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Abstract

One of the greatest problems of standard cosmology is the Big Bang singu-
larity. Previously it has been shown that non-local ghostfree higher-derivative
modifications of Einstein gravity in the ultra-violet regime can admit non-
singular bouncing solutions. In this paper we study in more details the dy-
namical properties of the equations of motion for these theories of gravity in
presence of positive and negative cosmological constants and radiation. We find
stable inflationary attractor solutions in the presence of a positive cosmological
constant which renders inflation geodesically complete, while in the presence of
a negative cosmological constant a cyclic universe emerges. We also provide an
algorithm for tracking the super-Hubble perturbations during the bounce and
show that the bouncing solutions are free from any perturbative instability.
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1 Introduction

Primordial inflation is one of the most well motivated paradigms of the early universe,
for a recent review, see [1]. A large e-foldings of inflation can explain the large scale
structures of the universe and also the origin of seed perturbations for the cosmic
microwave background radiation. In spite of the great successes of inflation, it does
not address one of the most important aspects of the Big Bang cosmology. For
any equation of state obeying the strong energy condition p > −ρ/3, regardless of
the geometry (flat, open, closed) of the universe, the scale factor of the universe in a
Friedmann Robertson Walker (FRW) metric vanishes at t = 0, and the matter density
diverges. In fact all the curvature invariants, such as R, �R, ..., become singular.
This is the reason why it is called the Big Bang singularity problem.

Although inflation requires p < −ρ/3, it does not alleviate the Big Bang singular-
ity problem, rather it pushes the singularity backwards in time. Many authors have
pondered on this debatable issue, whether inflation is past eternal or not [2, 3, 4],
and the conclusion is that it is not, at least in the context of Einstein gravity as
long as the average expansion rate in the past is greater than zero, i.e. Hav > 0 [3].
The fluctuations grow as the universe approaches the singularity, and the standard
singularity theorems due to Hawking and Penrose hold, which inevitably leads to a
collapse in FRW geometry as long as the energy density is positive [5] (see also [3]).

There have been many attempts to resolve this cosmological singularity problem
classically [5], and in the context of string theory [6], for a review see [7], but none has
successfully resolved the space-like singularity in the context of a flat universe. All the
stringy toy models which have been constructed so far seem to suffer from classical
and/or quantum instabilities and inconsistencies, such as the presence of negative
tension branes, closed time like curves, negative-norm ghost states, etc., see [8, 9, 10]
for details.

One alternative view would be to study fully non-perturbative and ghostfree higher
derivative actions of gravity inspired from string theory [11]: An infinite set of higher
derivative corrections (series expansion in α′, the string tension) mostly in the form
of an exponential are often known to appear in stringy models, such as tachyonic
actions in string field theory [12]-[19] (for a review see [20]), Bulk fields localized on
a codimension-2 branes [21] and various toy models of string theory such as p-adic
strings [22] (see also [23]), zeta strings [24], and strings quantized on a random lattice
[25, 26] (see also [27]). These corrections appear already at classical level (i.e., at
the tree level), as well as loop level or even non-perturbatively (e.g., as expected



in the 1/N expansion in some Yang-Mills theory [28]). Incidentally, recently it was
shown [29] how one can consistently perform quantum loop calculations in these non-
local models and recover, in the context of finite temperature field theory, some of
the novel properties of string theory such as thermal duality and Hagedorn transition.
Thus it is interesting to explore whether similar theories of gravity, albeit only at
the level of toy models, can provide us insights into the resolution of cosmological
singularities.

It is worth while to point out that like most higher derivative actions, these theo-
ries have improved Ultra-violet (UV) behavior and can render gravity asymptotically
free, but importantly without introducing ghost states [11], for some earlier attempts,
see [30, 31, 32], which were not very successful. Note that asymptotic freedom is re-
quired (in addition to renormalizability) in ordinary field theory for phenomenological
reasons (scaling in processes such as deep inelastic scattering), as well as to avoid cer-
tain problems in the nonperturbative definition of the theory. This condition usually
takes the form of “asymptotic safety” [33], a more general requirement for having a
well-defined UV limit. The theories we consider are therefore natural candidates for
such GR extensions. Building on the work done in [11], in this paper we continue
to study cosmological background solutions and their perturbations arising in the
higher derivative nonlocal gravity models, and in particular whether they can resolve
the Big Crunch/Bang singularity problem of GR robustly. Previously, non-local 1

higher derivative corrections to gravity has been studied in the context of black hole
singularities [34], understanding ultra-violet behavior [35], cosmological applications
(for instance, involving dark energy [36], inflation [37], and generating density pertur-
bations [38]), and modifications to the Newtonian potentials in the metric [39]. For
discussions on these topics in the more general context of higher derivative theories
of gravity, see [40] 2.

