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Abstract: Remote sensing sensors-based image processing techniques have been widely applied in
non-destructive quality inspection systems of agricultural crops. Image processing and analysis were
performed with computer vision and external grading systems by general and standard steps, such
as image acquisition, pre-processing and segmentation, extraction and classification of image charac-
teristics. This paper describes the design and implementation of a real-time fresh fruit bunch (FFB)
maturity classification system for palm oil based on unrestricted remote sensing (CCD camera sensor)
and image processing techniques using five multivariate techniques (statistics, histograms, Gabor
wavelets, GLCM and BGLAM) to extract fruit image characteristics and incorporate information
on palm oil species classification FFB and maturity testing. To optimize the proposed solution in
terms of performance reporting and processing time, supervised classifiers, such as support vector
machine (SVM), K-nearest neighbor (KNN) and artificial neural network (ANN), were performed
and evaluated via ROC and AUC measurements. The experimental results showed that the FFB
classification system of non-destructive palm oil maturation in real time provided a significant result.
Although the SVM classifier is generally a robust classifier, ANN has better performance due to the
natural noise of the data. The highest precision was obtained on the basis of the ANN and BGLAM
algorithms applied to the texture of the fruit. In particular, the robust image processing algorithm
based on BGLAM feature extraction technology and the ANN classifier largely provided a high AUC
test accuracy of over 93% and an image-processing time of 0,44 (s) for the detection of FFB palm
oil species.

Keywords: external grading system; oil palm FFB; machine learning; supervised classifiers; quality
inspection; remote sensing

1. Introduction

Usually, information that can be obtained from a distance about objects or areas is
a science called remote sensing [1]. Remote sensing is a procedure that can be used to
measure the external physical properties of an area by receiving the energy reflected and
emitted from the target area [2].

Further, an introduction and development of remote sensing was published by the
authors of Refs. [3,4] using various sensors, image processing tools and techniques for
remote sensing applications. In fact, the most common sensors used in remote sensing are
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cameras and solid-state scanners, such as CCD (charge coupled device) images, which are
available in 2D matrices for the application, and satellite image sensors [5,6].

Bakker et al. [7] indicated that a digital CCD camera is an electro-optical remote sensor
made of semiconductor material, which is the most common type of detection nowadays
in the range from visible to very near IR; it is used to provide area information in aerial
Earth observation application for low-cost imagery. Likewise, bi-directional reflectance
measurements and the method for determining the suppression of atmospheric MTF for
the CCD camera on board the Huanjing 1A (HJ-1A) satellite and the digital CCD camera
were designed and studied by the authors of Refs. [8,9].

In addition, a standard digital camera used to automatically monitor snow cover with
high accuracy in terms of time and location as a unified index based on red, green and
blue (RGB) values was developed to control errors due to lighting effects [10]. On the other
hand, microcomputers have increased power as an advantage of remote sensing image
processing technology. Based on their study [11], researchers used the BRIAN micro CSIRO
system as an example of how to access methods for image processing, which contributed
to the acceptance of remote sensing technology.

Machine learning is an evolutionary area of algorithms, hardware and storage systems
working in smarter ways for several applications, such as (a) abnormal behavior proactive
detection for reasonable solutions in advance; (b) creating events models based on system
training in order to forecast the values of a future inquiry; (c) testing the future inquiry
based on the understating of the created event model and (d) computing the individual
loss reserve [12]. Thus, different researchers have used the advantage of machine learning
for automated wheat diseases classification, estimation of the long-term agricultural output
and prediction of soil organic carbon and available phosphorus [13–15]. Therefore, there
are many benefits and advantages to using machine learning methods in computing the
individual loss reserve regarding ML techniques, making such methods more feasible,
with more accurate pricing, claims triage, loss prevention, a deep dive in changes in loss
reserves and frequent monitoring to calculate claims reserves on individual claims data
(ICR) [16–19].

In addition, Refs. [20,21] reported that machine learning techniques provide the pos-
sibility to activate and control the classification of images by remote sensing. However,
multi-band deep learning, deep convolutional neural networks and modular features were
implemented using limited training samples by the authors of Refs. [22–28] to classify
the hyperspectral, hyperparameter, spectroradiometer and spectrometer images as those
remotely detected data.

As a result, a variety of fields have been successfully populated with numerous re-
motely sensed images with high spectral–spatiotemporal resolution in order to identify
important acoustic processes in agricultural applications [29,30]. The old method of as-
sessing the quality of agricultural products, in general, is tedious and expensive [31].
Traditional techniques have been in use for a long time, but they are extremely tedious,
expensive and out of control over time. In this context, high-tech switches are needed to
use machine vision to classify the quality of agricultural food products and to assess timely
and accurately [32–42].

This technique is suitable for surface or sub-surface imaging due to the incomplete
penetration depth of the interrogation source. In addition, researchers from all over the
world have contributed and developed an automated internal classification system as a
solution for screening agricultural crops based on internal characteristics, such as sugar,
moisture and acid [43–46].

Equally, the authors of Refs. [47–51] applied remote sensing and image processing
technology based on texture and color measurement methods to classify images in a
different application. In this paper, the remote sensing (CCD camera) and image processing
(Gabor waves, GLCM and BGLAM) sensor technologies as texture property extraction
techniques are based on supervised machine learning classifiers (SVMs, KNN and ANN) so
as not to distract the assets and to assess the FFB quality inspection on a real-time system.
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This article will review in Section 2 the fruit ripeness classification aspect, and the
discussion will expand on relevant works regarding methodologies and strategies for an
automated FFB grading and sorting system using different approaches, including data
collection, system material, image processing, classification system and other available
tools for system evaluation and assessment. Next, Section 3 will entail the results and
discussion, including obtained results by modeling the different feature algorithms with
classification modules. Section 4 will be the conclusion and discuss the challenges and
future direction.

2. Fruit Ripeness Classification

Currently, different computer vision systems have been invented and applied to assess
the quality of agricultural crops based on different color spaces through machine learning
techniques. The use of such systems for a variety of fruit ripening processes based on
different color spaces and classification techniques resulted in varying research accuracy, as
shown in Table 1.

Table 1. The literature on accurately assessing crop quality using machine learning techniques based on
a variety of color spaces. Table from Ref. [51] is cited and updated with new implementation results.

Item Color Space Classification Technique Accuracy Ref.

