Transfusion Medicine and Hemotherapy

Research Article

Transfus Med Hemother 2018;45:331-340 DOI: 10.1159/000493555

Received: June 14, 2018 Accepted: September 7, 2018 Published online: September 24, 2018

Towards a Regional Registry of Extended Typed Blood Donors: Molecular Typing for Blood Group, Platelet and Granulocyte Antigens

Jan Portegys^a Gabi Rink^a Pia Bloos^a Erwin A. Scharberg^b Harald Klüter^a Peter Bugert^a

^aInstitute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim,

German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany;

^bInstitute of Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Württemberg – Hessen, Baden-Baden; Germany

Keywords

Molecular blood typing · Genotyping · Polymerase chain reaction · High- and low-prevalence antigens · Granulocytes · Platelets · Blood groups

Summary

Background: The provision of compatible blood products to patients is the most essential task of transfusion medicine. Besides ABO and Rh, a number of additional blood group antigens often have to be considered for the blood supply of immunized or chronically transfused patients. It also applies for platelet antigens (HPA) and neutrophil antigens (HNA) for patients receiving platelet or granulocyte concentrates. Here, we describe the molecular screening for a number of blood group, HPA, and HNA alleles. Based on the screening results we are building up a regional blood donor registry to provide extended matched blood products on demand. Methods: We developed and validated TagMan[™] PCR and PCR-SSP methods for genetic markers defining 37 clinically relevant blood group antigens (beyond ABO and Rh), 10 HPA, and 11 HNA. Furthermore, we describe a feasible method for fast molecular screening of the HNA-2^{null} phenotype. All data were statistically evaluated regarding genotype distribution. Allele frequencies were compared to ExAC data from non-Finnish Europeans. Results: Up to now more than 2,000 non-selected regular blood donors in south-west Germany have been screened for blood group, HPA, and HNA alleles. The screening results were confirmed by serology and PCR-SSP methods for selected numbers of samples. The al-

KARGER

© 2018 S. Karger GmbH, Freiburg

Fax +49 761 4 52 07 14 Information@Karger.com www.karger.com

Accessible online at: www.karger.com/tmh lele frequencies were similar to non-finnish Europeans in the ExAC database except for the alleles encoding the S, HPA-3b and HNA-4b antigens, with significantly lower prevalence in our cohort, as well as the LU14 and the HNA-3b antigens, with a higher frequency compared to the ExAC data. We identified 71 donors with rare blood groups such as Lu(a+b-), Kp(a+b-), Fy(a-b-) and Vel-, and 169 donors with less prevalent HPA or HNA types. Conclusion: Molecular screening for blood group alleles by using TaqMan[™] PCR is an effective and reliable high-throughput method for establishing a rare donor registry.

© 2018 S. Karger GmbH, Freiburg

Introduction

The provision of optimally matched blood products with regard to antigen compatibility is an ongoing challenge in transfusion medicine. Patients who repeatedly need red blood cell concentrates (RBCs) due to e.g. hemoglobinopathy or other diseases and also patients who have developed red cell antibodies often have to be transfused with RBCs compatible not only for ABO and Rh but also for several additional blood group antigens [1]. Blood recipients who are negative for high-prevalence antigens such as Vel are at risk for immunization and subsequent hemolytic transfusion reactions when transfused with antigen-positive blood. On the other hand, blood donors positive for low-prevalence antigens can cause

Peter Bugert, Ph.D. Institute of Transfusion Medicine and Immunology German Red Cross Blood Service Baden-Württemberg - Hessen gGmbH Friedrich-Ebert-Straße 107, 68167 Mannheim, Germany peter.bugert@medma.uni-heidelberg.de

antibody formation in antigen-negative patients [2]. Antibodies to low-prevalence antigens are of risk in pregnancy as they can cause a hemolytic disease of the fetus and the newborn (HDFN) and are often not detected in prenatal antibody screening. It also applies for the immunization to human platelet alloantigens (HPA) causing fetal neonatal alloimmune thrombocytopenia (FNAIT) or neutrophil antigens (HNA) causing neonatal immune neutropenia (NIN) [3, 4]. Furthermore, transfusion-associated acute lung injury (TRALI) can be caused by antibodies to HNA antigens.

With the advent of high-throughput screening in molecular blood typing, there is increasing information regarding the prevalence of rare blood groups and other antigens. Several methods have been developed and used for screening larger numbers of blood donors for common and rare antigens [5-13]. These studies add further information regarding the frequency of blood group alleles and regional differences in the availability of donors with rare blood groups. These approaches have led to the establishment of regional or national rare donor registries [14-17]. As national legal and logistical considerations can cause problems and critical delay for import and export of rare blood, it might be reasonable to establish such registries on a local level as well. Our institute is located in the Rhein-Neckar metropolitan region in south-west Germany, an area which is home to a population with different ethnic background [18, 19]. This in turn may lead to a higher incidence of diseases such as thalassemia, which require frequent blood transfusions [20]. In addition, those ethnic differences might well translate into a higher incidence of rare blood groups as well [21].

To improve our ability to provide rare blood RBCs on a regional level, it is important to continue the screening activities and to test significant part of our donor population for alleles coding for rare blood groups. We also focused on the genotypes for the most relevant HPAs and HNAs in order to improve the availability of donors for antigen-selected platelet and granulocyte concentrates and for diagnostic purposes.

Material and Methods

DNA Samples of Blood Donors

This study was performed in a urban blood donor cohort from the southwestern part of Germany. Donors gave written consent to provide additional 4.5 ml EDTA blood samples, and the use of the blood samples for research purposes was approved by the ethics committee II of Heidelberg University, Medical Faculty Mannheim. DNA was isolated in our laboratory from pseudonymized EDTA-anticoagulated blood samples using a commercial system for 96 well plates (Invisorb Blood Mini HTS 96 Kit; Stratec Biomedical AG, Berlin, Germany).

