomenology including exotic dispersion relations, non-
reciprocity [14, 18, 19], room temperature Bose-Einstein
condensation [20] and superfluidity [21]. These proper-
ties make spin waves very attractive in the context of
hybrid quantum technologies [15, 17, 22].
In addition, recent experiments [23–30] have demon-

strated the possibility of interfacing spin waves with
solid-state paramagnetic spin baths. Inspired by this pos-
sibility, in this article we propose to explore the quantum
phenomena stemming from the interaction between fields
and quantum emitters and its potential applications in
the field of spintronics. In particular, we will focus on
the strong back-action exerted by ensembles of quantum
emitters on fields and viceversa. Such backaction has
been demonstrated in many platforms in the optical do-
main, including dye molecules in plasmonics [31], rare
earth impurities in optical fibers [32] and cold and Ry-
dberg atoms in free space [33–35]. Harnessing a similar
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back-action for spin waves could, for instance, allow to
dynamically mold the flow of spin currents without the
need for material microstructuring in magnon spintron-
ics. Furthermore and in analogy to plasmonics [36], a
fundamental understanding of spin wave-paramagnetic
spin interfaces could bring a new degree of control to
spin wave-based hybrid technologies and enable applica-
tions in sensing [23, 27, 37], transduction [30, 38], and
computing [14, 17, 39, 40].
In this article we provide a quantum theory describ-

ing spin waves interacting with paramagnetic spin baths.
We focus on paramagnetic spins with total spin S = 1.
As a case study (Fig. 1[a]), we will consider nitrogen-
vacancy (NV) centres in diamond in the vicinity of a YIG
thin film. The choice of NVs is motivated by current
experiments and their controllability [41] and potential
for hybrid quantum technologies [23, 42–49]. We apply
our theory to describe mutual back-action between the
paramagnetic spin bath and the spin waves, and high-
light two particular applications of relevance for magnon
spintronics. First, the tailoring of the spin wave prop-
agation properties via their controlled coupling to the
paramagnetic spin bath. Second, a new method to probe
spin waves based on the back-action of spin waves on
the paramagnetic spins. Our theory allows us to under-
stand and predict exhaustively the interaction between
spin waves and paramagnetic spins, both at the classical
and at the quantum level. Our predictions can be tested
with state-of-the-art experiments.
This article is organized as follows. First, we describe

how we model the interaction of spin waves and a para-
magnetic spin bath and summarize its coherent and dis-
sipative dynamics in Sec. II. We then derive the effective
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FIG. 1. a) We consider paramagnetic spins with spin S = 1 in the vicinity of a magnetic insulator supporting spin waves. As a
case study we focus on NV centres (upper inset) near a YIG thin film. The wavevector of the spin waves in the y − z plane is
k‖. b) Lowest four spin wave energy bands of a YIG film for the parameters in Table I and an applied field µ0H0 = 20mT as
a function of wavevector modulus, for φk = 0 (solid lines, Damon-Eshbach propagation) and φk = π/2 (dashed lines, parallel
propagation). The left and right axes show the spin wave frequency in units of ωM ≡ |γ|µ0MS and in GHz, respectively. As
indicated by the bottom panel, the band index n corresponds to the number of nodes of the magnetization mode function
across the film thickness d.

spin wave dynamics induced by back-action of the param-
agnetic spin bath in Sec. III and discuss the back-action-
enabled possibility of modifying the spin-wave spectrum
and propagation features. In Sec. IV we derive the effec-
tive dynamics of a paramagnetic spin under back-action
of the spin waves and its potential as a novel probing
method for spin waves. Our conclusions and outlook are
in Sec. V. This article is complemented by six exhaus-
tive appendices including derivations and additional re-
sults. The quantization of the spin wave eigenmodes of a
thin film, a detailed analysis of their properties, and the
computation of the magnetic field power spectral densi-
ties outside the film are contained in Appendix A. Ap-
pendix B contains the analysis of the quantum dynamics
of NV centres both at thermal equilibrium and under
optical pumping. The derivation of the interaction be-
tween paramagnetic spins and spin waves is contained in
Appendix C. In Appendix D we summarize and give a
practical formulation of the open quantum system ap-
proach to obtain effective equations of motion for a sys-
tem coupled to a bath. We apply this procedure in the
last two appendices: in Appendix E we derive the spin
wave-induced effective dynamics of an ensemble of para-
magnetic spins, and analyze in detail the modification of
their lifetimes, the induced frequency shifts and corre-
sponding forces, and the induced coupling between dif-
ferent spins. In Appendix F we derive the effective spin
wave dynamics induced by a paramagnetic spin bath and
study the modification of the magnetic field power spec-
tral densities outside the film.

II. System and equations of motion

In this section we summarize the Hamiltonian and
the dissipative dynamics governing the coupled system
formed by paramagnetic spins and spin waves. The den-
sity matrix of the total system obeys the von Neumann
equation

d

dt
ρ̂ = − i

~

[
Ĥ, ρ̂

]
+Dsw [ρ̂] +Dps [ρ̂] . (1)

Here, the total Hamiltonian is written as a sum of three
contributions,

Ĥ = Ĥsw + Ĥps + V̂ , (2)
namely the free Hamiltonian of the spin waves, the free
Hamiltonian of the paramagnetic spins, and their inter-
action. The last two terms in Eq. (1) correspond to the
independent dissipation of the spin waves and the para-
magnetic spins. The detailed derivation of all the above
terms is given in Appendices A, B, and C. Let us sum-
marize each of the contributions in Eq. (1) separately.
We first focus on the spin waves, namely magnetization

waves supported by a saturated ferromagnetic insulator.
In the presence of a static field H0 = H0ez, a ferromag-
netic insulator of arbitrary geometry acquires a magne-
tization field given by M(r, t) = MSez + m(r, t), with
MS the saturation magnetization. The dynamical com-
ponent m(r, t) describes small oscillations (|m(r, t)| �
MS) above such fully magnetized state, namely spin
waves [19]. The quantum Hamiltonian of the spin waves,
namely the first contribution in Eq. (2), reads

Ĥsw = ~
∑
β

ωβ ŝ
†
β ŝβ . (3)
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Here, β is a multi-index labelling all the spin wave eigen-
modes supported by the ferromagnetic structure, ωβ the
corresponding mode frequency, and ŝ†β and ŝβ are bosonic
ladder operators which describe creation and annihilation
of spin wave quanta (magnons) in eigenmode β.
Hereafter we focus on the particular magnetic struc-

ture depicted in Fig. 1(a), i.e. a YIG thin film infinitely
extended on the y − z plane and occupying the region
0 ≤ x ≤ d. The static magnetic field H0 is applied along
a direction parallel to the film, a configuration chosen in
most experiments as it gives rise to rich spin wave dynam-
ics [24–29]. As shown in Appendix A, to derive Ĥsw we
first diagonalize the classical equations of motion for the
spin waves, namely the linearized Landau-Lifshitz equa-
tions in the magnetostatic approximation [19, 50]. In this
way we obtain the corresponding eigenfrequencies ωβ and
dimensionless magnetization eigenmodes mβ(r) analyti-
cally. We follow the approach in Refs. [51, 52], where
the exchange interaction is fully accounted for whereas
the dipole-dipole interaction is included to first order in
perturbation theory.

For the YIG film geometry under study the spin wave
eigenmodes and eigenfrequencies are fully characterized
by five parameters, namely the gyromagnetic ratio γ,
the film thickness d, the applied field H0, the exchange
stiffness αx, and the saturation magnetization MS or,
equivalently, the natural frequency ωM ≡ |γ|µ0MS [19].
The eigenmodes are labelled by three mode indices
β ≡ {k‖, n}, namely the wavevector on the film plane
k‖ = k‖ [ey cos(φk) + ez sin(φk)] plus a discrete band in-
dex n = 0, 1, 2... indicating the number of nodes of the
magnetization mode function across the film thickness,
see Fig. 1(b). Among the many properties of the eigen-
modes, three are of special interest regarding the interac-
tion with paramagnetic spins: (i) The polarization of the
magnetic field generated by a spin wave outside the film
depends strongly on its propagation direction. As an ex-
ample, a spin wave propagating in the Damon-Eshbach
configuration [53, 54], i.e. with wavevector k‖ = ±k‖ey
or, equivalently, φk = 0 or φk = π, produces a circu-
larly polarized field with polarization e∓ ≡ (ex∓iey)/

√
2

above the film and with the opposite polarization below
it. (ii) The amplitude of the spin wave magnetic field
can have different values above and below the film and,
at certain values of k‖, can even completely vanish at one
of the sides, a phenomenon known as modal-profile non-
reciprocity [52, 55]. (iii) Outside the film, the magnetic
field amplitude of a spin wave decays exponentially as
exp(−k‖l), with l the absolute vertical separation from
the surface of the film.

Once the classical eigenmodes have been obtained and
characterized we quantize them [56] to obtain both the
Hamiltonian Eq. (3) and the spin wave magnetization
operator,

m̂(r) =
∑
β

M0β [mβ(r)ŝβ + H.c.] , (4)

where

M0β ≡

√
~|γ|MS

2L2d

ωM
ωβ

(5)

is the zero-point magnetization [6, 56, 57], and L → ∞
is a quantization length 1.
We now focus on the Hamiltonian of a single param-

agnetic spin at a position r0 outside the magnetic struc-
ture and whose symmetry axis is oriented parallel to the
z−axis, as depicted in Fig. 1(a). We describe the para-
magnetic spin through the three states |0〉, |+〉, and |−〉
corresponding to the eigenstates of the spin operator Ŝz
with eigenvalue mS = 0,+~, and −~, respectively. The
Hamiltonian of the paramagnetic spin is [10, 11, 59–61]

Ĥps = ~−1D0Ŝ
2
z + ωH Ŝz = ~

∑
α=±

ωασ̂αα, (6)

where we define the transition matrices σ̂αα′ ≡ |α〉〈α′|,
and the frequencies ω± ≡ D0 ± ωH and ωH ≡ |γs|µ0H0
with γs the gyromagnetic ratio of the spin and µ0 the vac-
uum permeability. The first term in Eq. (6) describes the
zero-field splitting between themS = 0 and themS = ±1
states, quantified by a rate D0. This splitting, absent in
paramagnetic spins with S = 1/2, is crucial for tuning
spin waves in resonance with the transitions of the para-
magnetic spin. The second term in Eq. (6), proportional
to ωH , corresponds to the Zeeman splitting induced by
the applied field H0 between the levels |±〉, which are
degenerate at zero field. The Hamiltonian Eq. (6) de-
scribes the dynamics of, among others, the ground-state
manifold of negatively charged NV centres [10, 11, 59–
61], with parameters given by Table I.
The third contribution in Eq. (2), namely the interac-

tion between the spin waves and the single paramagnetic
spin at position r0, stems from the magnetic dipole in-
teraction:

V̂ = −µ0µ̂ps ·
[
Ĥ(r0)−H0

]
= ~

∑
β

(gβ ŝβ σ̂−0 + H.c.) + Ŝz
∑
ββ′

g̃ββ′ ŝ
†
β ŝβ′ , (7)

with µ̂ps = −|γs|Ŝ the magnetic dipole moment of the
paramagnetic spin and Ŝ its total spin operator. The
field generated by the spin waves, Ĥ(r0)−H0, is given by
the total magnetic field operator minus the applied field
H0, whose interaction with the paramagnetic spin has al-
ready been included in the spin Hamiltonian Eq. (6). As
detailed in Appendix C, the explicit expression in the sec-
ond line of Eq. (7) is obtained by computing the spin wave
magnetic field up to second order in magnon operators

1 Note that, in analogy to the mode volume in quantum optics [58],
no physical observable will depend on the quantization length L.
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Parameter Value
YIG film thickness d = 200 nm
YIG gyromagnetic ratio γ = −1.76× 1011T−1 s−1

YIG magnetization MS = 1.39× 105A m−1

YIG exchange stiffness αx = 2.14× 10−4(µm)−2

YIG Gilbert damping parameter αG = 10−4

NV zero-field splitting D0 = 2π × 2.877 GHz
NV gyromagnetic ratio γs = −1.76×1011T−1 s−1

NV occupation lifetime T1 = 3ms
NV coherence lifetime T ∗2 = 1µs

TABLE I. Chosen values for the relevant parameters of YIG
and of the NV centres across the main text. Note that other
relevant parameters whose value is not fixed, such as the field
H0 or the distance l between the NV centres and the film, are
not included in this table.

ŝβ and ŝ†β and undertaking a rotating wave approxima-
tion. The first contribution in Eq. (7) describes magnon-
induced decay and absorption along the spin transition
|0〉 ↔ |−〉. It is characterized by a coupling rate

gβ ≡ µ0|γs|M0β

∫
d3r

[
e∗− · G(r0 − r)mβ(r)

]
, (8)

where G(r) is the magnetostatic Green’s tensor of the
film, defined and analytically computed in Appendix A.
Within the rotating wave approximation, the coupling
between spin waves and the transition |0〉 ↔ |+〉 can be
neglected. The second contribution in Eq. (7) describes
spin wave-induced dephasing of the paramagnetic spins.
Despite being of second order, this contribution, charac-
terized by a coupling rate

g̃ββ′ = −µ0|γs|
M0βM0β′

MS

×
∫
d3r

[
m∗β(r) ·mβ′(r)

]
Re
[
ez · G(r0 − r)ez

]
, (9)

is resonant for an infinite set of magnon pairs {β, β′}.
It can thus be as relevant as the first-order contribution
which is resonant only for spin waves fulfilling ωβ = ω−.
This cumulative effect of second-order contributions has
already been found to be relevant for e.g. acoustic
phonon baths [62].

We now focus on the dissipative contributions to the
von Neumann equation Eq. (1). We first consider the spin
waves, which undergo dissipation through Gilbert damp-
ing [18, 19, 63]. Gilbert damping is modelled through the
dissipator [64]

Dsw[ρ̂] =
∑
β

γβ

(
n̄βLŝβ ŝ†β [ρ̂] + (1 + n̄β)Lŝ†

β
ŝβ

[ρ̂]
)
, (10)

which describes absorption and decay into a thermal bath
at temperature T , in terms of Lindblad superoperators
defined as

Lâb̂[ρ̂] ≡ âρ̂b̂− 1
2{b̂â, ρ̂}, (11)

with γβ the magnon decay rate and n̄β =
[exp(~ωβ/kBT ) − 1]−1 the Bose-Einstein distribu-
tion at the spin wave frequency. The magnon decay
rate γβ , typically in the ∼MHz range, is computed
analytically using the expression from phenomenological
loss theory [19, 65, 66],

γβ = 2αGωβ
|γ|µ0

∂ωβ
∂H0

, (12)

which is known to be a good description of propagation
loss in thin films and stripes [65]. Here, we have in-
troduced the additional Gilbert damping parameter αG
characterizing the spin wave losses (see Table I).
The dissipation of the paramagnetic spin is modelled

through the following dissipator [59–61, 67]:

Dps[ρ̂] = κ2

~2LŜzŜz [ρ̂]

+ κ1
∑
α=±

(n̄αLσ̂α0σ̂0α [ρ̂] + (n̄α + 1)Lσ̂0ασ̂α0 [ρ̂]) , (13)

The first term above describes dephasing at a rate κ2,
whereas the second line describes decay and absorption
at a rate κ1 along the two spin transitions, namely |0〉 ↔
|±〉, induced by a bosonic thermal reservoir at tempera-
ture T , with n̄α = [exp(~ωα/kBT ) − 1]−1. The rates κ1
and κ2 are related to the experimentally measured values
for the two decoherence timescales T1 and T ∗2 of the para-
magnetic spin. These timescales are defined through the
decay of the occupations 〈σ̂αα〉 ∼ exp(−t/T1) (α = 0,±)
and the coherences 〈σ̂0±〉 ∼ exp(−t/T ∗2 ) in the zero-field
limit H0 → 0 [67, 68], and are given by

T−1
1 ≡ κ1(1 + 3n̄0) ; (T ∗2 )−1 ≡ T−1

1 + κ2

2 (14)

with n̄0 = [exp(~D0/kBT ) − 1]−1. For the specific case
of NV centres these timescales typically lie on the range
T1 ∼ms and T ∗2 ∼ µs [27, 59, 68–71] 2.
The above expressions can be generalized to an en-

semble of paramagnetic spins situated at positions rj ,
j = 1, ...N (see Appendix C). We assume the density of
paramagnetic spins is low enough such that the spins are
independent from each other, that is, any interaction be-
tween them can be neglected. In the specific case of NV
centres, this approximation holds for all the densities con-
sidered in this work (at most 105(µm)−3) [72, 73]. Under
this assumption both the Hamiltonian and the dissipator
of the paramagnetic spins are simply written as a sum
of the independent Hamiltonian and dissipator, Eqs. (6)
and (13), over all the spins in the ensemble. Furthermore,
the above expressions can be extended to include external

2 Although, as indicated by Table I, throughout this work we take
T ∗2 = 1µs, this value can be significantly increased using iso-
topically pure samples [59, 69] or dynamical decoupling tech-
niques [41, 59, 70, 71].
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pumping of the paramagnetic spins, i.e. any mechanism
whereby the spins are initialized near their ground state
|0〉. This external pumping results in an enhancement
of the mutual back-action between spin waves and para-
magnetic spins as we will see below. A particular case,
namely the optical pumping of NV centres [41, 74–79], is
modelled and analyzed in detail in Appendix B 2. Fur-
ther generalizations of our model, for instance to differ-
ent magnetic materials and geometries and different spin
pumping mechanisms, could be carried out following the
same procedure.

In the following two sections we study the back-action
of the paramagnetic spins on the spin waves (Sec. III)
and, conversely, the back-action of spin waves onto the
paramagnetic spins (Sec. IV). In both cases we follow the
approach in open quantum systems [64], namely we trace
out the degrees of freedom of one component (the bath)
in order to derive an effective equation of motion for the
second component (the system). By doing so, we obtain
a reduced master equation describing only the dynam-
ics of the system degrees of freedom, and including the
back-action of the bath in the form of effective dynamical
terms such as additional dissipation or frequency shifts.
This master equation allows to characterize the full dy-
namics of the system under the back-action of the bath.
A brief general summary of the involved techniques and
approximations is given in Appendix D.

III. Modification of the spin wave properties

The strong back-action experienced by optical fre-
quency electromagnetic fields due to their interaction
with high-density quantum emitter ensembles has been
demonstrated in many different platforms [31–35]. For
spin waves, however, the back-action of paramagnetic
spins has remained practically unexplored and is not yet
well understood, in spite of the significant advantages
that an engineered back-action could provide for spin-
tronics, from molding the flow of spin currents to pat-
terning the spin waves without the need for material mi-
crostructuring. In this section we derive and study the
effective spin wave dynamics induced by a bath of param-
agnetic spins and discuss its potential applications. The
detailed derivation of the results in this section is pro-
vided in Appendix F.

We focus on the particular configuration depicted
in Fig. 2(a), which is used in most experiments [24–
26, 28, 29]. Specifically, we consider an ensemble of
N � 1 identical paramagnetic spins 3 hosted, at ran-
domly distributed positions rj , inside an infinite diamond

3 Our results can be directly extended to include spin-dependent
frequencies and lifetimes, as well as to an arbitrary number and
spatial distribution of paramagnetic spins. The latter extension
is carried out in Appendix F where we show that, for a slab below
the YIG film, the shifts δβ and Γβ are given by Eq. (19) under
the substitution φk → φk + π.

slab parallel to the YIG film. The diamond slab has a
width l2 − l1 and is placed at a height l1 above the film.
Under these assumptions, and after tracing out the bath
of paramagnetic spins, we obtain the following master
equation for the reduced density matrix of the spin waves,
ρ̂sw:

d

dt
ρ̂sw = − i

~

[
Ĥ ′sw, ρ̂sw

]
+Dsw[ρ̂sw] +De[ρ̂sw], (15)

The first term in Eq. (15) describes the modified spin
wave Hamiltonian and includes a paramagnetic spin-
induced frequency shift,

Ĥ ′sw = ~
∑
β

(ωβ + δβ)ŝ†β ŝβ ≡ ~
∑
β

ω′β ŝ
†
β ŝβ . (16)

The dissipative part is composed by the original dissipa-
tor Dsw[ρ̂], given by Eq. (10), and an additional absorp-
tion and decay for each spin wave mode,

De[ρ̂] ≡
∑
β

ΓdβLŝβ ŝ†β [ρ̂] + ΓaβLŝ†
β
ŝβ

[ρ̂]. (17)

General expressions for the rates δβ , Γdβ , and Γaβ are
given in Appendix F (see also Eq. [19]). The above dis-
sipator Eq. (17) results in an increase of the linewidth of
the spin waves, namely

γβ −→ γβ + Γdβ − Γaβ ≡ γβ + Γβ . (18)

We remark that the full master equation includes an ad-
ditional interaction between different spin wave modes.
The corresponding coupling rates, as opposed to the shift
δβ and the linewidth increase Γβ , depend on the parallel
coordinates (yj , zj) of each paramagnetic spin and can
be shown to average out to zero in the limit of N � 1
randomly distributed paramagnetic spins.
The rates δβ and Γβ are given by[
δβ
Γβ

]
= 〈σ̂00 − σ̂−−〉ss

µ2
0|γ|γ2

s~MS%ps

∆2
β + (κT /2)2

[
∆β

κT

]
× cos4(φk/2)

ωβ/ωM
h2
β+0

∫ l2/d

l1/d

dxe−2(k‖d)x (19)

where the sub-index “ss” indicates the steady state of the
paramagnetic spins and hβ+0 is a real and dimensionless
mode amplitude of order unity, defined in Appendix A.
In the above expression we have defined the detuning
∆β ≡ ωβ − ω−, the total decay rate of the paramagnetic
spin coherence 〈σ̂0−〉, namely κT /2, and the volumetric
density of paramagnetic spins, %ps ≡ NL−2(l2 − l1)−1.
Note that although we take the limit N,L→∞, the den-
sity %ps remains constant. For a given spin wave mode β,
the rates in Eq. (19) are maximized in the thick slab limit
k‖l2 � 1 which, for the parameters in this work, is effec-
tively achieved at l2 & 5µm. In this limit the rates decay
exponentially with the slab-film distance l1, and are thus
maximized for a slab lying directly on top of the YIG film



6

(l1 = 0). Furthermore, the rates δβ and Γβ depend cru-
cially on the spin wave propagation direction through φk,
its amplitude and polarization through the mode ampli-
tude hβ+0, its frequency through the sharply peaked fac-
tor [∆2

β+(κT /2)2]−1, and temperature and spin pumping
through the occupation factor 〈σ̂00 − σ̂−−〉ss.
Let us analyze the shifts δβ and Γβ in detail for the

fundamental spin wave band n = 0, where they are
most relevant. We focus on the specific case of an en-
semble of optically pumped NV centres, where κT /2 =
κ1(1+2n̄−+n̄+)/2+κ2/2+Ω ≈ [T ∗2 ]−1 with Ω the optical
pumping rate, proportional to the pumping intensity (see
Appendix B). These ensembles can reach NV centre den-
sities %nv as high as %nv ∼ 105(µm)−3 [72, 73, 80, 81] and
even larger [82, 83], although in such cases the extreme
concentrations prove harmful for the coherence and de-
cay times of NV centres. The shift Γβ is shown in the left
panel of Fig. 2(b) as a function of the wave vectors ky
and kz, for an NV centre density %nv = 104(µm)−3. We
assume optimal optical pumping conditions, i.e., maxi-
mally polarized NV centres, 〈σ̂00 − σ̂−−〉ss ≈ 0.7. The
dark areas in Fig. 2(b), which indicate Γβ = 0, corre-
spond to spin waves that do not couple to the paramag-
netic spin bath. This is certified by the green and blue
curves in Fig. 2(b, right panel) which indicate, respec-
tively, the spin wave modes whose polarization is orthog-
onal to that of the spin transition |0〉 ↔ |−〉 and the
spin wave modes whose field amplitude vanishes above
the YIG film. Conversely, the sharp maxima displayed
by Γβ and indicated by yellow lines in the left panel of
Fig. 2(b) stem from the factor κT /[∆2

β + (κT /2)2]−1 in
Eq. (19), and occur for spin waves in resonance with the
paramagnetic spin transition (∆β = 0). This is evidenced
by the red curves in the right panel of Fig. 2(b), which
are isolines indicating the resonant spin wave condition
∆β = 0. The behavior of the frequency shift δβ , not
shown in the figure, is very similar to Fig. 2(b). In this
case, however, the different dependence with the detun-
ing, δβ ∝ ∆β/[∆2

β + (κT /2)2], results in two sharp ex-
tremal points, namely a maximum and a minimum at
ωβ = ω− + κT /2 and ωβ = ω− − κT /2, respectively. For
spin waves exactly on resonance, ωβ = ω−, the frequency
shift is exactly zero. Finally, note that the spin waves
that experience the largest shifts δβ and Γβ are the (e−-
polarized) Damon-Eshbach modes propagating along the
+y direction, for which the coupling to the paramagnetic
spins is maximized. In the following we will focus on
these modes.