Oil palm UV + RGB + NIR KNN and SVM 93.80 [25]
Dates JPG CNN 99.32 [26]

Banana RGB and GLCM CNN and MLP 98.45 [27]
Apple HSI SVM 95.00 [52]
Apple L*a*b* MDA 100.00 [53]
Apple RGB SVM 96.81 [54]

Apple, pears and peaches RGB ANN 98.90 [55]
Papaya LBP, HOG and GLCM KNN, SVM and Naıve Bayes 100.00 [56]

Avocado RGB K-Means 82.22 [57]
Dragon Fruit HSV + RGB Naive Bayes 86.60 [58]

Banana L*a*b* LDA 98.00 [59]
Banana RGB ANN 96.00 [60]

Blueberry RGB KNN and SK-Means 85.00–98.00 [61]
Date RGB K-Means 99.60 [62]
Lime RGB ANN 100.00 [63]

Mango RGB SVM 96.00 [64]
Mango L*a*b* MDA 90.00 [65]
Mango L*a*b* LS-SVM 88.00 [66]

Oil palm L*a*b* ANN 91.67 [67]
Pepper HSV SVM 93.89 [68]
Paper HIS + RGB SIS 99.00 [69]

Persimmon RGB + L*a*b* QDA 90.24 [70]
Tomato HSV SVM 90.80 [71]
Tomato RGB DT 94.29 [72]
Tomato RGB LDA 81.00 [73]
Tomato L*a*b* ANN 96.00 [74]

Rice Texture Features (Gray) SVM 86.00 [75]
Soya HSI ANN 95.70 [76]

Banana RGB Fuzzy logic NA [77]
Banana RGB + CIE L*a*b* ANN NA [78]
Banana RGB CNN 87.00 [77]

Watermelon YCbCr ANN 86.51 [79]
Watermelon VIS/NIR ANN 80.00 [80]
Watermelon RGB ANN 73.33 [81]

Tomato FTIR SVM 99.00 [82]
Kiwi Chemometrics MOS E-nose PLSR, SVM and RF 99.40 [83]

Coffee RGB + L*a*b* + Luv + YCbCr + HSV SVM 92.00 [84]
Coffee RGB, HIS and L*a*b* PCA and K-Means 100.00 [85]

Cape Gooseberry RGB + HSV + L*a*b* ANN, DT, SVM and KNN 93.02 [86,87]

L* indicates lightness, and a* and b* are chromaticity coordinates.

As shown in Table 1, the largest generic classifier technologies are SVM, ANN, K-
Means and KNN at 34%, 31%, 11% and 9%, respectively, whereas the most used color
spaces in Table 1 are RGB, LAB, HSV, HIS and YCbCr with 57%, 31%, 14%, 9% and 6%,
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respectively, with high output resolution. Thus, RGB color space and SVM classifier are the
most popular technologies that achieved higher resolution.

To increase the production of high-quality crude palm oil, one of the challenges is to
harvest the fresh fruit bunches (FFB) of oil palm at the optimal stage of ripeness. Actually,
the current methods used to determine the optimal ripened stage are based on color
and loose fruits observation. This traditional method relies heavily on the undiscovered
technique of palm fruit size experimentation and intuition to accurately determine ripeness
that cannot be easily replicated and is subject to significant human error. To address this
issue and find a systematic solution to determine the oil palm fruit ripeness that is cost-
efficient, fast, non-invasive, reliable and precise, researchers contributed to developing
a tech-based solution using computer vision that enables auto-grading and sorting of
the optimal ripened stage by integrating software (image processing, robust datasets, AI
decision-making) and hardware systems (lighting system, grading and sorting system). The
advancement in methods and techniques for FFB classification and grading has resulted
in the development of automated computer analysis, which will aid farmers significantly
in obtaining good quality in crude palm oil production, particularly in rural areas with
limited access to automation facilities.

2.1. Data Collection

According to confirmation between the scientific teams of the Universiti Putra Malaysia
(UPM) and Palm Oil Board of Malaysia (MPOB), knowledge and experience were shared
to study the properties and future of FFB palm oil at different stages of maturity to collect
valuable information. Thus, the study began with a field visit, as shown in Figure 1.
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The purpose of the visit was to select the study area and FFB types of oil palm according
to the research needs. Accordingly, the preparation of the survey and verification of the
methods and techniques for the palm oil fruit maturity grading system involved collecting
270 fruit images for each of the three types of palm oil fruit, which are (i) Nigrescens,
(ii) Oleifera and (iii) Virescens, as shown in Figure 2. Each harvested fruit received a
specific sheet containing its name, number, type and ripeness class. The data collection
process for the oil palm system is as follows:

1. An expert in the classification of palm oil fruit maturity was appointed. The expert
classified the fruits based on three grades, namely under-ripe, ripe and over-ripe;

2. A specified number of fruits per day were collected. The collection ranged from 15 to
20 fruits based on the ability of the lab capacity and the quantity available in the field;

3. Give the physical image of each fruit the name and number of the organization using
the computer or during laboratory analysis;

4. Third item.
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2.2. System Material

In general, the material and process of the FFB palm oil maturity classification system
is shown in Figure 3. Accordingly, the fruit ripeness grading system used computer vision
application in agricultural quality inspection to ensure ripeness category of fruit. The
system includes: (a) a housing having an enclosure for scanning process; (b) defused tubes
of LED illumination means with optical lens illumination filter provided at the enclosure
of the housing; (c) preferably, a suitable charge coupled device (CCD) digital camera DFK
41BF02.H FireWire CCD color camera is used to capture fruit sample’s image, provided at
top portion of the enclosure of the housing; (d) a feeding device for conveying fruit samples
to the housing; (e) a processing unit to process and analyze the fruit sample image; (f) a
data acquisition interface provided in between the camera and the processing unit and
wherein the processing unit further provided with a disk top computational unit serves to
transfer data to a computer. In fact, the fruit was obtained in real time with a controlled
indoor lighting system.
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2.3. Image Processing Approach

In general, image processing and analysis using computer vision and external file systems
were performed with general and standard steps, as shown in Figure 4 [31,88,89]. Image
acquisition and pre-processing include low-level processing, segmentation, representation
and description as mid-level operations, while higher-level operations include object
recognition and image classification.

