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Abstract— Due to the complexity of contemporary VLSI cir-
cuits, physical synthesis has become a crucial step for achiev-
ing design closure. The placement of cells directly impacts the
routing solution. For example, a region with a high cell den-
sity can lead to pin access issues in detailed routing. Therefore,
small inefficiencies in the placement solution can be boosted
during routing, which has a negative impact on design qual-
ity and convergence. Unfortunately, most academic research
works evaluate their results only at the target step without con-
sidering the complete place and route flow. In this work, we ex-
perimentally explored different flows built up from academic
placers and routers to find which one leads to the best overall
results so that researchers can use them as reference. In or-
der to evaluate those flows, we used the ISPD 2018 and ISPD
2019 Contest benchmarks, which are the most realistic aca-
demic benchmarks available with placement and routing in-
formation. Considering the evaluator reports, no combination
of tools achieved the best result for all circuits. Nevertheless,
the flow Contest placement + CUGR + TritonRoute achieved
the best results in seventeen out of twenty benchmark circuits.

Index Terms— Electronic Design Automation; Physical Syn-
thesis; Placement; Routing

I. INTRODUCTION

The design of modern digital circuits faces increasing dif-
ficulty in meeting timing and power constraints. New de-
vices require high performance, but users expect the battery
to last. In this context, physical design became a vital step
to enable those power, performance, and area (PPA) con-
straints [1].

The length of circuit interconnections plays an essential
role in the circuit performance and power [2]. Therefore,
efficient placement and routing algorithms are necessary to
find good solutions for circuits with millions of cells. Dur-
ing placement, locations are determined trying to minimize
mainly wirelength while being aware of other metrics such
as congestion. The routing step connects all nets, refining
the routing solution in terms of wirelength and number of
vias while satisfying complex manufacturing constraints.

Due to the complexity of technology constraints and the
size of modern circuits, it is infeasible to find an optimal so-
lution for the placement and routing problems in acceptable
runtime. Therefore, we need to rely on smart strategies and
heuristics to find the best solution in a reasonable runtime.

The most common strategy to solve the placement prob-
lem is to start with an analytical solution to find an initial
global placement for the whole circuit [3, 4, 5, 6, 7, 8, 9].
Due to the complexity of modern circuits, global placement
is simplified to allow overlaps between cells. Then, it is fol-
lowed by a legalization step that removes all those overlaps

while keeping cells within the circuit borders. Finally, sev-
eral optimization techniques can be used to improve the so-
lution further.

The routing step is also subdivided into smaller steps due
to its complexity. First, a global routing step finds the paths
to connect all nets without actually assigning wires to the
routing tracks. Then, it is followed by a detailed routing
step that refines the global routing solution assigning it to
specific routing tracks while preserving quality and satisfy-
ing technology constraints [1]. Global routing usually starts
with pattern routing or maze routing to find a path for each
interconnection segment. However, depending on the order
the nets are routed, this may lead to over-congested regions.
Thus, a subsequent rip-up and reroute step is executed to fix
this congestion without degrading too much the wirelength
[10, 11]. A similar strategy is adopted for detailed routing,
running a path search algorithm to connect the wire segments
while respecting all design rules imposed by the technology
node. However, sometimes it is impossible to route all the
nets following the solution found by global routing. When
that happens, the detailed routing algorithm needs to reroute
those nets accordingly.

The separation into placement and routing steps is essen-
tial to allow handling the huge complexity of contemporary
designs. However, these two steps are strongly correlated in
such a way that small inefficiencies in the placement solu-
tion can be amplified during routing, thus deteriorating de-
sign quality and convergence. For example, a region with
a high cell density can lead to pin access issues in detailed
routing.

Given the aforementioned difficulties, it is possible to de-
duce that it is a challenge to select which placement and
routing tools to use when synthesizing a circuit. This dif-
ficulty affects not only the designers that want to rely on
academic tools but also the researchers. Particularly, most
academic research works evaluate their results only at the
target step without considering the complete place and route
flows. However, a few recent works propose optimization
techniques to promote the collaboration between routing and
placement steps (e.g. [12]), and thus, their improvements
should be evaluated considering the whole physical synthe-
sis flow.

Since 2016, the IEEE CEDA Design Automation Tech-
nical Committee (DATC) is developing a public reference
design flow named DATC Robust Design Flow (RDF) [13].
This flow aims to provide a foundation and backplane for
academic research in the RTL-to-GDS IC implementation
arena. The DATC RDF-2021 version includes the Open-
ROAD Flow project [14] for the physical synthesis. How-
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ever, the DATC RDF flow just integrates the tools without
any detailed analyses about the interaction between them.
Searching to fill this gap, in this work, we experimentally
explored twelve flows built up from academic placers and
routers to find which one can lead to the best results so that
researchers can use them as references. In order to evalu-
ate those flows, we used the ISPD 2018 [15] and ISPD 2019
[16] CAD Contest benchmarks, which are the most realistic
academic benchmarks available with placement and routing
information.

The rest of this paper is structured as follows. Sections II.
and III. present, respectively, the state-of-the-art placement
and routing academic tools that we used to build the flows
evaluated in this work. Then, Section IV. details the experi-
ments we performed to evaluate those flows and the discus-
sions to choose the best flow. Finally, Section V. presents
some conclusions and challenges faced by this work.

II. PLACEMENT

State-of-the-art placement algorithms are based on the an-
alytical placement approach. This approach uses a mathe-
matical formulation to place all cells in the circuit area [1].
This placement aims to minimize wirelength while keeping
density under control. Equation (1) is a typical cost func-
tion for placement, where WL(n) represents the wirelength
of a net n and D(x, y) is a density penalty applied to the
circuit. The parameter λ is used to control the trade-off be-
tween wirelength minimization and density penalty. This is
typically done in steps, wherein one step wirelength is mini-
mized, and in the next step, cells are spread to reduce density.

min(
∑
n∈N

WL(n)) + λD(x, y) (1)

Depending on the way wirelength and density are mod-
eled in Equation (1), placement can be solved in different
ways. However, regardless of the model, this formulation
still allows overlaps between cells, so the result is not a legal
placement. Therefore, a legalization algorithm is used after-
ward to remove all cell overlaps while keeping cells within
the circuit boundaries and properly aligned with the circuit
sites and rows. Since the legalization process disturbs the
placement, additional local optimization steps are applied to
further improve placement without violating the legality con-
straints.

In this work, we used two placement academic tools as
references: Eh?Placer [6] and DREAMPlace [7]. Thus, in
this Section, we will further explain these tools.

A. Eh?Placer

Figure 1 shows the overall flow of the Eh?Placer engine.
Eh?Placer is divided into three main stages: initial computa-
tions, region-aware global placement, and technology-driven
legalization. The first stage (initial computations) performs
some preprocessing that will be useful in the other stages.
First, modern circuits have regions with different voltages,
and only cells with the same voltage can be placed within a
given region. Those are called fence regions, and the initial
computations stage starts by identifying which cells belong
to each fence region. Also, any cell that is not assigned to
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Fig. 1: Flowchart of Eh?Placer
Source: Darav, et al. [6]

a specific fence region is assigned to a default region. After
that, it can calculate a maximum target density for each re-
gion, which will be used later in the placement cost function.
Finally, a cell inflation strategy is used to reduce congestion
and avoid routability issues in future steps.

The global placement itself is performed in the second
stage (region-aware global placement). In order to find a
placement solution, Eh?Placer starts with a lower bound
wirelength placement solution, which just optimizes wire-
length while ignoring density. This will lead to a solution
with minimum wirelength. Then, it finds an upper bound
placement, which is a fairly non-overlapping solution that
respects the fence region constraints while trying to keep
the lower bound placement locations as much as possible.
This is done using existing techniques from previous works,
like lookahead legalization [17, 3] and median improvement
[18].