Since the most relevant feature of the shifts δβ and Γβ
is their sharp modifications for near-resonant spin waves,
ωβ = ω−(H0), these shifts depend critically on the ap-
plied magnetic field H0. This is illustrated in Fig. 2(c)
and (d) where we display δβ and Γβ respectively for spin
wave modes propagating along the +y direction and for
different values of the applied field. Both shifts are sup-
pressed for large fields (µ0H0 & 30mT) as the resonance
condition is never met (ωβ > ω− ∀β, see e.g. Fig. 10[a]).
They are also suppressed at small fields (µ0H0 . 5mT)

FIG. 2. a) We study the effective dynamics of spin waves in
the presence of a diamond slab containing optically pumped
NV centres. b) Left panel: increase of the linewidth of n = 0
spin waves at µ0H0 = 20mT as a function of their paral-
lel wavevector. Right panel: iso-lines corresponding to spin
waves with ωβ = ω− (red), spin waves with polarization or-
thogonal to e− (green), and spin waves generating zero mag-
netic field above the film (blue). c-d) Frequency and linewidth
modification for n = 0 spin wave modes propagating along the
+y direction as a function of wavenumber, for different val-
ues of the applied field H0. Dashed and solid lines indicate
negative and positive sign, respectively. In all the panels we
take l1 = 0, l2 = ∞, %nv = 104(µm)−3, T = 300K, optimum
optical pumping parameters, and the parameters in Table I.

as the resonance condition is met only for spin waves with
large wavenumber k‖, which are very weakly coupled to
the paramagnetic spin transition due to their exponen-
tially reduced magnetic field amplitude above the film
(see the discussion above Eq. [A62]). In order to analyze
the maximum possible value for the shifts δβ and Γβ , we
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FIG. 3. a) Maximum linewidth increase induced by optically pumped NV centres (assuming optimal pumping conditions,
solid lines) and NV centres at room-temperature thermal equilibrium (dashed lines), as a function of applied field H0 and
for different densities of NV centres. b) Propagation length (green) and dispersion relation (dashed black) of n = 0 Damon-
Eshbach spin waves in the absence of NV centres. The red shaded area indicates the spin waves which are significantly affected
by the NV centres. c-e) Spin wave dispersion relation, absolute value of group velocity, and propagation length respectively,
for optically pumped NV centres (optimal pumping conditions). The horizontal axis spans the red area indicated in panel (b),
and different colors indicate different NV centre densities. In panel (d) solid/dashed curves indicate positive/negative values
of vg. f) Illustration of the modification of the spin wave properties induced by the NV centres, at the points (i), (ii), and (iii)
marked in panel (d). In all the panels we take µ0H0 = 10mT, l1 = 0, l2 =∞, and the parameters in Table I.

display in Fig. 3(a) the maximum linewidth modification
Γβ,max = maxk‖ Γβ |n=0 as a function of applied field H0
for three values of the NV centre density, both for opti-
cally pumped NV centres (solid lines) and for NV centres
in the absence of optical pumping, i.e., at room tem-
perature thermal equilibrium (dashed lines). The maxi-
mum frequency shift δβ fulfills δβ,max ≈ Γβ,max/4 4. Ac-
cording to Fig. 3(a), the highest possible values for Γβ
are achieved for µ0H0 ≈ 10 − 15mT where the resonant
spin waves have moderate wavenumbers k‖d ∼ 0.4− 0.8
(compare with Fig. 2[c-d]). Indeed, for higher or lower
wavenumbers k‖ the spin wave field is either too tightly
or too loosely confined to the YIG film, resulting in a
weaker coupling to the paramagnetic spins. In the ab-
sence of pumping (dashed curves in Fig. 3[a]) the rate
Γβ,max is largely suppressed as the NV transition is prac-
tically saturated, i.e., 〈σ̂00 − σ̂−−〉ss ≈ 10−4. In this
case, the maximum attainable value at large NV den-
sities %nv & 104(µm)−3, Γβ,max ≈ 2π × 10 − 100kHz,
represents at best a correction of roughly 10% to the
bare spin wave linewidth γβ ≈ 2π × 600kHz. On the
other hand, at optimal optical pumping conditions (solid
curves in Fig. 3[a]) the NV centres are near their ground

4 This is to be expected from the ratio between the correspond-
ing peaked functions appearing on Γβ and δβ , max[2a(x2 +
a2)−1]/max[x(x2 + a2)−1] = 4.

state and the change in the linewidth can be much larger,
e.g. Γβ,max ≈ 2π × 20MHz ≈ 30γβ at %nv = 104(µm)−3.
These results suggest that, in this regime, a significant
modification of the spin wave properties should be ob-
served.
To analyze the modification of the spin wave proper-

ties, we compute three characteristics particularly rel-
evant for applications in spin-wave based information
processing [24, 65], namely the modified spin wave fre-
quency ω′β ≡ ωβ + δβ , the modified group velocity de-
fined as vg ≡ ∂ω′β/∂ky, and the propagation length de-
fined as lβ ≡ vgτβ , where τβ = 2/(γβ + Γβ) is the spin
wave lifetime. For the sake of illustration we display in
Fig. 3(b) both the frequency ωβ and the propagation
length lβ in the absence of NV centres (%nv = 0). In
the presence of the paramagnetic spins, the spin wave
properties experience strong modifications within a nar-
row wavenumber range (indicated by the red shaded
area in Fig. 3[b]), corresponding to the frequency range
ω− − κT /2 . ωβ . ω− + κT /2. The spin wave frequen-
cies, group velocities (in absolute value), and propagation
lengths within this narrow range are shown in Fig. 3(c-
e) respectively, for different densities of NV centres. As
evidenced by the figure, although the modification of the
frequency ω′β is relatively small (∼ 4%), it displays very
abrupt slope changes resulting in variations of several
orders of magnitude in the group velocity. The propaga-
tion length does not display such a strong increase as the
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effective spin wave loss rate γβ + Γβ becomes also very
large.

Three especially interesting possibilities, schematically
illustrated in Fig. 3(f), can be identified in Fig. 3(c-e): (i)
Full suppression of spin wave propagation at wavenum-
bers for which vg = lβ = 0; (ii) backward-wave propa-
gation [84] for a wide range of wavenumbers where the
group velocity becomes negative, vg < 0; (iii) enhance-
ment of the propagation length for near-resonant spin
waves. This enhancement, a priori counterintuitive due
to the very large effective decay rate γβ + Γβ , is enabled
by the corresponding increase in the group velocity. Note
that all of these modifications occur for Damon-Eshbach
modes propagating with ky > 0, whereas the modes with
ky < 0 remain unchanged as their polarization is orthog-
onal to the paramagnetic spin transition (see Fig. 2[b]).
The presence of the paramagnetic spins as a bath thus
induces, within a narrow but tuneable range of wave-
vectors, a further symmetry breaking for the Damon-
Eshbach spin waves. The exotic phenomenology shown
in Fig. 3 should be observable in current NV centre-spin
wave hybrid platforms, for which changes as small as
∼ 10% in e.g. the spin wave propagation length can be
resolved [24]. Similar or even stronger modifications of
the propagation properties could be achieved with other
paramagnetic spins (e.g. allowing for higher spin den-
sities than NV centre ensembles) and/or more efficient
pumping schemes able to reach maximum polarization,
〈σ̂00 − σ̂−−〉ss ≈ 1.

IV. Back-action-based spin wave sensing

The possibility of modifying spin wave properties
through the passive back-action effected by the param-
agnetic spins is far from the full potential of these spins
for spintronics. Indeed, a natural step forward consists
on using the paramagnetic spins as active components to
probe and control spin waves [24–26, 28–30]. An essen-
tial capability toward this goal is that of measuring the
back-action exerted by the spin waves on the paramag-
netic spins. In this section we characterize such back-
action and show the possibility of detecting it both op-
tically and mechanically, should the paramagnetic spins
be embedded in a micromechanical oscillator (e.g. a di-
amond cantilever), see Fig. 4(a). Aside from spin wave
probing, this optical and/or mechanical detection of spin
wave back-action could allow for a new generation of flex-
ible spin wave hybrid platforms integrating optical and
mechanical degrees of freedom.

The spin wave back-action induces the following effec-
tive dynamics on an ensemble of paramagnetic spins: (i)
A shift of the transition frequencies ω± and a correspond-
ing mechanical force, see details below; (ii) a modifica-
tion of the lifetimes T1 and T ∗2 ; (iii) an effective interac-
tion between different paramagnetic spins, which inherits
the direction-dependent character of the spin waves. All
these effects are studied in detail in Appendix E. Here-

after we consider a single paramagnetic spin at an arbi-
trary position outside the YIG film. The resulting master
equation for its reduced density matrix, ρ̂ps, is given by

d

dt
ρ̂ps = − i

~

[
Ĥ ′ps, ρ̂ps

]
+ Dps[ρ̂ps] + Dd[ρ̂ps]. (20)

The coherent contribution, given by the Hamiltonian

Ĥ ′ps = ~
∑
α=±

(ωα + δα)σ̂αα, (21)

describes the modification of the two transition frequen-
cies by a shift δα, in analogy to the AC Stark effect
experienced by electric dipoles in an electromagnetic
bath [58]. Although within our approximations the cou-
pling between the transition |0〉 → |+〉 and spin waves
is neglected (see Eq. [7]), the frequency of this transition
is also modified due to the energy shift of the state |0〉.
Moreover, the spin waves introduce additional dissipative
dynamics, given in Eq. (20) by the dissipator

Dd[ρ̂] = κaLσ̂−0σ̂0− [ρ̂]+κdLσ̂0−σ̂−0 [ρ̂]+κ′2
~2LŜzŜz [ρ̂]. (22)

Here, the first two terms represent additional absorption
and decay along the |0〉 → |−〉 transition, with rates κa
and κd respectively, whereas the last term represents an
additional dephasing of both excited states |+〉 and |−〉
at a rate κ′2. Analytical expressions for the rates δα, κa,
κd, and κ′2 are given in Appendix E.
Let us discuss the frequency shifts δ±. These shifts

fulfill |δ−| ≥ 2|δ+| 5, allowing us to focus on the main
shift, namely that of the coupled transition |0〉 ↔ |−〉
given by

δ− = −
∑
β

∆β

∆2
β + (γβ/2)2 |gβ |

2 (1 + 2n̄β) . (23)

The above frequency shift is measurable, for instance by
fluorescence in the case of an NV centre, provided that it
is larger than the linewidth of the transition |0〉 ↔ |−〉,
i.e., provided that |δ−T ′1| > 1. Here, T ′1 < T1 is the life-
time of the transition |0〉 ↔ |−〉, which is also modified by
the back-action of the spin waves. The definition of T ′1 is
not straightforward since, in the presence of spin waves,
the occupations 〈σ̂−−〉(t) do not obey a simple- but a
multi-exponential decay characterized by more than one
rate 6. We define T ′1 as the shortest timescale of this
evolution or, conversely, as the inverse of the largest de-
cay rate. Both δ− and T ′1 are computed numerically by
expressing them in integral form. In such form it can be
shown using symmetry arguments that both quantities

5 Specifically at room temperature δ− ≈ 2δ+ whereas at cryogenic
temperatures δ+ ≈ 0.

6 Adding to the difficulty, the rates associated to the decays of the
two occupations 〈σ̂−−〉(t) and 〈σ̂++〉(t) are generally different.
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are independent on the parallel (y, z) coordinates of the
paramagnetic spin or on the side of the film on which
the paramagnetic spin is placed, and are a function ex-
clusively of the ratio l/d.

Let us consider the specific case of NV centres. The
product |δ−T ′1| for these paramagnetic spins is displayed
in Fig. 4(b) as a function of vertical separation l/d, for
µ0H0 = 35mT and thermal equilibrium at room (red)
and cryogenic (blue) temperatures. The corresponding
inset shows the modified lifetime T ′1 for the same param-
eters. The spin wave-induced effects are stronger both
at room temperature and at short separations l, as the
amplitude of the thermal spin waves is larger. At room
temperature the large values of δ− (up to ∼ 2π× 8MHz)
are more significant than the reduction of the lifetime T ′1,
resulting in a product |δ−T ′1| > 1 for NV-YIG film sep-
arations as large as l = 4d = 800nm. This should allow
for the experimental observation of the spin wave-induced
frequency shift of the transition |0〉 ↔ |−〉 in current se-
tups, e.g. via fluorescence of the NV centre [23–30, 68].
Note that the results in Fig. 4(b) do not require optical
pumping of the NV centres. More details on the behavior
of the frequency shift δ− and of the lifetime T ′1, including
their dependence with the applied field H0, are provided
in Appendix E.

A consequence of a position-dependent frequency shift,
that is, a position-dependent transition frequency, is the
presence of a net force acting on the paramagnetic spin,
namely the magnetic thermal Casimir-Polder force [85]
which has been extensively studied in quantum electro-
dynamics [85–87]. The net force experienced by a para-
magnetic spin lying above the YIG film 7 in its steady
state is given by F = −〈∇Ĥ ′ps〉ss [86, 87]. Here we focus
on the high- and low-temperature limits, where the force
is given by

F = −ex
~
2
dδ−(l)
dl

×
{
〈σ̂−− − σ̂00〉ss for kBT � ~ωM

2〈σ̂−−〉ss for kBT � ~ωM .
(24)

Note the qualitative difference between room tempera-
ture, where both spin transitions contribute to the force
(δ+ ≈ δ−/2), and cryogenic temperatures where only the
|0〉 ↔ |−〉 transition does as δ+ → 0. As opposed to the
frequency shifts δ±, the force depends on the state of the
paramagnetic spin.

The force Eq. (24) is displayed in Fig. 4(c) for an
NV centre at T = 300K under optimal optical pump-
ing (green line), at T = 300K without optical pump-
ing (purple line), and at T = 100mK without optical
pumping (orange line). At thermal equilibrium at room
temperature the force Eq. (24) is smaller, as the steady-
state occupations are very close to their zero-field values,

7 For a spin below the film the force has opposite sign, see Ap-
pendix E.

FIG. 4. a) The spin waves modify the frequency and life-
time of the |0〉 → |−〉 transition of the (potentially optically
pumped) NV centres. The frequency shift and corresponding
force can be detected through fluorescence or nanomechanical
force sensing. b) Product of the frequency shift δ− and the
modified transition lifetime T ′1 of the |0〉 ↔ |−〉 transition of
a single NV centre above the YIG film, at room (red) and
cryogenic (blue) temperatures. The inset shows the corre-
sponding modified lifetimes T ′1, the dashed line indicating the
bare lifetime in the absence of spin waves, T1. c) Spin-wave
induced force per NV centre, at room temperature (purple),
cryogenic temperature (dashed orange), and room tempera-
ture under optimal optical pumping conditions (green). Solid
(dashed) lines indicate positive (negative) forces. In all panels
we choose µ0H0 = 35mT and the parameters in Table I.

i.e. 〈σ̂±±〉ss ≈ 〈σ̂00〉ss ≈ 1/3. This force can, however,
be increased by several orders of magnitude via optical
pumping, as evidenced by the green curve in Fig. 4(c).
At cryogenic temperatures (orange curve in Fig. 4[c]),
despite the paramagnetic spin being close to its ground
state, the force remains of the same order as at room tem-
perature as the field amplitude of the thermal spin waves,
and hence their back-action on the paramagnetic spins, is
largely reduced. In this case, moreover, the force cannot
be significantly increased via conventional optical pump-
ing. The spin wave-induced forces are mostly repulsive at
room temperature, a well-known feature of fluctuational
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forces on magnetic dipole transitions [88, 89], and attrac-
tive at cryogenic temperatures. A detailed analysis and
characterization of all these forces, including their depen-
dence with the applied field H0, is given in Appendix E.
The possibility of pumping the paramagnetic spin

paves the way toward the detection of the spin wave-
induced force at room temperature. Measurements of
such force (and hence indirect measurements of the fre-
quency shift) could be performed using nanomechanical
sensing devices. For instance, a nanodiamond containing
either a single NV centre or an ensemble of NV centres
could be attached to a high-Q cantilever as schemati-
cally depicted in Fig. 4(a). In this setup, the spin wave-
induced force could be tracked through the shifts in the
mechanical frequency of the cantilever [90]. For a sin-
gle, optically pumped NV centre at a distance l . d/5 ≈
40nm, the forces in Fig. 4(c) lie within the sensitivity
range (10−21 − 10−18N Hz1/2) of current ultra-sensitive
force detectors, based on membranes [91–93] or nanowire
resonators and cantilevers [94–100] of diverse materials,
including single-crystal diamond [101]. Moreover, the ad-
ditive force experienced by nano-diamonds containing en-
sembles of as few as N ∼ 103 NV centres could reach
current experimental sensitivities even for NV centres in
thermal equilibrium, or for optically pumped NV centres
at distances as large as l ≈ d = 200nm. Last but not
least, larger mechanical forces could be achieved for dif-
ferent paramagnetic spins and/or more efficient pumping
schemes.

V. Conclusion

We have developed a comprehensive quantum theory of
hybrid interfaces based on spin waves magnetically cou-
pled to paramagnetic spins. In the first part of our work,
we have applied this theory to characterize the effective
spin wave dynamics induced by the back-action of the
paramagnetic spins. This back-action results in a tune-
able modification of the spin wave propagation proper-
ties. Specifically, it can induce full cancellation or en-
hancement of spin wave propagation length, as well as
backward wave propagation for Damon-Eshbach modes.
All these modifications are strong and measurable in
state of the art setups. We have also quantified the im-
pact of the paramagnetic spins back-action on the mag-
netic field fluctuations, specifically on the magnetic field
power spectral density, outside the magnetic structure.
Our results show the potential of electron spins as pas-
sive tools to engineer spin wave properties.

In the second part of our work, we have studied the
opposite effect, namely the back-action exerted by spin
waves on nearby paramagnetic spins. This back-action
results in a frequency shift of the paramagnetic spins
transitions, a modification of the paramagnetic spin de-
cay and decoherence lifetimes, and a spin wave-mediated
interaction between different paramagnetic spins within
an ensemble. All the above effects have been character-

ized in detail. The frequency shift of single paramagnetic
spins can be measured in current experiments, with usual
fluorescence techniques. In addition, this shift is accom-
panied by a force that can be detected with state of the
art mechanical sensing devices. These results evidence
the further role of paramagnetic spins as active tools for
probing and controlling spin waves.
The results presented in this work have many applica-

tions in spin wave-based technologies. The suppression
of the spin wave propagation lengths could be used to
devise spin wave mirrors, polarization filters, optically-
gated spin wave transistors, or magnonic crystals, among
others. Similarly, the enhancement of the spin wave prop-
agation could help reduce losses in spin wave information
processing devices. All these capabilities can in princi-
ple be spatially tailored with state of the art techniques,
such as by distributing the paramagnetic spins in a con-
venient spatial arrangement [26–28] or by using selective
optical pumping with nanometric resolution [102]. Our
results could thus pave the way toward back-action based
reconfigurable spin wave circuits. On the other hand,
the reverse back-action of spin waves on paramagnetic
spins evidences their potential for spin wave detection
and for accurate measurement of distances. Moreover, it
paves the way toward using paramagnetic spins as media-
tors between spin waves and electromagnetic or mechan-
ical fields. A particularly interesting prospect is to en-
hance the spin wave-induced force (for instance through
coherent driving of spin waves resonant with the para-
magnetic spin transition) hence increasing the magneto-
mechanical coupling between spin waves and a mechani-
cal resonator. This magneto-mechanical coupling, whose
promising quantum applications are only starting to be
explored [4, 6, 23, 57, 103–105], might allow to inte-
grate magnonic degrees of freedom in micro- and opto-
mechanical systems, bringing new degrees of flexibility to
technology-oriented spin wave platforms.
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A. Spin waves in a slab

In this Appendix we give further details on the spin
waves supported by a thin film. First, in Sec. A 1, we de-
scribe the Landau-Lifshitz equation governing the mag-
netization dynamics and its linearization. We then de-
rive, in Sec. A 2, the spin wave eigenmode equation and
cast it in a convenient form for a perturbative treatment,
which we summarize in Sec. A 3. After, we discuss the
spin wave eigenmode properties in detail in Sec. A 4. We
complete the introduction of the spin wave formalism in
Sec. A 5 by summarizing the spin wave quantization, the

introduction of loss rates, and the computation of spin
wave observables. In the last two sections of this ap-
pendix, we extend our study by computing and analyz-
ing the magnetic field power spectral densities outside
the film (Sec. A 6), and by computing the magnetization
and magnetic field operators to second order in magnon
operators (Sec. A 7), which are required in Sec. C.

1. Equations of motion and linearization

We consider first a lossless insulating ferromagnet in
the presence of a static magnetic field H0. The funda-
mental equation governing the dynamics of the magneti-
zation field M(r, t) is the lossless Landau-Lifshitz equa-
tion [19],

d

dt
M(r, t) = −|γ|µ0M(r, t)× [H0 + H′(M, r, t)] , (A1)

with γ the gyromagnetic ratio and µ0 the vacuum permit-
tivity. This equation is identical to the equation of mo-
tion for the orientation of a single fixed magnetic dipole
with moment M, except for the additional nonlinear con-
tribution H′(M, r, t), known as the effective field, which
describes the many complex interactions arising inside
the magnetic material. The effective field can be written
as [18, 19]

H′(M, r, t) = Hd(M, r, t)
+ Hx(M, r, t) + Ha(M, r, t). (A2)

The first term above, namely the demagnetizing field, ac-
counts for the dipole-dipole interaction. Under the mag-
netostatic approximation ∇×Hd(r, t) ≈ 0, valid for spin
wave wavelengths much shorter or much longer than the
vacuum wavelength [19], the demagnetizing field is given
by [106]

Hd(M, r, t) = 1
4π∇

∫
d3r′∇

′ ·M(r′, t)
|r− r′| . (A3)

The remaining two contributions in Eq. (A2) describe
the effect of exchange and magnetocrystalline anisotropy
on the magnetization dynamics. Since they are effec-
tive terms, they do not correspond to genuine Maxwell
fields, i.e. the total field appearing in Maxwell equations
is given by H(r, t) = H0 +Hd(M, r, t). On the one hand,
the exchange field Hx accounting for the exchange inter-
action is given, for a material with a cubic lattice such
as YIG, by the expression [19]

Hx(M, r, t) = αx∇2M(r, t) (A4)

with αx the exchange stiffness. On the other hand, Ha

accounts for the magnetocrystalline anisotropy interac-
tion, and its form is not only sample- and geometry-
dependent but widely tuneable e.g. through rare earth
dopants [107, 108]. For undoped YIG thin films,
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anisotropy is generally small [24, 25, 52, 55] and can be
neglected for describing spin waves. Hereafter we will
thus take Ha ≈ 0, although the effect of different kinds
of anisotropies, such as e.g. uniaxial or cubic, could be
included [109].