In [11] non-local asymptotically safe theories of gravity were already constructed
and it was shown that they can admit non-singular bouncing solutions. However, it
was not clear how generic these solutions were, whether these solutions were stable
under small perturbations, and whether these theories contain other singular solutions
or not. The primary focus of this paper is to shed some light on these issues, and
also see whether they can provide phenomenologically viable cosmological models.
For instance, can one have a geodesically complete inflationary paradigm once the
non-local modifications to gravity are included? We know that for the success of
the inflationary paradigm, the super-Hubble fluctuations must “freeze”, is that true
in the non-local models or do the fluctuations decay/ grow during inflation? In
cyclic and bouncing alternatives [42]-[48], the issue of transmitting perturbations is
of paramount importance. Can we understand the evolution of the fluctuations in
the concrete nonsingular bouncing set-up that our model provides?

1Some of these models are very similar to the models we consider in our paper and contain and
infinite series of higher derivative terms, but in the literature highly non-local operators, such as
f(1/�), have also been considered.

2In parallel, string-inspired non-local scalar field theories have also been studied quite extensively
in recent times, including several interesting applications [41].



In this paper specifically we will seek a two parameter family of solutions, labeled
by λ and µ, which solves the higher derivative theory of gravity. Interestingly, this
class of solutions demands the presence of a cosmological constant, which is no longer
free but is determined in terms of the two parameters, and radiation. One particular
solution for the scale factor turns out to be a hyperbolic cosine bounce with a positive
cosmological constant, where µ = −6λ2 [11]. In principle λ can be both positive and
negative in order to provide a non-singular bouncing cosmology, but for λ < 0, it is
not possible to recover the GR limit at late times. The most interesting case is when
λ > 0 where not only we recover the right infrared behavior of gravity, but also two
interesting classes of solutions with positive and negative cosmological constants, i.e.
±Λ.

The case of Λ > 0 is very interesting from the point of view of inflation, as it
paves the way for a geodesically complete paradigm in past and future. There exists a
deSitter solution as an attractor for large enough times before and after the bounce.
This is a good news for both low scale [49] and an intermediate scale models of
inflation [50] which are driven by the vacuum energy of the inflaton field which can
excite the observed relativistic and non-relativistic degrees of freedom after the end
of inflation. On the other hand the µ > 0,Λ < 0 case is equally interesting from the
point of view of providing an early phase of cyclic cosmology. In this case there does
not exist any deSitter attractor but there are also no singular solutions. Although, a
mere cyclic phase is a rather boring scenario as it fails to reproduce the universe we
live in, recently it has been proposed that once interactions between radiation and
non-relativistic matter are taken into account then we can obtain a cyclic inflationary
paradigm where the cycles become asymmetric and the universe expands bit by bit
to give rise to an exponential inflation over many many cycles [51], see also [52]. Both
Λ > 0,Λ < 0 cases will be studied analytically and numerically in our paper.

In general, taking into account a preceding contracting phase removes the infla-
tionary infrared divergences of quantum fluctuations [53]. Here we study the evolution
of the super-Hubble perturbations during the bounce and ensure that they do not
feature any classical and/or quantum instabilities. Interestingly, we find that on large
scales all the modes are decaying except one which remains frozen. This frozen mode
could be useful if we wish to evolve the perturbations either prior or after the bounce
in order to match the observed CMB perturbations. However, we will not delve into
any details about these issues in this paper.