As a result, the group of oil palm fruits went through fruit image processing stages
based on various steps, as shown in Figure 5. The steps included fruit image acquisition,
pre-processing and processing, treatment, segmentation and extraction of features as well
as applying the retrieval methods and techniques as a decision-making system based on
the similarity calculation as proposed in the future work. All images were related to the
training model and a fresh fruit bunch was evaluated. The decision-making process was
based on the training model.
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Several experiments were performed with different models (color, texture and thorns)
of the FFB palm oil classification system. The three different regions of interest (ROI1, ROI2,
ROI3) were verified for the FFB maturity of the oil palm, as shown in Figure 6, using various
feature extraction techniques (color feature extraction, such as mean, standard deviation
and color histogram techniques) as well as texture extraction techniques (Gabor wavelet
(GW), gray level co-occurrence matrix (GLCM) and basic gray level halo matrix (BGLAM)).
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2.4. Classification System

Decision-making based on image classification through supervised machine learning
classifiers is the last step in the process, which is a method of learning a set of rules from
cases called a training set to create a classifier that can be used to create a great presentation
using new cases for tests [90–92]. The classification system defines objects by classifying
them in a limited set of categories [93–95]. As noted at the beginning of this article in
Table 1, the most popular supervised classifiers in fruit categorization are SVM, ANN and
KNN. These classifiers were used in this article for the experimental parameters.

2.4.1. Artificial Neural Network (ANN)

An artificial neural network (ANN) provides an efficient alternative for mapping
complex nonlinear relationships between input and output datasets without the need for
detailed knowledge of the underlying physical relationships [96]. ANNs contain connected
nerve cells that mimic the work of the brain. ANN differs significantly from algorithm
software due to its ability to disseminate knowledge about new data unearthed. Expert
systems must collect real knowledge about the specific area. Multi-layered direct feedback
neural networks are grouped into input, output and hidden layers and are used with the
FFB oil palm classification system.

Each layer comprises several neurons, which are known as processing elements (PE),
as illustrated in Figure 7 [67,97–99]. No pre-defined rules were needed to be set for ANN
because it is able to learn and generalize from “experience” or a set of presented examples,
which is called a training set. The number of optimum hidden neurons was determined
experimentally from the training processes of the MLP classifiers. An in-depth description
of the MLP concept was addressed by the authors of Ref. [100].
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grading system.

Figure 6 illustrates the construction of a three-layer MLP building. The general task of
the PEs in the input layer of an MLP is to buffer the input signals to the PEs in the hidden
layer. This step collects the products of input signals with their weighted connections by
each PE.

Artificial Neural Network (ANN)

Varying the weights given to neural connections is a process of training a neural
network to achieve a satisfactory result. The supervised learning procedure for multi-
layered front-end power systems provides a recipe for changing the weight of elements
in adjacent layers. This algorithm reduces the sum of squares errors, which have been
identified as least squares.

The mean square errors (MSE) and the efficiency (EFF) of the training and testing for
each classifier are calculated.

During the training phase, data were used to fit the system using the ANN model.
Each category in the dataset was presented as an input sample for ANN–MLP for training
assignments. In order to reduce the mean square error (MSE) between goals and outputs, a
trial and error trial [100] was performed. Under-ripe, ripe and over-ripe were determined
using the desired outputs as 0.5, 0 and 1, respectively, while the input characteristics
were normalized within the range [0, 1]. Training effectiveness was used as an important
indicator of the accuracy of rating evaluation. However, each method used different ANN
constructs to result in inefficiency. The commonly used backpropagation networks were
selected for the FFB classification system for oil palm trees due to their success with a
variety of image processing applications in agriculture [101–104].

2.4.2. K-Nearest Neighbor (KNN)

KNN is another supervised classifier used in this work based on the concept that
observations in a dataset are, in general, close to other observations with similar properties.
Additionally, the metric distance and k-value play a major role in the KNN classification
algorithm [105], although Ref. [106] notes that the KNN classifier is not a pre-classifier;
KNN determines their location. kNN is used to query the new training space model based
on the appropriate similarity distance scale.

KNN Performance

KNN regulation is one of the largest algorithms for classifying attractive patterns. In
this work, different k-values and distance measurement methods were adapted to balance
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the trade-off of the FFB maturity classification by excluding values and methods having
low confidence accuracy levels, as shown in Figure 8.
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Moreover, an experimental investigation was carried out based on the values of K,
which are 1, 3, 5, 7 and 9, as well as methods for measuring metric distance, namely:
Euclidean, City, Cosine and Correlation, as in “Equations” by Refs. [105,107]. The research
aims to determine the appropriate KNN classification coefficient for the high-precision FFB
palm oil maturity classification system. The study showed that the appropriate distance
measure that reduced the distance between two similar classified examples is the city-block
metric. The value of k = 1 affects the performance of the KNN procedure. The results of the
evaluation can be obtained next regarding applications in agriculture [101–104].

2.4.3. Support Vector Machine (SVM)

KNN SVM is a supervised machine learning classifier developed by the authors of
Ref. [108] based on constructing hyper-plane as a decision line separating Class 1 from
Class 2, as shown in Figure 9 [109]. A special characteristic of SVMs is that they simulta-
neously reduce experimental classification error and maximize geometric boundary by
optimizing the superlative level of linear separation and converting the nonlinear data
model into a linearly separable format in a feature space with high-dimensional [110].
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In the FFB maturity classification, there are three different target classes (under-ripe,
ripe and over-ripe) and one against all approach (OAA), which subdivides each class and
merges all the others [111]. Due to the performance efficiency and less processing time
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than the multi-class SVM classifier, the OAA method was used to perform the FFB ripeness
classification of oil palm.

SVM Performance

To improve the classification result for specific models, special classes of FFB palm
oil had to be learned according to linear, non-linear and four-step basis. First, the input
data comprise two sets of vectors in an n-dimensional space. SVM will build a separate
hyperplane in that space that increases the “margin” between the two datasets. Second,
when calculating the margin, we construct two parallel planes parallel, one on each side of
the separator planes, that are “pushed up” for the two datasets. Third, instinctively, a fine
separation is reached by means of the hyper-plane that has the largest distance to the data
points adjacent to both classes. Finally, the classifier’s best generalization error will depend
on the largest margin or distance between these parallel hyperplanes.

The parameter tuning is the most important factor in the SVM model-building process.
In SVM, tests were accomplished with different kernel types, such as linear, polynomial
and radial basis function kernels, to achieve the classification task. Furthermore, to control
the trade-off between maximizing the margin and minimizing the training error, the sigma
of RBF was tuned from 1 to 100 and the polynomial distance was also tuned from 1 to 4.
The regularization parameter magnitude C was tuned from 1 to 1000 for both polynomial
and RBF kernels.

2.5. Training and Testing

As with Kotsiantis, three techniques are used to estimate the accuracy of the classi-
fier [105]. First is the cross-validation technique, by dividing the training set into subgroups
of equal selection and size. For each subgroup, the classifier is trained on one of all other
subgroups. The second is the leave-one-out validation. The third is the most common one,
which is used in this work with the FFB palm oil grading system. Two-thirds of the data
are for training and the remaining is for performance appraisal.