From the definitions above it is evident that a homoge-
neous magnetization profile M(r, t) = MSez is a solution
of the Landau-Lifshitz Equation Eq. (A1). We seek spin
wave solutions, i.e., solutions describing small fluctua-
tions above such fully magnetized state,

M(r, t) = MSez + m(r, t), (A5)
with |m(r, t)| � MS . By introducing the above expres-
sion into Eq. (A1) and neglecting the small quadratic
terms O(m2) we obtain the linearized Landau-Lifhsitz
equations, namely[

d

dt
− ez ×

(
ωH − ωMαx∇2)]m(r, t) =

= −ωMez × h(r, t). (A6)
where, by definition, the magnetic field associated to the
magnetization field m(r, t), i.e., the magnetic field of the
spin wave, is given by

h(r, t) = 1
4π∇

∫
d3r′∇

′ ·m(r′, t)
|r− r′|

≡
∫
d3r′G(r− r′)m(r′, t). (A7)

The Green’s tensor above is defined as

Gij(r− r′) = −1
4π|r− r′|3 (r− r′)i

∂

∂r′j
, (A8)

where the sub-indices i, j = x, y, z indicate Cartesian
components. The above expression is usually sym-
metrized by (i) making use of the vector identity ∇ ·
(fA) = f∇ ·A + (∇f) ·A and integrating by parts; (ii)
applying the divergence theorem, and (iii) taking an in-
tegration volume enclosed by an area infinitely far away
from the magnetic material. The resulting symmetrized
expression reads

Gij(r− r′) = −1
4π

∂

∂ri

∂

∂r′j

1
|r− r′| . (A9)

It is convenient, given our planar geometry, to express
the Green’s tensor in a plane-wave representation in the
parallel coordinates. Using the identity

1
|r− r′| = 1

2π

∫
d2q‖

eiq‖(r‖−r′‖)

q‖
e−q‖|x−x

′|, (A10)

with q‖ ≡ qyey + qzez and r‖ ≡ yey + zez, we can write
the Green’s tensor as

G(r− r′) = − 1
8π2

∫
d2q‖eiq‖(r‖−r′‖)e−q‖|x−x

′| 2δ(x− x′)− q‖ −iqyξxx′ −iqzξxx′
−iqyξxx′ q2

y/q‖ qyqz/q‖
−iqzξxx′ qyqz/q‖ q2

z/q‖

 (A11)

where ξxx′ ≡ sign[x−x′]. Note that the above expression
is still general, but expressed in a convenient form for a
film.
The linearized Landau-Lifshitz equations Eq. (A6) to-

gether with the magnetostatic relation Eq. (A7) forms an
integro-differential equation for the magnetization field
m(r, t). It is complemented by two sets of boundary
conditions. On the one hand, the usual Maxwell bound-
ary conditions, namely the continuity of ez × h(r, t) and
of ez · b(r, t) ≡ µ0ez · [h(r, t) + m(r, t)] across the two
film boundaries (in our thin film geometry, at x = 0 and
x = d). On the other hand, the boundary conditions im-
posed by the exchange interaction, which are geometry-
and material-dependent. We choose free-pinning bound-
ary conditions [56, 110],

∂

∂x
m(r, t)

∣∣
x=0,d = 0, (A12)

which are best suited to thin films with d . 500nm [111].
Our results can be generalized to other pinning condi-
tions [52–54] with little change in the final mode struc-
ture, especially for thin films [55, 112–116]. In some lim-
iting cases the above integro-differential equation can be
solved easily, for instance when exchange is negligible
(dipolar spin waves, corresponding to αx � λ2

sw, with
λ2

sw the wavelength of the spin wave) or when it largely
dominates over the dipole-dipole interaction (exchange
waves, αx � λ2

sw). However, in many structures, in-
cluding the thin films under study, both exchange and
dipole-dipole interaction are relevant and their compe-
tition is responsible for the complex phenomenology of
the so-called magnetostatic dipole-exchange spin waves
[53, 54].

2. Eigenmode equation

The dipole-exchange eigenmodes of the linearized
Landau-Lifshitz equation Eq. (A6) can be computed in
different forms [53, 54], even exactly [113, 114], although
the exact solution is numerically demanding. Here we fol-
low the perturbative approach by Kalinikos in Ref. [52]
(see also Refs. [51, 55, 116]). The first part of the deriva-
tion consists on manipulating the equations into a suit-
able form for the perturbative expansion. We start by
decomposing the magnetization field in terms of eigen-
modes,

m(r, t) =
∑
β

mβ(r)e−iωt + C.c. (A13)

and making use of the translational invariance to write
the magnetization mode functions as

mβ(r) = mβ(x)eik‖r‖ . (A14)

By introducing the above expressions into Eq. (A7) and
using the Green’s tensor Eq. (A11) we find the same
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dependence for the associated field of the spin waves,
namely

h(r, t) =
∑
β

hβ(r)e−iωt + C.c. (A15)

with

hβ(r) = hβ(x)eik‖r‖ , (A16)

and the following one-dimensional relation between the
transverse profiles,

hβ(x) =
∫ d

0
dx′G0(x− x′)mβ(x′). (A17)

The one-dimensional Green’s function of the slab can be
calculated by direct integration and reads

G0(x− x′) = e−k‖|x−x
′|

2 k‖ − 2δ(x− x′) −ikyξxx′ −ikzξxx′
−ikyξxx′ −k2

y/k‖ −kykz/k‖
−ikzξxx′ −kykz/k‖ −k2

z/k‖

 . (A18)

Using the above relations, the linearized Landau-Lifshitz
equation Eq. (A6) can be cast as the following ma-
trix equation for the two-dimensional vector mβ(x) =
mβx(x)ex +mβy(x)ey:

N̂mβ(x) = i
ω

ωM
Tmβ(x) +

∫ d

0
dx′G0(x− x′)mβ(x′)

(A19)
where we define the linear operator

N̂ ≡
[
ωH
ωM

+ αxk
2
‖ − αx

∂2

∂2
x

]
13×3, (A20)

and the matrix

T ≡

 0 −1 0
1 0 0
0 0 0

 . (A21)

Note that the equations do not couple modes with dif-
ferent values of k‖, thus confirming that the parallel
wavevector is a good mode index. The above system
is combined with the free-spin boundary conditions

∂xmβ(x)|x=0,d = 0. (A22)

In the above form the problem has been reduced from
a four-variable (r, t) to a one-variable (x) integro-
differential equation.

The second step is to transform the above simplified
integro-differential equation Eq. (A19) into a system of
algebraic equations, by expressing it in a suitable orthog-
onal basis. Since in thin films exchange interaction is the
most relevant, we choose as a basis the vector eigenmodes

of the operator N̂ that satisfy the free-spin boundary con-
ditions, i.e., Spn(x) = Sn(x)ep (p = x, y) with

Sn(x) ≡

√
2

(1 + δn0) cos
(
nπ

x

d

)
. (A23)

It can be easily checked that the above functions are
eigenmodes of N̂ with eigenvalue

Nn(k‖) ≡
ωH
ωM

+ αx

[
k2
‖ +

(nπ
d

)2
]
, (A24)

that they fulfill the boundary conditions Eq. (A22), and
that they form an orthogonal basis and are normalized
to the film thickness d,∫ d

0
dxSpn(x) · Sp

′

n′(x) = dδnn′δpp′ . (A25)

We now expand the magnetization vector in this basis as

mβ(x) =
∑
n

mx
nSxn(x) +my

nSyn(x), (A26)

and seek an equation for the unknown two mode ampli-
tudes mn ≡ (mx

n,m
y
n)T . Specifically, by using the or-

thogonality relation between the basis elements, we cast
the integro-differential equation Eq. (A19) into an infinite
algebraic system of coupled equations for the amplitude
vectors:

D
(nn)

mn +
∑
n′ 6=n

R
(nn′)

mn′ = 0, (A27)

where the 2 × 2 matrices above, which depend on the
parallel wavevector k‖, are given by

D
(nn)

=
[

Nn(k‖)− Γxxnn −Γxynn + i(ω/ωM )
−Γyxnn − i(ω/ωM ) Nn(k‖)− Γyynn

]
(A28)

R
(nn′)

=
[
−Γxxnn′ −Γxynn′
−Γyxnn′ −Γyynn′

]
(A29)

Note that the sub-indices n and n′ in the matrices D
(nn)

and R
(nn′)

are mode labels and do not represent the ma-
trix indices. In the above expressions,

Γpp
′

nn′(k‖) ≡
1
d

∫ d

0
dx

∫ d

0
dx′Sn(x)Sn′(x′)Gpp

′

0 (x− x′)

(A30)
represents the dipole-dipole interaction term expanded in
the basis Spn(x). The dipole-dipole interaction appears in

both matrices D
(nn)

and R
(nn′)

. On D
(nn)

, it accounts
for the self-dipole-dipole interaction of each eigenmode of
N̂ . This contribution is important and will be taken into
account fully, i.e., non-perturbatively. Conversely, the
dipole-dipole interaction between different eigenmodes
of N̂ is fully captured by the term R

(nn′)
, and will be

treated perturbatively.



14

3. Perturbative eigenmode calculation

Let us briefly sketch the perturbative treatment of the
above system of equations. By combining all the two-
dimensional vectors mn into an infinite-dimensional vec-
tor M≡ (m0,m1, ...)T , we can cast the system of equa-
tions Eq. (A27) as

LM= 0, (A31)

where L is an infinite-dimensional matrix. Note that
throughout this section we reserve the double-bar ten-
sor notation (∗) for 2× 2 matrices for the sake of clarity.
The 2× 2 block entries of the matrix L are given by

L{nn′} = δnn′D
(nn)

+ (1− δnn′)R
(nn′)

. (A32)

Here, the indices given inside curly brackets denote 2× 2
block entries, i.e. L{nn′} is the 2 × 2 matrix occupying
the {n, n′} block of L. The spin wave eigenmodes are in
general a linear combination of all the modes mn. Their
dispersion relations are given by the implicit equation

det[L] = 0. (A33)

We aim at keeping the diagonal 2 × 2 block entries of
Eq. (A32) as our unperturbed matrix, and apply pertur-

bation theory to include the blocks R
(nn′)

. We will do
this through block-diagonalization.

Let us assume it is possible to block-diagonalize the
matrix L, i.e. that we can solve the following generalized
block eigenvalue equation:

L|Vlα〉 = Λl|Vlα〉 (A34)

Here, l is an index labelling the block eigenvalues and the
block eigenvectors. We define the infinite block-diagonal
matrix Λl, whose 2× 2 block entries are given by

[Λl]{ij} = δijλl, (A35)

i.e., the diagonal blocks are all identical and equal to the
2 × 2 eigenblock λl. The block eigenvectors |Vlα〉, ex-
pressed in Dirac notation for convenience, are matrices
formed by 2 infinite column vectors. Because in a block
diagonalization there might be more than one linearly in-
dependent vector corresponding to the same block eigen-
value, we have introduced an auxiliary index α labelling
all the eigenvectors within each manifold l. If the block
eigenvalue problem Eq. (A34) is solved, one can trans-
form the coefficient matrix of our system of equations
into a block-diagonal form,

L −→ L′. (A36)

The block 2 × 2 entries of the block-diagonal matrix L′

are given by

L′{ll′} = δll′λl. (A37)

Due to this convenient structure the dispersion relations
for the eigenmodes, Eq. (A33), are easily obtained as the
determinant factorizes into a product of determinants of
2× 2 matrices:

det[L] = det[L′] =
∞∏
l=0

det
[
λl

]
= 0. (A38)

Moreover, we can identify l as an additional good mode
index labelling the eigenmodes. The magnetization mode
functions corresponding to mode l can analogously be
computed from the corresponding eigenvectors, |Vlα〉.
The problem of finding the spin wave eigenmodes and
eigenfrequencies is thus reduced to block-diagonalizing
the original matrix L.
The block-diagonalization of the matrix L is carried

out by dividing it into an unperturbed diagonal part Ld
and an off-diagonal perturbation Lo, given in block form
by

[Ld]{nn′} = δnnD
(nn)

, (A39)

[Lo]{nn′} = (1− δnn′)R
(nn′)

. (A40)

The diagonal part is already in a block-diagonal form,
and hence the zero-th order solution in the perturbation
R

(nn′)
, namely the block-eigenvalue matrix Λ(0)

l , is sim-
ply given by [

Λ(0)
l

]
{ij}

= δijλ
(0)
l = δijD

(ll)
. (A41)

The zero-th order block eigenvectors are similarly given
by |V(0)

lα 〉 = (0, 0, . . . , V
(0)
lα , . . .)T , i.e. they are zero except

for a 2×2 block matrix at position l. Since this matrix is
arbitrary we can identify four linearly independent block
eigenvectors labelled by the index α = 1, ...4. Hereafter
and for simplicity, we choose these eigenvectors such that
they form an orthonormal basis according to the inner
product

〈V(0)
lα |V

(0)
l′β〉 ≡

≡ Tr
(

0, 0, . . . , V
(0)†
lα , . . .

)


0
...

V
(0)
l′β
...

 = δll′δαβ . (A42)

Note that the above condition amounts to choosing the
matrices V

(0)
lα to form an orthonormal basis in the space

of complex 2× 2 matrices.
Once the above orthogonality relations and the zero-

th order solution are defined, we can proceed in an anal-
ogous way as in usual perturbation theory. First, we
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expand the block-diagonalization equation Eq. (A34) in
orders of the perturbation as

(Ld + Lo)
(
|V(0)

lα 〉+ |V(1)
lα 〉+ ...

)
=

=
(

Λ(0)
l + Λ(1)

l + Λ(2)
l ...

)(
|V(0)

lα 〉+ |V(1)
lα 〉...

)
, (A43)

where the terms with super-index n are of n−th order.
To obtain the first-order correction to the equation we
discard all the terms of order 2 or larger, obtaining

Ld|V(1)
lα 〉+ Lo|V(0)

lα 〉 = Λ(0)
l |V

(1)
lα 〉+ Λ(1)

l |V
(0)
lα 〉. (A44)

We can now overlap on the left with 〈V(0)
lβ | and use the

hermiticity properties of the zero-th order solution and
the orthogonality relation Eq. (A42) to obtain

〈V(0)
lβ |Λ

(1)
l |V

(0)
lα 〉 = 〈V(0)

lβ |Lo|V
(0)
lα 〉 = 0, (A45)

where the last equality stems from the block-off-diagonal
character of Lo. Since the above equation holds for any α
and β and the matrices V

(0)
lα form an orthonormal basis,

we conclude that the first-order correction to the block
eigenvalues is zero,

Λ(1)
l = 0 → λ

(1)
l = 0. (A46)

By following the usual route in perturbation theory one
can easily find the first correction to the eigenvectors as

|V(1)
lα 〉 =

∑
l′ 6=l,β

〈V(0)
l′β |Lo|V

(0)
lα 〉

det
[
D

(ll)]
− det

[
D

(l′l′)] |V(0)
l′β〉. (A47)

In a similar way, it is possible to obtain eigenvalues and
eigenvectors up to any order in perturbation theory [52].

4. Mode properties

To describe the properties of the spin waves in thin
films, where exchange interaction dominates over dipole-
dipole coupling, it is usually sufficient to include the
dipole-dipole coupling up to first order in perturbation
theory [24, 25, 52, 53]. Here, since the first-order correc-
tion to the block eigenvalues is zero, the eigenfrequency
equation reads

det[L′] =
∞∏
n=0

det
[
D

(nn)]
= 0 +O

([
R

(nn′)]2)
, (A48)

and hence we can still identify the index n introduced in
Eq. (A23) as a good mode index labelling different spin
wave bands. We can now group the three mode indices
of a spin wave, namely n and the parallel wavevector k‖,
into a single compound index

β ≡ {n,k‖}. (A49)

FIG. 5. n = 0 spin wave band of a YIG film for µ0H0 =
20mT (solid lines) and µ0H0 = 60mT (dashed lines), and for
three values of the film thickness, namely d = 100nm (green),
d = 200nm (black), d = 500nm (orange).

The dispersion relation of band n is given by

det
[
D

(nn)]
= det

[
νβx iω/ωM

−iω/ωM νβy

]
= 0. (A50)

Here, we have used the expression of the matrix D
(nn)

Eq. (A28) and calculated the elements Γpp′nn (Eq. (A30))
explicitly. Specifically, Γxynn = 0, and we define

νβx ≡ Nn(k‖)−Γxxnn(k‖) = Nn(k‖)+1−Pnn(k‖), (A51)

νβy ≡ Nn(k‖)−Γyynn(k‖) = Nn(k‖) +
k2
y

k2
‖
Pnn(k‖), (A52)

with

Pnn(k‖) ≡
k‖

d

∫ d

0
dx

∫ d

0
dx′

e−k‖|x−x
′|

2 Sn(x)Sn(x′)

= δn0

2 +
[

k‖d

(k‖d)2 + (nπ)2

]2

×
[
(k‖d)2 + (nπ)2 − 2k‖d(1− (−1)ne−k‖d)

]
1 + δn0

. (A53)

The dispersion relation of band n is thus compactly writ-
ten as

ωβ = ωn(k‖) = ωM
√
νβxνβy. (A54)

These frequencies correspond to the curves in Fig. 1(b).
Let us briefly explore the properties of the spin wave

frequencies. First, we consider the insightful long- and
short-wavelength limits k‖d � 1 and k‖d � 1, which
correspond to Pnn ≈ 0 and Pnn ≈ 1, respectively. In the
long wavelength limit, the dispersion relation in the case
of negligible exchange (i.e., moderate n and αx/d2 . 1)
tends to the expression of the uniformly precessing mode
in the absence of exchange [19],

ωn(k‖) ≈
√
ωH(ωH + ωM ). (A55)
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On the other hand, if exchange is relevant (i.e., large
n and αx/d

2 & 1), then Nn(k‖) � 1 and the long-
wavelength limit becomes a quadratic function of the
wavenumber [116] (see also Eq. [A24])

ωn(k‖) ≈ ωM
[
Nn(k‖) + 1

2

]
. (A56)

For short wavelength modes, the exchange interaction
always dominates and one obtains, for n � k‖d/π, the
dispersion of exchange spin waves in a bulk material [54],

ωn(k‖)

≈
(
ωH + ωMαxk

2
‖

)√
1 + ωM sin2 φk

ωH + ωMαxk2
‖
. (A57)

Second, note that, aside from the three dimensionless
mode indices n, k‖d, φk, the spin wave eigenfrequencies
depend explicitly on H0 and the film thickness d. As
shown by Fig. 5, increasingH0 leads to the bands shifting
to higher frequencies (see Eq. (A55)), while decreasing
d leads to the band becoming increasingly parabolic as
exchange interaction becomes more relevant.

Let us now focus on the magnetization eigenmodes.
Since for thin films the different bands are usually very
spaced in energies (see e.g. Fig. 1[b]), the first-order cor-
rections Eq. (A47), which are inversely proportional to
ωn(k‖) − ωn′(k′‖), are typically small and become only
relevant at the band crossings where they result in a lift-
ing of the degeneracy via mode splitting [52]. Here we
will work far from these particular points and thus de-
scribe the eigenmodes through their zero-th order expres-
sion [24, 116], given by the diagonal part of Eq. (A27)

D
(nn)

mn = 0. (A58)

Combining the above equation with Eqs. (A50) and
(A54) we obtain the following relation for the spin wave
amplitudes,

mn ∝
[
−i√νβy√

νβx

]
. (A59)

The magnetization mode function of an eigenmode is thus
obtained directly from its definition Eq. (A14), together
with Eqs. (A23) and (A26):

mβ(r) =

√
2

(1 + δn0) cos
(
nπ

x

d

)
eik‖r‖

 √νβyi
√
νβx
0


(A60)

in Cartesian coordinates, up to an arbitrary normaliza-
tion constant. Finally, the magnetic field mode functions
are obtained using the identities Eqs. (A16)-(A18). Here
we focus on the fields outside the film, and introduce an
additional index η ≡ sign[x] to differentiate between the
field above and below the film (η = +1 and η = −1 re-
spectively, see Fig. 6[a]). The mode functions outside the

film can be written in a compact form as

hβη(r) = hnη(k‖, r) =

= hβη0e
ik‖r‖e−k‖l

 1
−iηky/k‖
−iηkz/k‖

 (A61)

where we have defined the absolute distance from the
surface of the film,

l ≡
{
x− d for x > d
−x for x < 0. (A62)

The amplitudes in Eq. (A61) are given by

hβη0 =

√
2

(1 + δn0)

(
√
νβy + η

ky
k‖

√
νβx

)
ηn

2

×
(k‖d)2

(k‖d)2 + (nπ)2 (−e−k‖d + (−1)n). (A63)

Note that hβη0 is real and fulfills the symmetry properties

hn+0(ky, kz) = hn+0(ky,−kz) (A64)

and

hn+0(ky, kz) = (−1)nhn−0(−ky, kz) (A65)

which will be useful in the following sections.
It is insightful, especially regarding the coupling of

spin waves to paramagnetic spins, to explore the prop-
erties of the magnetic field mode functions. According
to Eq. (A61) the modal field has a plane-wave depen-
dence on the y and z coordinates and decays exponen-
tially with the distance to the film l (see Fig. 6(a) or
Eq. (A62) in the main text). Both its polarization and
its amplitude depend on wavenumber k‖, propagation
direction φk, and film side η, giving rise to rich phe-
nomenology [53, 54]. To gain insight into it, we define
two position-independent quantities describing the field
intensity and direction. First, the normalized field inten-
sity Inη(k‖, φk) ≡ |hβη0|2/maxk‖,φk |hβη0|2, displayed in
Fig. 6(b) for the fundamental band n = 0 (similar re-
sults are obtained for higher n). As shown by this figure,
the field intensity is different on both sides of the film
except in the parallel propagation case, φk = ±π/2. Ad-
ditionally, as evidenced by the differences between solid
and dashed lines, the ratio between the field intensi-
ties on each side of the film depends on k‖d. This so-
called modal-profile non-reciprocity is well known in the
literature [52, 55] and, for spin waves fulfilling √νβy =
−η cos(φk)√νβx, reaches its most pronounced manifes-
tation as the field completely vanishes on one side of
the film. In the relevant limits k‖d & 1 (solid lines
in Fig. 6(b)) or d2/αx . k‖d . 1 8 this maximum

8 Note that the regime d2/αx . k‖d . 1 is not realizable with the
parameters in Table I as d2/αx ≈ 130.
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FIG. 6. a) The magnetic field of a spin wave decays ex-
ponentially with the vertical distance from the film, l, and
is different above (η = +1) and below (η = −1) the film.
b) Normalized field intensity (see text for details) of the
spin wave above/below a YIG film (red/blue lines, respec-
tively) as a function of propagation direction φk, for n = 0,
µ0H0 = 20mT, and k‖d = 2 (solid lines) and k‖d = 10−2

(dashed lines). c) Degree of polarization of the spin wave field
above the film along the cylindrical basis vectors Eq. (A66).

asymmetry is reached for Damon-Eshbach propagation,
φk = 0, π (see e.g. [55, 116]). To quantify the direc-
tion of the modal field, we define its degree of polariza-
tion along a unit vector ej above the film (η = +1) as
Pej (φk) ≡ |e∗j ·hβ+(r)|/[h∗β+(r)·hβ+(r)]1/2, which by def-
inition depends exclusively on the angle φk. Note that
the above quantity completely determines the polariza-
tion also below the film, since from Eq. (A61) we can
deduce that the degree of polarization along ej below
the film is given by Pe∗

j
(−φk). A further useful property

derived from such equation is h∗β+(r) · hβ−(r) = 0, i.e.,
the field polarizations above and below the film are al-
ways orthogonal. In Fig. 6(c) we display the degree of
polarization as a function of φk for the three cylindrical
basis vectors

{e+, e−, ez} ≡
{

ex + iey√
2

,
ex − iey√

2
, ez
}
. (A66)

Whereas for parallel propagation (φk = ±π/2) the modal

field has components along all the basis vectors 9, in the
Damon-Eshbach configuration the field is exactly polar-
ized along one of the cylindrical vectors e±, with exactly
the opposite helicity on the other side of the film. This
polarization structure has a strong impact on the spin-
wave dynamics in the presence of spin qubits as we dis-
cuss in the main text.