Genotyping

We developed TaqMan[™] PCR methods and PCR with sequence-specific primers (PCR-SSP) for 21 blood group-defining SNPs, 5 SNPs defining HPAs, 3 SNPs defining the HNA-3a/b, HNA-4a/b and HNA-5a/b and the *CD177* hap-lotype causing the HNA-2n^{ull} phenotype (table 1). The *FCGR3B*01*, *02, and *03 alleles encoding the HNA-1a/b/c/d antigens were screened by PCR-SSP using a previously published protocol [22] and slightly modified primers (table 1). For each genetic marker, we established PCR-SSP methods according to a standard protocol [23] and with primers listed in table 1. The *A4GALT* SNP

rs2143918 has a 100% correlation with the P_1/P_2 phenotype in all populations, except for rare individuals of African descent [24]. This SNP was addressed for P genotyping.

For screening by TaqManTM PCR we used commercial assays (Life Technologies, Darmstadt, Germany), except for the alleles encoding the M/N, VEL, and HNA-2 antigens. All TaqManTM PCR analyses were performed by endpoint fluorescence detection on a ABI 7000 real-time PCR cycler using the standard program for genotyping (Applied Biosystems, Darmstadt, Germany). The method for VEL screening was described before [12]. For the M/N antigens we developed primers specific for *GYPA* and probes specific for the corresponding *GYPA*01* and *GYPA*02* alleles (table 1).

Homozygosity for a nonsense mutation c.787A>T in *CD177* was identified as the most frequent cause of the HNA-2^{null} phenotype [25]. But genotyping is hampered by the *CD177P1* pseudogene with identical DNA sequence in the corresponding region. The 787A>T mutation can also occur in the *CD177P1* gene but does not affect the HNA-2 phenotype. In order to differentiate between the *CD177*c.787A>T* and the *CD177P1*787A>T* genotype, a long-range PCR for the specific amplification of the *CD177* gene followed by PCR-SSP was described [26]. However, this method is not appropriate for screening of samples in larger scales. We developed a TaqManTM PCR method with primers and probes listed in table 1 by which individuals homozygous for the 787A>T mutation in both genes *CD177* and *CD177P1* can be identified.

Validation

The results from TaqManTM PCR screening were verified by PCR-SSP for significant numbers of samples representing the different genotypes and for all samples with rare genotypes. Donors homozygous for the $CD177^*c.787A>T$ mutation were re-analyzed using the long-range and PCR-SSP method described recently [26] with slightly modified primers for the PCR-SSP (table 1). As far as available genotyping data were confirmed by serology for some of the antigens such as MNS, P, K/k, Au^{a/b}, Vel, HPA-1, and HPA-5. In all validation samples the serologically determined phenotype matched the genotype. In addition, 8 donors homozygous for the $CD177^*c.787A>T$ mutation identified by the TaqManTM-PCR method were phenotyped for the HNA-2 antigen (flow cytometry using the monoclonal anti-CD177 MEM-166) and the HNA-2^{null} phenotype was confirmed in all samples.

Statistics

The typing data for each genetic marker was reviewed with regard to deviation from the Hardy-Weinberg equilibrium. The minor allele frequencies (MAF) in our donor cohort were compared to the allele frequencies of non-Finnish Europeans in the ExAC database [27]. Significance of differences was calculated by using appropriate tests in the SPSS software package (SPSS Vers. 12.0; IBM, Armonk, NY, USA).

Results

Blood donors of our institute have been enrolled in the genotyping study since June 2016 irrespective of age, gender or ABO and Rh blood group (table 2). Using TaqManTM PCR, the donors were screened for alleles defining 37 blood group antigens, 10 HPAs, and 11 HNAs including the HNA-2^{null} phenotype. In total, 2,084 donors were typed for all antigens (table 3). Some antigens have already been typed in higher numbers of donors.

The most frequent cause of the HNA-2^{null} phenotype is the *CD177* haplotype carrying the nonsense mutation c.787A>T (linked to additional 4 SNPs) in exon 7 [25]. However, the *CD177P1* pseudogene with almost identical DNA sequence in the exon 4 to 9 region can also harbor this haplotype making *CD177*-specific genotyping difficult. Pre-amplification of the *CD177* gene