After each iteration of lower and upper bound placements,
Eh?Placer checks if the solution has converged. If the gap
between both placements is small, that means it has con-
verged and the algorithm can move on to the legalization
stage. Otherwise, more iterations are needed. In addition, af-
ter the first four iterations, before finding a new lower bound
placement Eh?Placer runs a routability adjustment step. This
is done by running the NCTUgr global router [19] for rout-
ing estimation first, and then this estimation is used to adjust
the maximum target density of each region and cell inflation
is executed again on the regions, but now with the updated
densities.

When global placement converges, the solution still
has overlaps. Thus, the third stage legalizes the circuit.
Eh?Placer uses an adaptation of Abacus [20] to handle the
technology constraints of modern circuits. After the place-
ment is legalized, optimization techniques are applied to
some cells to improve the solution. Those techniques can
be applied to all cells or only cells that are potentially caus-
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ing routability issues. Three types of movements inspired by
work in [18] can be executed on this step: moving the cell
to the median location of its net; creating a local window
around the current cell location and finding a better location
for it inside this window; switching the location of the cell
and one of its closest neighbors. A movement is accepted
or rejected based on a cost function that encompasses wire-
length, detailed routing violations, and cell density.

B. DREAMPlace

The main novelty of DREAMPlace is that it explores the
similarity between the analytical placement formulation and
neural network training. For example, Equation (2) shows
an example of the cost function for neural network training,
where f(x,w) is the function the neural network is trying
to learn, w are the weights and R(w) is the regularization
term. So, f(x,w) can be compared to the wirelength func-
tion in placement, while R(w) can be compared to the den-
sity penalty. Thereby, the goal of DREAMPlace is to use in
placement the same GPU acceleration strategies used to train
neural networks.

minf(x,w) + λR(w) (2)

Figure 2 shows the overall flowchart of DREAMPlace. It
starts with an initial random placement, as neural networks
start with initial random weights. The initial placement is
done by placing all cells in the center of the design and then
applying a small random gaussian noise to their locations.
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Fig. 2: Flowchart of DREAMPlace
Source: Lin, et al. [7]

After assigning the initial locations, DREAMPlace will
adjust locations using weighted-average wirelength for the
cost function, as proposed in a previous work [9]. The lo-
cations are adjusted as follows: (1) a dependency graph is
built for the terms that need to be calculated to estimate wire-
length; (2) wirelength is estimated in a forward computation
of this dependency graph and using the current locations; (3)
wirelength gradient is computed; (4) locations are adjusted

based on the gradient, in a backward propagation flow. This
process is done for both wirelength and density, using the
appropriate dependency graph for each. Also, it is done in
parallel for each pin.

When the backward propagation strategy converges, cells
are legalized. DREAMPlace also uses the Abacus legaliza-
tion algorithm for that, which is not done using GPU par-
allelization since the authors observed that legalization was
fast enough to execute on CPU. Finally, it uses NTUPlace
for further detailed placement [5].

III. ROUTING

Signal routing, which is the process of interconnecting all
logical and sequential elements in a circuit, is an essential
step in the physical design flow. This is because as technol-
ogy scales to deep sub-micron, the delay of the interconnec-
tions determines the performance of the circuit [21, 19, 22].
Besides this, the number of tracks in the upper layers is very
limited because there are fewer metal tracks available in the
upper layers than in the lower ones. This greatly complicates
the routing, making it one of the most challenging steps in
the physical design flow. Therefore, the quality of a global
router deeply influences the timing, power, and density of a
chip [23].

Due to this complexity and enormous solution space, the
routing process is divided into two steps: Global Routing
and Detailed Routing. The Global Routing step allocates
routing resources that are used for interconnections, and De-
tailed Routing is responsible for assigning routes to specific
routing tracks within the Global Routing resources [1]. The
Global Routing and Detailed Routing steps and their respec-
tive academic works considered in this paper are presented
in Subsection III.A. and III.B.

A. Global Routing

In the Global Routing step, the area of the circuit is parti-
tioned into GCells (Grid Cells), as illustrated in Figure 3a.
Each GCell has two attributes: metal layer and capacity.
The former associates the GCell with a specific metal layer,
whereas the latter defines the number of metal tracks avail-
able on that metal layer and routing direction. It is important
to note that the routing direction is alternated between metal
layers. For instance, if tracks run in the horizontal direction
in even metal layers, then, in the odd layers, tracks run in the
vertical direction. Thereby, the attribute capacity represents
the number of metal tracks available in this direction on this
metal layer. In Figure 3a, the green GCell has a capacity of
five. The goal of Global Routing is to find, for each net, the
set of GCells through which it is possible to establish a con-
nection between pins belonging to the same net, as shown in
Figure 3b.

There are two main ways to perform the Global Routing
step: using a 3D data structure or using a 2D data structure,
followed by a second step called Layer Assignment. The 3D
Global Routing determines the metal layers during the path
search. For example, Figure 3b shows the 3D Global Rout-
ing approach applied to a two-pin interconnection (P1 and
P2) presented in Figure 3a. Note that this approach does not
require an additional step to determine a layer for each seg-
ment. However, due to the high complexity of contemporary
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Fig. 3: Example of Global Routing. (a) 2D view of a net with two pins. (b)
3D grid graph where dots represent the vertices and dashed lines represent
the edge between vertices. The solid line is a 3D Global Routing. (c) 2D
grid graph where dots represent the vertices and dashed lines represent the
edges between vertices. The solid line is a 2D Global Routing. (d) View of
a valid Global Routing solution.

Source: (a) and (d) adapted from [24]; (b) and (c) the author.

designs, full 3D routing normally results in longer execution
times than 2D followed by the Layer Assignment approach
[23]. Figure 3c presents the 2D Global Routing approach for
the same example shown in Figure 3a. In this scenario, the
position of each pin is projected onto the 2D surface. Then,
a path-search algorithm is executed to find the set of GCells
that completes the interconnection. Finally, a Layer Assign-
ment step is done to determine the layer of each segment.
Figure 3d shows the result of Global Routing for the two-pin
net represented in Figure 3a. In this work, we will compare
two academic open-source Global Routing tools, CUGR [10]
and FastRoute [25, 26, 27, 11]. The former employs the 3D
approach, whereas the latter relies on the 2D approach.

The CUGR tool comprises three steps: initial routing,
multi-level 3D maze routing, and route guide generation,
as shown in Figure 4. In the initial routing, each multi-pin
net is broken down into a set of two-pin nets in the pattern
routing planning step. Then, in the 3D pattern routing step,
the FLUTE [28] algorithm is used to generate a rectilinear
Steiner minimum tree (RSMT) and a dynamic programming
algorithm performs pattern routing and layer assignment si-
multaneously. After initial routing, the nets with violations
are ripped up and go through multiple iterations of rip-up and
reroute (RRR) by maze routing. The maze routing algorithm
is limited to the bounding box of the net. This approach is to
reduce the execution time of performing maze routing on the
whole 3D grid graph. The last step in the flow is to generate
the guides and insert patches. Patches are extra regions of
guides to alleviate some conditions, and they can be of three
types: 1) Pin Region Patching to improve pin accessibility;
2) Long Segment Patching to improve the track assignment;
and 3) Violation Patching to add more flexibility in regions
that may contain violations.

FastRoute is a 2D Global Routing based on a pattern route
that first performs a sequence of rip-up and reroutes steps
and later maps the 2D solution to 3D by layer assignment.
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Fig. 4: CUGR flow.
Source: Liu, Jinwei, et al. [10].

The flow of FastRoute is presented in Figure 5. First, a
congestion-driven via-aware Steiner topology for each net
is constructed, and then a segment-shifting technique is ap-
plied. Later, the tree structures are decomposed into 2-pin
nets using FLUTE. Then, a pattern routing step using an L-
shape and Z-shape initializes the routing solution for each
net, and the virtual capacity based on the current routing sta-
tus is initialized. Next, a loop of rip-up and reroute pro-
cess is executed until the overflow stops decreasing. Inside
the loop, it uses pattern routing and multi-source multi-sink
maze routing, and virtual capacity to reduce congestion. The
virtual capacity gradually changes the capacity associated
with each global edge to divert wire usage from highly con-
gested regions to congestion-free regions. Finally, the 2D
solution is extended to a full 3D solution by a spiral layer
assignment algorithm.
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Fig. 5: FastRoute 4.0 Framework flow.
Source: Xu, Yue, Yanheng Zhang, and Chris Chu [11].