5. Quantization, magnon dynamics, and magnon
decay rates

We carry out the quantization of the spin waves fol-
lowing the procedure established by Mills for finite sam-
ples [56]. We do not show the details of this quantization
as it has been discussed in detail in the literature [57]. For
an infinitely extended film, we can extend this formalism
following the quantization-in-a-box procedure common in
quantum optics. First, we assume the film has an exten-
sion L along y and along z, and obeys periodic boundary
conditions at the film edges y = ±L/2 and z = ±L/2.
We then proceed with the quantization and take the con-
tinuum limit L → ∞ when computing observables. In
this limit, no observable will depend on the quantization
length L. Following this procedure, we write the mag-
netization of the spin wave in the Schrödinger picture
as

m̂(r) =
∑
β

M0β [mβ(r)ŝβ + H.c.] , (A67)

where the ladder operators, which describe the creation
and annihilation of spin wave quanta (magnons), obey
bosonic commutation relations,[

ŝβ , ŝ
†
β′

]
= δββ′ ; [ŝβ , ŝβ′ ] = 0, (A68)

and the zero-point magnetization is given by

M0β ≡

√
~|γ|MS

2L2d

ωM
ωβ

. (A69)

The magnetic field operator has a similar expression,
namely

ĥ(r) =
∑
β

M0β [hβ(r)ŝβ + H.c.] . (A70)

Finally, the Hamiltonian operator for the spin waves
reads

Ĥsw = ~
∑
β

ωβ ŝ
†
β ŝβ . (A71)

9 As a matter of fact, for parallel propagation the spin wave is
circularly polarized in the x− z plane, i.e., it has a longitudinal
component of the same magnitude as its transverse component.
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FIG. 7. b) Magnon decay rate Eq. (A86) for the first four
bands of YIG and the parameters of Table I. Solid and dashed
lines correspond to Damon-Eshbach and parallel propagation,
respectively.

To properly account for the dynamics of spin waves, it
is necessary to include their dissipation. In a quantum
framework, losses are included after quantization of the
lossless classical system. In particular, we add a dissipa-
tive term D[ρ̂sw] to the von Neumann equation for the
spin wave density matrix, ρsw [64],

d

dt
ρ̂sw = − i

~

[
Ĥsw, ρ̂sw

]
+Dsw[ρ̂sw]. (A72)

We choose the most common form for the dissipator,
namely

Dsw[ρ̂] =
∑
β

γβ

(
n̄βLŝβ ŝ†β [ρ̂] + (1 + n̄β)Lŝ†

β
ŝβ

[ρ̂]
)
,

(A73)
which describes absorption and decay into a thermal bath
at temperature T , in terms of Lindblad superoperators
defined as

Lâb̂[ρ̂] ≡ âρ̂b̂− 1
2{b̂â, ρ̂}, (A74)

with γβ the magnon decay rate and n̄β =
[exp(~ωβ/kBT ) − 1]−1 the Bose-Einstein distribution at
the magnon frequency. This dissipator can be rigorously
derived by tracing out a reservoir coupled to spin waves
via particle-conserving interactions, e.g. a phononic
reservoir or a bath of two-level impurities [57, 64, 117].

All the spin wave phenomenology is captured by the
Master Equation Eq. (A73). First, it can be shown that
the steady-state of the spin waves is thermal, ρ̂sw,ss ∝
exp(−Ĥsw/kBT ). Second, regarding the spin wave dy-
namics, we can compute the equation of motion for the
expected value of any magnon operator Ô as

d

dt
〈Ô〉(t) = d

dt
Tr[Ôρ̂sw(t)]. (A75)

Furthermore, if the master equation is quadratic, as is the
case for Eq. (A72), the above equations of motion form
a closed system of differential equations and can thus be

solved exactly [58, 64]. Here we compute the equations of
motion for single magnon operators and for two-operator
products, which are given by

d

dt
〈ŝβ〉(t) =

(
−iωβ −

γβ
2

)
〈ŝβ〉(t), (A76)

d

dt
〈ŝβ ŝβ′〉(t) =[

−i(ωβ + ωβ′)−
γβ + γβ′

2

]
〈ŝβ ŝβ′〉(t), (A77)

d

dt
〈ŝ†β ŝβ′〉(t) =[

i(ωβ − ωβ′)−
γβ + γβ′

2

]
〈ŝ†β ŝβ′〉(t) + γβn̄βδββ′ . (A78)

Finally, we can use the above results, together with
the quantum regression formula [58], to calculate the
steady-state two-time correlators of the magnon opera-
tors, which determine the effective dynamics of NV cen-
tres as shown in Appendix E. Specifically, for a thermal
state, correlators between two creation or two annihila-
tion operators vanish, i.e.,

〈ŝβ(t)ŝβ′(t− s)〉ss = 0 ∀s. (A79)

On the other hand, correlators between a creation and
an annihilation operator are given, for s ≥ 0, by

〈ŝ†β(t)ŝβ′(t− s)〉ss = δββ′ n̄βe
(iωβ−γβ/2)s, (A80)

〈ŝβ(t)ŝ†β′(t− s)〉ss = δββ′(1 + n̄β)e(−iωβ−γβ/2)s. (A81)

The corresponding correlators for negative s are obtained
from the above expressions using the time-translational
definitory property of the steady-state, i.e.,

〈Ô1(t)Ô2(t− s)〉ss = 〈Ô1(t+ s)Ô2(t)〉ss (A82)

for any two operators Ô1 and Ô2.
Once we have shown how to extract all the dynamical

information of the spin waves from the master equation,
the only step left is to relate the quantum decay rate,
γβ , to the measured spin wave lifetimes which are usu-
ally defined and measured in the classical limit. Classi-
cally, the losses of spin waves are modelled by adding the
Gilbert damping term (αG/MS)M(r, t) × (d/dt)M(r, t)
to the right-hand side of the Landau Lifshitz equation
Eq. (A1), with αG the adimensional Gilbert damping pa-
rameter [18, 19]. Together with the mode frequency ωβ ,
the damping αG determines the lifetime of a given spin
wave mode β [18, 19, 63]. Classically, the lifetime or re-
laxation time τβ of a spin wave eigenmode β is defined as
the time required for the amplitude of its magnetization
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to decay by a factor 1/e [19]. Here we use the expression
provided by phenomenological loss theory [19, 65, 66],

1
τβ

= αGωβ
∂ωβ
∂ωH

, (A83)

which applies for small αG (for YIG, αG = 10−4 [65]) and
is known to be a good description of propagation loss in
thin films and stripes [65]. The relaxation time is usually
inferred by coherently driving a selected spin wave mode
through diverse methods and observing the decay of their
amplitude [24, 25, 63, 118–120]. We thus compute, using
the equations of motion Eqs. (A76)-(A78), the expected
value of the magnetization for a coherently populated
single mode β0, i.e. for an initial magnon state fulfilling
〈ŝβ(t = 0)〉 = α0δββ0 :

〈m̂(r, t)〉coh ∝ e−γβ0 t/2Re
[
α0mβ0(r)e−iωβ0 t

]
. (A84)

Combining this equation, the definition of τβ , and its
expression Eq. (A83), we establish a correspondence be-
tween the spin wave relaxation time τβ and its decay rate
through10

γβ = 2
τβ
. (A85)

The following explicit expression can be obtained from
Eqs. (A83) and (A54),

γβ = αωM (νβx + νβy) . (A86)

This expression is displayed in Fig. 7 for Damon-Eshbach
(φk = 0) and parallel (φk = π/2) propagation modes. As

evidenced by the figure, γβ lies in the MHz range, cor-
responding to a spin wave lifetime of around τβ ∼ 300ns
which agrees with experiments. Finally, note that γβ dis-
plays the relevant symmetries γn(ky, kz) = γn(−ky, kz) =
γn(ky,−kz), which will be used in the next sections.

6. Magnon power spectral densities.

The potential of spin waves is conditioned to the degree
of precision with which they can be measured. Usually,
measurements are carried out on the spin wave magnetic
field, and thus the figure of merit for sensing is the mag-
netic field power spectral density. We define the power
spectral density of the magnetic field as11

Sejek(r, ω) ≡ 1
2π

∫ ∞
−∞

dseiωs

×
〈(

e†j · ĥ(r, t)
)(

ĥ(r, t− s) · ek
)〉

ss
, (A87)

i.e., as the Fourier transform of the steady-state two-
time correlator of two arbitrary vector components of
the spin wave magnetic field. Hereafter we will focus on
the steady state of Eq. (A72), namely a thermal state,
but we remark that the power spectral density can be
computed for arbitrary steady states such as e.g. a spin
wave coherent state. Note that, as can be easily shown,
the power spectral density of the total magnetic field
Ĥ(r) ≡ H0 + ĥ(r) is also given by Eq. (A87) for all
ω 6= 0, as the only effect of the homogeneous component
H0 appears at ω = 0 12.
To compute the power spectral densities, we first calcu-

late the two-time correlators of two arbitrary components
of the spin wave magnetic field using Eqs. (A70), (A61),
and (A63),

〈(
e†j · ĥ(r, t)

)(
ĥ(r, t− s) · ek

)〉
ss

=

=
∑
β

M2
0βh

2
βη0e

−2k‖l
[
Λ̄jk(η,k‖)〈ŝβ(t)ŝ†β(t− s)〉ss + Λ̄jk(−η,k‖)〈ŝ†β(t)ŝβ(t− s)〉ss

]
. (A88)

Here, we have defined the matrix elements Λ̄jk(η,k‖) ≡ [e∗j · vη(k‖)][v∗η(k‖) · ek], with vη(k‖) ≡
[1,−iηky/k‖,−iηkz/k‖]T . By explicitly introducing the magnon correlators Eqs. (A80) and (A81), integrating over
the delay s, and using the symmetry Λ̄jk(η,k‖) = Λ̄∗kj(η,k‖), we compute the power spectral density as

Sejek(l, ω) = 1
2π
∑
β

M2
0βh

2
βη0e

−2k‖lγβ

[
Λ̄jk(η,k‖)

n̄β + 1
(ω − ωβ)2 + (γβ/2)2 + Λ̄jk(−η,k‖)

n̄β
(ω + ωβ)2 + (γβ/2)2

]
. (A89)

10 The factor 2 in this definition stems from our use of the usual
convention in open quantum systems, according to which the
“natural” or most fundamental decay rate is the decay rate of the
energy or, equivalently, of the occupation 〈ŝ†

β
ŝβ〉 ∝ exp(−γβt).

11 Although for magnetic field sensing we are interested on the
power spectral density for the magnetic field evaluated at same

positions, one can also define the nonlocal power spectral densi-
ties Sejek (r1, r2, ω) and compute them in an analogous way.

12 This can be easily proven for time-independent Liouvillians using
the time-translational invariance of the steady state.



20

The above expression is valid for any two vectors ej and ek. Here, we are interested on the (relatively simpler) power
spectral density expressed in the cylindrical basis {e+, e−, ez} defined by Eq. (A66). In this basis the above matrix
takes the form

Λ̄(η,k‖) = 1
2k2
‖

 (k‖ − ηky)2 k2
z iη

√
2kz(k‖ − ηky)

k2
z (k‖ + ηky)2 iη

√
2kz(k‖ + ηky)

−iη
√

2kz(k‖ − ηky) −iη
√

2kz(k‖ + ηky) 2k2
z

 . (A90)

Using this expression, and expressing the sum in mode
indices β explicitly in integral form as

∑
β

→
(
L

2π

)2∑
n

∫
d2k‖, (A91)

we can numerically compute the power spectral densities.
Due to the symmetries Eq. (A64)-(A65) and the in-

variance of γβ and ωβ under change of sign of ky or kz,
the following properties for the power spectral densities
can be proven:

1. The power spectral densities depend only on the
vertical distance to the film, l (see Fig. 6), and are
independent on the y and z coordinates.

2. On each side of the film, the power spectral densi-
ties fulfill

Se±ez (l, ω) = Seze±(l, ω) = 0, (A92)

Se+e−(l, ω) = Se−e+(l, ω) = 1
2Sezez (l, ω), (A93)

3. In the high temperature limit (n̄β � 1), the power
spectral density along ez is an even function,

Sezez (l, ω) = Sezez (l,−ω) for n̄β � 1. (A94)

Conversely, the functions Se+e+ and Se−e− are not
even due to the non-reciprocal modal properties
discussed above. However, they are related through

Se+e+(r,−ω) = Se−e−(r, ω) for n̄β � 1. (A95)

4. The power spectral densities on different sides of
the film are related through Se+e+(l, ω)
Se−e−(l, ω)
Sezez (l, ω)


η=−1

=

 Se−e−(l, ω)
Se+e+(l, ω)
Sezez (l, ω)


η=1

(A96)

Because of the above relations, we can focus on the
three independent power spectral densities Se+e+(r, ω),
Se−e−(r, ω), and Sezez (r, ω) above the film (η = 1). In
Fig. 8(a-c) we display the square root of these three quan-
tities at room temperature (T = 300K), for µ0H0 =
20mT and l = d = 200nm. The involved form of the total
power spectral densities (dashed lines) is a consequence

of adding the contributions from each spin wave band
n, displayed by the different colored lines. At frequen-
cies below the cutoffs of each spin wave band, the power
spectral densities are suppressed due to the absence of
resonant eigenmodes. At the cutoff frequency of each
band, indicated by the vertical grid lines in the figure,
the power spectral density shows a sharp jump due to the
sudden increase in the density of states ∝ (dωβ/dk‖)−1,
followed by a smooth decrease as such density of states is
reduced. Finally, note that as discussed above the power
spectral density Szz(l, ω) is an even function of frequency,
whereas the functions S±±(l, ω) are strongly asymmetric
and, above cutoff, their values at positive and negative
frequencies differ by roughly an order of magnitude. This
asymmetry stems directly from the non-reciprocal spin
wave mode properties. The above basic features of the
power spectral densities remain unchanged at low tem-
perature or at different positions l above the film, as evi-
denced by Fig. 8(d-f). As shown by this figure, the power
spectral densities decrease both at lower temperature and
at larger distances from the film l, following the reduction
of the thermal amplitude of the spin wave magnetic field.
As a final remark, note that the power spectral densities
shown in Fig. 8 are experimentally measurable as they lie
well above the sensitivity limit (∼ 10−4 − 10−6nT/

√
Hz)

of ultra-sensitive room-temperature magnetometry tech-
niques based e.g. on ensembles of NV centres [121, 122]
or on atomic vapor cells [122–124].

7. Second-order correction to the spin wave fields

In order to evaluate the spin-wave induced dephasing of
the NV centres in the following sections, the expressions
of the spin-wave magnetization and magnetic fields have
to be computed to second order in magnon operators.
This is equivalent to considering the lowest-order nonlin-
ear terms in the spin wave approximation Eq. (A5). We
proceed in the standard way [4, 57] by writing the total
magnetization as

M(r, t) = mx(r, t)ex +my(r, t)ey+

+
√
M2
S −m2

x(r, t)−m2
y(r, t)ez, (A97)
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FIG. 8. (a-c) Power spectral densities of the spin wave magnetic field components along ez (a), e+ (b), and e− (c), at a distance
l = d = 200nm above the YIG film, T = 300K and µ0H0 = 20mT. The dashed line shows the total power spectral density,
whereas the colored lines depict the contribution of each band n, i.e. the power spectral density computed using only the spin
wave modes from a single band n. (d-f) Total power spectral densities at room (T = 300K, warm-coloured lines) and cryogenic
temperatures (T = 100mK, cool-coloured lines), at three diferent distances l above the film.

and expanding to second order in the spin wave ampli-
tudes mx and my,

M(r, t) = MSez + m(r, t)

− m(r, t) ·m(r, t)
2MS

ez +O(m3). (A98)

Here, m(r, t) = mx(r, t)ex +my(r, t)ey is the first-order
spin wave amplitude, i.e. the solution of the linearized
Landau-Lifshitz equation Eq. (A6). By substituting it by
the corresponding quantum operator m̂(r), Eq. (4), we
obtain the expression for the total magnetization opera-
tor,

M̂(r) = MSez + m̂(2)(r) +O(ŝ3
β), (A99)

where m̂(2)(r) is the spin-wave magnetization up to sec-
ond order in magnon operators, namely

m̂(2)(r) = m̂(r) + δm̂(r), (A100)

with a second-order correction given by

δm̂(r) = −ez
∑
ββ′

M0βM0β′

2MS

[
mβ(r) ·mβ′(r)ŝβ ŝβ′

+ mβ(r) ·m∗β′(r)ŝβ ŝ†β′ + H.c.
]
. (A101)

From Eq. (A100) we can compute the corresponding spin
wave magnetic field as, within the magnetostatic approx-
imation, it is always related to the magnetization through

the Green’s tensor by Eq. (A7). Thus, to second order
in magnon operators, the spin wave field operator reads

ĥ(2)(r) = ĥ(r) + δĥ(r), (A102)

with ĥ(r) being the first-order magnetic field given by
Eq. (A70), and a second order correction given by

δĥ(r) =
∑
ββ′

[
X+
ββ′(r)ŝβ ŝβ′ + X−ββ′(r)ŝβ ŝ†β′ + H.c.

]
,

(A103)
where we define the vectors[

X+
ββ′(r)

X−ββ′(r)

]
≡ −M0βM0β′

2MS

×
∫
d3r′G(r− r′)ez

[
mβ(r′) ·mβ′(r′)
mβ(r′) ·m∗β′(r′)

]
. (A104)

In order to compute the coefficients X±ββ′(r), we intro-
duce the expression of the magnetization mode functions,
Eq. (A60), into Eq. (A104) and rearrange the terms to
write in a compact form

X±ββ′ = M0βM0β′

MS
X±0ββ′xnn′(r,k‖ ± k′‖), (A105)

where

X±0ββ′ = −1√
(1 + δn0)(1 + δn′0)

×
(√
νβyνβ′y ∓

√
νβxνβ′x

)
(A106)
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with νβx and νβy given by Eqs. (A51) and (A52), and

xnn′(r,q) ≡
∫

slab
d3r′G(r− r′)ez

× cos
[
nπ

x′

d

]
cos
[
n′π

x′

d

]
eiqr′‖ . (A107)

We now focus on a position r outside the slab, and intro-
duce the Green’s tensor Eq. (A11) to find the following
expression for the above integral:

xnn′(r,q) = eiq‖r‖e−q‖l(−1)n+n′ qzd

4

 iηq‖d−qyd
−qzd


×
(
1− e−q‖d

) ∑
λ=±

1
π2(n′ + λn)2 + (q‖d)2 . (A108)

where we have introduced the absolute distance to the
slab, l, as in Eq. (A62), and the variable η to differenti-
ate between positions r above and below the slab. Note
that, importantly, the above function decays exponen-
tially with the modulus of q‖, and

xnn′(r, 0)→ 0. (A109)

This, combined with Eqs. (A105) and (A106), leads to
the result

X−ββ = 0, (A110)

which will be important in the following sections.

B. Nitrogen-Vacancy centres

This Appendix is devoted to the analysis of the NV
centres and their dynamics. First, in Sec. B 1, we theo-
retically describe the Hamiltonian and dissipative mech-
anisms governing the dynamics of a single NV centre in
thermal equilibrium. We derive the equations of motion
for all the observables and rigorously define the dissipa-
tion rates in terms of the lifetimes T1 and T ∗2 , and we
compute the two-time correlators for NV centre observ-
ables. Then, in Sec. B 2, we extend our analysis to opti-
cally pumped NV centres. We compute the dynamics of
the NV observables and determine the optimal pumping
rate. Finally, we compute both the two-time correlators
and the NV correlation time in the presence of optical
pumping.

1. Dynamics of a single isolated NV centre in
thermal equilibrium

In this section we study the dynamics of a single NV
centre in thermal equilibrium. As in the main text, we as-
sume the symmetry axis of the NV centre is oriented par-
allel to the z−axis, and a static magnetic field H0 = H0ez

is applied along this axis. The ground state manifold is a
spin triplet with total spin S = 1, thus containing three
states |0〉, |+〉, and |−〉 corresponding to the eigenstates
of the spin operator Ŝz with eigenvalue mS = 0,+~, and
−~, respectively. In the absence of optical pumping, ex-
cited states are uncoupled and we can describe the NV
centre through the Hamiltonian of the ground state man-
ifold [10, 11, 59–61]:

Ĥps = ~−1D0Ŝ
2
z + ωH Ŝz = ~

∑
α=±

ωασ̂αα, (B1)

where we define the transition matrices σ̂αα′ ≡ |α〉〈α′|
and the frequencies ω± ≡ D0 ± ωH and ωH ≡ |γs|µ0H0,
and the z−component of the spin operator is given by
Ŝz/~ = σ̂++ − σ̂−−. For an NV centre the gyromagnetic
factor is γs = γ (see Table I). The density matrix of the
NV centre obeys the von Neumann equation

d

dt
ρ̂ps = − i

~

[
Ĥps, ρ̂ps

]
+Dps[ρ̂ps], (B2)

where the second term accounts for dissipation, namely
decay and dephasing. In principle, there are different
approaches to describe these processes [59–61, 67]. Here
we choose the description given by the dissipator

Dps[ρ̂] = κ2

~2LŜzŜz [ρ̂]

+ κ1
∑
α=±

(n̄αLσ̂α0σ̂0α [ρ̂] + (n̄α + 1)Lσ̂0ασ̂α0 [ρ̂]) . (B3)

The first term above describes dephasing at a rate κ2,
whereas the second line describes decay and absorption at
a rate κ1 along the two NV transitions, namely |0〉 ↔ |±〉,
induced by a bosonic thermal reservoir at temperature T ,
with n̄α = [exp(~ωα/kBT )− 1]−1.
The equations of motion for the spin observables

can be obtained from the above equation. On the
one hand, the two independent quantities describing
the level occupations 〈σ̂αα〉 obey the coupled system of
equations[60, 67, 68]

d

dt

[
〈σ̂00〉
〈Ŝz/~〉

]
=
[
κ1 + γ+
γ−

]
−M0

[
〈σ̂00〉
〈Ŝz/~〉

]
, (B4)

with

M0 =
[
κ1 + 3γ+ γ−

3γ− κ1 + γ+

]
(B5)

and

γ± ≡
κ1

2 (n̄− ± n̄+). (B6)

The general solution of the above equation is given by[
〈σ̂00(t)〉
〈Ŝz(t)/~〉

]
=
[
〈σ̂00〉ss
〈Ŝz/~〉ss

]
+ e−(κ1+2γ+)t

3γ−
M(t)

[
〈σ̂00〉(0)− 〈σ̂00〉ss
〈Ŝz/~〉(0)− 〈Ŝz/~〉ss

]
, (B7)
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with

M(t) ≡
[

(γ+ − sd)esdt (γ+ + sd)e−sdt
3γ−esdt 3γ−e−sdt

]
(B8)

and sd ≡
√
γ2

+ + 3γ2
−. The steady-state solution reads

[
〈σ̂00〉ss
〈Ŝz/~〉ss

]
=

1
(κ1 + γ+)(κ1 + 3γ+)− 3γ2

−

[
(κ1 + γ+)2 − γ2

−
−2γ−κ1

]
. (B9)

On the other hand, the system coherences remain uncou-
pled and obey the equations

d〈σ̂0±〉
dt

=
[
−iω± −

κ1 + 3γ+ ∓ γ−
2 − κ2

2

]
〈σ̂0±〉,

(B10)

d〈σ̂+−〉
dt

= [i(ω+ − ω−)− (γ+ + κ1)− 2κ2] 〈σ̂+−〉.
(B11)

From the above equations it is evident that all coherences
are zero in the steady-state, and that they decay and
dephase at different rates.

a. Definition of T1 and T ∗2

Since the rates γ± depend on the externally applied
field through the frequencies ω±, the decay time of the
expected values 〈σ̂αα′〉 also does. For this reason, the
intrinsic T1 and T ∗2 are defined in the zero-field limit
H0 → 0 [67, 68]. In this limit γ− → 0 and