Table 1. Primers for PCR-SSP and TaqMan[™]-PCR assays

Antigen system	dbSNP No.	Primer sequences for PCR-SSP (5'-3')	Specificity	TaqMan™ PCR assay
MNS (MN)	I) rs7687256, rev: GGCAAGAATTCCTCCATAGTAG rs7658293 for: CATATCAGCATTAAGTACCACTGGT for: CATATCAGCATTAAGTACCACTGAG		GYPA c.71G, c.72T c.71A, c.72G	(self-designed assay ¹)
	5(022/5			0 24102121 10
MNS (Ss)	rs7683365	for: caaaatatgattaagaaaaggaaacccg rev: cgatggacaagttgtccca	GYPB c.143T	C34183121_10
		rev: cgatggacaagttgtcccg	c.143C	
P1PK (P1/P2)	rs2143918	rev: CACAAAGAACCTGGCTTCTCG	A4GALT	C16072990_20
		for: CACATCTTTCCTGGGAAGGAATT	+2857T	
		for: CACATCTTTCCTGGGAAGGAATG	+2857G	
LU (Lu ^{a/b})	rs28399653	for: CCAGGGAGACCCATAACAAG	BCAM	C25764173_10
		rev: TCTCAGCCGAGGCTAGGT rev: TCTCAGCCGAGGCTAGGC	c.230A c.230G	
	20200757			
LU (LU8/14)	rs28399656	rev: GAGGTCAAAGGCCAGCACAG for: CTCTCCCAGAGGGCTACAT	BCAM c.611T	C32363989_10
		for: GATCTCTCCCAGAGGGCTACAA	c.611A	
LU (Au ^{a/b})	rs1135062	rev: ggttaagctatggtggtcattgc	BCAM	C1846428_10
50 (mu)	101100002	for: ccatgtcttccacttcggca	c.1615A	01010120_10
		for: ccatgtcttccacttcggcg	c.1615G	
KEL (K/k)	rs8176058	for: GGGAGATGGAGATGGAAATGG	KEL	C1719_20
		rev: GACTCATCAGAAGTCTCAGCG	c.578C	
		rev: GACTCATCAGAAGTCTCAGCA	c.578T	
KEL (Kp ^{a/b})	rs8176059	rev: AGGGCACTAGGAGGAAGAAG	KEL	C25596888_20
		for: CTTGTCAATCTCCATCACTTCAC	c.841C	
		for: CTTGTCAATCTCCATCACTTCAT	c.841T	
KEL (Js ^{a/b})	rs8176038	rev: ggcccttgacacttgcatac	KEL	C25596899_20
		for: tgcctgggggctgcct for: tgcctgggggctgccc	с.1790Т с.1790С	
KEL (11/17)	rs61729034	rev: CCTTAGAGGAGGGACACAAAG for: GGCAAGCTCTTCCAGATGGT	KEL c.905T	C27862879_10
		for: GGCAAGCTCTTCCAGATGGC	c.905C	
FY (Fv ^{a/b})	rs12075	rev: GGCACCACAATGCTGAAGAG	DARC	C2493442_10
	1012070	for: CTTCCCAGATGGAGACTATGG	c.125G	0100112_10
		for: CTTCCCAGATGGAGACTATGA	c.125A	
FY (Fy ⁰)	rs2814778	rev: CAAAGGGAGGGACACAAGAG	DARC	C15769614_10
		for: CCTCATTAGTCCTTGGCTCTTAT	-67T	
		for: CCTCATTAGTCCTTGGCTCTTAC	-67C	
JK (Jk ^{a/b})	rs1058396	rev: AGACAGCAAGTGGGCTCAAG	SLC14A1	C1727582_10
		for: TCTTTCAGCCCCATTTGAGG for: GTCTTTCAGCCCCATTTGAGA	c.838G c.838A	
DI (Di ^{a/b})	rs2285644	rev: TCCTGCCTGCCCTAGTTCTG	SLC4A1	C26654865_10
		for: GGGTGGTGAAGTCCACGCT for: GGTGGTGAAGTCCACGCC	c.2561T c.2561C	
	55521/50			0 2250522 10
DI (Wr ^{a/b})	rs75731670	rev: TGGGAGAATGCCAGGGAAAG for: CACTGGGCTTGCGTTCCA	SLC4A1 c.1972A	C2259533_10
		for: CACTGGGCTTGCGTTCCG	c.1972G	
YT (Yt ^{a/b})	rs1799805	rev: GGGAGGACTTCTGGGACTTC	ACHE	C8786419_20
		for: CATCAACGCGGGGAGACTTCC	c.1057C	
		for: CATCAACGCGGGAGACTTCA	c.1057A	
SC (SC1/2)	rs56025238	rev: CCCTTATATTCCGGCATCAGATC	ERMAP	C32292873_10
		for: CTCTCTCCCTCTGGCCCG	c.169G	
		for: CTCTCTCCCTCTGGCCCA	c.169A	

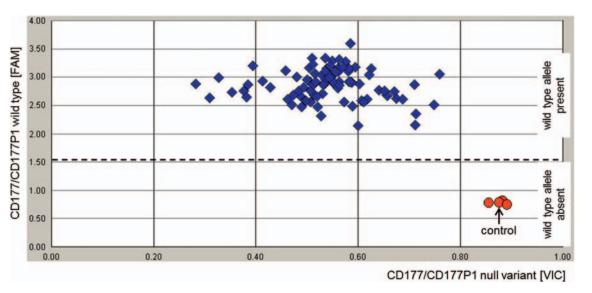

Table 1 continued on next page

Table 1. Continued

Antigen system	dbSNP No.	Primer sequences for PCR-SSP (5'-3')	Specificity	TaqMan™ PCR assay*
DO (Do ^{a/b})	rs11276	for: CTCCACATCCCTCCTGAAAG rev: GTTGACCTCAACTGCAACCAGTT rev: GTTGACCTCAACTGCAACCAGTC	ART4 c.793A c.793G	C2687344_20
CO (Co ^{a/b})	rs28362692	rev: GCACGGAAGATGCTGATCTGG for: GGGGAACAACCAGACGGC for: GGGGAACAACCAGACGGT	AQP1 c.134C c.134T	C27536484_20
LAN (+/-)	rs149202834	rev: AGGTGTACCTGGCTCCTTTC for: TTTAGCCTGTGGGTGCTGC for: TTTAGCCTGTGGGGTGCTGT	ABCB6 c.574C c.574T	C_168788417_10
VEL (+/-)	rs566629828	rev: CCAAAGGCTGCGGTTTGCTG for: GCAGCAGGGACGGAGTCA for: GCAGCAGGGACGGAGTCC	SMIM1 c.64-80ins c.64-80del	see [7]
HPA-1a/b	rs5918	rev: gtgcaatcctctggggact for: gacttacaggccctgcctct for: acttacaggccctgcctcc	ITGB3 ITGB3*176T ITGB3*176C	C818008_30
HPA-2a/b	rs6065	rev: gccagcgacgaaaatagagg for: cccccagggctcctgac for: cccccagggctcctgat	GP1BA GP1BA*482C GP1BA*482T	C_11442703_10
HPA-3a/b	rs5911	rev: accagagagcctgctcactac for: ggactgggggctgcccat for: ggactgggggctgcccag	ITGA2B ITGA2B*2621T ITGA2B*2621G	C3017440_10
HPA-5a/b	rs1801106	rev: ggcagtacactatacattcaactc for: aaggaagagtctacctgtttactatcaaag for: aaggaagagtctacctgtttactatcaaaa	ITGA2 ITGA2*1600G ITGA2*1600A	C27862812_10
HPA-15a/b	rs10455097	for: cagtattatgaccttatgatgacctattc rev: gttacttcaaattcttggtaaatcctgg rev: gttacttcaaattcttggtaaatcctgt	CD109 CD109*2108C CD109*2108A	C3226894_10
HNA-1a	rs448740 rs368410676	for: cacagtggtttcacaatgagaa FC0 676 rev: atggacttctagctgcacc		none
HNA-1b/d	rs527909462 rs5030738	for: gcctcaatggtacagcgtgctt rev: ctgtcgttgactgtggcag	FCGR3B*02	none
HNA-1b/c	rs527909462 for: gcctcaatggtacagcgtgctt F rs5030738 rev: ctgtcgttgactgtggcaT		FCGR3B*03	none
HNA-2 (+/–)	rs1164364335 for: catggagaaggtgacctttgag CD177 rev: CAACAGTGCTGCAGCCTTT CD177*787A rev: CAACAGCGCTGCAGCTTTA CD177*787T		(self-designed assay ²)	
HNA-3a/b	rs2288904	rev: ctgcatggagcagaggatgg for: GAGTGGCTGAGGTGCTTCG for: GGAGTGGCTGAGGTGCTTCA	SLC44A2 SLC44A2*461G SLC44A2*461A	C_11789692_10
HNA-4a/b	rs1143679	rev: aaggaggtctgacggtgaag for: ctcatgcgagcccatccg for: ctcatgcgagcccatcca	ITGAM ITGAM*230G ITGAM*230A	C2847895_1_
HNA-5a/b	rs2230433	rev: tccaccttgcggaaggagagtc for: atcatcccccacagatccag for: catccccccacagatccac	ITGAL ITGAL*2372G ITGAL*2372C	C25754090_10