B. Detailed Routing

The Detailed Routing step is responsible for determining
the exact location (tracks) where each net will be routed. Fig-
ure 6 presents this mapping step for a two-pin net that con-
nects cell A and cell B. Generally, Detailed Routing tools
receive three inputs: the LEF file containing the technology
information, the DEF file with the netlist and cell locations,
and the GUIDE file containing the regions, determined by
the global routing, in which each net should be routed. Then,
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the detailed routing will decide the tracks for each net hon-
oring as much as possible the guides from global routing
and respecting all design rules imposed by the technology
node. Figure 6.b presents a possible detailed routing solu-
tion where the dashed lines are the available tracks, and the
solid lines are the assigned tracks for the net.
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Fig. 6: Global Routing To Detailed Routing

The ISPD 2018 Contest on Initial Detailed Routing [15]
revolutionized academic research concerning the detailed
routing topic. Before that Contest, only a few works
presented end-to-end detailed routing flow. The authors
of RegularRoute [29] proposed a correct-by-construction
methodology, where the routing tracks are formulated as
a Maximum Weight Independent Set (MWIS) problem,
and it is solved by a heuristic technique. The authors of
MCFRoute [30, 31] proposed a multi-commodity method,
where the detailed routing problem with intricate design
rules are formulated and solved as an ILP problem. However,
no works mentioned above claim a viable solution to the con-
text of real-world IC physical design, i.e., using benchmarks
that have technology information and design rules concern-
ing routing.

But after the ISPD 2018 Contest, the academy had access
to a set of benchmarks that included metal layer and track
information as long as detailed routing challenges. Although
after that a few academic works could produce some results
[32, 33, 34, 35, 36], most works could not meet design rule
violation constraints.

Besides the routing rules, a detailed router should manage
the memory usage as the feature size scales down because
not only the problem size increases but also the complexity
of design becomes increasingly difficult. In order to solve
this memory issue, the authors of Dr. CU [33] proposed a
routing correct-by-construction design rule satisfaction us-
ing a two-level sparse data structure for a 3-D detailed rout-
ing grid graph. The key idea of this sparse data structure is
to store the information of routed edges utilizing balanced
binary search trees (BSTs) and intervals. With this, it is not
necessary to store all the graph structure for the whole circuit
containing all the nets, tracks, and vias.

When a net is to be routed, a local grid graph is created
only for this net, considering the region (guides) provided by
the global routing. In this local grid graph, the edge costs are
available for conducting the sequential maze routing algo-
rithm. Essentially, nets are routed one after another, whereas
previously routed nets are treated as blockages. After rout-
ing all nets with possible violations, several rounds of rip-up
and reroute (RRR) help to clean them up.

In contemplation of reducing the total runtime of the Dr.
CU tool, the authors proposed a bulk synchronous parallel
scheme based on [37]. This approach creates batches of

nets whose each routing regions do not overlap each other.
In comparison to the sequential version, this parallelization
technique of Dr. CU reduces the runtime by five to six times
using eight threads when compared to the sequential version.

Given the routing challenges introduced by ISPD Con-
tests, an open-source tool called TritonRoute [38, 39] was re-
leased aiming to produce a DRC-clean routing solution. This
tool routes the circuit following three major steps: Routing
Data Preparation, Track Assignment, and Detailed Routing.
Figure 7 presents an overview of TritonRoute flow.
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Fig. 7: TritonRoute flow.
Source: Kahng, Andrew B, Wang, Lutong, and Xu, Bangqi [39].

TritonRoute receives as input a Global Routing solution
(guides). These guides are pre-processed drawing a center
line for each guide along the preferred routing direction. It
also creates a spatial data structure for fast shape queries,
lookup tables to avoid rule check violations, and performs a
pin access analysis to generate at least three access points for
each pin. Afterward, a greedy track assignment is performed
using panels that follow the preferred routing direction with
50 GCells height. First, it assigns all horizontal layers and
then to all vertical layers. The Detailed routing is performed
iteratively, the design is partitioned into 7x7 non-overlapping
GCell-aligned clips. Each partition is processed in parallel
by a worker, a unit that can only modify routing within its
partition. Each worker performs a modified version of A*
on a non-regular-spaced 3D grid graph.

IV. EXPERIMENTAL ASSESSMENT OF PLACE AND
ROUTE FLOWS

This section reports the results obtained for different flows
of open-source placement and routing tools. It is organized
as follows. First, subsection IV.A. explains the method-
ology adopted to conduct the experiments. Then, subsec-
tion B. presents the experimental setup. Subsection C. and
D. present the adopted benchmarks and the evaluation pro-
cess, respectively. Finally, subsection E. brings the results
and discussions.

A. Experimental Methodology

This section aims to explain the methodology applied
to compare and determine the best combination of open-
source academic place and route tools. The experimental
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methodology flow is presented in Figure 8. Its inputs are
the benchmarks Library Exchange Format (LEF) and De-
sign Exchange Format (DEF) files. The LEF file contains the
physical design characteristics and technology constraints of
the cell library. The DEF file hols the location of the physical
elements, the netlist, and the routing information.

The first step in the flow is Placement. In this work,
we consider three different placements for each benchmark:
1) the original ISPD 2018 and 2019 Placement Contest,
and the placements generated by 2) DreamPlace [7], and 3)
Eh?Placer [6]. DreamPlace received the best paper award
at Design Automation Conference (DAC) 2019. Eh?Placer
won second place in ISPD 2015 Blockage-Aware Detailed
Routing-Driven Placement Contest [40]. Both DreamPlace
and Eh?Placer receive as input the Contest files (LEF and
DEF), replace the cells and write the new positions into a
new DEF file.

The second step in the flow is Global Routing. CUGR [10]
and FastRoute [25, 26, 27, 11] are adopted as academic
Global Routing tools in this work. CUGR is the state-of-
the-art concerning Global Routing step and outperformed all
other contestants in the ICCAD 2019 CAD Contest problem
C: LEF/DEF Based Open-Source Global Router [24]. Fas-
tRoute is part of the OpenROAD project [41]. Both tools
receive LEF and DEF files as input, and output a Guide file.
The Guide file is a text file that contains, for each net, a set
of rectangles and respective metal layers that interconnect all
the pins. These rectangles will be used during the Detailed
Routing step to guide the track assignment search space.

The third step in the flow is Detailed Routing. In this
work, we consider two academic Detailed Routing tools: Dr.
CU [33] and TritonRoute [38]. Initial Detailing Routing has
been the subject of two recent Contests, ISPD 2018 [15] and
ISPD 2019 [16]. TritonRoute won first place in the ISPD
2018 Contest, and Dr. CU won second and first places in
ISPD 2018 and ISPD 2019 Contests, respectively. Therefore,
TritonRoute and Dr. CU are state-of-the-art concerning the
Detailed Routing step. In the evaluation flow, both receive as
input three files: LEF and DEF files from the placement tool
and the Guide file from the Global Routing tool. The output
of the Detailed Routing step is written into the DEF file.

Finally, the fourth and last step is the evaluation process of
all the solutions. The official evaluator binaries from ISPD
2018 and 2019 Placement Contests were used to measure the
quality reached by each combination of tools. Note that, con-
sidering three possible placements, two global routing tools,
and two detailed routing tools, there are twelve different exe-
cutions for each circuit in the benchmark set. Both evaluators
receive as input the LEF, DEF, and Guide files and generate
the report file as output. More details about the evaluators
are presented in Subsection D.. At the end of this flow, we
collected all the results generated by the ISPD evaluators us-
ing a python script. This script received as input the report
files and generated the Tables III and IV presented in this
work.