We will begin our discussion with a brief recap of nonperturbative higher derivative
action and its equation of motion in section 2. We will discuss the background
solutions in section 3, where we also provide an analytical example of a specific
class of non-local models. In section 4, we will study various cases of λ > 0, λ < 0
and their dynamical attractor solutions for Λ > 0,Λ < 0. In section 5, we track
the perturbations during the bounce. Some series expansions are confined to the
appendices: B.1 presents a general series solution for the two-parameter ansatz, and
B.2, B.3 B.4 consider some special cases. We conclude in section 6.



2 Ghost-free non-local theories of gravity

2.1 Ghost-free higher derivative actions

In [11], a string-inspired ghost-free and asymptotically free higher derivative gravity
action was introduced. In this paper we investigate their cosmology in more depth
and generality, and suggest to use this action to study how perturbations propagate
across the bounce. Before doing this, we shall review the construction of [11].

The action discussed in [11] takes the form

S =
M2

p

2

∫
d4x

√−gF (R) , (2.1)

where Mp is the reduced Planck mass and

F (R) = R +
∞∑

n=0

cn

M
2(n+1)
∗

R�nR . (2.2)

Here, M∗ is the mass scale at which the higher derivative terms in the action become
important. In order to ensure that the action is ghost-free, it is important that the
series does not truncate at a finite order, i.e. the coefficients cn must remain non-
vanishing to arbitrarily high orders. For the purpose of illustration, let us provide a
specific example: If we choose

cn = −1

6

(−1)n+1

(n+ 1)!
, (2.3)

the series can be summed up and F (R) becomes

F (R) = R− R

6

(e−�/M2
∗ − 1

�

)
R . (2.4)

To understand the absence of ghosts, it is convenient to re-write the action in
terms of a scalar field ψ and a Lagrange multiplier field φ in the form

S =
M2

p

2

∫
d4x

√−g
(
ΦR + ψ

∞∑

n=1

cn
�

nψ

M
2(n+1)
∗

−
[
ψ(Φ− 1)− c0

M2
∗

ψ2
]
)
. (2.5)

After performing conformal transformations, gmn → Φgmn, and linearizing around
Φ = 1 we find

S =
M2

p

2

∫
d4x

√−g
(
R +

3

2
φ�φ+ ψ

∞∑

n=0

cn
�

nψ

M
2(n+1)
∗

− ψφ

)
. (2.6)

where Φ = eφ ≈ 1 + φ. We note in passing that while φ is dimensionless, ψ has mass
dimension 2. The variational equations with respect to φ and ψ yield

ψ = 3�φ (2.7)



and

φ = 2

∞∑

n=0

cn
�

nψ

M
2(n+1)
∗

, (2.8)

respectively. We can now combine these equations to obtain

[
1− 6

∞∑

n=0

cn
�

n+1

M
2(n+1)
∗

]
φ ≡ Γ(�)φ = 0 . (2.9)

Ghosts would appear as poles of the propagator of φ. If we can sum up the infinite
series on the right hand side of (2.9) into the form

Γ(�) = eγ(�) , or Γ(�) =

(
1− �

m2

)
eγ(�) (2.10)

where γ(w) is an analytic function in the entire complex plane, then it follows [11]
that there are no ghosts. One simple example of a ghost-free action results if we
choose

γ(w) = w , (2.11)

which is precisely what one obtains when the coefficients cn are chosen as in (2.3). In
case one is concerned that integrating out the field ψ above changes the conclusions,
we present alternative derivations of the ghost-free condition in the appendix A.

One way to see that the action given by (2.1) with the coefficients chosen as in
(2.3) is asymptotically free is to solve [11] the linearized field equations for a point
source and to observe that the contribution of ultraviolet modes is exponentially cut
off. This is a rather typical scenario in these models, the UV behavior improves due
to the exponential “regulation”.

The asymptotic freedom of the theory leads to nonsingular cosmologies. An exact
nonsingular solution was constructed in [11] for a limited class of non-local actions of
the form (2.2). One of the focus of this paper is to generalize the class of bouncing
solutions, so that we can look at a much larger set of non-local actions. Also we want
to study the stability and phenomenological viability of these models.