Numerous statistical measurements of efficiency and mean square error (MSE) were
applied as indexes to validate the performance of the classifier. In particular, an automatic
parameter tuning procedure as in Ref. [112] is implemented for the system to dynamic
adaptive thresholding algorithm for the oil palm FFB ripeness grading. The objective of
supervised learning is to create a concise model of the distribution of class labels in terms
of predictor features.

Training and Testing Stage

The training stage includes data collection, data analysis and a training model an-
alyzing 270 fruit samples of three different ripeness categories for the three different oil
palm FFB types that were collected, analyzed and then a training model for fruit image
type and ripeness classification was created. Meanwhile, the testing stage included testing
the grading system initially in the lab. Testing the grading system in the field ensured
that the system provided a high percentage of internal validity for findings obtained using
the system design. Furthermore, 90 samples for each class were used to test the oil palm
FFB ripeness grading system. Figure 10 illustrates the main approaches considered in the
classification module for oil palm FFB types and ripeness.

In general, the classification of FFB type and ripeness of oil palm was successfully
carried out based on the performance of three levels of image processing and subsequent
analysis, as shown in Figure 11.
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2.6. Classifier Performance Evaluation

The performance measurement of a classifier independently is conducted according to
its sensitivity and specificity. The analysis of the ROC of a classifier is a solution to limit the
empirical precision of binary classification. Results significantly greater than 50% could
be due to a biased classifier tested on an unbalanced dataset, and overall precision does
not differentiate between forms of error [113]. The experiments aimed to infer the crucial
architecture with the selected color, texture and spine models using the ROC as a statistical
measurement analysis. This analysis provides a quantitative assessment using AUC.

Receiver Operating Characteristic Curve

Figure 12 shows the ROC curve, which has become the standard tool for evaluating
predictive accuracy to evaluate and compare models and prediction algorithms. ROC
analysis offers a methodical analysis of the sensitivity and specificity of judgment [114,115].
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Sensitivity is the capability of the classifier to recognize the positive pattern amongst
the truly positive patterns. Specificity is the ability of the classifier to recognize the negative
patterns amongst the truly negative patterns. Figure 12 shows that point (0,1) is the
ideal classifier, which categorizes all the positive and negative cases appropriately. In
this instance, the false positive rate is none (0), and the true positive rate is all (1). In
addition, point (0, 0) indicates that the classifier predicted all the cases to be negative,
while point (1, 1) matches a classifier with all the cases that are positive. Point (1,0) means
the classifier fails to implement the correct classification for all the cases, as shown in
Figure 9. The given n test samples are constructed according to the confusion matrix as
illustrated in Table 2 that resulted from classification [113,115–117]. The calculation of
accuracy, sensitivity or true positive rate (TPR) and 1- specificity or false positive rate (FPR)
are given by ‘Equations (1)–(3)’, respectively.

Accuarcy =
TP + TN

n
(1)

TPR = Sensitivity =
∑ TP

∑ TP + ∑ FN
(2)

FPR = Speci f icity =
∑ TN

∑ TN + ∑ FP
(3)

where the true TP positives are the number of correctly classified maturities; true negatives
TN is the number of incorrectly classified maturities; false positives FP is the number
of maturities classified as non-maturities and false negative FN is the number of non-
maturities classified as maturities. Finally, the performance evaluation of the oil palm FFB
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maturity classification system classifier typically includes the measurement of sensitivity
and specificity as performance results based on the ROC curve and measurement of the
area under the ROC curve (AUC).

Table 2. Confusion matrix.

Test Actual Positive Actual Negative

Predicted Positive TP FP
Predicted Negative FN TN

Total P N

3. Results and Discussion

The FFB characteristics of the oil palm (color, texture and thorns) were extracted using
the algorithms of the color model, the texture model and the thorn model. Three different
supervised machine learning techniques, ANN, KNN and SVM, were incorporated into
the extracted features based on the three different models to make decisions regarding FFB
type and maturity. Experiments were carried out on the classifiers to select the appropriate
model for the FFB oil palm grading system and to ensure high-quality grading results.
The best possible classification accuracy can be achieved by selecting the highest AUC
measured from the ROC curve.

3.1. Classification Based on ANN–MLP

This section discusses MLP models as classifying FFB maturity of oil palm based on
statistical color function, color histogram, Gabor wavelets, GLCM and BGLAM functionality.
The different ANN models selected on the basis of the experimental results were performed
with different feature extraction techniques implemented in the oil palm grading system,
as shown in Figure 13. A comparison between the MSE and the effectiveness of the training
results and test steps was performed to validate the parameters of the ANN supervised
learning classifier, as shown in Table 3.

Table 3. MSE and efficiency result comparison of the training and testing stages based on the FFB
feature techniques.

FET Models
Training Stage Testing Stage

MSE Eff MSE Eff

Statistical
[40 × 10 × 1] 0.0080 0.9523 0.0190 0.8865
[40 × 20 × 1] 0.0072 0.9568 0.0197 0.8820
[40 × 30 × 1] 0.0038 * 0.9775 * 0.0182 * 0.8914 *

Histogram
[25 × 10 × 1] 9.9402 × 10−5 * 0.9994 * 0.0136 * 0.9189 *
[25 × 15 × 1] 9.8412 × 10−5 0.9994 0.0163 0.9024
[25 × 20 × 1] 9.5647 × 10−5 0.9994 0.0144 0.9140

GLCM
[40 × 10 × 1] 9.9991 × 10−5 0.9994 0.0291 0.8263
[40 × 20 × 1] 1.2126 × 10−4 0.9993 0.0330 0.8030
[40 × 30 × 1] 9.9943 × 10−5 * 0.9994 * 0.0278 * 0.8338 *

BGLAM
[45 × 11 × 1] 8.9770 × 10−5 0.9995 0.0242 0.8556
[45 × 22 × 1] 9.6629 × 10−5 * 0.9994 * 0.0177 * 0.8942 *
[45 × 33 × 1] 9.5860 × 10−5 0.9994 0.0215 0.8712

Gabor
[40 × 10 × 1] 9.9573 × 10−5 0.9994 0.0922 * 0.4489 *
[40 × 20 × 1] 9.9895 × 10−5 * 0.9994 * 0.0966 0.4228
[40 × 30 × 1] 9.9873 × 10−5 0.9994 0.1330 0.2048

Notes: FET = Feature extraction techniques, MSE = Mean square error, Eff = Efficiency, * = The best result.
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Figure 13. AUC score of FFB maturity based on feature extraction and ANN: (a) statistical,
(b) histogram, (c) GLCM, (d) BGLAM and (e) Gabor.