B. Experimental Setup

The experiments were executed on two different ma-
chines:

1. A Linux cluster with 48 cores, 2x Intel R© Xeon R©

Gold 6240R CPU @ 2.40GHz (Cascade Lake,
2021) and 64GB RAM.

2. A Linux workstation with an Intel R© Core R© i5-
4460 CPU running at 3.20 GHz with four cores
and 32GB RAM (DDR3 at 1600MHz).

We used these two machines because Eh?Placer and Fas-
tRoute cannot be statically compiled, and we do not have
root access in the cluster to install the required libraries. In
a statically built program, no dynamic linking occurs: all the
bindings have been done at compile time. Therefore the ex-
ecutable can run on any machine.

C. Benchmarks

We chose the benchmarks from ISPD 2018 [15] and ISPD
2019 [16] CAD Placement Contests because they are the
most recent and complete benchmark sets for placement and
routing stages. In ISPD 2018 and ISPD 2019 Contests suites,
there are circuits designed with three different technology
nodes: 65nm, 45nm, and 32nm. For each of those cir-
cuits, there are technology information, macro blockages, IO
Cells, and standard cells with complex pin shapes, such as
L, Z, U, and others. Nonetheless, there is no power and tim-
ing information in these benchmarks. The main character-
istics of these circuits are presented in Table I. In this table,
Columns 1 to 8 present the circuit names, technology node,
number of cells, number of nets, number of I/O pins, num-
ber of macro blockages, placement density, and number of
routing layers.

Table I.: Main characteristics of ISPD 2018 and ISPD 2019 benchmarks.
Columns 1 to 8 bring the name of the circuit, technology node, number
of cells, number of nets, number of I/O pins, number of macro blockages,
placement density, and number of routing layers.

Circuits Node
(nm)

Cells
(K)

Nets
(K)

i/o
Pin Macro

Density
(%)

Metal
Layers

ispd18_test1 45 9 3 0 0 85 9
ispd18_test2 45 36 37 1,211 0 57 9
ispd18_test3 45 36 37 1,211 4 65 9
ispd18_test4 32 72 72 1,211 4 89 9
ispd18_test5 32 72 72 1,211 8 92 9
ispd18_test6 32 108 108 1,211 0 99 9
ispd18_test7 32 180 180 1,211 16 90 9
ispd18_test8 32 192 180 1,211 16 90 9
ispd18_test9 32 193 179 1,211 0 91 9
ispd18_test10 32 290 182 1,211 0 100 9
ispd19_test1 32 9 3 0 0 83 9
ispd19_test2 32 72 72 1,211 4 72 9
ispd19_test3 32 8 9 57 4 84 9
ispd19_test4 65 146 152 4,802 7 21 5
ispd19_test5 65 29 29 360 6 9 5
ispd19_test6 32 180 180 1,211 16 75 9
ispd19_test7 32 360 359 2,216 16 96 9
ispd19_test8 32 540 538 3,221 16 79 9
ispd19_test9 32 899 895 3,221 16 84 9
ispd19_test10 32 899 895 3,221 16 88 9

Notably, the two benchmark sets have circuits with differ-
ent characteristics. The number of cells and nets vary from
9 to 899K and 3 to 895K, respectively. There are circuits
with and without I/O pins and macro blockages. In addi-
tion, there are circuits with low (9% - 21%) and high (88% -
100%) placement densities. The 100% placement density in
circuit ispd18_test10 is due to the filler cells. There are two
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Fig. 8: Place and route flows considered in this work and employed evaluation methodology.

circuits, ispd19_test4 and ispd19_test5, with only 5 metal
layers available for the routing. Therefore, we judge that
this set of benchmarks can expose different behaviors of the
placement and routing engines evaluated in this work.

D. ISPD evaluator

The official ISPD 2018 and 2019 Placement Contests eval-
uators assessed the quality of the routing solutions. The eval-
uation is based on Routing Metrics, Routing Preference Met-
rics, and Design Rule Violations. All the metrics and their
respective weights are presented in Table II. The final score
for a circuit is a weighted sum of all those metrics. A solu-
tion is declared invalid if an open net occurs.

Table II.: ISPD Contests evaluation metrics and their respective weights.

Metric Acronym Weight

Total length of off-track wires Wirelength 0.5
Total Number of vias Vias 2
Total length of off-guide wires OFGW 0.5
Total number of off-guide vias OFGV 1
Total length of off-track wires OFTW 0.5
Total number of off-track vias OFTV 1
Total length of wrong-way wires WWW 1
Short metal area Shorts 500
Number of min-area violations Min Area 500
Number of spacing violations Spacing 500

The evaluation flow is: 1) The DEF, Guide, and LEF
files are provided to the evaluator. 2) The evaluator per-
forms the design rule and connectivity checking using
Cadence R© InnovusTM [42]. 3) Innovus generates design rule
violation and connectivity reports. 4) The evaluator performs
guide and track obedience checking and reads the Innovus
reports. 5) The evaluator generates a report table with all the
metrics presented in Table II and the raw score as output.

E. Quality evaluation of place and route flows

In this section, the experimental results of the twelve dif-
ferent flows are given for the ISPD 2018 and ISPD 2019
benchmarks. Tables III and IV report the breakdown of
the results for the detailed routing metrics on each cir-
cuit. In both tables, the circuit names (Benchmarks) are

displayed in Column 1. Columns 2, 3, and 4 identify
the placement, Global Routing, and Detailed Routing tools
used in each flow, respectively. Then, Columns 5 and 6
present the routing metrics Wirelength (reported in millime-
ters) and number of Vias (reported in thousands). For each
circuit, the lowest (best) values of wirelength and num-
ber of vias are highlighted in bold. Columns 7 to 11 re-
port the routing preference metrics. These metrics are off-
guide wirelength (OFGW), off-guide vias (OFGV), off-track
wirelength (OFTW), off-track vias (OFTV), and wrong-way
wirelength (WWW). Columns 12 to 15 bring the Design
Rule Violations (DRV). Then, Columns 16 and 17 present,
for each circuit, the final score and the difference to the best
score, in percentage. Therefore, in Column 17, 0% iden-
tifies the flow that achieved the best score for a given cir-
cuit. We ranked all flows based on the final score and the
number of short violations. This rank is presented in Col-
umn 18 of Tables III and IV. We considered that the solu-
tions with short violations should not outrank the solutions
without short violations. In this way, all solutions without
short violations, highlighted in bold, come before the solu-
tions that leave short violations.

Before analyzing the results in more detail, it is impor-
tant to remark that the two flows that use Eh?Placer together
with CUGR failed for all benchmarks. For such reason, they
do not appear in Tables III and IV. Further investigation is
necessary to determine why CUGR reports an error when
applied to placements issued by Eh?Placer. In these execu-
tions, the binary of CUGR just stops the execution after the
“mark fixed metal rtrees..." and “mark fixed metal batch ..."
messages, but no errors are reported in the CUGR log file. In
addition to these two flows, other flows have produced errors
in a few circuits. These errors are reported in the line of the
respective flow and can be:

• Time Out 72h: we limited the experiment run-
time to 72 hours.

• Out of Memory: we limited the RAM memory
utilization to 64GB.

• TritonRoute Fail: this error occurs at the end of
the “0th optimization iteration" after printing the
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message “post-processing ..." in the log. No er-
ror message was reported at that instant. It is
possible that open nets occurred, which could
not be resolved by TritonRoute.

• Eh?Placer Fail: Eh?Placer reported
“std::bad_alloc" in the log file.

• FastRoute Fail: FastRoute reported the message
“Routing congestion too high" in the log file.

Analyzing all results, we can observe that no combina-
tion of placement and routing tools led to the best result for
all circuits. Considering the top 3 solutions for each circuit,
the wirelength varied by 1.7% on average, and the number
of vias varied by 4.8% on average. In addition, it is impor-
tant to observe that at least one of the top 3 best solutions
was generated by a flow that begins with the original ISPD
Contests placement. This means that original ISPD Contests
placements are already well-optimized for routing solutions.
We can also conclude that the ISPD 2019 circuits are more
difficult to synthetize than the ISPD 2018 ones due to the
higher number of failing flows. Particularly, only two flows
were able to generate valid solutions for circuit ispd19_test4.
The reason why all the other flows failed could be because
this circuit has only five metal layers available for routing
and was designed with 65 nm technology.