*TaqMan[™]-PCR assays were commercially available (Life Technologies) under the given assay number; ¹self-designed TaqMan[™]-PCR assay for MN genotyping with forward primer CTCAGTCACCTCGTTCTTAATC, reverse primer GGCAAGAATTCCTCCATAGTAG, FAM-probe CACTGGTGTGGCAA (M), VIC-probe CACTGAGGTGGCAA (N); ²self-designed TaqMan[™]-PCR assay for HNA-2 genotyping with forward primer CCCTCAGGACTCACATCAAC, reverse primer CTGAGTGGATGGTGGTCTTC, FAM-probe CAGCCTTTTGTCCC (CD177 wild type), VIC-probe CAGCTTTAGGTCGC (CD177 null variant).

Fig. 1. Representative result of TaqMan™ PCR-based typing of 96 samples for the *c.787A*>*T* mutation in CD177 and CD177P1. Primers were designed to amplify a 88 bp fragment from both genes CD177 and CD177P1. The FAM-labeled probe detects the wild-type allele and the VIClabeled probe is specific for the null haplotype including the *c*.787A>Tmutation. FAM signals below the threshold (dashed line) indicate absence of the wild type

allele in both genes and, therefore, indicate the HNA- 2^{null} phenotype. Control: donor sample with confirmed homozygosity for the *c.787A*>T mutation by *CD177* genomic sequencing and confirmed HNA- 2^{null} phenotype by flow cytometry. In addition to the control three donors revealed absence of the wild type allele, i.e. homozygosity for the *c.787A*>T mutation. As expected, the HNA- 2^{null} phenotype was confirmed for these samples.

Table 2. Demo-graphic characteristicsof the screened donorpopulation

	% of all donors
Age, years	
<20	6.7
20-29	37.8
30-39	15.9
40-49	17.2
50-59	14.5
>60	7.9
Sex	
Male	60.4
Female	39.6
Blood groups	
O pos	31.0
O neg	11.4
A pos	30.8
A neg	8.9
B pos	9.1
B neg	2.7
AB pos	4.8
AB neg	1.3

using long-range PCR followed by PCR-SSP typing of the c.787A>T mutation was described as a genotyping method [26]. Due to the long-range PCR this method is, however, time-consuming and cost-intensive. With our fast (70 min) and easy TaqManTM PCR method we were able to screen 3,399 donors within a short period of time and identified 84 donors (2.47%) homozygous for the null haplotype in both genes *CD177* and *CD177P1* (fig. 1). Because this screening method does not distinguish between *CD177* and *CD177P1*, individuals homozygous for the *c.787A*>T mutation in the *CD177* gene, but with one or two wild-type alleles in the *CD177P1* gene, are not identified as HNA-2^{null}. For all 84 donors we could confirm the *CD177*c.787T* homozygosity using the

CD177-specific long-range PCR and PCR-SSP. For 8 of the donors we obtained fresh blood samples and confirmed the HNA-2^{null} phenotype by flow cytometry (data not shown). Thus, we describe here a suitable method for fast molecular screening of the HNA-2^{null} phenotype.

The prevalence of the different genotypes was within the expected range, with a few exceptions. For each measured distribution, basic probability testing was performed using a chi-square test comparing the observed distribution of genotypes to the expected distribution based on observed allele frequencies and the Hardy-Weinberg equilibrium. All but two results (Au^{a/b} and Fy^{null}) were in line with the expected genotype frequencies. For the Au^{a/b}encoding SNP we identified a trend (p = 0.054) for more heterozygotes (933 vs. 869) and less Au^b homozygotes (151 vs. 183) as expected. Re-typing of 144 selected samples using PCR-SSP confirmed the result from TaqManTM PCR. In addition, phenotyping of 11 samples for the Au^{a/b} antigens by means of serology also confirmed the genotyping results. The overrepresentation of Au^{a/b} donors in our cohort could be a characteristic of our donor population or is just a coincidental finding. The promoter mutation FY*-67T>C was screened for identification of the Fy^{null} phenotype. Based on the allele frequency of 0.0139 for the mutation, we could expect one homozygote in 5,164 donors. We found 6 homozygotes in 2,084 typed donors leading to a significant deviation (p < 0.0001) from the Hardy-Weinberg equilibrium. Most likely, the Fy^{null} donors are of African ancestry because the mutation is very common in this population.