Table 3 indicates that the MLP and MSE learning stage of the learning procedures did
not exceed 0.003. The higher proficiency score observed revealed a selection scale of the
architectural MLP model [40 × 30 × 1], [25 × 10 × 1], [40 × 30 × 1], [45 × 22 × 1] and
[40 × 20 × 1] over all the tracks with statistical color function, color histogram, GLCM,
BGLAM and GW, respectively, for the FFB recording system. After several training sessions,
the MLP model was able to learn and perfectly match the target in the training phase with
extreme efficiency and with complete FFB palm oil training datasets. During the test phase,
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Figure 13a–e shows the classification of ROC plots performed by the FFB oil palm maturity
classification system, with a higher AUC score observed in the MLP models.

3.2. Classification Based on KNN

The basic principle of the oil palm grading system based on nearest neighbor (NN)
approximation is that two FFB images with similar color, texture and thorn features should
reveal similar classes and grades. Thus, using the FFB images of similar ripeness is sensible
when identifying the new FFB image. All images in the database can be grouped based on
their ripeness features. The nearest neighbor technique is defined as dividing a sample set
into categories, with each category holding similar samples that share the same features.
The testing sample is determined by the known classifications of the training samples.

Based on the samples’ characteristics, five main steps were described to classify FFB
images of oil palm into their categories (under-ripe, ripe and over-ripe). Indeed, choosing
the best k-values and appropriate distance measurements ensures the accuracy of the
results of the KNN classifier, which were usually chosen experimentally by static validation
with a set of k-values and distance measurements. Thus, the best k-value that can be used
with feature extraction techniques (statistical color feature, color histogram, Gabor wavelet,
GLCM and BGLAM) was verified.

Figure 14 shows the ROC area for the best results performed by KNN with different
values of k = 1, 3, 5, 7 and 9 and with different distance metrics, Euclidean, city-block,
cosine and correlation, for the FFB oil palm maturity grading system with feature extraction
techniques. Therefore, the experimental results show that k-value = 1 with the city-block
distance technique provides the greatest AUC scores equal to 93.00%, 92.00%, 91.00%, 92.00%
and 80% using feature extraction techniques, including statistical, color histogram, GLCM,
BGLAM and Gabor wavelet, respectively, based on the KNN algorithm, as shown in Figure 14.
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Baseline
Distance 1 [euclidean]/AUC=78.1481%
Distance 2 [cityblock]/AUC=79.6296%
Distance 3 [cosine]/AUC=73.7037%
Distance 4 [correlation]/AUC=74.0741%

Figure 14. K-value and distance metric for KNN and feature extraction techniques: (a) statistical,
(b) histogram, (c) GLCM, (d) BGLAM and (e) Gabor.

3.3. Classification Based on SVM

The SVM algorithm is implemented in the FFB maturity classification of oil palm, and
the input data include three sets of vectors in the n-dimensional SVM space. These data
create a discrete hyper-plane in this space, which increases the “margin” between the three
datasets and reduces the expected generalization error. In the case of oil palm FFB ripeness
grading, three target categories exist, namely under-ripe, ripe and over-ripe. In this case,
OAA is used, in which each class is split out and all the other classes are merged in the
oil palm FFB grading system to solve multiclass issues with less computation time. An
important aspect of the SVM model-building process is parameter tuning.
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Three different types of kernel functions, linear, polynomial and radial (RBF), were
used to perform the classification task. To control the trade-off between maximizing the
headroom and minimizing the training error, the sigma of RBF was set from 1 to 100, while
the polynomial distance was also set from 1 to 4. The magnitude of the regularization
parameter C was set from 1 to 1000 for polynomial kernels and RBF, as explained in Table 4.

Table 4. Best results of RBF kernel function based on sigma values and c with FFB ripeness grading.

FET RBF-Sigma C
Accuracy %

ROI1 ROI2 ROI3

Statistical 1 1000 90 90 82
Histogram 50 100 89 90 91

GLCM 1 500 75 78 79
BGLAM 10 500 92 90 92
Gabor 10 500 76 87 89

Note: FET = Feature extraction techniques.

As shown in Figure 15, the kernel function provided a significantly higher accuracy
rate for the FFB maturity classification of oil palm. The results are based on different
values of sigma and c, as examined by other research [111], and a comparison of linear
and nonlinear polynomial kernel functions. Therefore, as demonstrated in Table 4, the
experimental results show that RBF-sigma = 10 with C = 500 provides the greatest results
of 92% using BGLAM with ROI3 based on the SVM algorithm, as shown in Figure 15.
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Figure 15. Cont.
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BGLAM Feature Extraction with ANN Classifier 
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Figure 15. RBF parameters for SVM with feature extraction techniques: (a) statistical feature extrac-
tion, (b) histogram feature extraction, (c) GLCM feature extraction, (d) BGLAM feature extraction
and (e) Gabor feature extraction.

3.4. Experimental Results

Four experiments were carried out. In experiment 1, the texture characteristics of the
oil palm were extracted and the classification was performed for the FFB type classifica-
tion. In experiments 2, 3 and 4, oil palm color, texture and thorn features were extracted.
The classification was then conducted for the Nigrescens, Oleifera and Virescens FFB
ripeness grading.

The complete picture of the threshold between the sensitivity and 1- specificity is
displayed by plotting the ROC curve across a series of threshold points. The AUC is
considered to be an effective measurement of the inherent validity of a grading system test.
This curve is suitable for (a) assessing the discriminatory ability of a test to pick correctly the
under-ripe, ripe and over-ripe classes; (b) finding the optimal threshold point to minimize
class misclassification and (c) comparing the efficacy of ROI1, ROI2 and ROI3 for assessing
the same sample or class, as illustrated in Figure 16.
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Figure 16. Oil palm FFB type classification based on BGLAM and ANN classifier.
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3.4.1. FFB Type Grading System Results

The oil palm grading system was able to accurately classify the three different oil palm
FFB types based on the external texture features and properties by using feature extraction
techniques GLCM and BGLAM and supervised machine learning classifiers ANN, KNN
and SVM, as critically explained in Table 5.

Table 5. Results of test computing FFB type classification based on GLCM and BGLAM using ANN,
KNN and SVM.