Observing the Design Rule Violations columns of Tables
III and IV, for each of the circuits, we notice a huge variance
between the flows. Considering only wirelength and num-
ber of vias and taking into account only the Global Routing
tool, we can observe that the flow that uses CUGR gener-
ated the best results for 18 out of 20 circuits We also no-
ticed that FastRoute could lead to the best wirelength only
for circuit ispd19_test6 and produced the lowest number of
vias for circuit ispd19_test10. For a given combination of
Placement and Global Routing tools, it can be observed that
TritonRoute leaves much fewer violations than Dr. CU. The
best three flows for each circuit are presented in Figure 9.
Observe that the flow Contest + CUGR + TritonRoute led
to the best score for 17 circuits, the flow Contest + CUGR
+ Dr. CU led to the best score for 2 circuits, and the flow
DreamPlace + CUGR + TritonRoute is the best score only
for circuit ispd19_test10. Finally, the experiments we have
conducted allowed us to conclude that the best combination
of academic open-source tools for placement and routing is
Contest + CUGR + TritonRoute.

Circuit

Po
si
ti
o
n

st

nd

rd

Fig. 9: Top three flows for each benchmark considering the ranking based
on score and short violations.

V. CONCLUSIONS AND CHALLENGES

The process of choosing the best placement and routing
tools to synthesize a circuit is a challenging task. Simply
replacing one of these tools could generate a drastic im-
pact on the final quality of the results. Therefore, in this
work, we explored twelve different combinations of place-
ment and routing academic tools to investigate how they in-
teract with each other. We used the ISPD 2018 Contest [15]
and ISPD 2019 Contest [16] benchmarks. Considering the
evaluator reports, no combination of tools achieved the best
result for all circuits. Nevertheless, the flow Contest place-
ment + CUGR [10] + TritonRoute [39] led to the best results
for seventeen out of twenty benchmark circuits.

While preparing and conducting our experiments, we
could experience some of the problems that hamper the in-
tegration of tools. Some of these tools require specific li-
brary versions to work and do not generate static binaries
by default. Static binaries do not make references for exter-
nal libraries, thus, making it possible to execute on a server
without additional libraries. This is important when the re-
searcher does not have permission to install and/or modify
the server. Many errors are reported during the experimen-
tal executions. Further investigation is necessary to remove
those errors, especially the integration between Eh?Placer
with CUGR.
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Table III.: Experimental results for ISPD 2018 Benchmarks.
Circuit Flow Routing Metrics Routing Preference Metrics Design Rule Violations Score Rank

Placement
Global

Routing
Detailed
Routing

Wirelength
(mm)

Vias
(K)

OFGW
(mm) OFGV

OFTW
(mm) OFTV

WWW
(mm) Shorts Min Area Spacing Open Nets (K) (%)

ispd18_test1 Contest CUGR DRCU 171.7 31.7 0.4 195 0.2 0 2.5 28,800 0 1 0 286.1 0 6
TritonRoute 171.5 35.7 2.9 438 0.3 171 3.4 0 0 0 0 302.5 5.7 1

FastRoute DRCU 181.3 35.0 71.1 19,413 0.3 33 6.7 19,326,600 1,740 212 0 1,547.4 440.9 7
TritonRoute 175.5 38.2 89.4 25,612 0.4 220 5.7 0 0 0 0 559.7 95.6 4

DreamPlace CUGR DRCU 177.6 36.0 1.0 605 0.1 0 2.0 0 0 7 0 305.6 6.8 2
TritonRoute 176.3 38.0 3.0 2,061 0.6 196 3.5 0 0 0 0 315.6 10.3 3

FastRoute DRCU 187.6 35.0 72.8 19,213 0.3 36 6.5 13,139,000 1,771 267 0 1,582.3 453.1 8
TritonRoute 182.6 38.7 93.6 25,831 0.4 215 5.4 0 0 0 0 579.8 102.7 5

EhPlacer FastRoute DRCU 231.4 37.7 88.0 21,004 0.3 62 6.6 14,443,600 1,599 287 0 1,610.6 463 9
TritonRoute 227.7 41.1 114.5 27,303 0.5 229 5.4 0 0 0 2 - - -

ispd18_test2 Contest CUGR DRCU 3,120.5 316.0 8.8 3,636 2.4 0 24.8 504,000 0 35 0 4,642.3 0 2
TritonRoute 3,134.1 359.0 29.4 5,203 4.0 2,164 31.8 0 0 0 0 4,801.1 3.4 1

FastRoute DRCU 3,284.7 383.1 971.6 218,204 4.5 651 68.0 502,668,340 18,418 3,938 0 20,444.2 340.4 5
TritonRoute 3,201.0 424.2 1,140.0 294,248 5.2 4,489 48.0 0 0 0 7 - - -

DreamPlace CUGR DRCU 3,155.3 381.2 24.1 10,342 2.1 0 19.4 684,400 0 114 0 4,887.6 5.3 3
TritonRoute 3,150.7 388.1 37.7 25,759 6.6 4,405 32.2 0 0 0 1 - - -

FastRoute DRCU 3,328.9 388.1 958.8 224,622 4.1 490 68.4 445,963,620 15,596 3,641 0 18,747.6 303.8 4
TritonRoute TritonRoute Fail - - - - - - - - - - - -

EhPlacer FastRoute DRCU 3,284.0 394.0 999.2 227,476 3.7 676 68.6 434,541,160 18,891 4,179 0 20,688.2 345.6 6
TritonRoute 3,184.3 436.5 1,157.7 302,482 5.8 4,673 49.3 0 0 0 4 - - -

ispd18_test3 Contest CUGR DRCU 3,490.6 316.2 23.6 4,025 2.7 0 25.1 8,287,400 0 84 0 5,192.5 0 2
TritonRoute 3,504.6 357.1 35.2 5,072 4.8 2,197 32.4 0 0 0 0 5,277.0 1.6 1

FastRoute DRCU 3,636.3 385.8 986.6 217,716 3.9 537 68.0 667,804,940 21,042 5,013 0 23,290.9 348.5 6
TritonRoute TritonRoute Fail - - - - - - - - - - - -

DreamPlace CUGR DRCU 3,533.2 376.6 27.3 10,578 2.4 0 19.4 64,358,800 0 184 0 5,593.0 7.7 3
TritonRoute 3,528.8 382.4 39.7 25,502 6.7 4,430 32.2 0 0 0 2 - - -

FastRoute DRCU 3,672.5 388.6 953.2 222,050 3.9 450 69.1 564,123,420 16,726 4,030 0 20,291.9 290.8 4
TritonRoute 3,610.8 432.0 1,111.4 299,697 5.7 4,541 49.2 0 0 0 1 - - -

EhPlacer FastRoute DRCU 3,986.5 409.7 1,000.2 231,887 3.7 554 70.7 641,798,620 17,562 4,070 0 21,538.5 314.8 5
TritonRoute TritonRoute Fail - - - - - - - - - - - -

ispd18_test4 Contest CUGR DRCU 5,269.8 727.6 30.4 11,610 3.6 0 38.5 1,535,508 16 677 0 15,360.4 3.3 3
TritonRoute 5,239.8 719.4 27.2 7,965 10.0 17,336 27.8 0 0 0 0 14,863.5 0 1

FastRoute DRCU 5,471.8 955.1 1,761.6 603,650 7.4 593 96.2 253,641,208 21,317 8,208 0 43,434.1 192.2 6
TritonRoute 5,375.2 976.3 1,486.1 687,267 11.7 16,938 61.4 0 0 1 1 - - -

DreamPlace CUGR DRCU 5,356.0 719.9 35.6 21,525 3.8 0 41.1 1,644,428 103 612 0 15,622.3 5.1 4
TritonRoute 5,313.3 721.5 43.9 52,160 10.5 17,363 31.5 0 0 0 0 15,198.7 2.3 2