The MAF of blood group antigens, HPAs, and HNAs in our study cohort were compared to the data of non-Finnish Europeans in the ExAC exome sequencing study [27]. The S antigen encoding *GYPB*c.143T* allele, the HPA-3b antigen encoding *ITGA2B*c.2621G* allele, and the HNA-4b antigen encoding *ITGAM*c.230A* allele was significantly less prevalent in our cohort (table 4). The *LU*c.611T*

Table 3. Results

from genotype screening of blood donors

Antigen system	dbSNP No.	Allele	Genotype	Phenotype ¹	Number of donors	% of donors
Blood grou	DS					
MNS	rs7687256,	GYPA*01	c.71G, c.72T	M+N-	589	28.26
(002)	rs7658293	GYPA*02	c.71G/A, c.72T/G	M+N+	1,078	51.58
` ´			c.71A, c.72G	M–N+	420	20.15
MNS	rs7683365	GYPB*03	c.143T	S+s-	212	9.33
(002)		GYPB*04	c.143T/C	S+s+	995	43.77
			c.143C	S-s+	1,066	46.90
P1PK	rs2143918 ²	A4GALT*P1.01	+2857T	P ₁	555	26.58
(003)		A4GALT*P2.01	+2857T/G	P ₁	1,017	48.56
			+2857G	P ₂	518	24.86
LU	rs28399653	LU*01	c.230A	Lu(a+b-)	4	0.19
(005)		LU*02	c.230A/G	Lu(a+b+)	153	7.34
			c.230G	Lu(a-b+)	1,927	92.47
LU	rs28399656	LU*02	c.611T	LU:8,-14	1,987	95.35
(005)		LU*02.14	c.611T/A	LU:8,14	96	4.61
			c.611A	LU:-8,14	1	0.05
LU	rs1135062	LU*02	c.1615A	Au(a+b-)	1,000	47.98
(005)		LU*02.19	c.1615A/G	Au(a+b+)	933	44.77
			c.1615G	Au(a–b+)	151	7.25
KEL	rs8176058	KEL*01	c.578C	K+k-	7	0.25
(006)		KEL*02	c.578C/T	K+k+	222	8.08
			c.578T	K-k+	2,518	91.67
KEL	rs8176059	KEL*02	c.841C	Kp(a–b+c–)	2,047	98.22
(006)		KEL*02.03	c.841C/T	Kp(a+b+c–)	36	1.73
			c.841T	Kp(a+b-c-)	1	0.05
KEL	rs8176038	KEL*02	с.1790Т	Js(a-b+)	2,083	99.95
(006)		KEL*02.06	c.1790T/C	Js(a+b+)	1	0.05
			с.1790С	Js(a+b-)	0	0.00
KEL	rs61729034	KEL*02	c.905T	KEL:11,-17	2,078	99.71
(006)		KEL*02.17	c.905T/C	KEL:11,17	6	0.29
			c.905C	KEL:-11,17	0	0.00
FY	rs12075	FY*01	c.125G	Fy(a+b-)	402	19.29
(008)		FY*02	c.125G/A	Fy(a+b+)	998	47.89
			c.125A	Fy(a–b+)	684	32.82
FY	rs2814778	<i>FY</i> *01 <i>N</i> .01 or	-67T		2,032	97.50
(008)		FY02N.01	-67T/C		46	2.21
			-67C	Fy(a–b–)	6	0.29
JK	rs1058396	JK*01	c.838G	Jk(a+b-)	564	27.06
(009)		JK*02	c.838G/A	Jk(a+b+)	999	47.94
			c.838A	Jk(a–b+)	521	25.00
DI	rs2285644	DI*01	c.2561T	Di(a+b-)	0	0.00
(010)		DI*02	c.2561T/C	Di(a+b+)	3	0.11
			c.2561C	Di(a–b+)	2,746	99.89
DI	rs75731670	DI*02	c.1972A	Wr(a+b-)	0	0.00
(010)		DI*02.03	c.1972A/G	Wr(a+b+)	3	0.14
			c.1972G	Wr(a–b+)	2,081	99.86
ΥT	rs1799805	YT*01	c.1057C	Yt(a+b-)	2,427	88.64
(011)		YT*02	c.1057C/A	Yt(a+b+)	295	10.77
			c.1057A	Yt(a–b+)	16	0.58
SC	rs56025238	SC*01	c.169G	SC:1,-2	2,727	99.27
(013)		SC*02	c.169G/A	SC:1,2	20	0.73
			c.169A	SC:-1,2	0	0.00
DO	rs11276	DO*01	c.793A	Do(a+b-)	319	15.31
(014)		DO*02	c.793A/G	Do(a+b+)	1,029	49.38
			c.793G	Do(a-b+)	736	35.32

Table 3 continued on next page

Table 3. Continued

Antigen system	dbSNP No.	Allele	Genotype	Phenotype ¹	Number of donors	% of donors
СО	rs28362692	CO*01	c.134C	Co(a+b-)	1,931	92.66
(015)		CO*02	c.134C/T	Co(a+b+)	151	7.25
			c.134T	Co(a–b+)	2	0.10
LAN	rs149202834	ABCB6*01	c.574C	Lan+	2,064	99.04
(033)		ABCB6*01N.13	c.574C/T	Lan+	20	0.96
			c.574T	Lan–	0	0.00
VEL	rs566629828	VEL*01	c.64-80ins	Vel+	2,653	96.54
(034)		VEL*-01	c.64-80ins/del	Vel+	94	3.42
			c.64-80del	Vel-	1	0.04
Platelet an	tigens (HPA)					
HPA-1	rs5918	ITGB3*176T	c.176T	HPA-1(a+b-)	1,764	72.03
		ITGB3*176C	c.176T/C	HPA-1(a+b+)	636	25.97
			с.176С	HPA-1(a-b+)	49	2.00
HPA-2	rs6065	GP1BA*482C	c.482C	HPA-2(a+b-)	2,040	82.93
		GP1BA*482T	c.482C/T	HPA-2(a+b+)	395	16.06
			c.482T	HPA-2(a-b+)	25	1.02
HPA-3	rs5911	ITGA2B*2621T	c.2621T	HPA-3(a+b-)	909	38.47
		ITGA2B*2621G	c.2621T/G	HPA-3(a+b+)	1,116	47.23
			c.2621G	HPA-3(a-b+)	338	14.30
HPA-5	rs1801106	ITGA2*1600G	c.1600G	HPA-5(a+b-)	1,925	81.33
		ITGA2*1600A	c.1600G/A	HPA $-5(a+b+)$	422	17.83
			c.1600A	HPA-5(a-b+)	20	0.84
HPA-15	rs10455097	CD109*2108C	c.2108C	HPA-15(a+b-)	598	24.28
		CD109*2108A	c.2108C/A	HPA-15(a+b+)	1,227	49.82
			c.2108A	HPA-15(a-b+)	638	25.90
Neutrophil	antigens (HNA)					
HNA-1	rs448740	FCGR3B*01	c.227A	HNA-1(a+b-c-d-)	349	12.71
	rs368410676	FCGR3B*02	c.227A/c.147T,266C	HNA-1(a+b+c-d+)	1,174	42.75
	rs527909462	FCGR3B*03	с.147Т,266С	HNA-1(a-b+c-d+)	1,100	40.06
	rs5030738		c.227A/c.147T,266A	HNA-1(a+b+c+d-)	41	1.49
			c.227A/c.147T,266C/A	HNA-1(a+b+c+d+)	64	2.33
			c.147T,266C/A	HNA-1(a-b+c+d+)	18	0.66
HNA-2	rs1164364335	CD177/CD177P1	c.787A, c.787A/T	HNA-2(+/-)	3,315	97.53
			c.787T	HNA-2(-)	84	2.47
HNA-3	rs2288904	SLC44A2*461G	c.461G	HNA-3(a+b-)	1,329	58.42
		SLC44A2*461A	c.461G/A	HNA-3(a+b+)	819	36.00
			c.461A	HNA-3(a-b+)	126	5.58
HNA-4	rs1143679	ITGAM*230G	c.230G	HNA-4(a+b-)	1,797	79.06
		ITGAM*230A	c.230G/A	HNA-4(a+b+)	454	19.97
			c.230A	HNA-4(a-b+)	22	0.97
HNA-5	rs2230433	ITGAL*2372G	c.2372G	HNA-5(a+b-)	1,151	50.66
		ITGAL*2372C	c.2372G/C	HNA-5(a+b+)	934	41.11
			c.2372C	HNA-5(a-b+)	187	8.23