Image Size Classifiers

Texture Feature Extraction Techniques

GLCM BGLAM

Testing
Accuracy (%) Time (s) Testing

Accuracy (%) Time (s)

ROI1
ANN 89.00 4.08 91.00 1.02
KNN 87.00 4.06 75.00 0.98
SVM 79.00 4.7 90.00 1.74

ROI2
ANN 86.00 0.553 89.00 0.43
KNN 84.00 0.50 76.00 0.38
SVM 67.00 1.13 77.00 1.14

ROI3
ANN 86.00 0.56 93.00 ** 0.44 **
KNN 77.00 0.51 89.00 0.40
SVM 69.00 1.22 82.00 1.32

Note: ** = The best result.

Table 5 indicates that the fastest and most accurate method and technique for the oil
palm type grading system is the BGLAM feature extraction technique combined with the
ANN supervised machine learning technique applied on pruning a 100 × 100-pixel FFB
image with the ROI3. This finding achieved an optimal accuracy of 93.00% and an image
processing speed of 0.44 s in the test performance.

3.4.2. FFB Ripeness Grading System Results

The maturity classification task was trained and tested for the three closest classes,
over-ripe, ripe and under-ripe, based on the three FFB maturity models of oil palms: color,
texture and thorns.

Color Model

The ripeness grading system testing performance based on the color model for different
FFB image ROIs was evaluated. The results are clearly illustrated in Table 6.

Table 6 indicated the optimal methods and techniques that are the fastest and most
accurate for the ripeness grading system. The data are based on the color histogram feature
extracted combined with the ANN technique applied to the 100 × 100-pixel FFB image size
with ROI3. The results achieved 93.00% accuracy and 1.6 s image processing speed in terms
of testing performance for Nigrescens and Oleifera and 100%, 93% testing performance
accuracy and 1.4 s image processing speed based on the ANN technique applied with ROI2.
For Virescens, the statistical color feature accurately obtained 93% testing performance
based on ANN for the different oil palm types. However, the results were limited by the
slow processing time compared with the color histogram performance and the oil palm
system objectives.
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Table 6. Results of test computing FFB ripeness classification based on statistical and histogram using
ANN, KNN and SVM.

T C Image Size

Color Feature Extraction Techniques

Statistical Color Feature Color Histogram

Testing Accuracy (%) Time (s) Testing Accuracy (%) Time (s)

T1

ANN
ROI1 93.00 3 92.00 2.7
ROI2 92.00 2.5 92.00 1.4
ROI3 92.00 2.65 94.00 ** 1.6 **

KNN
ROI1 81.00 2.3 81.00 2.5
ROI2 82.00 1.2 82.00 1.2
ROI3 82.00 1.02 82.00 1.3

SVM
ROI1 81.00 5.3 81.00 7
ROI2 81.00 4.5 82.00 6
ROI3 80.00 5 80.00 7

T2

ANN
ROI1 93.00 3 93.00 2.7
ROI2 92.00 2.5 93.00 1.4
ROI3 91.00 2.65 94.00 ** 1.6 **

KNN
ROI1 92.00 2.3 93.00 2.5
ROI2 91.00 1.2 90.00 1.2
ROI3 92.00 1.02 92.00 1.3

SVM
ROI1 90.00 5.3 90.00 7
ROI2 90.00 4.5 90.00 6
ROI3 82.00 5 91.00 7

T3

ANN
ROI1 91.00 3 90.00 2.7
ROI2 88.00 2.5 93.00 ** 1.4 **
ROI3 90.00 2.65 92.00 1.6

KNN
ROI1 74.00 2.3 78.00 2.5
ROI2 74.00 1.2 79.00 1.2
ROI3 87.00 1.02 79.00 1.3

SVM
ROI1 69.00 5.3 78.00 7
ROI2 73.00 4.5 78.00 6
ROI3 72.00 5 79.00 7

Notes: T = Types, T1 = Nigrescens, T2 = Oleifera, T3 = Virescens, C = Classifier, ** = The best result.

Texture Model

The ripeness grading system testing performance based on the texture model for
different FFB image ROIs was evaluated. The results are clearly illustrated in Table 7.

As indicated in Table 7, the fast and accurate method and techniques used for the
oil palm FFB ripeness grading system based on the texture model were primarily the
BGLAM combined with the ANN technique. This technique was applied to the ROI3 with
92.00% testing performance accuracy with a 0.43 s image processing speed for Nigrescens.
Moreover, the BGLAM combined with the ANN technique applied to the ROI2 achieved
93.00% testing performance accuracy with a significant image processing speed of 0.40 s
for Oleifera and Virescens. Due to the sensitivity of SVM to noise and the weakness of
the Gabor wavelet and GLCM techniques with texture features and processing time, the
limitations of these methods and techniques are clearly stated in the testing result tables.

Thorn Model

The ripeness grading system performance of the oil palm FFB types for testing based
on the thorn model for the different ROIs was evaluated. The results are clearly illustrated
in Table 8.
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Table 7. Results of test computing FFB ripeness classification based on GLCM, GLAM and Gabor by
using ANN, KNN and SVM.

T C Image Size

Texture Feature Extraction Techniques

GLCM BGLAM Gabor

Testing Accuracy
(%) Time (s) Testing Accuracy

(%) Time (s) Testing Accuracy
(%) Time (s)

T1

ANN
ROI1 91.00 3.6 89.00 1 86.00 1.03
ROI2 89.00 1.7 90.00 0.40 81.00 0.43
ROI3 91.00 2.2 92.00 ** 0.43 ** 80.00 0.44

KNN
ROI1 79.00 2.8 80.00 1 74.00 1.04
ROI2 77.00 1.5 82.00 0.39 77.00 0.39
ROI3 78.00 1.6 81.00 0.40 77.00 0.41

SVM
ROI1 80.00 7.7 80.00 1.9 76.00 1.97
ROI2 76.00 5.5 81.00 1 82.00 1.79
ROI3 79.00 6 81.00 0.85 74.00 2.00

T2

ANN
ROI1 92.00 3.6 92.00 1 83.00 1.03
ROI2 91.00 1.7 93.00 ** 0.40 ** 79.00 0.43
ROI3 92.00 2.2 93.00 0.43 83.00 0.44

KNN
ROI1 79.00 2.8 90.00 1 78.00 1.04
ROI2 80.00 1.5 91.00 0.39 90.00 0.39
ROI3 91.00 1.6 92.00 0.40 79.00 0.41

SVM
ROI1 75.00 7.7 92.00 1.9 76.00 1.97
ROI2 79.00 5.5 90.00 1 88.00 1.79
ROI3 80.00 6 92.00 0.85 89.00 2.00

T3

ANN
ROI1 87.00 3.6 88.00 1 82.00 1.03
ROI2 89.00 1.7 93.00 ** 0.40 ** 81.00 0.43
ROI3 86.00 2.2 91.00 0.43 77.00 0.44

KNN
ROI1 76.00 2.8 77.00 1 74.00 1.04
ROI2 72.00 1.5 79.00 0.39 73.00 0.39
ROI3 72.00 1.6 90.00 0.40 78.00 0.41

SVM
ROI1 65.00 7.7 76.00 1.9 72.00 1.97
ROI2 64.00 5.5 79.00 1 67.00 1.79
ROI3 67.00 6 80.00 0.85 68.00 2.00

Notes: T = Types, T1 = Nigrescens, T2 = Oleifera, T3 = Virescens, C = Classifier, ** = The best result.