γ+ → κ1n̄0 (B12)

with n̄0 = [exp(~D0/kBT )− 1]−1 the Bose-Einstein dis-
tribution evaluated at the zero-field splitting frequency
D0. The decay time T1 is defined as the inverse of the
equilibration rate of the NV occupations after initializa-
tion in the ground state |0〉 [67, 68]. For such an initial
state 〈Ŝz/~〉(t) = 0 and the occupations of all levels obey
a single exponential behavior,

〈σ̂00(t)〉 = [1− 〈σ̂00〉ss] e−(κ1+3γ+)t + 〈σ̂00〉ss, (B13)

〈σ̂++(t)〉 = 〈σ̂−−(t)〉 = 1− 〈σ̂00(t)〉
2 . (B14)

From the above expressions the relaxation time T1 is de-
fined as

T−1
1 ≡ κ1 + 3γ+ = κ1(1 + 3n̄0). (B15)

The above definition allows to fix a value for κ1 from
experimentally measured values of T1.
The second relevant timescale, namely the decoherence

time T ∗2 , is defined through the decay of the coherences

〈σ̂0,±〉, which in the zero-field limit obey the same expo-
nential decay,

〈σ̂0,±〉(t) = 〈σ̂0,±(0)〉e[−iω±−(κ2+κ1+3γ+)/2]t. (B16)

From the above expression we define

[T ∗2 ]−1 = κ2

2 + κ1 + 3γ+

2 = T−1
1
2 + κ2

2 . (B17)

Note that T ∗2 has contributions from decay and dephasing
rates κ1 and κ2, which gives rise to the fundamental limit
T ∗2 ≤ 2T1 [59, 68, 69].

b. Two-time correlators of NV operators

In a similar fashion as for the magnon operators, we
can compute the two-time correlators of products of NV
operators, which will determine the effective spin wave
dynamics as we will see below. We compute such corre-
lators from the equations of motion Eqs. (B4),(B10), and
(B11) and the quantum regression theorem [58]. The
simplest correlators are those involving the coherences,
which for a general operator Ô and for s ≥ 0 read

〈σ̂0±(t)Ô(t− s)〉ss =
= e−s[iω±+(κ1+3γ+∓γ−+κ2)/2]〈σ̂0±Ô〉ss, (B18)

〈σ̂±0(t)Ô(t− s)〉ss =
= e−s[−iω±+(κ1+3γ+∓γ−+κ2)/2]〈σ̂±0Ô〉ss. (B19)

〈σ̂+−(t)Ô(t− s)〉ss =
= es[i(ω+−ω−)−κ1−γ+−2κ2]〈σ̂+−Ô〉ss, (B20)

〈σ̂−+(t)Ô(t− s)〉ss =
= es[−i(ω+−ω−)−κ1−γ+−2κ2]〈σ̂+−Ô〉ss. (B21)

Regarding the occupations, the quantities of interest
are usually not the operators 〈σ̂00〉 or 〈Ŝz〉 themselves,
but the fluctuations over their expected value, defined as[

〈σ̃00〉
〈S̃z/~〉

]
≡
[
〈σ̂00〉
〈Ŝz/~〉

]
−
[
〈σ̂00〉ss
〈Ŝz/~〉ss

]
. (B22)

For any operator Ô and any s ≥ 0 the correlators involv-
ing these operators are coupled,[

〈σ̃00(t)Ô(t− s)〉
〈(S̃z/~)(t)Ô(t− s)〉

]
=

= e−(κ1+2γ+)s

3γ−
M(s)

[
〈σ̃00Ô〉ss
〈(S̃z/~)Ô〉ss

]
(B23)

where the matrix M(s) is defined in Eq. (B8).
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2. Dynamics of a single optically pumped NV
centre

One of the multiple advantages of NV centres is the
possibility to optically initialize them at room tempera-
ture, by a procedure known as optical pumping [41, 74–
79]. In order to describe and understand this procedure
one must consider the extended energy level structure
of NV centres depicted in Fig. 9(a). The states |0〉 and
|±〉 introduced in the previous sections correspond to the
ground-state manifold 3A. The excited state manifold 3E
is also a spin triplet with zero-field splittingD1 6= D0 (see
Table II), here described as two states |3〉 and |4〉 for the
sake of simplicity [74, 76, 78]. These two states sponta-
neously decay into the ground-state manifold, with decay
rates γc and γnc � γc for spin-conserving and spin non-
conserving transitions, respectively. For optical pumping
a coherent, linearly polarized (i.e. mS-conserving) driv-
ing is applied to the transition 3A → 3E. Since this
driving mostly excites vibronic transitions which rapidly
and stochastically decay to the zero-phonon line, the
effective pumping of occupation into the excited-state
manifold is incoherent [76, 78]. Finally, in addition to
their spontaneous decay, the states |3〉 and |4〉 can de-
cay non-radiatively (incoherently) into a manifold of in-
termediate “dark” states, here modelled as a single state
|5〉 [76, 78, 79], which in turn decay non-radiatively to the
ground state manifold. This decay is largely imbalanced:
specifically, the decay rate from state |4〉 into state |5〉
is much faster than any other decay rates into or out of
the dark state |5〉, i.e., γ45 � γ35, γ5±, γ50 (see Table II).
As a result of this imbalance, part of the initial occupa-
tion of states with non-zero spin, |±〉, is pumped into the
zero-spin state |0〉, thus driving the NV centre toward its
ground state.

We describe optical pumping of NV centres through
the following master equation for the six-level system il-
lustrated in Fig. 9(a):

dρ̂

dt
= −i

[
Ĥps + Ĥ(2)

ps , ρ̂
]

+Dps[ρ̂] +Dop[ρ̂]. (B24)

Here, Ĥps and Dps represent the Hamiltonian and the
dissipator of the ground-state manifold, and are given by
Eqs. (B1) and (B3). The second coherent contribution
corresponds to the Hamiltonian of the additional levels,
i.e.,

Ĥ(2)
ps = ~

5∑
α=3

ωασ̂αα. (B25)

The values of the frequencies ω3,4,5 are irrelevant for the
dynamics of the ground state manifold as we will see
below. Regarding the additional dissipator, it can be
split into three contributions,

Dop[ρ̂] = Dp[ρ̂] +Ds[ρ̂] +Dφ[ρ̂]. (B26)

The first term above represents the spin-conserving inco-
herent pumping from all the states in the ground state

FIG. 9. a) Left: illustration of the main processes involved in
optical pumping. Straight and wiggly lines indicate radiative
and non-radiative processes respectively. Right: modelling of
the optical pumping and the relevant states. b) Ground-state
occupation (red) and total occupation outside the ground-
state manifold (blue) as a function of pumping rate. c) Corre-
lation time of the NV centre occupations, Eq. (B43) as a func-
tion of pumping rate. The dashed curve displays the timescale
(κ1 + γ+ + Ω)−1. The gray area indicates the optimal region
for optical pumping. For panels b-c we take µ0H0 = 20mT,
and the results do not change appreciably within the range
0 ≤ µ0H0 ≤ 100mT.

manifold into all states in the excited state manifold,

Dp[ρ̂] = ~Ω
(
Lσ̂30σ̂03 [ρ̂] +

∑
α=±
Lσ̂4ασ̂α4 [ρ̂]

)
. (B27)

The incoherent driving rate Ω is related to the applied
optical intensity Id through Ω = αdId, where αd =
0.2 − 0.7mHz W−1m2 is the optical pumping parameter
(see Table II). The second contribution in the dissipator
Eq. (B26) describes all the spontaneous decay processes
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Rate Value
D1 2π × 1.423 GHz
γc 2π × 9.7 MHz
γnc ≈ 10−2γc
γ45 2π × 12 MHz
γ35 2π × 1.74 MHz
γ5± 2π × 0.21 MHz
γ50 2π × 0.49 MHz
κφ 2π × 106 MHz
αd 0.45 mHz W−1m2

TABLE II. Room temperature values for the rates involved
in the optical pumping cycle of an NV centre [74–76, 78].

illustrated in Fig. 9(a),

Ds[ρ̂] = γc

(
Lσ̂03σ̂30 [ρ̂] + 1

2
∑
α=±
Lσ̂α4σ̂4α [ρ̂]

)
+ γnc

(
Lσ̂04σ̂40 [ρ̂] + 1

2
∑
α=±
Lσ̂α3σ̂3α [ρ̂]

)
+ γ50Lσ̂05σ̂50 [ρ̂] + γ5±

∑
α=±
Lσ̂α5σ̂5α [ρ̂]

+ γ45Lσ̂54σ̂45 [ρ̂] + γ35Lσ̂53σ̂35 [ρ̂]. (B28)

The factors 1/2 in the first two lines ensure that the total
radiative decay rate of both states |3〉 and |4〉 is the same,

namely γc + γnc. Finally, the last term in the dissipator
Eq. (B26) describes the additional fast dephasing of the
excited-state manifold [75],

Dφ[ρ̂] = κφ
~2 Lσ̂44σ̂44 [ρ̂]. (B29)

Room temperature values for all the relevant additional
rates appearing in the above master equation are given
in Table II. Note that we neglect spontaneous (thermal)
decay and absorption between the excited states |3〉 and
|4〉, as these processes are negligible in comparison with
the much faster spontaneous emission described by γc
and γnc.
From the master equation Eq. (B24) we can obtain the

equations of motion for the expected values of transition
matrices, 〈σ̂αα′〉 = ραα′ . Since all the processes involved
in the dynamics are dissipative, the diagonal elements
〈σ̂αα〉 decouple from the coherences and form a closed
5× 5 system which we can write as

d

dt


〈σ̂00〉
〈Ŝz/~〉
〈σ̂33〉
〈σ̂44〉
〈σ̂55〉

 = Mop


〈σ̂00〉
〈Ŝz/~〉
〈σ̂33〉
〈σ̂44〉
〈σ̂55〉

+


κ1 + γ+
γ−
0
Ω
0

 (B30)

with a coefficient matrix

Mop =


−κ1 − 3γ+ − Ω −γ− γc − κ1 − γ+ γnc − κ1 − γ+ γ50 − κ1 − γ+

−3γ− −κ1 − γ+ − Ω −γ− −γ− −γ−
Ω 0 −γc − γnc − γ35 0 0
−Ω 0 −Ω −γc − γnc − γ45 − Ω −Ω
0 0 γ35 γ45 −γ50 − 2γ5±

 . (B31)

The occupation of the levels |+〉 and |−〉 is obtained from
the solution of the above equations through the norm
conservation identity

〈σ̂±±〉 = 1
2

(
1− 〈σ̂00〉 −

5∑
α=3
〈σ̂αα〉 ± 〈Ŝz/~〉

)
. (B32)

Note that the occupations depend neither on the fre-
quencies ωα of the states |3〉, |4〉, and |5〉, nor on the
dephasing rate κφ. Since the spontaneous decay rates
are fixed material parameters (see Table II), the only ad-
ditional parameter determining the occupation dynam-
ics is the driving strength Ω. As evidenced by the
red curve in Fig. 9(b), the steady-state occupation of
the ground state |0〉 increases as a function of Ω up
to a maximum value 〈σ̂00〉ss ≈ 0.8, consistent with ex-
perimental observations [41, 77]. For too large driving
strengths the efficiency of the optical pumping decreases
since the higher states |3〉, |4〉, and |5〉 become occupied
in the steady-state, as evidenced by the blue curve in

Fig. 9(b). The optimal driving strength for optical pump-
ing is Ω ≈ 2π × 10kHz, corresponding to an optical in-
tensity of Id ≈ 0.13GW m−2 13, or, equivalently, to an
optical power of Pd ≈ 3µW at 532nm focused through a
lens of numerical aperture ∼ 1.4.

Equations of motion for the expected values of the co-
herences can analogously be obtained. Here we focus on
the coherences of interest regarding the interaction with
spin waves, namely the coherences of the ground-state

13 Although not the case for the results in the main text, note that
in the presence of spin waves the lifetimes of the NV centres,
and hence the rates in the master equation Eq. (B24), might be
significantly altered (see next sections). As a consequence the
optimum driving intensity might be very different or, in extreme
situations, optical pumping might even become unfeasible.
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manifold whose evolution is given by

d〈σ̂0±〉
dt

=[
−iω± −

κ1 + 3γ+ ∓ γ−
2 − κ2

2 − Ω
]
〈σ̂0±〉, (B33)

d〈σ̂+−〉
dt

=

[i(ω+ − ω−)− (γ+ + κ1)− 2κ2 − Ω] 〈σ̂+−〉. (B34)

These equations are, except for the factor proportional to
Ω, identical to the corresponding equations in the absence
of optical pumping, namely Eqs. (B10)-(B11). Indeed,
since the driving is incoherent, it contributes only to the
decay of the coherences and does not result in any steady-
state coherence, i.e.,

〈σ̂0±〉ss = 〈σ̂+−〉ss = 0, (B35)

in analogy to an NV centre in thermal equilibrium dis-
cussed in the previous section. Note that as a conse-
quence, and regarding only the coherences above, an op-
tically pumped NV centre can be interpreted as a thermal
NV centre at an effective, lower, Ω−dependent tempera-
ture.

a. Two-time correlators of NV operators

Let us finally derive the two-time correlation functions
of an optically pumped NV centre. We consider first the
correlation functions involving the coherences which, due
to the convenient structure of Eqs. (B33)-(B34), can be
easily derived using the quantum regression theorem:

〈σ̂0±(t)Ô(t− s)〉ss =
= e−s[iω±+(κ1+3γ+∓γ−+κ2)/2+Ω]〈σ̂0±Ô〉ss, (B36)

〈σ̂±0(t)Ô(t− s)〉ss =
= e−s[−iω±+(κ1+3γ+∓γ−+κ2)/2+Ω]〈σ̂±0Ô〉ss. (B37)

〈σ̂+−(t)Ô(t− s)〉ss =
= es[i(ω+−ω−)−κ1−γ+−2κ2−Ω]〈σ̂+−Ô〉ss, (B38)

〈σ̂−+(t)Ô(t− s)〉ss =
= es[−i(ω+−ω−)−κ1−γ+−2κ2−Ω]〈σ̂+−Ô〉ss. (B39)

Regarding the correlators involving the occupations, they
obey the following equation of motion, which can be de-
rived from Eq. (B30) using the quantum regression the-
orem:

d

ds
〈Ô1(t)v̂j(t+ s)Ô2(t)〉ss

= Mop〈Ô1(t)v̂j(t+ s)Ô2(t)〉 (B40)

In this equation, valid for s ≥ 0, Ô1 and Ô2 are two
arbitrary NV centre operators, and v̂j (j = 1, ...5) is the
j−component of the vector

v̂ ≡


σ̂00 − 〈σ̂00〉ss

Ŝz/~− 〈Ŝz/~〉ss
σ̂33 − 〈σ̂33〉ss
σ̂44 − 〈σ̂44〉ss
σ̂55 − 〈σ̂55〉ss

 . (B41)

The above differential equation has the following general
solution,

〈Ô1(t)v̂j(t+ s)Ô2(t)〉ss

=
5∑
i=1

eλisΛji
[
Λ
−1
〈Ô1v̂jÔ2〉ss

]
j

. (B42)

Here, λi are the eigenvalues of Mop and Λ a matrix
whose i−th column contains the corresponding eigen-
vector. The inverses of the real part of the eigenvalues,
1/Re[λi], determine the timescales at which the correla-
tors decay to zero. We define the correlation time of the
NV centres τnv as the largest of these timescales,

τnv ≡ maxi
∣∣∣∣ 1
Re[λi]

∣∣∣∣ ∼ (κ1 + γ+ + Ω)−1 (B43)

where the absolute value is taken to ensure positiveness,
as Re[λi] < 0. The right-hand side is an estimation
based on direct inspection of the decay rates of 〈σ̂00〉
and 〈Ŝz〉 in Eqs. (B30)-(B31). The correlation time de-
fined by Eq. (B43) represents an upper bound to the
decay time of the two-time correlators involving the oc-
cupations σ̂αα, and its value is relevant for deriving the
reduced dynamics of the spin waves in Appendix F. In
Fig. 9(c) we display the correlation time (green curve) as
a function of the driving strength Ω at µ0H0 = 20mT
and for the parameters in Tables I-II. The results do not
change appreciably within the range of magnetic fields
considered in this work. As evidenced by Fig. 9(c), op-
tical pumping of the NV centres results in a reduction
of the correlation time for the occupations. At optimal
optical pumping conditions, Ω ≈ 2π × 10kHz the corre-
lation times take values τnv ≈ 50µs, a decrease of three
orders of magnitude with respect to a NV centre in ther-
mal equilibrium. Finally, the approximation on the right
hand side of Eq. (B43), namely τnv ∼ (κ1 + γ+ + Ω)−1,
is a reasonable order-of-magnitude estimation as shown
by the dashed line in Fig. 9(c).

C. Derivation of the resonant spin
wave-paramagnetic spin interaction and

extension to an ensemble of paramagnetic spins

In this section we derive the resonant interaction
Hamiltonian between a paramagnetic spin at a position
r0 and the spin waves, Eq. (7), from the general form
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of the magnetic dipole interaction. We start by writing
the magnetic dipole interaction between the paramag-
netic spin and the spin wave magnetic field in the general
form

V̂ = −µ0µ̂ps ·
[
Ĥ(r0)−H0

]
. (C1)

Here, Ĥ(r0) represents the total magnetic field opera-
tor. We substract the applied field H0 whose effect,
namely the Zeeman splitting of the NV transitions, has
already been included in Ĥps, Eq. (B1). The resulting
field Ĥ(r0) − H0 corresponds to the field generated by
the spin waves at position r0, in principle up to arbi-
trary order in magnon operators. As we will see below,
for studying the spin wave-induced modification of both
paramagnetic spin timescales, namely T1 and T ∗2 , the
field must be included up to second order in magnon
operators, i.e.,

Ĥ(r)−H0 ≈ ĥ(2)(r) = ĥ(r) + δĥ(r), (C2)

where we have used the definition of the spin wave field
up to second order, ĥ(2)(r), as given by Eq. (A102).
The first and second field contributions above are lin-
ear and quadratic in magnon operators, respectively, and
have been calculated in Appendix A. We can consider
each contribution separately by splitting the interaction
Hamiltonian into linear and quadratic parts as

V̂ = V̂1 + V̂2, (C3)

with

V̂1 ≡ −µ0µ̂ps · ĥ(r0) (C4)

and

V̂2 ≡ −µ0µ̂ps · δĥ(r0). (C5)

Let us focus on the linear interaction term V̂1. By
using the identity µ̂ps = −|γ|Ŝ, we cast this interaction
as

V̂1 =
∑
β

ŝβ

[
g+
β

Ŝ+√
2

+ g−β
Ŝ−√

2
+ gzβŜz

]
+ H.c. (C6)

Here, we have introduced the expression for the spin wave
field ĥ(r), Eq. (A70), and defined the raising and lowering
spin operators

Ŝ± ≡ Ŝx ± iŜy = ~
√

2 (σ̂±0 + σ̂0∓) (C7)

as well as the coupling rates

gkβ ≡ µ0|γs|M0βe†k · hβ(r0). (C8)

In the interaction picture with respect to the free Hamil-
tonian Ĥps + Ĥsw (see Eq. (2)), the above interaction

takes the form

V̂1(t)
~

=
∑
β

ŝβe
−iωβt

[
g+
β

(
σ̂+0e

iω+t + σ̂0−e
−iω−t

)
+ g−β

(
σ̂0+e

−iω+t + σ̂−0e
iω−t

)
+ gzβŜz

]
+ H.c. (C9)

We now undertake a rotating wave approximation [58,
64], i.e., we neglect all the rapidly oscillating terms to
obtain

V̂1(t)
~
≈
∑
β

ŝβe
−iωβt

[
g+
β σ̂+0e

iω+t + g−β σ̂−0e
iω−t + gzβŜz

]
+ H.c. (C10)

This approximation is valid provided that

g±β , |ωβ − ω±| � |ωβ + ω±|. (C11)

These conditions are well satisfied in our system due to
the lower cutoff for the spin wave bands (see Fig. 1[b]),
as opposed to other reservoirs where it might be compro-
mised by the presence of low-frequency modes [62].
The Hamiltonian can be further simplified by noting

that only the spin waves with a low wavenumber k‖ will
be significantly coupled to the transitions of the param-
agnetic spin, as the coupling strengths gkβ ∝ e†k · hβ(r0)
decay exponentially with the spin wave wavenumber (see
e.g. Eq. (A61)). For γs ∼ γ, and in the range of slab
thicknesses and applied fields we focus on in this work,
namely d & 50nm and µ0H0 ∼ 10−30mT, the spin wave
modes with low wavenumber, say for definiteness k‖d <
1, are far detuned with respect to the |0〉 ↔ |+〉 transition
frequency, by a detuning of at least 0.1ωM ∼ 2π×0.5GHz.
This is illustrated in Fig. 10(a), where we display the
transition frequencies ω± for the specific case of NV cen-
tres as a function of applied field, and compare them with
the frequency range spanned by the first three spin wave
bands in the low-wavenumber range k‖d ∈ [0, 1]. As evi-
denced by this figure, the spin wave modes near resonance
with ω+ are high-wavenumber modes, thus resulting in
very weak coupling rates. Conversely, the lower NV tran-
sition |0〉 ↔ |−〉 is resonant with low-wavenumber spin
waves for a wide range of applied fields H0. We thus
conclude that

|ωβ − ω−|(k‖d.1) � |ωβ − ω+|(k‖d.1), ωβ |(k‖d.1). (C12)

Noting that the condition Eq. (C11) is valid also for
gzβ , i.e., gzβ � ωβ , this allows us to discard the negligi-
ble terms ∝ Ŝz, σ̂+0, σ̂0+ in the interaction Hamiltonian
Eq. (C10). Back in the Schrödinger picture, we can fi-
nally write the first-order interaction as

V̂1 ≈ ~
∑
β

(
g−β ŝβ σ̂−0 + H.c.

)
. (C13)
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FIG. 10. a) Frequencies of the two transitions of the NV
centre (dashed lines) as a function of external field H0. The
three colored stripes represent the range of spin wave eigen-
frequencies spanned by the bands n = 0, 1, and 2 correspond-
ing to significant coupling to the NV centre, i.e. in the low-
wavenumber region 0 ≤ k‖d ≤ 1. Specifically, the stripes
correspond to the regions minφk,k‖ ωn(k‖, φk)|k‖d∈[0,1] ≤ ω ≤
maxφk,k‖ ωn(k‖, φk)|k‖d∈[0,1], for d = 200nm. b-c) Illustra-
tion of the three-operator resonance conditions appearing in
the nonlinear interaction term V̂2. In each panel, symbols
of the same color mark the energies of magnon pairs β and
β′ whose frequency difference (panel a) or sum (panel b) is
equal to ω+ (squares) or ω− (circles). The solid and dashed
lines represent the n = 0 spin wave bands in Damon-Eshbach
and parallel propagation, respectively, whereas the horizontal
gridlines mark the frequencies ω+ and ω−. For this figure we
choose d = 200nm and µ0H0 = 20mT.

We now follow a similar procedure for the nonlinear
interaction term V̂2. By introducing the expression for
the second-order field correction Eq. (A103) we cast this

contibution as

V̂2 =
∑
ββ′

ŝβ ŝβ′

[
g̃
′+
ββ′

Ŝ+√
2

+ g̃
′−
ββ′

Ŝ−√
2

+ g̃
′z
ββ′ Ŝz

]

+
∑
ββ′

ŝβ ŝ
†
β′

[
g̃+
ββ′

Ŝ+√
2

+ g̃−ββ′
Ŝ−√

2
+ g̃zββ′ Ŝz

]
+ H.c. (C14)

where

g̃
′k
ββ′ ≡ µ0|γs|e†k ·X

+
ββ′(r0), (C15)

and

g̃kββ′ ≡ µ0|γs|e†k ·X
−
ββ′(r0), (C16)

with the vectors X±ββ′(r) defined in Eq. (A104). We now
transform V̂2 to the interaction picture with respect to
Ĥsw + Ĥps, and undertake the rotating wave approxima-
tion:

1. First, we neglect the rapidly oscillating terms at
frequencies ωβ + ωβ′ and ωβ + ωβ′ + ω±. This is
justified on the basis of the first rotating wave ap-
proximation Eq. (C11) and on the observation that
all the coupling rates in the above Hamiltonian are
second order and thus smaller than the first-order
rates gkβ .