allele encoding the LU14 antigen and the *SLC44A2*c.461A* allele encoding the HNA-3b antigen showed a higher frequency compared to the ExAC data.

mutation.

Discussion

By screening of more than 2,000 donors we found a number of rare blood types, such as Lu(a+b-), Kp(a+b-), Fy^{null}, Vel-, HPA-1(a-b+), and HNA-2^{null} (table 5).

Molecular screening of the local blood donor population is an approach to enable a compatible blood supply on demand. We describe a TaqMan[™] PCR-based typing of the corresponding genetic markers (mostly SNPs). This method is feasible, as it is associated

Table 4. Minor allelefrequencies in ourdonor populationcompared to the non-Finnish Europeanpopulation in theExAC database

Antigen	dbSNP No.	Minor allele	MAF in our cohort	MAF in ExAC	Significance*
Blood groups					
S	rs7683365	GYPB*c.143T	0.3121	0.3802	<0.001
Lu(a)	rs28399653	LU*c.230A	0.0390	0.0382	0.935
LU14	rs28399656	LU*c.611T	0.0234	0.0146	0.048
Au(b)	rs1135062	LU*c.1615G	0.2962	0.2993	0.809
K	rs8176058	KEL*c.578T	0.0430	0.0412	0.753
Kp(a)	rs8176059	KEL*c.841T	0.0091	0.0105	0.634
Js(a)	rs8176038	KEL*c.1790C	0.0002	0.0005	0.548
KEL17	rs61729034	KEL*c.905C	0.0014	0.0018	0.726
Fy(a)	rs12075	FY*c.125G	0.4325	0.4244	0.632
Jk(b)	rs1058396	SLC14A1*c.838A	0.4897	0.4912	0.950
Di(a)	rs2285644	SLC4A1*c.2561T	0.0005	0.0004	0.823
Wr(a)	rs75731670	SLC4A1*c.1972A	0.0007	0.0002	0.114
Yt(b)	rs1799805	ACHE*c.1057A	0.0597	0.0502	0.211
Sc2	rs56025238	ERMAP*c.169A	0.0036	0.0050	0.628
Do(a)	rs11276	ART4*c.793A	0.4000	0.3849	0.348
Co(b)	rs28362692	AQP1*c.134T	0.0372	0.0398	0.623
LAN-	rs149202834	ABCB6*c.574T	0.0048	0.0030	0.454
Platelet antigens	(HPA)				
HPA-1b	rs5918	ITGB3*c.176C	0.1499	0.1553	0.629
HPA-2b	rs6065	GP1BA*c.482T	0.0904	0.0865	0.697
HPA-3b	rs5911	ITGA2B*c.2621G	0.3792	0.4443	< 0.001
HPA-5b	rs1801106	ITGA2*c.1600A	0.0976	0.0918	0.553
HPA-15a	rs10455097	CD109*c.2108C	0.4919	0.4975	0,752
Neutrophil antig	ens (HNA)				
HNA-3b	rs2288904	SLC44A2*c.461A	0.2358	0.2094	0.048
HNA-4b	rs1143679	ITGAM*c.230A	0.1095	0.1769	< 0.001
HNA-5b	rs2230433	ITGAL*c.2372C	0.2879	0.2856	0.889

Table 5. Rare bloodtypes identified in thescreened donor cohort

Phenotype*	Number of donors		
Negative for HP blood	groups		
Lu(a+b-)	4		
LU:8,14	1		
K+k-	7		
Kp(a+b-)	1		
Fy(a-b-)	6		
Yt(a-b+)	16		
Co(a-b+)	2		
Vel-	1		
Positive for LP blood g	roups		
Js(a+)	1		
KEL:17	6		
Di(a+)	3		
Wr(a+)	3		
SC:2	20		
HPA / HNA			
HPA–1(a–b+)	49		
HPA–2(a–b+)	25		
HPA–5(a–b+)	20		
HNA–2 ^{null}	84		
HNA-4(a-b+)	22		
*Negative for high-prevalence (HP) antigens; positive for low-prevalence (LP) antigens.			

with limited workload and can be easily adapted with regard to higher throughput of samples and additional alleles.

Up to now we obtained 72,337 genotypes from 33 genetic markers in more than 2,000 donors, and it is an ongoing screening program including all new donors at our institute. Based on the genotyping data we were able to deduce the phenotypes for 37 blood group antigens, 10 HPAs, and 11 HNAs including the HNA-2^{null} phenotype. The complete antigen profile could be achieved for 2,084 donors. Some of the antigens are already typed in higher numbers of donors such as Vel (2,748 donors), Yt^{a/b} (2,738), HPA-1 (2,449), HNA-1 (2,746), HNA-2 (3,399) and others (table 3).

