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Temporal sampling does more than add another axis to the vector of observables. Instead, under the recognition that 
how objects change (and move) in time speaks directly to the physics underlying astronomical phenomena, next-
generation wide-field synoptic surveys are poised to revolutionize our understanding of just about anything that goes 
bump in the night (which is just about everything at some level). Still, even the most ambitious surveys will require 
targeted spectroscopic follow-up to fill in the physical details of newly discovered transients. We are now building a 
new system intended to ingest and classify transient phenomena in near real-time from high-throughput imaging data 
streams. Described herein, the Transient Classification Project at Berkeley will be making use of classification 
techniques operating on “features” extracted from time series and contextual (static) information. We also highlight the 
need for a community adoption of a standard representation of astronomical time series data (ie. “VOTimeseries”). 
 
 

1 Introduction 
 
Classification and knowledge extraction from large imaging surveys of the static sky is a 
maturing endeavor. Star-galaxy classification and photometric redshift estimates are well 
posed problems where knowledge of the underlying physics allows for robust estimates 
of uncertainty. Automated classification is critical for source demographics, especially 
informing large statistical questions of the data. More recently, the autonomous 
classification with time domain surveys have had some notable successes, particularly 
with microlensing surveys 12 and supernova searches 4, 5, 9. Indeed, optimizing 
reductions, survey cadence strategies, and software algorithms in the search of a specific 
class of phenomena has been the most straightforward use of synoptic imaging (see 
Bailey, this workshop).While interested primarily in supernovae, the deep lens survey (2; 
see Becker, this workshop) is one of the few large-field synoptic surveys that attempted 
to provide multi-class inferences in real-time. Still, those classifications 
were rather broadbrushed in physical scope (“supernova”, “fast moving”, “slow moving”, 
“variable star”, “unknown (stationary)”).With the advent of large-scalemulticolor 
imaging surveys to appreciable depths (e.g., DES, Pan-STARRS1, Skymapper, & LSST), 
the need for a realtime and general classification scheme of astronomical transient 
is particularly pressing. 
 
The challenges in time-domain classificationmay be subdivided into “discovery” and 
“inference.” Discovery of a variable or a moving source requires at least two images 
with the same filter system. The characteristic separation in time will dictate the types of 
sources that are seen to vary: taken too close in time, moving solar system sources do not 
change their apparent angular position enough to recognize change; taken too distant in 
time, slowly moving solar system sources would be single apparition point sources, 
confused for extra-solar events. Without the benefit of filtering techniques with several 
images of a static sky, transient discovery on a few images is particular prone to cosmetic 
defects in the imaging arrays, cosmic rays, and near-field (nonastrophysical) 
interlopers1. Transient discovery can be performed either in “catalog space” (noting 
significant changes of source brightness in two epochs) or with source extraction 



in image differences 1. The former is generally less computationally intensive but more 
susceptible to error due to variable seeing and imaging array defects. Image differencing 
is generally more robust in crowded fields and where transients are embedded in galaxy 
light. 
 
Once a transient source is discovered, we wish to surmise the nature of the source. Major 
features of a general classification scheme are identified: 
 
– The inferences about the physical nature of the source (and the source variability) 
should make full use of prior knowledge about transients without coercing every new 
transient into a predefined set of classes. Different users should be allowed to tune their 
priors as the science requires. 
 
– The inferences will necessarily be probabilistic in nature and should evolve in time as 
more observations are obtained. 
 
– The classifications should be as near real-time as possible to allow appropriate follow-
up. 
 
– The classifications should allow feedback fromend users and adapt the classification 
algorithms accordingly. 
 
We are now building a framework that will be capable of classifying transient sources 
fromtime-domain surveyswith these features. Similar work in a machine-learning context 
has been reported elsewhere (e.g., 13, 14 and Mahabal, this workshop; Bailey, this 
workshop). There are several components to this “Transient Classification Project” 
(TCP), described herein. We aim to have a working system in place by the time that the 
Palomar Transients Factory (PTF; 8) comes on-line in Fall 2008. 
 
2 Data Ingest 
 
The starting point of transient classification, from the perspective of the TCP, is a stream 
of metadata describing the individual detections (either from image differences or catalog 
detections). We coerce this metadata stream to an internal data model using a custom 
translation client written for each survey. Since we have been developing the TCP 
using, primarily, the public data from the SDSS-II stripe 82 survey 7, we found it 
necessary to recalibrate the photometry and astrometry from the raw detection files. 
Objects from all surveys are ingested into a relational database with 
the object positions indexed using the hierarchical triangle mesh (HTM; 10) at depth of 
14 and 25 to allow for fast and accurate searching. 
 