2. Second, we neglect the terms oscillating at frequen-
cies ωβ −ωβ′ +ω±, since they are resonant only for
magnon pairs β and β′ whose frequency difference
is equal to the transition frequencies ω± of the para-
magnetic spin. It can be checked that, in the range
of parameters we focus on in this work, magnon
pairs fulfilling this resonance condition have very
different wavenumbers, i.e., (k‖ − k′‖)d � 1, see
Fig. 10(b) for an example in the case of NV cen-
tres. These terms will thus be very weakly coupled
since the coupling rates decay exponentially with
this difference, i.e., since g̃kββ′ ∝ exp(−l|k‖ − k′‖|)
(see Eqs. (A105) and (A108)).

3. Third, we neglect the terms oscillating at frequen-
cies ωβ + ωβ′ − ω−, since they are resonant only
for magnon pairs β and β′ whose frequencies add
up to the paramagnetic spin transition frequency
ω−. As evidenced by the circles in Fig. 10(c),
which show the specific case of NV centres, the
magnon pairs fulfilling this resonance condition
also fulfill (k‖ + k′‖)d � 1, their coupling rate
g̃
′k
ββ′ ∝ exp(−l|k‖ + k′‖|) thus becoming negligible
(see Eqs. (A105) and (A108)).

4. Two kind of terms remain at this point: on the one
hand, terms ∝ ŝβ ŝβ′ σ̂+0, oscillating at frequencies
ωβ + ωβ′ − ω+, whose resonance condition is met
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for several low-wavenumber magnon pairs (square
symbols in Fig. 10[c]). On the other hand, terms
∝ ŝβ ŝ†β′ Ŝz, oscillating at ωβ−ωβ′ , whose resonance
condition is met for near-resonant magnon pairs
of arbitrary wavenumber. The terms oscillating at
ωβ + ωβ′ − ω+ are neglected for the following rea-
sons: a) their coupling rate g̃′kββ′ ∝ exp(−l|k‖+k′‖|)
decays much faster than the coupling rate g̃kββ′ ∝
exp(−l|k‖−k′‖|) of the terms ∝ ŝβ ŝ†β′ Ŝz, thus mak-
ing the interaction relevant over a much narrower
wavenumber range. b) While the terms propor-
tional to Ŝz describe a new spin wave-induced deco-
herence mechanism (dephasing), the terms contain-
ing σ̂+0 represent a small correction to the decay
lifetime T1, whose main effect is already accounted
for at first order (i.e. by V̂1).

Under the above simplifications, the second-order cor-
rection to the spin wave-paramagnetic spin interaction
Eq. (C14) reduces to

V̂2 = Ŝz
∑
ββ′

[
ŝβ ŝ
†
β′ g̃

z
ββ′ + H.c.

]
(C17)

Finally, by using the commutation relations Eq. (A68)
and the property Eq. (A110) we can write the above ex-
pression in the form

V̂2 = Ŝz
∑
ββ′

ŝ†β ŝβ′ g̃ββ′ (C18)

where we define

g̃ββ′ = g̃∗β′β ≡ g̃zβ′β + g̃z∗ββ′ . (C19)

By introducing Eqs. (C13) and (C18) into Eq. (C3) we
obtain the interaction Hamiltonian given by Eq. (7) in
the main text.

The equations of motion derived for a single paramag-
netic spin in Appendices B-C can be generalized to an
ensemble of paramagnetic spins situated at positions rj ,
j = 1, ...N . We assume the paramagnetic spins to be
independent, that is, we neglect any interaction between
them, either direct (e.g. dipole-dipole) or mediated by
their corresponding thermal reservoirs. This approxima-
tion is valid for the densities of NV centres considered in
this work (≤ 105(µm)−3), as experiments show no signif-
icant dipole-dipole-induced modification of the coherence
times T ∗2 for ensembles of NV centres within this range
of densities [72, 73]. Under this assumption the Hamilto-
nian of the paramagnetic spins and the interaction with
the spin waves are written as

Ĥps =
N∑
j=1

Ĥ(j)
ps ; V̂ =

N∑
j=1

V̂ (j). (C20)

The expressions of Ĥ(j)
ps and V̂ (j) are identical to Eqs. (6)

and (7) respectively, i.e.,

Ĥ(j)
ps = ~

∑
α=±

ω(j)
α σ̂(j)

αα (C21)

and

V̂ (j) = ~
∑
β

(
gjβ ŝβ σ̂

(j)
−0 + H.c.

)
+

+ Ŝ(j)
z

∑
ββ′

g̃jββ′ ŝ
†
β ŝβ′ , (C22)

this time with paramagnetic spin-dependent transition
matrices σ̂(j)

αα′ ≡ |α〉jj〈α′|, transition frequencies ω(j)
α ,

and coupling rates gjβ and g̃jββ′ . These coupling rates
are given respectively by identical expressions as Eqs. (8)
and (9) under the substitution r0 → rj , i.e.,

gjβ ≡ µ0|γs|M0β

∫
d3r

[
e∗− · G(rj − r) ·mβ(r)

]
,

(C23)

g̃jββ′ = −µ0|γs|
M0βM0β′

MS

×
∫
d3r

[
m∗β(r) ·mβ′(r)

]
Re
[
ez · G(rj − r) · ez

]
.

(C24)

The dissipation of the NV centres is generalized in a sim-
ilar way,

Dps[ρ̂] =
∑
j

κ2j

~2 LŜ(j)
z Ŝ

(j)
z

[ρ̂] +
∑
j

∑
α=±

κ1j

(
n̄(j)
α Lσ̂(j)

α0 σ̂
(j)
0α

[ρ̂] + (n̄(j)
α + 1)L

σ̂
(j)
0α σ̂

(j)
α0

[ρ̂]
)
, (C25)

with n̄(j)
α = [exp(~ω(j)

α /kBT )−1]−1. Note that, although
in the above expressions we have allowed the character-
istic rates ω±, κ1, and κ2 to be different for each param-
agnetic spin, in this article we consider identical param-
agnetic spins for the sake of simplicity.

D. Tracing out procedure

In this appendix we summarize briefly the open quan-
tum systems techniques employed to obtain the effective
dynamics in the successive appendices. We begin by con-
sidering a system and a bath with free Hamiltonians ĤS

and ĤB respectively, which interact through a general
interaction potential V̂ . The total Hamiltonian of the
compound system+bath is

Ĥ = ĤS + ĤB + V̂ . (D1)

Here we assume for simplicity that Ĥ is time-
independent. We also assume that system and bath form
a closed system, so that the dynamics of the total density
matrix ρ̂T is given by the Von Neumann equation

˙̂ρT = − i
~

[
Ĥ, ρ̂T

]
. (D2)
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The procedure below can be generalized to the case where
system and/or bath are open, i.e. they undergo addi-
tional dissipative dynamics, in the case where the baths
generating this dynamics are independent 14. In the in-
teraction picture with respect to ĤS+ĤB we rewrite the
von Neumann equation in integro-differential form as

˙̂ρT = − i
~

[
V̂ (t), ρ̂T (0)

]
− 1

~2

∫ t

0
ds
[
V̂ (t),

[
V̂ (t− s), ρ̂T (t− s)

]]
. (D3)

The above equation is still exact, but cast in a suitable
form for approximations.

1. Born-Markov master equation

The most usual tracing out procedure [64] consists on
the following steps: (i) undertaking the weak-coupling
or Born approximation ρ̂T (t) ≈ ρ̂(t) ⊗ ρ̂ss with ρ̂(t) the
reduced density matrix of the system and ρ̂ss the steady-
state density matrix of the bath. (ii) undertaking the
Markov approximation by taking ρ̂(t − s) ≈ ρ̂(t) in-
side the integral. The Markov approximation is justi-
fied if the two-time correlators of bath operators, i.e. the
correlators appearing in Eq. (D11), decay with the de-
lay s much faster than the timescale associated to the
evolution of the density matrix in the interaction pic-
ture [64]. In the following sections we will check the va-
lidity of the Markov approximation in our system. (iii)
taking the partial trace over the bath modes and assum-
ing TrB [V̂ (t), ρ̂T (0)] = 0 15. As a result the following
equation of motion for the system density matrix is ob-
tained,

˙̂ρ ≈ − 1
~2TrB

∫ ∞
0

ds
[
V̂ (t),

[
V̂ (t− s), ρ̂(t)⊗ ρ̂ss

]]
.

(D4)
The above equation can then be manipulated by writ-

ing the interaction potential in the form

1
~
V̂ (t) =

∑
α

Ôs,α(t)⊗ B̂α(t) + H.c., (D5)

with Ôs,α(t) and B̂α(t) being system and bath opera-
tors, respectively. We choose the above representation
such that the system operators Ôs,α(t) in the interaction
picture always evolve with a trivial phase, i.e.,

Ôs,α(t) = Ôs,αe
−iΩαt (D6)

14 This is achieved by means of projection operator techniques [64].
For a derivation using a similar system as ours, see e.g. Ref [117].

15 This condition can always be fulfilled if one writes V̂ = V̂ −
TrB [V̂ ] + TrB [V̂ ] ≡ V̂ ′ + TrB [V̂ ], and re-absorbs the second
term into the system Hamiltonian. One can then work with the
interaction V̂ ′ which by definition fulfills TrB [V̂ ′] = 0.

with Ôs,α the corresponding Schrödinger Picture opera-
tor and Ωα ∈ R. By introducing Eq. (D5) into Eq. (D4)
and assuming [ĤB , ρ̂ss] = 0, we can cast the master
equation in the convenient Lindblad form [64]. In the
Schrödinger picture, this Lindblad master equation reads

˙̂ρ = − i
~

[
ĤS + Ĥeff , ρ̂

]
+
∑
αα′

{
Γ(n)
αα′LÔs,α′ Ô†s,α [ρ̂]

+ Γ(a)
αα′LÔ†

s,α′
Ôs,α

[ρ̂] +
(

Γ(s)
αα′LÔs,α′ Ôs,α [ρ̂] + H.c.

)}
.

(D7)

The bath-induced coherent dynamics is captured by the
effective Hamiltonian

Ĥeff = ~
∑
αα′

Gaαα′Ôs,αÔ
†
s,α′ +Gnαα′Ô

†
s,αÔs,α′

+
(
Gsαα′Ôs,αÔs,α′ + H.c.,

)
, (D8)

whereas the dissipative dynamics is represented by the
Lindblad superoperators, defined in Eq. (11). The rates
involved in the master equation can be written in com-
pact form as

Γ(n)
αα′

Γ(a)
αα′

Γ(s)
αα′

 ≡ 2π


S̄

(n)
αα′(Ωα′) + S̄

(n)∗
α′α (Ωα)

S̄
(a)
αα′(−Ωα′) + S̄

(a)∗
α′α (−Ωα)

S̄
(−)
αα′(Ωα′) + S̄

(+)∗
αα′ (−Ωα)

 (D9)

andG
n
αα′

Gaαα′

Gsαα′

 ≡ −iπ


S̄
(n)
αα′(Ωα′)− S̄

(n)∗
α′α (Ωα)

S̄
(a)
αα′(−Ωα′)− S̄(a)∗

α′α (−Ωα)

S̄
(−)
αα′(Ωα′)− S̄

(+)∗
αα′ (−Ωα)

 . (D10)

Here, we define the one-sided power spectral densities of
the bath, that capture the whole effect of the bath on the
system dynamics, as


S̄

(n)
αα′(ω)

S̄
(a)
αα′(ω)

S̄
(+)
αα′(ω)

S̄
(−)
αα′(ω)

 ≡
∫ ∞

0

ds

2π e
iωs



〈
B̂†α(t)B̂α′(t− s)

〉
ss〈

B̂α(t)B̂†α′(t− s)
〉

ss〈
B̂†α(t)B̂†α′(t− s)

〉
ss〈

B̂α(t)B̂α′(t− s)
〉

ss


.

(D11)
The above expressions are very general and, in the fol-
lowing subsections, we will apply them to the two cases
detailed in the main text.

2. Frozen bath model

The Born-Markov master equation derived above is
valid when the bath correlation times are much shorter
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than the typical timescales associated with the system-
bath interaction. It is also possible to obtain effective dy-
namics in the opposite limit, the so-called “frozen bath”
regime [125]. In this regime, the evolution of the bath is
much slower than the timescale associated to the system
evolution in the interaction picture. In this limit, the ef-
fective dynamics can be obtained directly from Eq. (D2),
by undertaking the Born approximation and by substi-
tuting [125, 126]

V̂ (t) ≈ TrB [V̂ (t)]. (D12)

Within this approximation the bath is perceived, from
the point of view of the system, as a stationary driving
term given by the time-independent (“frozen”) expected
value of the interaction potential. The frozen bath regime
is not common in theory of open quantum systems as,
in this limit, the bath does not induce any dissipation
in the system as we will see below. However, we will
make use of this regime to include the effect of the slow
occupation dynamics of the NV centre on the spin wave
master equation, in Sec. III and Appendix F.

E. Effective dynamics of paramagnetic spins

In this section we apply the general formalism derived
in Appendix D to derive the effective dynamics of a sys-
tem of paramagnetic spins interacting with a spin wave
bath. Since the derivation, specifically the justification of
the Markov approximation, relies on the particular values
of T1 and T ∗2 , we take the specific values for NV centres
and will for simplicity refer to the paramagnetic spins as
“NV centres” in this section. The results derived below
hold for any species of paramagnetic spin with similar
values of T1 and T ∗2 . Extending our derivation to other
paramagnetic spins is also possible. This Appendix is
organized as follows: first, we provide the master equa-
tion for the NV centres and give the expressions for all
the involved rates in Sec. E 1. In the following sections
we analyze the different effective dynamics separately:
in Sec. E 2 we study the modification of the occupation
(T1) and coherence (T ∗2 ) lifetimes for a single NV cen-
tre. Then, in Sec. E 3 we derive the expressions for the
frequency shift and spin wave-induced force analyzed in
the main text. Finally, in Sec. E 4 we analyze the spin
wave-mediated couplings between different NV centres in
an ensemble.

1. Derivation of the general master equation and
equations of motion

We consider for generality an ensemble of NV centres
at arbitrary positions rj outside the YIG film. Our start-
ing point is the interaction Hamiltonian in the Interaction

Picture, given by

V̂ = V̂1 + V̂2 =
∑
jβ

gjβ ŝβ(t)σ̂(j)
−0e

iω−t + H.c.

+
∑
j

Ŝ
(j)
z

~
1
2
∑
ββ′

g̃jββ′ ŝ
†
β(t)ŝβ′(t) + H.c.. (E1)

with ŝβ(t) = ŝβ exp(−iωβt). As shown in Appendix A 5,
the spin waves are governed by the master equation
Eq. (A72), whose steady state is thermal. By applying
the quantum regression formula [58] one can prove that
the two-time correlators between three magnon operators
cancel out in a thermal state:〈

ŝβ(t)ŝ†β′(t− s)ŝβ′′(t− s)
〉

ss
= 0 ∀s, (E2)

〈
ŝ†β(t)ŝ†β′(t− s)ŝβ′′(t− s)

〉
ss

= 0 ∀s. (E3)

As a consequence, the two terms in the interaction,
V̂1 and V̂2, are independent from each other and can
be treated separately. The two-time correlators of the
magnon operators appearing on each of these terms de-
cay at similar rates ∼ γβ , whereas the system evolution
in the interaction picture is dominated by the timescale
∼ T ∗2 . We treat both interaction terms within the Born-
Markov approximation, valid for γβT ∗2 � 1. This condi-
tion is well fulfilled for all spin wave bands with n > 0.
The lowest band n = 0 lies at the boundary of this va-
lidity regime γβT ∗2 ≈ 1, and hence small non-Markovian
corrections to the effective dynamics of the NV centres
could be expected, especially for NV transition frequen-
cies near the lower cutoff of a spin wave band [127]. Al-
though outside the scope of our work, exploring these
dynamics beyond the Markov approximation is an inter-
esting outlook to our work. 16

Under the above approximations, the resulting mas-
ter equation for the ensemble of NV centres in the
Schrödinger picture reads

d

dt
ρ̂ps = − i

~

[
Ĥps + Ĥeff,1 + Ĥeff,2, ρ̂ps

]
+Dps[ρ̂ps] +Dop[ρ̂ps] +D1[ρ̂ps] +D2[ρ̂ps]. (E4)

where the sub-indices 1 and 2 indicate the contributions
stemming from V̂1 and V̂2, respectively. Let us first focus
on the contribution from V̂1. By applying the general

16 Note that these corrections are expectedly small, because the
band n = 0 represents only one among many contributions to
the effective dynamics of the NV centres (specifically, to the rates
appearing in the master Eq. [E4]). The contributions from higher
bands (n = 1, 2, ...), which are significant especially at fields
H0 . 15mT, are well within the validity regime of the Markov
approximation.
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formalism of Appendix D we obtain an effective Hamil-
tonian

1
~
Ĥeff,1 =

∑
j 6=j′

Gajj′ σ̂
(j)
−0σ̂

(j′)
0− +Gnjj′ σ̂

(j)
0−σ̂

(j′)
−0

+
∑
j

∑
α=±

δ
(j)
1α σ̂

(j)
αα, (E5)

with[
Gajj′
Gnjj′

]
=
∑
β

−∆β

∆2
β + (γβ/2)2

[
(1 + n̄β)gjβg∗j′β
−n̄βg∗jβgj′β

]
,

(E6)
where ∆β ≡ ωβ−ω−, and with first-order frequency shifts
given by

δ
(j)
1− ≡ Gajj −Gnjj ; δ

(j)
1+ ≡ −Gnjj . (E7)

Note that in writing down the Hamiltonian Eq. (E5) we
have neglected a constant term −

∑
j δ

(j)
1+(rj) that we

must include when computing the induced force. The
corresponding dissipator reads

D1[ρ̂] =
∑
j

κ(j)
a Lσ̂(j)

−0σ̂
(j)
0−

[ρ̂] + κ
(j)
d Lσ̂(j)

0−σ̂
(j)
−0

[ρ̂]

+
∑
j 6=j′

Γ(n)
jj′Lσ̂(j′)

−0 σ̂
(j)
0−

[ρ̂] + Γ(a)
jj′Lσ̂(j′)

0− σ̂
(j)
−0

[ρ̂] (E8)

with[
Γ(a)
jj′

Γ(n)
jj′

]
=
∑
β

γβ
∆2
β + (γβ/2)2

[
(1 + n̄β)gjβg∗j′β
n̄βg

∗
jβgj′β

]
,

(E9)
and decay and absorption rates given by

κ(j)
a ≡ Γ(n)

jj ; κ
(j)
d ≡ Γ(a)

jj . (E10)

Regarding the contribution V̂2, one can largely simplify
it by noting that, in the representation Eq. (D5), the bath
operator

B̂α(t)→ B̂j(t) ≡
1
2
∑
ββ′

g̃jββ′ ŝ
†
β(t)ŝβ′(t) (E11)

is Hermitian, and hence all the one-sided power spectral
densities in Eq. (D11) are equal. Their value at zero

frequency reads

S̄jj′(0) = −1
8π
∑
ββ′

n̄β(1 + n̄β′)g̃jββ′ g̃j′β′β
i(ωβ − ω′β)− (γβ + γβ′)/2

. (E12)

Furthermore, the system operator Ôs,α is also Hermitian,
allowing us to simplify the final master equation. Specif-
ically, the coherent contribution reads

Ĥeff,2

~
=
∑
j

∑
α=±

δ
(j)
2α σ̂

(j)
αα +

∑
j 6=j′

G2,jj′

~2 Ŝ(j)
z Ŝ(j′)

z , (E13)

with

G2,jj′ ≡ −2πi
[
S̄jj′(0)− S̄∗j′j(0)

]
(E14)

and second-order frequency shifts given by

δ
(j)
2± ≡ G2,jj = 4πIm[S̄jj(0)]. (E15)

On the other hand, the dissipative contribution reads

D2[ρ̂] =
∑
j

κ
′(j)
2
~2 LŜ(j)

z Ŝ
(j)
z

[ρ̂] +
∑
j 6=j′

Γ2,jj′

~2 LŜ(j′)
z Ŝ

(j)
z

[ρ̂],

(E16)
with the rates

Γ2,jj′ ≡ 2π
[
3S̄jj′(0) + 3S̄∗j′j(0) + S̄j′j(0) + S̄∗jj′(0)

]
,

(E17)

and the additional dephasing rate

κ
′(j)
2 ≡ Γ2,jj = 16πRe[S̄jj(0)]. (E18)

It is insightful to compute the equations of motion for
the expected value of an arbitrary transition operator
of a given NV centre, 〈σ̂(j)

αα′〉, as given by the complete
master equation Eq. (E4). For simplicity we will assume
NV centres in thermal equilibrium, i.e. Ω = 0. The
extension to optically pumped NV centres can be done
following the derivation in Appendix B 2. The equations
of motion for the ground state manifold can be written
in compact form in the following way,

d

dt

〈
σ̂

(j)
00

〉
= −

(
2γ+ + κ(j)

a

)〈
σ̂

(j)
00

〉
+κ1(1+n̄+)

〈
σ̂

(j)
++

〉
+
[
κ1(1 + n̄−) + κ

(j)
d

] 〈
σ̂

(j)
−−

〉
−
∑
k 6=j

[
Γd,jk

〈
σ̂

(k)
0− σ̂

(j)
−0

〉
+ c.c.

]
(E19)

d

dt

〈
σ̂

(j)
++

〉
= κ1n̄+

〈
σ̂

(j)
00

〉
− κ1(1 + n̄+)

〈
σ̂

(j)
++

〉
(E20)
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d

dt

〈
σ̂

(j)
−−

〉
=
[
κ1n̄− + κ(j)

a

] 〈
σ̂

(j)
00

〉
−
[
κ1(1 + n̄−) + κ

(j)
d

] 〈
σ̂

(j)
−−

〉
+
∑
k 6=j

[
Γd,jk

〈
σ̂

(k)
0− σ̂

(j)
−0

〉
+ c.c.

]
(E21)

d

dt

〈
σ̂

(j)
0+

〉
=
[
−i
(
ω+ + δ

(j)
+

)
− κ2 + κ

′(j)
2

2 − κ1 + 3γ+ − γ− + κ
(j)
a

2

]〈
σ̂

(j)
0+

〉
−
∑
k 6=j

Γz,jk
~

〈
σ̂

(j)
0+Ŝ

(k)
z

〉
−
∑
k 6=j

Γd,jk
〈
σ̂

(j)
−+σ̂

(k)
0−

〉
(E22)

d

dt

〈
σ̂

(j)
0−

〉
=
[
−i
(
ω− + δ

(j)
−

)
− κ2 + κ

′(j)
2

2 −
κ1 + 3γ+ + γ− + κ

(j)
d + κ

(j)
a

2

]〈
σ̂

(j)
0−

〉
+
∑
k 6=j

Γz,jk
~

〈
σ̂

(j)
0−Ŝ

(k)
z

〉
−
∑
k 6=j

Γd,jk
〈(
σ̂

(j)
−− − σ̂

(j)
00

)
σ̂

(k)
0−

〉
(E23)

d

dt

〈
σ̂

(j)
+−

〉
=
[
i
(
ω+ + δ

(j)
+ − ω− − δ

(j)
−

)
− 2(κ2 + κ

′(j)
2 )−

2κ1 + 2γ+ + κ
(j)
d

2

]〈
σ̂

(j)
+−

〉
+ 2

∑
k 6=j

Γz,jk
~

〈
σ̂

(j)
+−Ŝ

(k)
z

〉
+
∑
k 6=j

Γd,jk
〈
σ̂

(j)
+0σ̂

(k)
0−

〉
(E24)

where γ+ and γ− are defined in Eq. (B6). We define the
total frequency shifts

δ
(j)
± ≡ δ

(j)
1± + δ

(j)
2± (E25)

and the total coupling rates between NV centres,

Γd,jk ≡
Γ(n)
jk − Γ(a)

kj

2 − i
(
Gnjk +Gakj

)
, (E26)

Γz,jk ≡
Γ2,jk − Γ2,kj

2 + iG2,jk + iG2,kj . (E27)

In the above equations of motion it is evident that all
the interaction terms between different NV centres, both
dissipative and coherent, combine into the single interac-
tion rates Γd,jk and Γz,jk, which are the relevant quan-
tities describing the spin wave-induced interaction. Let
us analyse each of the spin wave-induced dynamics sep-
arately.