In this study we also describe a feasible method for fast and easy molecular screening to identify HNA-2^{null} individuals. The method is based on TaqManTM PCR with endpoint fluorescence detection and can be easily adapted to medium or high throughput. Using the 96-well format in standard PCR cyclers more than 1,000 donors can be typed per day. CAVE: only individuals homozygous for the null mutation *c.787A*>*T* in both genes *CD177* and *CD177P1* are typed as HNA-2^{null}. If the mutation is homozygous in *CD177* but heterozygous or absent in *CD177P1*, these individuals are also HNA-2^{null}, but are not recognized by the TaqManTM PCR method. Other null variants of CD177 are also not detected.

Most of the allele frequencies observed in our cohort were similar to the frequencies reported for non-Finnish Europeans in the ExAC database [27]. Only 5 of the 25 alleles with clear information in the database revealed a significant difference. This probably results from the demographic characteristics of the urban area in which our institute is located. As of 2016, the population of Mannheim includes 44.7% immigrants, of which at least 70% belong to countries with a predominantly Caucasian population [18]. About 12% have Asian ancestry and 5% are African. However, we do not know the portion of immigrants in our donor population. At least for the Fy^{null} phenotype that is most prevalent in Africans and which we found in 6 of our donors (0.3%), we can assume a significant number of donors with African ancestry. Another example could be the SLC44A2*c.461A allele encoding the HNA-3b antigen. According to ExAC data it is more prevalent in East Asians (0.3091) than in non-Finnish Europeans (0.2094), and the MAF was 0.2358 in our cohort. Thus, the differences in allele frequencies in our donor population compared to the general European population could be attributed to a certain number of donors with African or Asian ancestry.

Immigration to Central Europe in general may increase the number of patients with sickle cell anemia or other hemoglobinopathies. The transfusion therapy of such patients is challenging because of a frequent blood demand and because of antigens with different prevalence in other populations. The concept of extended matching in transfusion therapy of such patients is appropriate to prevent alloimmunization events [28–30]. Especially, patients who were already immunized by past transfusion could benefit from extensive antigen matching beyond C/c, E/e, and K [31, 32]. As recently reported in a large cohort of transfused patients, the most immunogenic antigens were in order K, E, C^W, e, Jk^a, c, and Fy^a [33]. Among the 2,084 donors typed for these antigens, we could identify 22 donors negative for K, E, Jk^a, c, and Fy^a as well as 22 donors negative for D, K, E, Jk^a, and Fy^a. Three donors were negative for a number of clinically relevant antigens: A, B, C, D, E, K, Jk^a, Fy^a, M, and S.

Based on our experiences we attempt to establish a regional registry of extended typed blood donors to provide fresh RBC units with special blood types on demand. Similar concepts for the extended matched blood supply are established in different countries worldwide [34–37].

Disclosure Statement

The authors declare no conflict of interest.

References

- 1 Franchini M, Forni GL, Liumbruno GM: Is there a standard-of-care for transfusion therapy in thalassemia? Curr Opin Hematol 2017;24:558–564.
- 2 Avent ND: Large-scale blood group genotyping: clinical implications. Br J Haematol 2009;144:3–13.
- 3 Moncharmont P: Platelet component transfusion and alloimmunization: where do we stand? Transfus Clin Biol 2018; doi: 10.1016/j.tracli.2018.01.003.
- 4 Flesch B, Reil A. Molecular genetics of human neutrophil antigens. Transfus Med Hemother 2018;45(5): DOI: 10.1159/000491031.
- 5 Hashmi G, Shariff T, Zhang Y, Cristobal J, Chau C, Seul M, Vissavajjhala P, Baldwin C, Hue-Roye K, Charles-Pierre D, Lomas-Francis C, Reid ME: Determination of 24 minor red blood cell antigens for more than 2000 blood donors by high-throughput DNA analysis. Transfusion 2007;47:736–747.
- 6 Wagner FF, Bittner R, Petershofen EK, Doescher A, Müller TH: Cost-efficient sequence-specific primingpolymerase chain reaction screening for blood donors with rare phenotypes. Transfusion 2008;48:1169–1173.
- 7 Jungbauer C, Hobel CM, Schwartz DW, Mayr WR: High-throughput multiplex PCR genotyping for 35 red blood cell antigens in blood donors. Vox Sang 2012; 102:234-242.
- 8 Haer-Wigman L, Ait Soussan A, Ligthart P, de Haas M, van der Schoot CE: Molecular analysis of immunized Jr(a-) or Lan- patients and validation of a highthroughput genotyping assay to screen blood donors for Jr(a-) and Lan- phenotypes. Transfusion 2014;54: 1836-1846.
- 9 Veldhuisen B, Porcelijn L, van der Schoot CE, de Haas M: Molecular typing of human platelet and neutrophil antigens (HPA and HNA). Transfus Apher Sci 2014; 50:189–199.

- 10 Meyer S, Vollmert C, Trost N, Brönnimann C, Gottschalk J, Buser A, Frey BM, Gassner C: Highthroughput Kell, Kidd, and Duffy matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry-based blood group genotyping of 4000 donors shows close to full concordance with serotyping and detects new alleles. Transfusion 2014;54:3198–3207.
- 11 Meyer S, Trost N, Frey BM, Gassner C: Parallel donor genotyping for 46 selected blood group and 4 human platelet antigens using high-throughput MALDI-TOF mass spectrometry. Methods Mol Biol 2015;1310:51–70.
- 12 Wieckhusen C, Rink G, Scharberg EA, Rothenberger S, Komurcu N, Bugert P: Molecular screening for Velblood donors in southwestern Germany. Transfus Med Hemother 2015;42:356–360.
- 13 Wagner FF, Doescher A, Bittner R, Müller TH: Extended donor typing by pooled capillary electrophoresis: impact in a routine setting. Transfus Med Hemother 2018;45:225–237.
- 14 Crottet SL, Henny C, Meyer S, Still F, Stolz M, Gottschalk J, Neuenschwander K, Taleghani BM, Gowland P, Frey BM, Fontana S, Hustinx H, Niederhauser C, Gassner C: Implementation of a mandatory donor RHD screening in Switzerland. Transfus Apher Sci 2014;50:169–174.
- 15 Flegel WA, Gottschall JL, Denomme GA: Implementing mass-scale red cell genotyping at a blood center. Transfusion 2015;55:2610–2615.
- 16 Hong YJ, Chung Y, Hwang SM, Park JS, Kwon JR, Choi YS, Kim JN, Lee DH, Kwon SY, Cho NS, Song EY, Park KU, Song J, Han KS: Genotyping of 22 blood group antigen polymorphisms and establishing a national recipient registry in the Korean population. Ann Hematol 2016;95:985–991.