Table 8. Results of test computing FFB ripeness classification with statistical, histogram, GLCM,
BGLAM and Gabor using ANN, KNN and SVM.

T Technique

Image Size

ROI1 ROI2 ROI3

Testing
Accuracy (%) Time (s) Testing

Accuracy (%) Time (s) Testing
Accuracy (%) Time (s)

T1

Statistical and KNN 79.00 4.06 78.00 2.3 79.00 2.5
Histogram and SVM 80.00 9 81.00 8 81.00 8.5

GLCM and ANN 87.00 ** 3.7 ** 84.00 2.6 85.00 2.9
BGLAM and ANN 76.00 1.6 79.00 0.8 78.00 0.83

Gabor and KNN 78.00 1.6 74.00 0.78 74.00 0.84

T2

Statistical and KNN 87.00 4.06 90.00 2.3 79.00 2.5
Histogram and SVM 88.00 9 80.00 8 79.00 8.5

GLCM and ANN 91.00 3.7 89.00 2.6 88.00 2.9
BGLAM and SVM 91.00 2.5 89.00 1.36 91.00 ** 1.20 **
Gabor and KNN 89.00 1.6 82.00 0.78 86.00 0.84

T3

Statistical and ANN 84.00 4.06 86.00 2.3 87.00 2.5
Histogram and SVM 73.00 9 77.00 8 79.00 8.5

GLCM and ANN 88.00 3.7 84.00 2.6 87.00 8.5
BGLAM and ANN 84.00 1.6 82.00 0.8 87.00 ** 0.83 **

Gabor and KNN 74.00 1.6 73.00 0.78 78.00 0.84

Notes: T = Types, T1 = Nigrescens, T2 = Oleifera, T3 = Virescens, ** = The best result.

Due to data noise, the thorn model shows poor results based on performance and
processing time, while BGLAM combined with ANN technology with SVM technology
applied to ROI3 achieved a test performance of 91.00% and an Oleifera image processing
speed of 1.20 s.
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4. Conclusions

An FFB fruit palm oil ripeness classification system was designed based on remote
sensing sensors (CCD camera) and image processing technologies as computer vision
applications for inspection of agricultural crop quality.

The system aims to ensure the maturity class of different types of FFB palm oil based
on external characteristics, such as color, texture and thorns. Image processing methods
and techniques, including the acquisition and segmentation of images in ROI1, ROI2 and
ROI3 and the extraction of image properties as a function of the statistical function of the
color, histogram color, GLCM, BGLAM and Gabor wavelet, were implemented.

In addition, decision-making for image classification through training and testing of
the system based on the different algorithms, SVM, KNN and ANN, was implemented on a
maturity classification system. The training and testing of oil palm FFB species (Nigrescens,
Oleifera and Virescens) and maturation (under-ripe, ripe and over-ripe) depending on the
color, texture and pattern of the thorns were extracted.

AUC and ROC were used to accurately estimate and evaluate the performance of
different classifiers based on system performance, processing time and system cost. The
results showed that the texture models were improved with ANN classifiers as the best
result of the algorithm classifier, ANN-based BGLAM with ROI3, provides 93.00% accuracy
with a shorter image processing time of 0.44 (s) for FFB type recognition. Meanwhile, the
BGLAM algorithm that relies on ANN and ROI3 obtained 92.00% accuracy and a short
processing time of 0.43 (s) for Nigrescens, plus the algorithm BGLAM based on ANN and
ROI2 obtained 93.00% accuracy and a short processing time of 0.40 (s) for Oleifera and
Virescens for maturity classification.

In the final analysis, different predictions were used. Maximum accuracy was obtained
using an ANN classifier with the highest prediction accuracy observed compared to all
the other classifiers. The following more accurate prediction is indicated by the different
classifiers: KNN and SVM, respectively. The scope of the existing work is limited to
investigation of the relationship between oil palm fruit ripeness level and image processing
approach and AI.

As mentioned above, the authors have implemented several experiments based on
different methods and techniques for automation of a real-time oil palm FFB ripeness
grading system that carried out satisfactory results, but, in the future, the existing work
can be extended to include some recommended practical actions and scientific studies of
the system’s hardware and software for developing the current system and improving
the results.

In terms of hardware development, proper hardware design and development make
it easier for the programmer to set his algorithm for a high-accuracy performance result.
(1) Since the illumination system is one of the most important hardware parts in the oil
palm grading system, in order to control the lighting beam incident on FFB to be reflected
to the camera, a linear polarizer (LP) filter should be fixed at the camera and each light
source, and (2) it is important to use other types of sensors, such as a thermal camera, to
collect valuable information about the oil palm FFB ripeness and build grading system
models based on the obtained information.

Regarding software development, the real-time oil palm FFB ripeness grading system
was implemented as a solution for effective oil palm FFB ripeness grading. However, in
order to improve the oil palm system functionality and performance, different methods
and techniques should be proposed based on the system software, such as (1) using the oil
palm FFB internal feature lab analysis information, such as oil content and free fatty acid,
to correlate with external features of FFB, such as color and texture features, to validate and
support the oil palm FFB ripeness result; (2) applying the retrieval methods and techniques
as a decision-making system based on the similarity calculation as proposed and illustrated
in Figure 5; (3) further research is needed to generalize the system for other agriculture
applications by considering the size, weight and shape of FFB during the system design.
Hence, that assembles the system to be a multipurpose application system, which can be
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used in similar applications for different agricultural crops. Although the existing study
utilizes image processing, similar results are expected to be obtained using a portable
device. The proposed method has the potential to be a rapid on-site assessment tool for
ripeness classification in the oil palm industry.