2. Spin-wave induced modification of T1 and T ∗2 for
a single NV centre in thermal equilibrium

Here we focus on the modification of the decay and de-
phasing rates, which are defined in thermal equilibrium
(i.e. no optical pumping). We thus consider a single NV
centre by making Γd,jk = Γz,jk = 0 in the equations of
motion Eqs. (E19)-(E24), and take Ω = 0. The result-
ing equations of motion have a similar form as for the

NV centre in the absence of spin waves, Eqs. (B4) and
(B10)-(B11), allowing us to define the new decay and de-
phasing times. Let us first discuss the dynamics of the
occupations of the NV levels, namely 〈σ̂αα〉(t), which are
independent on the dephasing rates κ2 and κ′2. The dy-
namics of these occupations are given by

d

dt

[
〈σ̂00〉
〈Ŝz/~〉

]
=
[
κ1 + γ+ + (Γ+ + Γ−)/2
γ− + (Γ+ + Γ−)/2

]
−
(
M0 +M ′

)[ 〈σ̂00〉
〈Ŝz/~〉

]
, (E28)

with

M ′ = 1
2

[
3Γ+ − Γ− Γ+ + Γ−
3Γ+ − Γ− Γ+ + Γ−

]
. (E29)

Here, we have defined the sum and difference of the spin-
wave induced decay rates as

Γ± ≡
κd ± κa

2 = v2
∑
n

∫
d2k‖

ωM
ωβ

[
1 + η

ky
k‖

]2

× γβ |hβη0|2e−2k‖l

(ω− − ωβ)2 + (γβ/2)2 [1 + n̄β ± n̄β ] , (E30)

where the last expression has been obtained by substitut-
ing the coupling rate from Eq. (8), the zero-point mag-
netization from Eq. (5), the modal fields from Eq. (A61),
and taking the continuum limit Eq. (A91). We have also
defined the coefficient

v2 ≡ µ2
0|γ|γ2

s~MS

16π2d
, (E31)
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which has dimensions of velocity squared. Note that at
not too low temperatures (T & 10K) the above decay
rates fulfill |Γ+| � |Γ−| due to the difference in the ther-
mal factors appearing on each quantity.

As detailed in Appendix B 1, in the absence of spin
waves, at zero applied field H0 and for an initially polar-
ized NV centre (〈Ŝz〉(t = 0) = 0), the system of equations
Eq. (E28) decouples and hence all the occupations decay
to their steady state value exponentially with a lifetime
T1 given by Eq. (B15). This behavior is altered in the
presence of spin waves or at H0 6= 0, where the evolution
of the occupations follows a double exponential decay

〈σ̂αα〉(t) ∼ ae−t/T1a + be−t/T1b , (E32)

for any initial state (see Fig. 11[a]). The inverse rates
T−1

1a and T−1
1b are given by the eigenvalues of the 2 × 2

matrix M0 +M ′ appearing in Eq. (E28), namely

λ± = 2γ+ + κ1 + Γ+ ±
[
γ2

+ + 3γ2
−

+ Γ2
+ + Γ+(γ+ + γ−) + Γ−(γ+ − γ−)

]1/2
. (E33)

Note that from Eq. (E30), Eq. (A65), and the even par-
ity of ωβ and γβ under the reflection ky → −ky, one can
easily show that the eigenvalues λ±, and thus the modifi-
cation of the occupation dynamics, are the same on both
sides of the slab and depend only on the vertical separa-
tion from its surface, l. In Fig. 11(c) we show the evolu-
tion of the ground-state occupation of the NV centre at
µ0H0 = 25mT, for an NV at different separations from
the YIG film. In the absence of spin waves, i.e. at l→∞
(solid black line), the evolution of 〈σ̂00〉(t) is very well ap-
proximated by a single exponential decay with slope T1,
as it only deviates from the zero-field case (dashed line)
at very long times where the steady state is practically
reached. This justifies the use of the timescale T1, techni-
cally defined only at H0 = 0, to describe also NV centres
in the presence of weak applied fields. However, when
the NV centre is placed close to the YIG film, the devi-
ation from an exponential decay becomes very relevant.
The evolution of 〈σ̂00〉 is in this case characterized by a
fast decay to a metastable value 〈σ̂00〉 ≈ 〈σ̂00〉ss + 0.2,
followed by a slow decay toward the steady-state. Since
both these processes are relevant, one must consider the
two relaxation times T1a and T1b separately.
The two relaxation times T1a and T1b are displayed

in Fig. 11(d), in solid and dashed lines, for three differ-
ent values of the applied field H0 and for the parame-
ters in Table I. The most striking effect is given by the
lowest lifetime (dashed lines), which is orders of mag-
nitude smaller than the original lifetime T1. This strong
modification, known as Purcell enhancement in nanopho-
tonics [128], originates from the film-induced modifica-
tion of the electromagnetic density of states. Indeed, the
dashed lines in Fig. 11(d) display the typical behavior ob-
served for Purcell-enhanced lifetimes associated to expo-
nentially localized surface modes such as thin-film [129]

FIG. 11. a) Spin waves cause a frequency shift δ− of the NV
transition frequency and decrease of the lifetimes T1 and T ∗2 .
b) Spin waves resonant with the |0〉 ↔ |−〉 transition of the
NV: at µ0H0 = 5mT spin waves in both n = 0 (solid red line)
and n = 1 bands (dashed red line) are resonant, whereas for
µ0H0 = 25mT (blue lines) only the n = 0 spin waves are, and
for µ0H0 & 30mT no spin wave is resonant. c) Evolution of
the ground state occupation of the NV after initialization in
the |0〉 state, for different NV-film separations and µ0H0 =
25mT. The dashed line shows the single exponential decay
for an isolated NV at H0 = 0, which defines the timescale
T1. d) The two timescales describing the evolution of the NV
occupations in the presence of spin waves (solid and dashed
lines, respectively) as a function of NV-film distance l, for the
three values of static fields H0 considered in panel (b). The
horizontal dashed line indicates the original T1. In all three
panels we take T = 300K and the parameters in Table I.

or graphene [130] surface plasmons. The lowest lifetime
(dashed lines) tends to the original one, T1, as l→∞, i.e.
in the absence of spin waves. This motivates us to define
the spin-wave-reduced lifetime of the transition |0〉 ↔ |−〉
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as

T ′1 ≡ min(T1a, T1b) = max
(

1
λ+

,
1
λ−

)
. (E34)

This quantity, more details of which are given below, is
the modified lifetime used in the main text.

The dependence of the dashed lines in Fig. 11(d) on
the applied field H0 can be understood from Fig. 11(b),
which indicates the resonant spin waves (i.e. the spin
waves fulfilling the resonance condition ωβ = ω−) for
each value of H0 considered in Fig. 11(d): on the one
hand, at high fields, µ0H0 & 30mT, no spin waves are
resonant with the NV transition and the effect of the spin
waves is strongly suppressed, resulting in a lifetime closer
to T1. On the other hand, at low fields µ0H0 & 5mT, the
lifetime modification is maximized as many spin wave
modes fulfill the resonance condition ωβ = ω−. Finally,
the intermediate field case µ0H0 & 25mT is character-
ized by an intermediate lifetime enhancement in between
the above two extreme cases. In this situation, more-
over, the lifetime remains significantly different from the
value T1 even at large distances l ∼ 5d, as the resonance
condition ωβ = ω− is fulfilled also for spin waves of very
low wavenumbers (see blue line in Fig. 11[b]). Note fi-
nally that the lifetimes on Fig. 11(d) remain significantly
different from T1 even at easily achievable NV-film dis-
tances l ≈ d, suggesting that the modified dynamics ex-
emplified in Fig. 11(c) could be measured through the
fluorescence of the NV centre [24–28, 68]. Indeed, the
spin wave-induced modification of the lifetime T1 has al-
ready been proposed as a potential explanation for the
observed modifications in the optically detected mag-
netic resonance spectrum of NV centres close to magnetic
structures [26–28]. Conversely, the strong dependence of
the lifetimes on the NV separation from the film, l, could
be exploited to optically measure such separation.

Let us finally focus on the lifetime of the coherences,
particularly of the coherences 〈σ̂0±〉, whose lifetime at
H0 = 0 defines the coherence lifetime T ∗2 . In the presence
of spin waves, the definition of a single coherence time is
not possible, since the lifetime of each of these coherences
becomes different, see Eqs. (E22) and (E23). Specifically,
from these equations we can extract the lifetimes of these
two coherences as

[
τ−1
0+
τ−1
0−

]
=

= κ2 + κ′2 + κ1 + 3γ+

2 − 1
2

[
γ− − Γ+ + Γ−
−γ− − 2Γ+

]
. (E35)

The calculation of these rates requires determining the
rate κ′2 (Eq. (E18)) which, by following similar steps as

above, can be cast in integral form as

κ′2 = v4
∑
nn′

∫
d2k‖

∫
d2k′‖

[
1− e−d|k‖−k′‖|

]2
× n̄β(n̄β′ + 1)

ωβωβ′

γβ + γβ′

(ωβ − ωβ′)2 + [(γβ + γβ′)/2]2

×
(
X−0ββ′

)2 ∑
ξ=±

(kz − k′z)4d4e−2l|k‖−k′‖|

π2(n′ + ξn)2 + (|k‖ − k′‖|d)2 , (E36)

From the above expression it is evident that κ′2, and
therefore the spin wave-induced dephasing, is the same
on both sides of the slab as it does not depend on η.
Furthermore, κ′2 only depends on the vertical separation
from its surface, l.

The lifetimes of the coherences τ0±, given by Eq. (E35),
are displayed in Fig. 12 (green and purple lines, respec-
tively) as a function of the distance from the YIG surface.
In order to isolate the effect of the additional decay rates
κa and κd from that of the additional dephasing rate κ′2,
in Fig. 12 we plot these lifetimes calculated only from the
first order contribution V̂1, i.e. for κ′2 = 0 (dashed lines)
and calculated up to second order, i.e. including κ′2 (solid
lines). As evidenced by the figure, the effect of κ′2 is negli-
gible for l & 10−2d, where the deviation of the coherence
lifetimes from their original value T ∗2 is dominated by the
decay rates κa and κd, i.e., by T ′1. In this regime the co-
herence lifetimes are Purcell-reduced in a similar way as
the occupation lifetimes in Fig. 11(d). The lifetime of the
coherence 〈σ̂0+〉 is not modified as strongly as the lifetime
of 〈σ̂0−〉 as the corresponding NV transition |0〉 ↔ |+〉 is
uncoupled from the spin wave modes. As a result there is
a strong difference between these two lifetimes, that can
differ by up to a factor 2 at low separations l ∼ 10−2d.
At even lower separations, l/d . 10−2, the effect of the
additional dephasing κ′2 becomes relevant and eventually
dominant over the first-order contribution. In the low
separation limit l � d the two lifetimes become equal
and much smaller than the original T ∗2 of the NV centre.
This large increase on the dephasing rate suggests that
placing the NV centres as close as possible to the YIG
film is not always advisable, as the corresponding rise of
the NV-spin wave coupling rate could be overcome by
the unavoidable increase in decoherence. Finally, note
that both the stark difference between the two lifetimes
at l ≈ 10−2d and their further decrease at l . 10−2d are
strong effects as compared to the original decoherence
time T ∗2 , and could in principle be resolved by spin echo
experiments [27, 68, 70, 71]. Such experiments, com-
bined with independent measurements of the occupation
dynamics displayed in Fig. 11(c), could provide valuable
information of the spin wave structure of the film.
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FIG. 12. Lifetimes of the two NV coherences 〈σ̂0±〉,
Eq. (E35), at µ0H0 = 20mT as a function of NV-film distance
l. Dashed lines indicate the result including only the first-
order contribution to the potential V̂1 in Eq. (E1), whereas
the solid lines show the full result including the second-order
term V̂2. In all three panels we take T = 300K and the pa-
rameters in Table I.

3. Frequency shift and spin wave-induced force for
a single NV centre

Let us now focus on the frequency shift experienced by
the two transitions of a single NV centre. According to
Eq. (E25), the total frequency shift experienced by the
transitions of a single NV reads

δ± = δ1,± + δ2,±. (E37)

The two contributions stem from the first and second
order interaction potentials V̂1 and V̂2, respectively. The
expression for the former, given by Eqs. (E6), reads[

δ1,−
δ1,+

]
=
∑
β

−∆β

∆2
β + (γβ/2)2 |gjβ |

2
[

1 + 2n̄β
n̄β

]
. (E38)

Regarding the second-order contribution, we obtain it
from combining Eqs. (E12) and Eqs. (E14)-(E15),

δ2,± = 1
2
∑
ββ′

n̄β(1 + n̄β′)|g̃jββ′ |2

× (ωβ − ωβ′)
(ωβ − ωβ′)2 + [(γβ + γβ′)/2]2 . (E39)

By writing the above second-order contribution in inte-
gral form as done in Eq. (E36) and making use of parity
arguments it can be shown that the term proportional
to n̄βn̄β′ is exactly zero. Furthermore, the same parity
properties allow us to cast the second-order contribution
as

δ2,± = 1
4
∑
ββ′

(n̄β − n̄β′)|g̃jββ′ |2

× (ωβ − ωβ′)
(ωβ − ωβ′)2 + [(γβ + γβ′)/2]2 . (E40)

The above expression is, in general, much smaller than
the first-order contributions Eq. (E38) for two reasons:
first, the function in the second line is non-negligible only
in a narrow region of frequency space, namely in the re-
gion ωβ−γβ . ωβ′ . ωβ +γβ . In these regions, however,
the thermal factors fulfill n̄β ≈ n̄β′ as γβ ∼ MHz (see
Fig. 7). Second, even in these regions the coupling rates
|g̃jββ′ | are usually much smaller than the first-order rates
|gjβ | since they stem from a second-order correction to
the interaction potential. These arguments allow us to
safely neglect this shift, i.e.,

δ2,± � δ1,± → δ± ≈ δ1,±. (E41)

The frequency shifts of the two NV transitions can thus
be written in integral form as[

δ−
δ+

]
≈ −v2

∑
n

∫
d2k‖

ωM
ωβ

∆β

∆2
β + (γβ/2)2

× |hβη0|2e−2k‖l
(

1 + η
ky
k‖

)2 [ 2n̄β + 1
n̄β

]
. (E42)

From the above expression it is evident that |δ−| ≥ 2|δ+|.
Specifically, in the low- and high-temperature limits,
valid respectively at cryogenic and room temperature,
we find

δ+ →
{

0 for kBT � ~ωM
δ−/2 for kBT � ~ωM .

(E43)

The above relations allow us to focus on the more relevant
frequency shift, namely that of the coupled transition
|0〉 ↔ |−〉.
The frequency shift δ− is displayed in Fig. 13(a-b) as

a function of vertical separation l/d, for three represen-
tative values of the applied magnetic field and at room
(panel a) and cryogenic (panel b) temperatures. Regard-
less of the applied field H0, the frequency shift becomes
negligible at sufficiently large distances l ∼ d, as the am-
plitude of the exponentially localized (exp(−k‖l)) spin
waves vanishes. The different behavior of the frequency
shift at different values of the field H0 can be under-
stood from Eq. (E42) and the resonance iso-lines in panel
Fig. 11(b). Two limiting cases can be identified: first, the
high-field case µ0H0 & 30mT (yellow lines in Fig. 13[a-
b]) where no spin wave is resonant with the NV tran-
sition (hence no curve corresponding to these fields is
displayed in Fig. 11(b)). Specifically, as evidenced also
by Fig. 10(a), in this case all magnons fulfill ωβ > ω−,
resulting in a negative frequency shift for all values of
the separation l. Second, the weak field case exempli-
fied by µ0H0 = 5mT (red lines in Fig. 13[a-b]), where
spin waves in both n = 0 and n = 1 bands are resonant
with the transition |0〉 ↔ |−〉. The phenomenology in
this case depends critically on the distance to the film,
l: specifically, for large l only the spin waves with a very
low wavenumber contribute significantly due to the expo-
nential decay of the coupling rate gβ ∝ exp(−k‖l). Since
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FIG. 13. a-b) Frequency shift δ− at room (a) and cryogenic
(b) temperatures as a function of the distance between the
NV centre and the YIG film, for three values of the applied
field H0. c-d) Lifetime of the |0〉 ↔ |−〉 transition, T ′1, and
product δ−T ′1, respectively, for the same magnetic fields as
in panels (a-b), and for room (solid) and cryogenic (dashed)
temperatures. The black dotted line in panel (c) indicates the
original NV lifetime in the absence of spin waves, T1. The
yellow solid and dashed lines in panel (d) correspond to the
red and blue curves in Fig. 4(b), respectively. In all panels
we choose the parameters as in Table I.

all these spin wavemodes fulfill ωβ < ω− the frequency
shift becomes positive. On the other hand, for sufficiently
small l the spin waves with higher wavenumber, namely
those outside the curves in Fig. 11(b), start to contribute
with a negative shift as they fulfill ωβ > ω−. For suffi-
ciently short distances l the negative contribution over-
comes the positive one and the frequency shift turns neg-
ative. Finally, for intermediate values of the field such as
µ0H0 = 25mT (blue lines in Fig. 13[a-b]) most of the spin
wave modes fulfill ωβ > ω−, even in the low-wavenumber
limit. As a consequence the frequency shift remains neg-
ative for all separations l despite the resonance condition

being fulfilled by some spin waves in the n = 0 band.
All these behaviors are similar for room and cryogenic
temperatures, with the room-temperature case display-
ing much higher shifts due to the increased field ampli-
tude of the thermal spin waves. Finally, note that the
frequency shift is measurable for all three values of the
field chosen in Fig. 13(a-b), since the corresponding spin
wave-reduced lifetimes T ′1, shown in Fig. 13(c), remain
high enough for the condition |δ−T ′1| > 1 to be fulfilled
(see Fig. 13[d]). This measurement becomes less chal-
lenging at room temperature where the product |δ−T ′1| is
enhanced.
We now focus on the force exerted by the spin waves

on a single NV centre. This force is calculated as the
steady-state expected value of the gradient of the total
Hamiltonian,

F = −
〈
∇
[
Ĥps + Ĥeff,1 + Ĥeff,2

]〉
ss
. (E44)

As detailed above, we can neglect the second-order fre-
quency shifts δ2,± and write

Ĥeff,1 + Ĥeff,2

~
≈ −δ+σ̂00 + (δ− − δ+)σ̂−−, (E45)

where we have added the constant (but position-
dependent) correction that we neglected in Eq. (E5). Us-
ing this expression in combination with Eq. (E44) one
can calculate the force in a general situation. In this
work, however, we focus either on the high- or on the
low-temperature limit, where the expression for the force
can be simplified, using the identities Eq. (E43), to

F = −η~2 ex
dδ−(l)
dl
×

×
{

2〈σ̂−−〉ss for kBT � ~ωM
〈σ̂−− − σ̂00〉ss for kBT � ~ωM .

(E46)

The force given by Eq. (24) in the main text results
from particularizing the above expression to an NV cen-
tre above the YIG film (η = 1).
The force Eq. (E44) is shown in Fig. 14 for a single NV

centre at room temperature (panel a), cryogenic tem-
perature (panel b) and room temperature under opti-
cal pumping at optimal pumping conditions (panel c).
At cryogenic temperatures optical pumping does not
significantly change the force as the NV centre is al-
ready near its ground state. At room temperature the
forces are very small since the steady-state occupations
are generally very close to their zero-field values, i.e.
〈σ̂−−〉ss ≈ 〈σ̂00〉ss ≈ 1/3. The resulting force is thus sig-
nificantly weaker than the usual Casimir-Polder force for
atoms with optical transitions (for which 〈σ̂00〉ss ≈ 1 even
at room temperature), and lies in the 10−23−10−21 range.
This reduced Casimir-Polder force is common for mag-
netic dipole transitions where the transition frequencies
are comparable to thermal energy scales [89]. Moreover,
room temperature forces are mostly repulsive, except at
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FIG. 14. Spin-wave induced force per NV centre as a function
of its distance to the YIG film, for three values of the applied
field H0. a) System at room temperature. b) System at cryo-
genic temperatures. c) System at room temperature with the
NV centre being optically pumped (optimal pumping condi-
tions). The yellow curves in each panel correspond to the
curves in Fig. 4(c). In all panels we choose the parameters as
in Table I.

very low fields µ0H0 = 5mT (red curve), where the force
becomes attractive for l & 0.3d ≈ 60nm following the cor-
responding change of slope in the frequency shift (com-
pare with Fig. 13[a]). Repulsive Casimir-Polder forces are
a common feature of magnetic dipole transitions [88, 89].
Conversely, forces become attractive at cryogenic tem-
peratures. Regarding optical pumping, it is clearly more
efficient at high fields as shown by Fig. 14(c). The reason
behind this is the relatively large lifetime T ′1 of the NV
transition at these fields (see Fig. 13[c]), which facilitates
the pumping of occupation into the ground state. More-
over, in this case the pumping intensity used for optimal
pumping in the absence of spin waves, Id = 0.13GWm−2,
still results in very efficient initialization of the NV cen-
tre, since T1 and T ′1 are relatively similar. Conversely,
at fields for which the resonance condition ωβ = ω− is
fulfilled (i.e. red and blue curves Fig. 14), the very short
lifetimes T ′1 make optical pumping inefficient. We empha-
size that in these cases the force can still be enhanced by
employing higher optical pumping intensities Id.

4. Coupling between different NV centres

Let us finally consider the effective spin-wave dynamics
induced on an ensemble of NV centres. On the one hand,
each NV centre in the ensemble will experience the same
frequency shift and the same lifetime modifications as in
the single-NV case analyzed in previous sections. On the
other hand, however, different NV centres will be coupled
through the compound coupling rates appearing in the
equations of motion, namely

Γd,jk =
∑
β

g∗jβgkβ

i(ω− − ωβ)− γβ/2
, (E47)

and

Γz,jk = i
∑
ββ′

n̄β(n̄β′ + 1)g̃jββ′ g̃kβ′β

× ωβ − ωβ′
(ωβ − ωβ′)2 + [(γβ − γβ′)/2]2 . (E48)

The latter contribution, Γz,jk, can be manipulated anal-
ogously to the second-order frequency shifts δ2,±, see
Eqs. (E39) and (E40), and following the same argumenta-
tion it can also be neglected. Hereafter we thus focus on
the dominant coupling rate which in integral form reads

Γd,jk = v2
∑
n

∫
d2k‖

ωM
ωβ

e−k‖(lj+lk)eik‖(r‖k−r‖j)

×
[
1 + ηj

ky
k‖

] [
1 + ηk

ky
k‖

]
hβηj0hβηk0

i(ω− − ωβ)− γβ/2
. (E49)

From the above expression we deduce that the coupling
rates only depend on three variables, namely the differ-
ence between the parallel coordinates of the two involved
spins, r‖k − r‖j ≡ ykjey + zkjez, and the sum of their
distances to the slab, lk + lj ≡ Lkj :

Γd,jk ≡ Γd(Lkj , ykj , zkj). (E50)

Moreover, by using the symmetries of the frequencies and
loss rates under sign change of ky and kz, together with
the symmetries Eq. (A64) and (A65), one can show that
the couplings are symmetric under permutation of the
z−coordinate of the two NV centres,

Γd(Lkj , ykj , zkj) = Γd(Lkj , ykj , zjk). (E51)

Using the same symmetry arguments we can also de-
rive relations between the coupling rates corresponding
to different positions of the NV centres with respect to
the slab, quantified by the respective indices ηj and ηk.
Specifically,

1. For NVs on different sides of the slab (ηj = −ηk)
the rate Γd becomes independent on ηj and ηk, i.e.
it does not depend on which side each Nv centre is
on. Furthermore, in this case the coupling rate is
symmetric under permutation of the two Nv cen-
tres:

Γd(Lkj , ykj , zkj) = Γd(Lkj , yjk, zkj). (E52)
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FIG. 15. Modulus of the coupling rate between NV centre j and NV centre k as appearing in the equation of motion
for NV centre j, i.e. |Γd,jk|, as a function of the relative separation in the parallel plane. The total vertical separation
is Lkj = lj + lk = d = 200nm, the applied field µ0H0 = 20mT and the NV centres are in thermal equilibrium at room
temperature. Panels (a), (b), and (c) show, respectively, the cases of the two NV centres lying above the film, one NV centre
above and a second below the film, and the two NV centres below the film.