2.2 Einstein-Schmidt (ES) equations

For this purpose we first want to simplify the modified Einstein’s equations for our
action (2.2). We will henceforth refer to them as ES equations, as much of the work
on such generalizations was done by Schmidt [54]. The ES equations look like

G̃µν =
1

M2
p

Tµν , (2.12)



where Tµν is the matter stress tensor and the generalized Einstein tensor G̃µν , called
here the ES tensor, has the form

G̃µν = F0Rµν −
1

2
Fgµν − F0;µν + gµν�F0

+
1

2

∞∑

1

[
gµν(FN(�

N−1R);σ);σ − FN ;(µ(�
N−1R);ν)

]
, (2.13)

where we have defined

FN =

∞∑

M=N

�
M−N

(
∂F

∂�MR

)
, (2.14)

and the symmetrization convention is such that A(µν) ≡ Aµν +Aνµ. Let us obtain the

ES tensor, G̃µν , for the special case when

F = R�nR . (2.15)

One finds

G̃n
µν = 2Rµν�

nR− 2(�nR);µν + 2gµν

(
�

n+1R− 1

4
R�nR

)

+
1

2

n∑

m=1

[
gµν(�

n−mR(�m−1R);σ);σ − (�n−mR);(µ(�
m−1R);ν)

]
. (2.16)

Since the ES tensor is linear in F , the complete ES tensor for the more general F in
Eq.(2.2) is given by

G̃µν = Gµν +

∞∑

n=0

cn

M
2(n+1)
∗

G̃n
µν (2.17)

In particular it is rather useful to look at the trace of the ES tensor. Defining as
before

G̃ ≡ gµνG̃µν = G+

∞∑

n=0

cn

M
2(n+1)
∗

G̃n , (2.18)

where

G̃n = 6�n+1R +

n∑

m=1

[
(�n−mR);µ(�

m−1R);µ + 2(�n−mR)(�mR)
]

(2.19)

gives the contribution to the trace of the ES tensor from each derivative order of
(n+ 4).

3 Finding bouncing backgrounds

3.1 The ansatz

Quite remarkably infinite differential equations similar to what we are interested
in has been studied by mathematicians, see [55], and several rigorous results exist,



especially for linear systems. The various techniques and results developed has now
been successfully applied to analyze cosmology involving infinite differential equations
involving scalar fields as one encounters in p-adic [56] and string field theory [12]-[19].
In particular what has been realized is that mostly the non-local infinite differential
equations can be approximately mapped to a collection of local field theories. To
make things concrete, consider a non-local action of the form

S =M2

∫
d4xφΓ(�)φ (3.20)

leading to the field equation
Γ(�)φ = 0 . (3.21)

Let us assume that Γ is an analytic function with N distinct zeroes of order one, at
points m2

i with i = 1 . . . N . Then one can rigorously show that the set of classical
trajectories for the full non-local action is simply given by the “union” of solutions
to the following “local” field theory equations

(�+m2
i )φ = 0 , i = 1 . . . N (3.22)

One can thus use this correspondence to obtain solutions to the full non-local equa-
tions by solving only the usual field theory equations. When one adds interactions
to the theory, then such a correspondence is no longer exact, but again one can show
that one can obtain approximate solutions to the original non-local (and now non-
linear) equations from local field theory solutions. This procedure was successfully
used to obtain, not only background solutions but also in computing the spectrum
of perturbations around the background [56]. Our aim in this section is to develop
a similar algorithm to obtain solutions (both background and perturbations) for our
non-local theory of gravity.

We are going to focus on the situations where there is only a cosmological constant
and radiation as the matter source. We will see that this situation is similar to the
scalar field with no interaction term (3.21). Thus one expects to be able to find
exact solutions of the non-local theory by solving only “local” field equations. There
is however one crucial difference: gravity being a gauge theory leads to additional
constraints which are different from the “local” analogues. This explains why we
can get qualitatively very different background solutions in the non-local theories as
compared to the local counterparts. This will become clearer as we proceed. To begin
with let us provide the “local ansatz” for our non-local theories.