Author Contributions: Conceptualization, M.S.M.A., A.R.M.S., S.K.-B., M.H.B.M., O.M.B.S. and
A.M.; methodology, M.S.M.A., A.R.M.S., S.K.-B., M.H.B.M., O.M.B.S. and A.M.; software, M.S.M.A.
and A.R.M.S.; validation, M.S.M.A. and A.R.M.S.; formal analysis, M.S.M.A., A.R.M.S., M.H.B.M.
and O.M.B.S.; investigation, M.S.M.A., A.R.M.S., S.K.-B., M.H.B.M., O.M.B.S. and A.M.; data curation,
M.S.M.A., A.R.M.S. and O.M.B.S.; writing—original draft preparation, M.S.M.A. and A.R.M.S.;
writing—review and editing, M.S.M.A., A.R.M.S., S.K.-B., M.H.B.M., O.M.B.S. and A.M.; supervision,
A.R.M.S. and M.H.B.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Ministry of Science, Technology and Innovation Malaysia
(MOSTI); grant titled “Development of an Oil Palm Fresh Fruit Bunches (FFB) Image Analyser”
(Grant Number 5450426) is hereby acknowledged in supporting this research. Publication of this
paper was supported by: Universiti Putra Malaysia Journal Publication Fund (JPF) administered by
the Research Planning & Knowledge Management Division, Research Management Centre (RMC),
Universiti Putra Malaysia.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: All data will be made available on request to the corresponding
author’s email with appropriate justification.

Acknowledgments: The authors would like to thank the Libyan Embassy in Malaysia, University Pu-
tra Malaysia (UPM), Faculty of Engineering, Geospatial Information Science Research Centre (GISRC)
and Department of Biological and Agricultural Engineering for providing support, infrastructure
and laboratory facilities. The authors thank Research Station—Kluang, Malaysian Palm Oil Board
(MPOB), Sime Darby Plantation Sdn. Bhd, Agriculture Park UPM (Taman Pertanian Universiti) and
Spatial Research Group, UPM, for assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. NOAA. What Is Remote Sensing? National Ocean Service Website. 25 June 2018. Available online: https://oceanservice.noaa.

gov/facts/remotesensing.html (accessed on 26 February 2021).
2. USGS. What Is Remote Sensing and What Is It Used for? Mapping, Remote Sensing, and Geospatial Data. 18 August 2016. Avail-

able online: https://www.usgs.gov/faqs/what-remote-sensing-and-what-it-used?qt-_news_science_products=7&qt-news_
science_products=7#qt-news_science_products (accessed on 30 September 2019).

3. Cracknell, A.; Hayes, L. Introduction to remote sensing. In Geocarto International. 40; Taylor & Francis: London, UK, 2008; Volume 7.
4. Cracknell, A.P. The development of remote sensing in the last 40 years. Int. J. Remote Sens. 2018, 39, 8387–8427. [CrossRef]
5. Murai, S. Remote Sensing Notes; Sensing, J.A.o.R., Ed.; National Space Development Agency of Japan (NASDA): Tokyo, Japan;

Remote Sensing Technology Center of Japan (RESTEC): Tokyo, Japan, 1999.
6. Richards, J.A. Remote Sensing Digital Image Analysis—An Introduction, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2013.
7. Tempfli, K.; Huurneman, G.C.; Bakker, W.H.; Janssen, L.L.F.; Feringa, W.F.; Gieske, A.S.M.; Grabmaier, K.A.; Hecker, C.A.; Horn,

J.A.; Kerle, N.; et al. Principles of Remote Sensing-An Introductory Textbook, 4th ed.; Janssen, L.L.F., Huurneman, G.C., Eds.; The
International Institute for Aerospace Survey and Earth Sciences (ITC): Enschede, The Netherlands, 1999; Volume 2, p. 591.

8. Li, X.; Gu, X.; Yu, T.; Cheng, T.; Li, J.; Gao, H.; Wang, Z. Atmospheric scattering and turbulence modulation transfer function for
CCD cameras on CBERS-02b and HJ-1A/1B. Int. J. Remote Sens. 2012, 33, 1413–1427. [CrossRef]

9. Demircan, A.; Geiger, B.; Radke, M.; Von Schönermark, M. Bi-directional reflectance measurements with the CCD line camera
WAAC. Remote Sens. Rev. 2009, 19, 95–110. [CrossRef]

10. Hinkler, J.; Pedersen, S.B.; Rasch, M.; Hansen, B.U. Automatic snow cover monitoring at high temporal and spatial resolution,
using images taken by a standard digital camera. Int. J. Remote Sens. 2010, 23, 4669–4682. [CrossRef]

11. Harrison, B.A.; Jupp, D.L.B.; Hutton, P.G.; Mayo, K.K. Accessing remote sensing technology The microBRIAN example. Int. J.
Remote Sens. 2007, 10, 301–309. [CrossRef]

12. Kherwa, P.; Ahmed, S.; Berry, P.; Khurana, S.; Singh, S.; Sen, J.; Mehtab, S.; Cadotte, D.W.W.; Anderson, D.W.; Ost, K.J.; et al. Machine
Learning Algorithms, Models and Applications. In Artificial Intelligence; Sen, J., Ed.; IntechOpen: London, UK, 2022; p. 155.

13. Khan, H.; Haq, I.U.; Munsif, M.; Khan, S.U.; Lee, M.Y. Automated Wheat Diseases Classification Framework Using Advanced
Machine Learning Technique. Agriculture 2022, 12, 1226. [CrossRef]

https://oceanservice.noaa.gov/facts/remotesensing.html
https://oceanservice.noaa.gov/facts/remotesensing.html
https://www.usgs.gov/faqs/what-remote-sensing-and-what-it-used?qt-_news_science_products=7&qt-news_science_products=7#qt-news_science_products
https://www.usgs.gov/faqs/what-remote-sensing-and-what-it-used?qt-_news_science_products=7&qt-news_science_products=7#qt-news_science_products
http://doi.org/10.1080/01431161.2018.1550919
http://doi.org/10.1080/01431161.2011.606242
http://doi.org/10.1080/02757250009532412
http://doi.org/10.1080/01431160110113881
http://doi.org/10.1080/01431168908903869
http://doi.org/10.3390/agriculture12081226


Agriculture 2022, 12, 1461 25 of 28

14. Kuan, C.-H.; Leu, Y.; Lin, W.-S.; Lee, C.-P. The Estimation of the Long-Term Agricultural Output with a Robust Machine Learning
Prediction Model. Agriculture 2022, 12, 1075. [CrossRef]
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