Object detections need to be associated with astrophysical sources. Unlike with static or 
after-the-fact time-domain surveys where a filtered deep sky image may be used as 
the fiducial “true” representation of source brightnesses and source positions, a real-time 
time-domain survey necessarily must associate each object detection with an 
astrophysical source. We create sources on-the-fly using a probabilistic framework that 



asks the question whether a new object belongs to an existing source or demands the 
creation of a new source. For a new object with detected position (Oα ±  O,α,Oδ ±  O,δ) we 
can find a set of possible associated sources {S} by searching in the source catalog for 
sources with positions with angular distance2 d  of O; typically we use d0   10. For each 
source Si in {S} we compute the logarithm of the odds ratio log oi comparing the 
hypotheses that the object belongs to that source or should be a separate source. Under 
the assumption of Gausianity with ¯  Sα,δ equal to the weighted mean position of O and Si 
Since we expect −2 ln oi to be distributed as  2 with 2 degrees of freedom we associate the 
object with the Si meeting some predetermined probability threshold. As the number 
of objects associated with a source grows, the number of lower probability associations 
should also grow; through a simulation, we have found the correct number of sources 
are created if we change the probability threshold in accordance with the number of 
sources already associated with that object. 
 
3 Source Classification 
 
3.1 Representation 
 
The creation or modification of a source triggers a series of steps that will lead to an 
updated statement about the nature of that source. In an effort to modularize the software 
tasks, and prepare for the possibility of distributing the computational tasks (see 4), we 
have build a portable (XML-based) source container (which we called “VOSource”), 
consisting of rudimentary source position, results from survey queries (such as NED), 
and the time series photometry associated with the source. The time series (which we call 
“VOTimeseries” is marked up as a VOTable3, similar to the way in 
which time series data are represented in the VizieR  catalogs. An example of a 
“VOSource” container is: 
 
3.2 Feature Extraction:Mixing the Time-domain with Context 
 
The time series of a source is anything but standard— data are irregularly sampled, noisy, 
sometimes spurious, andmay include detections as well as non-detections. In light of this, 
we seek to homogenize the time series data by extracting “features.” A feature is a real-
number line mapping, often involving basic statistical metrics on the time series (such 
as a chi-square per degree of freedom or skewness). We are developing a custom Python 
codebase which is capable of ingesting a VOTimeseries and returning the features of that 
time series. For sources with too few observations appropriate for a given feature (such as 
“largest significant peak in a Lomb-Scarle periodogram”), the results from that specific 
feature extraction is reported as undefined. One of the benefits of mapping heterogeneous 
information to a series of real-number lines is that the nature of that information is 
abstracted from operations performed on those feature vectors farther downstream. To 
this end, (static) context related to a transient source (e.g., the location with respect to the 
supergalactic plane, distance to nearest cataloged galaxy, redshift of that galaxy, etc.) can 
play a powerful discriminating role. For example, a new point source which is discovered 
close to the ecliptic plane and a region of significant Galactic extinction is much more 
likely to be a slow moving solar system object than a distant supernova. 



 
3.3 Rapid Identification and Adaptation Using Machine Learning 
 
The TCP will make use of prior knowledge of time series and contextual information for 
each known class of transient. To do so, we are assembling a large labeled training set of 
real-world examples of known classes. To create set of prior feature distributions, these 
sources will be degraded and sampled with cadences and sensitivities typical 
of the survey. A new source and its subsequently derived feature vector can be compared 
directly to the priors. We do not yet know what family of classifiers will prove the 
most robust (see Mahabal, this workshop, for an extensive discussion of current 
techniques). However, we are exploring the use of pairwise Naive Bayesian voting 
techniques as a fast approach capable of yielding probabilistic statements about the nature 
of new transients. Online learning algorithms 3 (such as “shifting experts” 6) and 
ensemble algorithms (such as “boosting” 11) should be particularly applicable, since 
these classes of algorithms allow quick updates of the classification inferences without 
needing to re-analyze all the available data. When a new event arrives that cannot be 
characterized by existing classes, methods for identifying the anomaly and incorporating 
it into a new class are being considered. 
 
4 Future Steps 
 
The TCP is a work in progress but the basic architectural decisions have now been put in 
place. Aside from the development and testing of the machine learning techniques, 
there are several other elements we hope the implement in the upcoming year: 
 

– Multi-survey Footprint Server . Non-detections of a transient source provide 
valuable constraints for classification. A footprint server, providing upper-limits 
for a given position, time and filter, will be therefore crucial to the classification 
algorithms. 

– Distribution .We plan to make full use of the VOEvent- Net architecture to 
distribute newly-classified transients to TCP clients (using a variety of 
push/pullmechanisms) 

– Feedback Mechanisms We will require a formalized conduit for end users (on 
the receiving end of probabilistic classifications) to feed back in to the system the 
outcome of transient followup. 

– Massively Distributed Computing We are scoping the use of the BOINC 
architecture5 to create a TCP@Home environment, where individual users will 
provide spare CPU cycles to crunch feature extraction methods and run 
classification algorithms. 

 
While especially suited for the PTF, this classification engine is being built to not only 
allow several surveys streams to flow through the system but allow the information 
extracted in each stream to inform the classifications derived from other surveys. Since 
the implementation of the feature extraction and classification algorithms is atomized, we 
expect TCP to scale well to the data rates advertised for LSST. 
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