FastRoute DRCU 5,555.7 968.2 1,783.0 620,757 7.9 556 96.4 211,694,612 18,680 8,216 0 41,958.1 182.3 5
TritonRoute 5,458.8 988.0 1,455.0 700,581 11.8 17,279 60.8 0 0 0 4 - - -

EhPlacer FastRoute DRCU 9,262.5 1,439.9 3,743.1 1,071,534 8.8 426 295.4 8,132,654,144 18,731 37,502 0 177,097.4 1091.5 7
TritonRoute Time Out 72h - - - - - - - - - - - -

ispd18_test5 Contest CUGR DRCU 5,504.0 926.9 21.9 6,401 1.2 3 10.2 3,205,312 72 482 0 16,100.4 3.1 6
TritonRoute 5,481.3 843.4 20.1 8,227 3.8 14,946 17.1 0 0 0 0 15,608.9 0 1

FastRoute DRCU 5,609.4 958.7 2,936.1 735,473 4.7 666 77.5 819,660,424 25,720 9,489 0 59,606.9 281.9 10
TritonRoute 5,591.8 978.2 2,398.0 781,933 5.6 21,272 45.2 0 0 0 0 28,969.0 85.6 3

DreamPlace CUGR DRCU 5,614.5 915.5 27.7 23,559 1.7 10 14.1 172,833,808 701 604 0 18,916.6 21.2 7
TritonRoute 5,579.6 889.3 62.8 63,515 4.0 19,637 18.2 0 0 0 0 16,225.5 4 2

FastRoute DRCU 5,713.6 973.5 2,955.7 744,270 4.4 564 76.7 760,443,668 19,502 7,287 0 55,048.5 252.7 8
TritonRoute 5,695.1 986.6 2,439.4 786,447 5.4 21,538 45.2 0 0 1 0 29,456.0 88.7 4

EhPlacer FastRoute DRCU 5,887.3 969.3 3,071.6 741,542 4.3 646 72.6 713,646,584 20,817 7,643 0 56,281.5 260.6 9
TritonRoute 5,882.7 1,005.9 2,564.7 802,004 5.7 21,412 46.8 0 0 0 0 30,613.2 96.1 5

ispd18_test6 Contest CUGR DRCU 7,118.8 1,388.1 8.3 6,059 2.4 16 14.5 42,000 106 640 0 21,072.8 2.2 6
TritonRoute 7,100.2 1,278.5 31.5 10,082 4.2 22,899 23.8 0 0 0 0 20,627.5 0 1

FastRoute DRCU 7,267.7 1,449.6 4,421.3 1,119,359 37.6 18,245 115.4 1,210,463,600 28,627 11,483 0 80,169.0 288.7 10
TritonRoute 7,236.5 1,464.1 3,692.4 1,169,063 5.4 31,482 65.6 0 0 0 0 41,023.6 98.9 3

DreamPlace CUGR DRCU 7,787.0 1,398.6 19.2 27,471 2.9 20 17.7 215,210,100 1,168 671 0 26,093.6 26.5 7
TritonRoute 7,752.2 1,381.8 92.6 76,400 4.9 28,522 24.7 0 0 0 0 22,847.7 10.8 2

FastRoute DRCU 7,973.7 1,514.9 4,615.3 1,168,527 26.2 11,203 122.2 985,468,100 17,806 8,356 0 73,295.9 255.3 8
TritonRoute 7,924.9 1,509.4 3,866.8 1,201,688 5.5 31,301 67.5 0 0 0 0 43,749.4 112.1 5

EhPlacer FastRoute DRCU 7,500.7 1,464.5 4,641.0 1,121,862 31.9 17,153 108.0 1,046,733,300 26,581 11,053 0 78,545.7 280.8 9
TritonRoute 7,484.8 1,488.9 3,924.6 1,177,346 5.6 31,088 66.3 0 0 0 0 42,866.5 107.8 4

ispd18_test7 Contest CUGR DRCU 12,977.9 2,289.1 16.5 9,888 5.3 0 22.8 5,395,132 148 93 0 37,430.5 1.2 5
TritonRoute 12,917.7 2,096.0 49.1 15,965 7.1 28,490 37.4 0 0 0 0 36,980.6 0 1

FastRoute DRCU 13,417.5 2,443.1 4,461.1 1,497,361 39.7 26,634 255.5 1,746,034,824 41,214 17,876 0 115,006.7 211 8
TritonRoute 13,165.7 2,409.5 2,966.0 1,533,012 9.1 29,076 100.9 0 0 2 0 54,653.6 47.8 4

DreamPlace CUGR DRCU 13,141.7 2,228.2 60.1 117,793 6.4 0 30.6 514,719,112 2,399 853 0 45,957.4 24.3 6
TritonRoute 13,055.3 2,214.0 172.2 196,878 8.0 28,557 37.8 0 0 0 0 38,361.8 3.7 2

FastRoute DRCU 13,603.5 2,469.0 4,208.5 1,450,091 36.0 23,174 241.2 1,599,312,268 35,892 16,507 0 108,949.3 194.6 7
TritonRoute 13,368.1 2,414.5 2,825.6 1,463,221 9.2 29,061 102.3 0 0 0 0 54,404.1 47.1 3

EhPlacer FastRoute DRCU 24,129.9 3,364.2 7,571.4 2,124,913 184.7 13,664 649.5 38,162,386,680 30,369 77,606 0 641,775.1 1635.4 9
TritonRoute Time Out 72h - - - - - - - - - - - -

ispd18_test8 Contest CUGR DRCU 13,099.3 2,345.9 26.2 11,451 5.4 0 23.7 5,652,108 164 144 0 37,939.3 1.4 5
TritonRoute 13,032.5 2,146.5 57.6 18,251 8.0 28,508 39.1 0 0 0 0 37,424.3 0 1

FastRoute DRCU 13,483.2 2,470.8 4,469.6 1,503,164 39.0 25,424 259.6 1,690,035,584 38,876 17,592 0 113,281.4 202.7 8
TritonRoute 13,221.8 2,426.7 2,959.4 1,531,564 9.2 29,140 102.5 0 0 1 0 54,801.6 46.4 3

DreamPlace CUGR DRCU 13,237.1 2,285.5 76.9 122,201 6.4 0 31.3 491,893,448 2,386 807 0 46,088.1 23.2 6
TritonRoute 13,137.3 2,263.6 186.7 200,180 8.9 28,595 38.9 0 0 0 0 38,749.7 3.5 2

FastRoute DRCU 13,662.7 2,485.0 4,348.7 1,474,868 35.9 22,029 250.2 1,606,529,252 33,596 16,048 0 108,611.4 190.2 7
TritonRoute 13,404.1 2,428.7 2,888.2 1,487,491 9.1 29,080 103.1 0 0 0 0 54,863.6 46.6 4

EhPlacer FastRoute DRCU Out of Memory - - - - - - - - - - - -
TritonRoute TritonRoute Fail - - - - - - - - - - - -

ispd18_test9 Contest CUGR DRCU 10,872.6 2,341.2 22.0 10,455 4.4 0 22.1 154,000 204 117 0 32,268.5 1.3 6
TritonRoute 10,808.3 2,149.7 57.8 17,983 7.5 28,478 37.7 0 0 0 0 31,863.2 0 1

FastRoute DRCU 11,229.9 2,394.8 7,242.1 1,854,366 59.3 34,432 211.9 1,928,646,624 53,556 20,101 0 133,108.1 317.7 10
TritonRoute 11,092.0 2,404.9 5,805.8 1,913,859 9.1 28,970 102.3 0 0 0 0 64,046.1 101 3

DreamPlace CUGR DRCU 10,980.6 2,289.5 37.5 46,220 5.1 0 28.2 447,390,300 1,882 543 0 39,223.0 23.1 7
TritonRoute 10,884.2 2,264.8 161.4 126,621 8.0 28,862 37.6 0 0 0 0 32,910.9 3.3 2