- 17 Gassner C, Degenhardt F, Meyer S, Vollmert C, Trost N, Neuenschwander K, Merki Y, Portmann C, Sigurdardottir S, Zorbas A, Engström C, Gottschalk J, Amar el Dusouqui S, Waldvogel-Abramovski S, Rigal E, Tissot J, Tinguely C, Mauvais SM, Sarraj A, Bessero D, Stalder M, Infanti L, Buser A, Sigle J, Weingand T, Castelli D, Braisch MC, Thierbach J, Heer S, Schulzki T, Krawczak M, Franke A, Frey BM: Low-frequency blood group antigens in Switzerland. Transfus Med Hemother 2018;45:239–250.
- 18 Einwohner mit Migrationshintergrund in kleinräumiger Gliederung. Statistische Daten Mannheim N° 3/2017. Mannheim, Stadt Mannheim, 2017, p 27. https://www.mannheim.de/sites/default/files/2018-06/ d201703_migrationshintergrund_2016.pdf (last accessed September 10, 2018).
- 19 Bevölkerung und Erwerbstätigkeit Bevölkerung mit Migrationshintergrund – Ergebnisse des Mikrozensus 2016. Statistisches Bundesamt (Destatis), 2016, p 8.
- 20 Rachmilewitz EA, Giardina PJ: How I treat thalassemia. Blood 2011;118:3479–3488.
- 21 Nance ST: How to find, recruit and maintain rare blood donors. Curr Opin Hematol 2009;16:503–508.
- 22 Reil A, Bux J: Geno- and phenotyping of human neutrophil antigens. Methods Mol Biol 2015;1310:193–203.
- 23 Rink G, Scharberg EA, Bugert P: PCR with sequencespecific primers for typing of diallelic blood groups. Methods Mol Biol 2015;1310:71–81.
- 24 Lai YJ, Wu WY, Yang CM, Yang LR, Chu CC, Chan YS, Lin M, Yu LC: A systematic study of single-nucleotide polymorphisms in the A4GALT gene suggests a molecular genetic basis for the P1/P2 blood groups. Transfusion 2014;54:3222–3231.
- 25 Li Y, Mair DC, Schuller RM, Li L, Wu J: Genetic mechanism of human neutrophil antigen 2 deficiency and expression variations. PLoS Genet 2015;11:e1005255.

- 26 Bayat B, Bein G, Sachs UJ: A sequence-specific polymerase chain reaction method for HNA-2 genotyping: homozygous c.843A>T mutation predicts the absence of CD177. Transfusion 2016;56:2127–2132.
- 27 Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, De-Pristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won H-H, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, Mac-Arthur DG; Exome Aggregation Consortium: Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536:285-291.
- 28 Lasalle-Williams M, Nuss R, Le T, Cole L, Hassell K, Murphy JR, Ambruso DR: Extended red blood cell antigen matching for transfusions in sickle cell disease: a review of a 14-year experience from a single center (CME). Transfusion 2011;51:1732–1739.
- 29 Casas J, Friedman DF, Jackson T, Vege S, Westhoff CM, Chou ST: Changing practice: red blood cell typing by molecular methods for patients with sickle cell disease. Transfusion 2015;55:1388–1393.
- 30 Putzulu R, Piccirillo N, Orlando N, Massini G, Maresca M, Scavone F, Ricerca BM, Zini G: The role of molecular typing and perfect match transfusion in sickle cell disease and thalassaemia: an innovative transfusion strategy. Transfus Apher Sci 2017;56:234–237.
- 31 Sins JW, Biemond BJ, van den Bersselaar SM, Heijboer H, Rijneveld AW, Cnossen MH, Kerkhoffs JL, van Meurs AH, von Ronnen FB, Zalpuri S, de Rijke YB, van der Schoot CE, de Haas M, van der Bom JG, Fijnvandraat K: Early occurrence of red blood cell alloimmunization in patients with sickle cell disease. Am J Hematol 2016;91:763–769.
- 32 Yee MEM, Josephson CD, Winkler AM, Webb J, Luban NLC, Leong T, Stowell SR, Fasano RM: Red blood cell minor antigen mismatches during chronic transfusion therapy for sickle cell anemia. Transfusion 2017:57:2738–2746.

- 33 Evers D, Middelburg RA, de Haas M, Zalpuri S, de Vooght KM, van de Kerkhof D, Visser O, Péquériaux NC, Hudig F, Schonewille H, Zwaginga JJ, van der Bom JG: Red-blood-cell alloimmunisation in relation to antigens' exposure and their immunogenicity: a cohort study. Lancet Haematol 2016;3:e284–292.
- 34 Shao CP, Zhao CJ, Wu CL, Xu H, Wang XD, Wu XY, Yi P, Dang XT: Rh-matched transfusion through molecular typing for β-thalassemia patients is required and feasible in Chinese. Transfus Med Hemother 2018; 45:252–257.
- 35 Castilho L, Dinardo CL: Optimized antigen-matched in sickle cell disease patients: chances and challenges in molecular times – the Brazilian way. Transfus Med Hemother 2018;45:258–262.
- 36 Floch A, Tournamille C, Chami B, Pirenne F: Genotyping in sickle cell disease patients: the French strategy. Transfus Med Hemother 2018;45:264–270.
- 37 Khan J, Delaney M: Transfusion support of minority patients: extended antigen donor typing and recruitment of minority blood donors. Transfus Med Hemother 2018;45:271–276.