2. For NVs on the same side of the slab (ηj = ηk = η),
the coupling remains η−dependent but obeys the
symmetry

Γd(Lkj , ykj , zkj)
∣∣
η=+ = Γd(Lkj , yjk, zkj)

∣∣
η=−, (E53)

The coupling rates between two NV centres j and k,
as appearing in the equations of motion for NV centre j,
are shown in Fig. 15 for three cases, namely the two NV
centres above the slab (panel a), one NV centre above
and a second below the slab (panel b), and the two NV
centres below the slab (panel c). In general the most
relevant coupling rates correspond to the two NV centres
lying on the same side of the slab (panels a and c). These
couplings also display a strong directionality which orig-
inates from the combination of the non-reciprocity of the
bath modes, i.e. the spin waves, and the polarization-
selective transition of the NV centre, |0〉 ↔ |−〉. To un-
derstand this asymmetry, let us focus on the case of the
two NV centres above the slab (panel a). The NV centre
j, assumed to lie at the origin of coordinates for simplic-
ity, interacts only with spin waves polarized along e−,
which propagate on the positive y direction (see Fig. 6[c]).
This enhances the interaction with NV centres k placed
on the right half of the y − z plane (yk > yj) while sup-
pressing the interaction with those placed on the left half
(yk < yj). The emitted spin waves are resonant with
the frequency of the NV transition, ω−. Thus, emitted
spin waves propagating near the y−axis (i.e. φk � 1)
have much lower wavenumbers than emitted spin waves

propagating along a larger angle φk. Since the field am-
plitude, and thus the coupling rate, becomes very small
also at low wavenumbers, the coupling is maximized for
NV centres k placed along a certain angle along the y−z
plane. Note that this directional coupling mechanism is
analogous to the phenomenon of chirality in quantum
nanophotonics, which has attracted significant attention
lately [131] due to its potential applications in quantum
computing and processing, among others. Most of these
applications, however, are not directly extensible to the
NV-spin wave interfaces as the typical coupling strengths
(several Hz in Fig. 15, potentially several kHz for NV cen-
tres near the surface of the film) are much weaker than
the dissipation rates of the NV centres. An interesting
outlook of our work, and a direct application of our the-
oretical model, consists on exploring the enhancement of
the interaction rates, for instance through coherent driv-
ing of particular spin wave modes, as well as the potential
of these highly directional interactions e.g. for studying
unconventional many-body physics [131].

F. Effective spin wave dynamics

In this section we apply the general formalism derived
in Appendix D to derive the effective dynamics of a sys-
tem of spin waves induced by a bath of paramagnetic
spins. As in the previous section we focus on NV cen-
tres, but our results hold for any paramagnetic spin with
similar values of T1 and T ∗2 . First, we summarize the
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derivation of the master equation for the spin waves and
provide analytical expressions for all the involved rates
in Sec. F 1. We then particularize these rates to a bath
formed by a large number N � 1 of NV centres at ran-
dom positions within the diamond slab in Sec. F 2. Fi-
nally, in Sec. F 3, we compute the magnetic field power
spectral density in the presence of the NV centres and
discuss its experimental detection.

1. Derivation of the effective dynamics

Deriving the effective spin wave dynamics requires
some special attention due to the drastic difference be-
tween the slow timescale associated to the second-order
contribution V̂2, namely T1 (or τnv for optically pumped
NV centres, see Appendix B 2), and the fast timescales
associated to both the first-order contribution V̂1 and the
bare dissipation of the spin waves, namely ∼ T ∗2 and γ−1

β .
Note that from the equations of motion Eq. (B4) and
(B10), and from the correlators of the NV centre opera-
tors, Eqs. (B18), (B19), and (B23) one can show that

〈σ̂(j)
−0(t)Ŝ(k)

z (t− s)〉ss = 〈Ŝ(k)
z (t)σ̂(j)

−0(t− s)〉ss = 0 (F1)

and

〈σ̂(j)
0−(t)Ŝ(k)

z (t− s)〉ss = 〈Ŝ(k)
z (t)σ̂(j)

0−(t− s)〉ss = 0. (F2)

The same identities hold in the presence of optical pump-
ing, i.e., for NV centres governed by Eqs. (B33), (B36),
and (B37). As a consequence of the above expressions,
the master equation does not contain crossed terms in-
volving both V̂1 and V̂2, which can thus be treated sep-
arately as independent reservoirs. The master equation
for the magnons can thus be cast in the following form,

d

dt
ρ̂sw = − i

~

[
Ĥsw + Ĥsw,eff,1 + Ĥsw,eff,2, ρ̂sw

]
+Dsw[ρ̂sw] +Dsw,1[ρ̂sw] +Dsw,2[ρ̂sw], (F3)

namely a modification of the original magnon master
equation Eq. (A72) which includes the independent con-
tributions of V̂1 and V̂2, i.e., the contributions originating
from the effect of the NV coherences and from the NV
occupations, respectively.

Let us first analyze the contribution of the coherences,
namely of the first-order term V̂1. We include this term
within the Born-Markov formalism introduced in Ap-
pendix D. Since the two-time correlators 〈σ̂0±(t)σ̂∓(t −
s)〉ss decay on a timescale 2/(κ1+κ2+3γ++γ−+2Ω) ≈ T ∗2
(see Eqs. (B18)-(B19) or Eqs. (B36)-(B37) and note that
for efficient optical pumping Ω � κ2), the Markov ap-
proximation is valid for T ∗2 γβ � 1. Regarding the spin
wave dynamics, all the results in this article focus on the
n = 0 spin wave band, for which the Markov approxi-
mation is justified as γβT ∗2 . 1 (especially at low fields
H0 . 15mT). For higher order (n ≥ 1) spin wave bands,

non-Markovian corrections could be expected. Explor-
ing the small non-Markovian corrections expectable for
higher order (n ≥ 1) bands could be an interesting out-
look of our work.
Within the Markov approximation and using the corre-

lators Eqs. (B18) and (B19) or, for optically pumped NV
centres, the correlators (B36) and (B37), we can compute
the contributions stemming from V̂1. On the one hand,
the coherent contribution

Ĥsw,eff,1 = ~
∑
β

δβ ŝ
†
β ŝβ + ~

∑
β,β′ 6=β

Wββ′ ŝ
†
β ŝβ′ (F4)

which describes both a spin wave frequency shift and
an effective interaction between spin waves mediated by
the NV centres. Under the assumption of identical NV
centres, these rates are given by

Wββ′ ≡ −
G2
ββ′

2 〈σ̂−− − σ̂00〉ss

× ∆β + ∆β′

(i∆β + κT /2)(−i∆β′ + κT /2) (F5)

and

δβ ≡Wββ = −G2
ββ〈σ̂−− − σ̂00〉ss

∆β

∆2
β + (κT /2)2 , (F6)

where we define the total coupling rates as

G2
ββ′ ≡

∑
j

g∗jβgjβ′ (F7)

and the total decay rate of the coherence 〈σ̂0−〉 as (see
Eq. (B33))

κT ≡ κ1 + κ2 + 3γ+ + γ− + 2Ω. (F8)

On the other hand, the dissipator

Dsw,1[ρ̂] =
∑
β

ΓdβLŝβ ŝ†β [ρ̂] + ΓaβLŝ†
β
ŝβ

[ρ̂]

+
∑

β,β′ 6=β
Γ(n)
ββ′Lŝβ′ ŝ†β [ρ̂] + Γ(a)

ββ′Lŝ†
β′
ŝβ

[ρ̂] (F9)

which represents incoherent interaction between different
spin wave modes at rates

Γ(n)
ββ′ = Γ(a)

β′β

〈σ̂00〉ss
〈σ̂−−〉ss

≡ 〈σ̂00〉ssG2
ββ′

× i(∆β −∆β′) + κT
(i∆β + κT /2)(−i∆β′ + κT /2) , (F10)

as well as additional decay and absorption of each spin
wave mode at rates

Γdβ ≡ Γ(n)
ββ ; Γaβ ≡ Γ(a)

ββ . (F11)
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It is convenient to define the difference between the above
ratios as

Γβ ≡ Γdβ − Γaβ = G2
ββ〈σ̂00 − σ̂−−〉ss

× κT
∆2
β + (κT /2)2 (F12)

which, as we will see below, represents the increase in the
decay rate of magnon mode β.
Let us now focus on the contribution from the occu-

pations of the NV centres, namely of the term V̂2. For
this term the Markov approximation is not applicable,
as the correlators 〈S̃z(t)S̃z(t − s)〉 decay at a very slow
rate & τ−1

nv (see Eq. (B43) and Fig. 9[c]). However, since
the spin wave observables decay at a much faster rate
γβ � τ−1

nv , we can compute the contribution V̂2 within
the frozen bath model described in Appendix D2. The
resulting contributions to the master equation are thus

Dsw,2[ρ̂] = 0, (F13)

Ĥsw,eff,2 =
∑
ββ′

Ωββ′ ŝ†β ŝβ′ , (F14)

with a rate given, assuming identical NV centres, by

Ωββ′ ≡ 〈Ŝz/~〉ss
∑
j

g̃jββ′ . (F15)

As expected from a bath with “frozen” fluctuations, the
contribution V̂2 does not generate dissipation on the spin
waves. Note that since g̃jββ = 0 (see Eqs. (A110) and
(C19)) the above contribution does not generate a fre-
quency shift on the spin wave modes.

Having obtained the master equation for the spin
waves, we can compute the equations of motion for the
expected values of the spin observables in a similar way
as for Eqs. (A76), (A77), and (A78). These equations of
motion read

d

dt
〈ŝβ〉 =

[
−i(ωβ + δβ)− γβ + Γβ

2

]
〈ŝβ〉

−
∑
β′ 6=β

K∗β′β〈ŝβ′〉, (F16)

d

dt
〈ŝβ ŝβ′〉 =

[
− i(ωβ + ωβ′ + δβ + δβ′)

− γβ + γβ′ + Γβ + Γβ′
2

]
〈ŝβ ŝβ′〉

−
∑
β′′ 6=β′

Kβ′β′′〈ŝβ ŝβ′′〉 −
∑
β′′ 6=β

Kββ′′〈ŝβ′ ŝβ′′〉, (F17)

d

dt
〈ŝ†β ŝβ′〉 =

[
i(ωβ + δβ − ωβ′ − δβ′)

− γβ + γβ′ + Γβ + Γβ′
2

]
〈ŝ†β ŝβ′〉(t)

+ Γ(a)
ββ′ + δββ′ (γβn̄β + Γaβ)

−
∑
β′′ 6=β′

Kβ′β′′〈ŝ†β ŝβ′′〉 −
∑
β′′ 6=β

K∗ββ′′〈ŝ
†
β′′ ŝβ′〉, (F18)

where we have defined a compound interaction rate

Kββ′ ≡ iΩββ′ + iWββ′ +
Γ(n)
ββ′ − Γ(a)

β′β

2

= iΩββ′ +
G2
ββ′

i∆β + κT /2
〈σ̂−− − σ̂00〉ss (F19)

Note that the above system of equations is closed as the
master equation is quadratic.

2. Master equation rates for large N and randomly
distributed spins

All the rates in the master equation or in the equations
of motion are given in terms of the frequencies Gββ′ and
Ωββ′ . Let us derive an expression for the former in the
limit of interest, namely a large number N � 1 of NV
centres at random positions. A similar argument follows
for the rate Ωββ′ . By using the definitions of Gββ′ and
the expressions for the modal fields and the couplings in
Appendices A and B, we can write this rate explicitly as

G2
ββ′ =

(
2π
L

)2
v2ωM√
ωβωβ′

(
1 + η

ky
k‖

)(
1 + η

k′y
k′‖

)

× hβη0hβ′η0

N∑
j=1

e−i(k‖−k′‖)r‖je−(k‖+k′‖)lj , (F20)

where the coefficient v2 is defined in Eq. (E31), and hβη0
are the modal field amplitudes defined by Eq. (A63).
From this explicit form it is easy to check the following
symmetry between the rates corresponding to the traced
out NV ensemble lying above (η = 1) or below the film
(η = −1),

G2
(n,k‖),(n′,k′‖)

∣∣∣
η=−1

= (−1)n+n′G2∗
(n,−k‖),(n′,−k′‖)

∣∣∣
η=1

,

(F21)
from which similar relations for the frequency shift and
decay rates δβ and Γβ follow. Moreover, Gββ′ is max-
imized at n = n′ = 0. Similar properties also hold for
Ωββ′ .
The two rates G2

ββ′ and Ωββ′ are proportional to a
function of the following general form:

F (q, q0) ≡ 1
L2

N∑
j=1

eiqr‖je−q0lj . (F22)
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The above sum runs over the N NV centres which, as
discussed in the main text (see e.g. Fig. 2[a]), are dis-
tributed in a volume delimited by l1 and l2 along the x
direction and infinitely extended on the directions par-
allel to the slab. For such configuration, we can com-
pute the above function F (q, q0) following the strategy
in Ref. [132], namely dividing the volumetric distribu-
tion of the NV centres into NL thin layers at positions
l0m (m = 1, 2, ...NL), with l01 = l1 and l0NL = l2. In
the limit of large number of NV centres, N →∞, we can
choose a large number of layers NL � 1, each contain-
ing a number NS → ∞ of NV centres. By grouping the
NV centres in this way, and after multiplying and divid-
ing by the separation between consecutive layers, namely
∆l ≡ (l2 − l1)/NL, we can cast Eq. (F22) in the form

F (q, q0) = %ps

NL∑
m=1

(∆l)e−q0l0m
1
NS

NS∑
k∈layer m

eiqr‖k ,

(F23)
where we have defined the volumetric density of param-
agnetic spins,

%ps ≡
NSNL

L2(l2 − l1) . (F24)

In the above form, the function F (q, q0) can be exactly
evaluated at q = 0,

F (0, q0) = %ps

l2∑
l=l1

(∆l)e−q0l ≈ %ps

∫ l2

l1

dle−q0l, (F25)

where in the last step we have approximated the sum as
an integral using the fact that ∆l� l2− l1 and assuming
that q0∆l � 1. The above expression allows us to com-
pute the coefficient G2

ββ , which determines the frequency
shifts and decay rate modifications of the spin waves. For
a slab of NV centres above the YIG film, this coefficient
can be written using Eq. (F20) as

G2
ββ = 4π2v2

ωβ/ωM

(
1 + ky

k‖

)2
h2
β+0F (0, 2k‖)

= 4π2v2%ps

ωβ/ωM

(
1 + ky

k‖

)2
h2
β+0

∫ l2

l1
dle−2k‖l. (F26)

Combining the above expression, for n = 0, with
Eqs. (F6) and (F12) we obtain the definitions Eq. (19) in
the main text.

We now focus on the more general coefficients
G2
ββ′ , whose calculation requires evaluating the function

F (q, q0) for q 6= 0. This requires some further treatment
as, by definition, the function as defined by Eq. (F23)
depends on the values of the positions of all the NV cen-
tres. We thus assume that the NV centres are randomly
distributed within each layer, and define the normalized
two-dimensional structure factor as

s2D(q) ≡ 1
NS

NS∑
m random

eiqr‖m (F27)

to write

F (q, q0) = %ps

l2∑
l=l1

(∆l)e−q0ls
(l)
2D(q). (F28)

Here, the quantity s(l)
2D(q) represents, for each l, a single

value sampled from the probability distribution defined
by the structure factor s2D(q). In the limit NS →∞, the
real and imaginary parts of such probability distribution
tend to simple Gaussian distributions with mean value
0, as can be easily derived from the one-dimensional re-
sult [133]. Thus, in this limit the average value of the
function F (q, q0) vanishes exactly

lim
NS→∞

〈F (q, q0)〉 =

= lim
NS→∞

%ps

l2∑
l=l1

(∆l)e−q0l〈s(l)
2D(q)〉 = 0. (F29)

From the above expression we conclude that, in the ther-
modynamic limit, all the coupling rates Gββ′ become, in
terms of statistical averaging over many random arrange-
ments of NV centres, negligible for β 6= β′, and thus can
be neglected. The same argument holds for the rate Ωββ′
which, since Ωββ = 0, can be neglected for any β and β′.

3. Spin wave correlators and modification of the
power spectral densities

Under the assumption Gββ′ ,Ωββ′ ≈ δββ′ justified
above, the correlators of spin wave operators can be ob-
tained from Eqs. (F16)-(F18) using the quantum regres-
sion formula [58]. For any operator Ô and for s > 0 they
read

〈ŝβ(t+ s)Ô(t)〉ss = 〈ŝβÔ〉ss
× exp [(−i(ωβ + δβ)− (γβ + Γβ)/2)s] , (F30)

〈ŝ†β(t+ s)Ô(t)〉ss = 〈ŝ†βÔ〉ss
× exp [(i(ωβ + δβ)− (γβ + Γβ)/2)s] . (F31)

The steady-state occupations are also derived from
Eqs. (F16)-(F18) and read

〈ŝβ〉ss = 〈ŝβ ŝβ′〉ss = 0, (F32)

〈ŝ†β ŝβ′〉ss = δββ′
γβn̄β + Γaβ
γβ + Γβ

≡ δββ′Nβ . (F33)

By using the above results we can compute the power
spectral density of the magnetic field, Eq. (A87), in an
analogous way as for the uncoupled spin waves in Ap-
pendix A 6. Specifically, one can show that for the above
steady-state values, equation (A88) holds also in the pres-
ence of NV centres. By introducing in this equation the
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FIG. 16. a) We consider the magnetic field power spectral density below the YIG film. b) Power spectral density in the
absence of NV centres (%nv = 0) at different separations l from the film surface. The dashed line indicates the NV transition
frequency ω−. c) Power spectral density near ω = ω− for NV centres in a thermal state (T = 300K). Panels with green, blue,
and red-orange color schemes correspond to the same color scheme as in panel (a), i.e., to l = 10−2d, l = 10−1d, and l = d
respectively. The four lines on each set correspond to different densities of NV centres. d) Same as in panel (c), for optically
pumped NV centres (optimal pumping conditions). In all the panels we take µ0H0 = 10mT, l1 = 0, l2 = ∞, T = 300K, and
the parameters of Table I.

corresponding correlators we obtain the following gener-
alized expression for the power spectral density:

Sejek(l, ω) = 1
2π
∑
β

M2
0βh

2
βη0e

−2k‖l(γβ + Γβ)

×
[
Λ̄jk(η,k‖)

Nβ + 1
(ω − ωβ − δβ)2 + ((γβ + Γβ)/2)2

+ Λ̄jk(−η,k‖)
Nβ

(ω + ωβ + δβ)2 + ((γβ + Γβ)/2)2

]
,

(F34)

with the matrices Λ̄jk(η,k‖) defined in Eq. (A90). This
expression is formally equivalent to the power spectral
density in the absence of NV centres, Eq. (A89), un-
der the substitutions ωβ → ωβ + δβ , γβ → γβ + Γβ , and
n̄β → Nβ . Hence, the above power spectral density satis-
fies the same symmetry properties of the power spectral
density derived in the absence of spin waves: first, the
property Eq. (A93) stems from the form of Λ̄jk(η,k‖)
which remains unaltered in the presence of NV centres;
second, the properties Eqs. (A92) and (A96) hold due to
the easily verifiable symmetries

Gββ(−kz) = Gββ(kz), (F35)

and

Gββ(ky)|η = Gββ(−ky)|−η, (F36)

respectively. Finally, the high-temperature parity prop-
erties Eqs. (A94)-(A95) hold in the limit Nβ � 1. Since
for the parameters chosen in this work Nβ ≈ n̄β we con-
clude (and have numerically checked) that these parity
properties also hold, at room temperature, in the pres-
ence of NV centres.
We focus on the power spectral density Se−e−(l, ω) ≈

Se+e+(l,−ω), for which the NV-induced modification
is the most pronounced. As schematically depicted in
Fig. 16(a), we consider this power spectral density in
the region below the film (η = −1), where the diamond
slab cannot hinder its detection. We first compute the
power spectral density in the absence of NV centres in
Fig. 16(b), at room temperature and at three different
separations l from the YIG film. As discussed in Sec. A 6
the power spectral density is higher at shorter distances
to the film l, where the thermal amplitude of the mag-
netic field is larger. It also becomes smoother at shorter
distances as the contribution of many high-wavenumber
spin waves becomes practically as relevant as that of low-
wavenumber spin waves. In the presence of NV centres,



44

the only appreciable change in the power spectral density
occurs in a narrow frequency range centered at the NV
transition frequency, ω−, and with width of the order of
κT . In Fig. 16(c) we show the power spectral density
within this relevant frequency range for un-pumped NV
centres at room temperature thermal equilibrium. The
spin waves that contribute most significantly to the power
spectral density within this frequency range are those res-
onant to the NV transition, i.e., those fulfilling ωβ ≈ ω−.
Since for these spin waves the linewidth is enhanced by
a factor Γβ (see discussion in Sec. III in the main text),
the steady-state spin wave correlators Eqs. (F30)-(F31)
decay faster (i.e., the fluctuations become smaller) than
in the absence of the NV centres, resulting in a decrease
of the power spectral density. Note that this decrease
could be interpreted as a lower effective temperature for
these spin waves, as the equilibrium power spectral den-
sity is proportional to the thermal occupation factor (see
e.g. Eq. (A88)). In this way the action of the NV centres
is equivalent to an effective frequency-resolved cooling of
the spin waves. As shown by Fig. 16(c), the dip in the
power spectral density becomes more pronounced near
the film, where the NV centres are more strongly coupled
to the spin waves. Similar phenomenology is observed for
optically pumped NV centres (Fig. 16[d]). In this case,

optical pumping enhances the impact of the NV centres
on the power spectral density, which now shows much
deeper minima (up to ∼ 80% decrease with respect to the
case %nv = 0, as opposed to the ∼ 2% in the un-pumped
case) and modifications within a much wider frequency
range (about 50κT as opposed to ∼ κT ). Although, in
both the pumped and the un-pumped scenario, observ-
ing the dip in the power spectral density requires a lower
magnetic noise floor and thus a higher sensitivity, this
dip can still be experimentally measured. Indeed, our
results in Fig. 16(c-d) for the most part remain within
the sensitivity range (∼ 10−4 − 10−6nT/

√
Hz) of ultra-

sensitive magnetometry techniques [121–124]. As a fi-
nal remark we note that the opposite effect, namely the
electron spin-induced increase of the magnetic fluctua-
tions, could also be attained by driving the transition
|0〉 ↔ |−〉 into saturation or into population inversion.
This procedure, which results in a reduction of the spin
wave linewidth, is known as “spectral hole burning” and
has been successfully used to increase the quality factor
of mechanical resonators whose coherence is limited by
two-level system impurities [134]. Exploring the poten-
tial of spectral hole burning for spintronics is an inter-
esting outlook to this work, that can be studied with the
theory we have developed.
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