FastRoute DRCU 11,329.3 2,391.3 7,238.4 1,847,634 61.2 33,480 199.0 1,908,258,040 50,640 19,312 0 131,155.9 311.6 9
TritonRoute 11,217.9 2,404.1 5,864.3 1,909,683 9.0 28,991 102.6 0 0 0 0 64,648.7 102.9 4

EhPlacer FastRoute DRCU 12,282.4 2,426.9 7,718.8 1,862,499 52.9 29,320 200.5 1,873,411,300 42,861 17,660 0 130,858.6 310.7 8
TritonRoute 12,188.4 2,482.8 6,330.6 1,960,986 9.8 29,034 106.9 0 0 0 0 69,638.3 118.6 5

ispd18_test10 Contest CUGR DRCU 13,623.6 2,496.3 137.5 27,585 6.2 0 29.0 13,705,600 230 669 0 40,548.3 2.3 2
TritonRoute 13,559.7 2,309.9 145.7 52,557 12.9 32,519 52.4 0 0 0 0 39,626.5 0 1

FastRoute DRCU Out of Memory - - - - - - - - - - - -
TritonRoute Time Out 72h - - - - - - - - - - - -

DreamPlace CUGR DRCU 16,187.5 2,495.6 331.9 102,678 8.2 427 42.4 532,716,036 1,936 3,097 0 56,630.4 42.9 3
TritonRoute TritonRoute Fail - - - - - - - - - - - -

FastRoute DRCU Time Out 72h - - - - - - - - - - - -
TritonRoute Time Out 72h - - - - - - - - - - - -

EhPlacer FastRoute DRCU Out of Memory - - - - - - - - - - - -
TritonRoute Time Out 72h - - - - - - - - - - - -
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Table IV.: Experimental results for ISPD 2019 Benchmarks.
Circuit Flow Routing Metrics Routing Preference Metrics Design Rule Violations Score Rank

Placement
Global

Routing
Detailed
Routing

Wirelength
(mm)

Vias
(K)

OFGW
(mm) OFGV

OFTW
(mm) OFTV

WWW
(mm) Shorts Min Area Spacing Open Nets (K) (%)

ispd19_test1 Contest CUGR DRCU 128.5 38.4 0.5 220 0.1 731 1.7 100,000 30 13 0 433.4 4.3 5
TritonRoute 126.0 38.0 1.9 524 0.4 3,965 1.8 0 0 0 0 415.4 0 1

FastRoute DRCU 130.8 38.8 77.2 29,056 0.5 1,274 3.2 25,746,516 1,377 779 0 2,238.0 438.8 7
TritonRoute 128.4 38.8 75.8 28,953 0.4 4,064 2.4 0 0 0 0 823.9 98.4 3

DreamPlace CUGR DRCU 134.9 37.9 2.1 1,882 0.2 718 2.2 6,710,756 31 85 0 579.2 39.4 6
TritonRoute 132.1 38.7 5.0 3,396 0.4 3,990 2.0 0 0 0 0 450.9 8.5 2

FastRoute DRCU 137.1 39.7 80.5 30,076 0.6 1,359 3.2 29,962,292 1,543 907 0 2,473.4 495.5 9
TritonRoute 135.0 39.7 79.6 29,937 0.4 4,080 2.5 0 0 0 0 862.6 107.7 4

EhPlacer FastRoute DRCU 163.2 41.1 96.0 30,938 0.4 1,182 3.3 33,117,896 1,229 810 0 2,453.1 490.6 8
TritonRoute 161.1 41.6 93.5 31,272 0.5 4,109 2.6 0 0 0 1 - - -

ispd19_test2 Contest CUGR DRCU 4,979.7 842.3 17.7 6,372 4.6 23,390 28.2 5,145,400 1,190 2,336 0 16,232.1 11 3
TritonRoute 4,939.9 798.2 65.2 19,160 14.3 132,593 32.0 0 0 0 0 14,619.6 0 1

FastRoute DRCU 5,132.3 936.4 1,078.0 481,483 7.0 26,866 72.1 804,037,992 12,443 15,185 0 44,844.4 206.7 6
TritonRoute TritonRoute Fail - - - - - - - - - - - -

DreamPlace CUGR DRCU 5,059.5 801.0 77.3 52,073 4.6 23,458 52.4 238,509,864 1,651 3,417 0 20,501.6 40.2 4
TritonRoute 4,992.0 790.9 137.2 90,630 14.9 133,119 37.3 0 0 3 0 15,196.9 3.9 2

FastRoute DRCU 5,194.1 936.1 1,059.1 487,862 6.9 27,084 72.6 799,785,424 13,632 17,460 0 46,591.6 218.7 7
TritonRoute TritonRoute Fail - - - - - - - - - - - -

EhPlacer FastRoute DRCU 5,057.3 913.8 1,027.6 465,330 6.1 26,043 73.2 709,309,396 10,919 14,970 0 42,292.2 189.3 5
TritonRoute TritonRoute Fail - - - - - - - - - - - -

ispd19_test3 Contest CUGR DRCU 166.7 66.4 1.0 478 0.3 664 2.5 560,000 67 270 0 744.6 26.4 2
TritonRoute 164.3 63.4 5.3 2,056 0.5 6,083 3.2 0 0 0 0 589.0 0 1

FastRoute DRCU 173.8 65.2 41.8 29,558 0.9 1,436 8.8 75,885,988 2,755 2,014 0 4,184.1 610.4 6
TritonRoute 166.6 63.2 42.1 30,890 0.6 6,467 5.0 0 0 0 5 - - -

DreamPlace CUGR DRCU 173.8 60.9 5.2 4,167 0.4 703 5.2 4,803,524 85 319 0 876.5 48.8 4
TritonRoute 170.6 62.8 13.3 9,833 0.6 6,338 4.4 8,016,512 0 13 0 765.2 29.9 3

FastRoute DRCU 181.4 65.3 44.6 29,828 0.8 1,481 8.8 75,685,460 2,736 1,967 0 4,182.1 610 5
TritonRoute 173.6 64.0 44.4 31,253 0.6 6,417 5.0 7,962,596 0 16 7 - - -

EhPlacer FastRoute DRCU FastRoute Fail - - - - - - - - - - - -
TritonRoute FastRoute Fail - - - - - - - - - - - -

ispd19_test4 Contest CUGR DRCU 5,928.7 907.4 77.8 24,813 2.4 2 27.1 35,990,788 142 466 0 17,945.6 0 1
TritonRoute 5,428.1 1,050.3 899.5 286,445 31.1 3,874 259.2 35,409,532,306 0 90,561 1 - - -

FastRoute DRCU FastRoute Fail - - - - - - - - - - - -
TritonRoute FastRoute Fail - - - - - - - - - - - -

DreamPlace CUGR DRCU 5,334.3 926.1 725.4 175,288 3.5 7 131.2 26,140,503,316 1,764 14,953 0 354,769.4 1876.9 2
TritonRoute TritonRoute Fail - - - - - - - - - - - -

FastRoute DRCU FastRoute Fail - - - - - - - - - - - -
TritonRoute FastRoute Fail - - - - - - - - - - - -

EhPlacer FastRoute DRCU FastRoute Fail - - - - - - - - - - - -
TritonRoute FastRoute Fail - - - - - - - - - - - -

ispd19_test5 Contest CUGR DRCU 967.7 137.9 1.8 1,040 0.4 21 3.7 2,949,569 6 163 0 2,845.7 0 1
TritonRoute 926.5 150.9 33.3 10,184 1.3 155 15.7 2,804,046,064 0 31 0 37,942.7 1233.3 5

FastRoute DRCU 976.0 150.9 222.7 84,325 1.1 0 15.9 192,367,300 4,071 8,101 0 12,512.3 339.7 2
TritonRoute TritonRoute Fail - - - - - - - - - - - -

DreamPlace CUGR DRCU 937.4 136.9 16.3 5,537 0.5 25 6.5 2,393,896,156 27 1,161 0 33,256.4 1068.7 4
TritonRoute 930.0 158.0 76.1 25,044 1.6 169 19.1 2,890,065,340 0 1,287 0 39,915.3 1302.7 6

FastRoute DRCU 984.1 152.5 222.6 86,056 1.1 4 16.0 213,965,102 3,586 9,820 0 13,425.1 371.8 3
TritonRoute TritonRoute Fail - - - - - - - - - - - -

EhPlacer FastRoute DRCU EhPlacer Fail - - - - - - - - - - - -
TritonRoute EhPlacer Fail - - - - - - - - - - - -

ispd19_test6 Contest CUGR DRCU 13,241.1 2,086.8 38.8 14,132 5.3 12,206 53.9 7,100,800 1,097 1,541 0 39,187.0 4.3 3
TritonRoute 13,116.8 1,972.3 92.6 24,966 12.2 46,333 57.3 0 0 0 0 37,587.8 0 1

FastRoute DRCU 13,572.1 2,344.3 2,916.7 1,236,163 21.8 27,598 180.6 1,883,483,896 25,974 28,825 0 106,366.7 183 5
TritonRoute 13,347.6 2,220.2 2,064.6 1,180,111 12.8 57,808 101.3 0 3 15 3 - - -

DreamPlace CUGR DRCU 13,305.4 1,967.4 159.8 123,064 5.6 12,250 112.1 558,908,764 3,442 3,066 0 48,947.9 30.2 4
TritonRoute 13,136.4 1,947.6 210.1 176,021 12.2 54,757 68.9 0 6 16 0 38,403.2 2.2 2

FastRoute DRCU 13,617.0 2,332.1 2,770.6 1,239,857 27.9 33,548 176.0 2,056,446,124 35,526 40,227 0 118,364.8 214.9 7
TritonRoute 13,404.3 2,197.0 2,081.6 1,165,393 12.8 58,685 103.2 0 3 6 7 - - -

EhPlacer FastRoute DRCU 12,985.0 2,301.3 2,823.6 1,224,941 21.6 29,265 178.0 1,832,001,176 29,731 37,135 0 109,714.1 191.9 6
TritonRoute 12,786.0 2,197.4 2,150.7 1,178,931 12.9 59,735 106.0 0 0 6 3 - - -

ispd19_test7 Contest CUGR DRCU 24,403.2 4,069.6 120.4 40,845 8.5 24,497 145.5 64,847,568 4,392 10,615 0 78,876.9 11.6 3
TritonRoute 24,198.2 3,789.3 264.6 88,661 34.3 255,196 169.9 0 0 0 0 70,676.3 0 1

FastRoute DRCU 26,656.8 3,882.4 5,059.1 1,672,731 29.1 43,217 1,484.9 38,070,911,988 77,462 375,867 0 811,466.6 1048.1 6
TritonRoute TritonRoute Fail - - - - - - - - - - - -

DreamPlace CUGR DRCU 24,929.0 3,737.7 720.8 331,608 9.5 24,466 437.3 1,325,446,516 9,983 19,816 0 107,435.9 52 4
TritonRoute 24,380.9 3,726.0 707.9 554,977 40.3 264,367 231.0 0 0 10 0 74,023.8 4.7 2

FastRoute DRCU 26,861.0 3,877.7 5,107.7 1,670,887 29.1 43,859 1,471.5 37,245,083,408 79,271 386,301 0 807,940.9 1043.2 5
TritonRoute TritonRoute Fail - - - - - - - - - - - -

EhPlacer FastRoute DRCU 49,293.4 4,773.7 8,797.0 2,124,200 33.7 39,101 2,978.5 203,966,053,804 69,234 996,638 0 3,276,417.3 4535.8 7
TritonRoute TritonRoute Fail - - - - - - - - - - - -

ispd19_test8 Contest CUGR DRCU 37,364.4 6,450.7 112.8 52,544 12.8 36,469 135.0 31,813,600 6,182 6,914 0 114,617.6 6.5 3
TritonRoute 37,073.1 6,176.4 225.6 84,142 44.8 382,323 174.3 0 0 0 0 107,613.7 0 1

FastRoute DRCU 42,984.6 6,738.8 9,992.3 3,378,498 46.7 64,644 2,459.6 188,749,368,432 137,735 981,980 0 3,105,982.6 2786.2 6
TritonRoute 37,965.3 6,907.2 7,768.3 3,976,150 56.3 424,486 347.5 0 0 9 7 - - -

DreamPlace CUGR DRCU 37,794.7 6,225.4 307.4 280,245 13.7 36,473 289.4 2,273,847,480 17,616 17,092 0 156,049.5 45 4
TritonRoute 37,377.2 6,241.9 590.5 547,359 47.0 403,575 203.4 0 0 14 0 110,971.9 3.1 2

FastRoute DRCU 43,186.1 6,501.1 10,113.9 3,256,179 46.0 65,140 2,353.6 181,849,673,384 144,279 1,039,681 0 3,051,842.4 2735.9 5
TritonRoute TritonRoute Fail - - - - - - - - - - - -

EhPlacer FastRoute DRCU 44,891.4 6,451.2 10,246.9 3,149,428 41.0 58,378 2,581.5 225,566,244,400 126,959 1,136,688 0 3,643,984.9 3286.2 7
TritonRoute 39,899.5 7,100.6 8,590.8 4,157,514 61.7 440,137 376.4 0 4 3 9 - - -

ispd19_test9 Contest CUGR DRCU 56,504.4 10,745.0 169.1 86,994 21.3 60,771 228.3 70,983,984 10,527 12,946 0 177,563.1 7.7 3
TritonRoute 56,021.2 10,265.1 376.2 141,606 77.4 637,914 295.0 0 3 2 0 164,914.6 0 1

FastRoute DRCU Out of Memory - - - - - - - - - - - -
TritonRoute TritonRoute Fail - - - - - - - - - - - -

DreamPlace CUGR DRCU 57,251.9 10,392.7 477.8 452,374 22.6 60,722 492.3 4,037,655,500 30,912 32,847 0 251,685.5 52.6 4
TritonRoute 56,560.7 10,412.6 991.6 914,673 80.7 671,099 337.5 0 0 24 0 170,672.4 3.5 2

FastRoute DRCU Out of Memory - - - - - - - - - - - -
TritonRoute TritonRoute Fail - - - - - - - - - - - -

EhPlacer FastRoute DRCU Out of Memory - - - - - - - - - - - -
TritonRoute 59,937.4 11,569.4 13,728.6 6,719,820 101.0 730,078 603.6 0 0 25 16 - - -

ispd19_test10 Contest CUGR DRCU 55,827.8 10,337.6 167.5 62,283 21.1 61,013 325.7 110,579,000 10,726 13,665 0 176,464.0 8.1 3
TritonRoute 55,324.7 9,574.1 517.7 156,548 85.1 637,558 423.5 1,000 0 15 0 163,180.2 0 2

FastRoute DRCU 61,709.3 9,380.7 9,704.5 3,471,939 81.8 102,649 3,366.4 118,752,103,024 191,805 1,551,339 0 2,598,141.5 1492.2 5
TritonRoute TritonRoute Fail - - - - - - - - - - - -

DreamPlace CUGR DRCU 57,261.1 9,436.4 1,236.7 601,340 23.6 61,034 956.5 2,476,987,464 28,511 45,958 0 241,910.1 48.2 4
TritonRoute 56,003.6 9,427.7 1,446.3 1,197,385 96.9 663,260 572.3 0 0 66 0 171,092.9 4.8 1

FastRoute DRCU 62,410.5 9,283.5 9,855.2 3,463,843 82.3 104,980 3,344.5 121,739,103,340 205,335 1,596,340 0 2,666,942.6 1534.4 6
TritonRoute TritonRoute Fail - - - - - - - - - - - -

EhPlacer FastRoute DRCU Out of Memory - - - - - - - - - - - -
TritonRoute TritonRoute Fail - - - - - - - - - - - -
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