In order to implement the mapping between non-local and local theory, it is im-
perative that we start with the trace equation for gravityM2

p G̃ = T , where G̃ is given
by (2.18) and T is the trace of the matter stress tensor:

G̃ = −R +

∞∑

0

cn

M
2(n+1)
∗

(
6�n+1R +

n∑

m=1

[
(�n−mR);µ(�

m−1R);µ + 2(�n−mR)(�mR)
]
)

= −4
Λ

M2
p

. (3.23)



Since radiation is conformal, it doesn’t contribute to the trace equation. In close
analogy with the scalar case we now decide to look at the subset of solutions which
satisfies the ansatz

�R = λR + µ , (3.24)

where λ has the dimensions of M2 and µ has the dimensions of energy density, M4.
Unlike the scalar case we do not however claim that the subset of solutions of all
the ansatz of the above form gives us the complete set of solutions to the full non-
local equations. For the purpose and scope of this paper we will restrict ourselves to
solutions of the non-local equations which also satisfy the above ansatz.

Now, from (3.24) it follows that

�
nR = λnR + λn−1µ . (3.25)

One can simplify the terms in the right hand side of (3.23), and after some straight
forward but tedious algebra one finds

G̃ = A1R + A2

(
R2 − Ṙ2

2λ

)
+ A3 , (3.26)

where

A1 = −1 + 6
∞∑

n=0

cn

(
λ

M2
∗

)n+1

+ 2µ
∞∑

n=1

(2n− 1)
cn
M4

∗

(
λ

M2
∗

)n−1

= −Γ(λ)− 2
µ

λ2

(
1

6
(1− Γ(λ))− c0λ

M2
∗

)
+

2µ

λ
A2 , (3.27)

A2 = 2

∞∑

n=1

ncn
M2

∗

(
λ

M2
∗

)n

, (3.28)

A3 = 6µ
∞∑

n=0

cn
M2

∗

(
λ

M2
∗

)n

+ 2µ2
∞∑

n=2

(n− 1)
cn
M6

∗

(
λ

M2
∗

)n−2

=
µ

λ

(
1− µ

3λ2

)
(1− Γ(λ)) +

µ2

λ2

(
2
c0
M2

∗

+ A2

)
. (3.29)

We can now equate the coefficients of R and the square of R to zero and require the
remaining constant to be given by the Λ, to obtain solutions to the trace equation.
This implies three conditions, which can be put into the following simple form

Γ(λ) =
−1 + 6c0λ/M

2
∗

3λ2 − µ
µ , (3.30)

Γ′(λ) =
Γ− 1

λ
, (3.31)

Λ = −
µM2

p

4λ
. (3.32)

Thus given a specific higher derivative gravity action (cn’s), we can find an ansatz
of the form (3.24) which solves the trace equation corresponding to the non-local



action (2.1). (3.31) determines the value of λ, and (3.30) then specifies the value of
µ uniquely. However, one has to still satisfy the additional constraint (3.32). Due to
our specific ansatz, the cosmological constant can no longer be a free parameter, but
instead is given by the equation (3.32). Another way of thinking about this is that
given a specific cosmological constant, we can only find solutions of the type (3.24)
for a subclass of non-local actions under consideration. In section 3.4 we will provide
an illustrative example of a class of non-local models admitting bouncing solutions.

3.2 Nonsingular bounces

Since we have “reduced” the non-local infinite differential equations to a finite fourth
order equation (3.24), this is not a very difficult problem to analyze and can be done
rigorously for instance, using power series methods. For simplicity we will focus on
symmetric bouncing solutions, so that the Hubble constant admits an expansion like
the following

H =M∗

∞∑

n=0

h2n+1(M∗t)
2n+1 . (3.33)

By substituting (3.33) in (3.24) one can now systematically determine the hn’s by
looking order by order in (M∗t)

2. Actually, since (3.24) is a third order differential
equation in H , we expect three independent “integration constants”. By choosing a
symmetric bouncing solution (3.33) we have implicitly chosen h0 = h2 = 0. Thus we
are still left with one unconstrained parameter in h1.

In appendix B.1 we have derived the series expansion and in appendices B.2 and
B.4 considered some special cases. The first few hn’s are:

h3 = − 1

36M4
∗

(
µ+ 6h1M

2
∗
(λ+ 4h1M

2
∗
)
)
, (3.34)

h5 =
1

720M6
∗

(
λµ+ 2h1(3λ

2 + 11µ)M2
∗
+ 132λh21M

4
∗
+ 384h31M

6
∗

)
, (3.35)

h7 = − 1

90720M8
∗

[
µ(3λ2 + 26µ) + 6h1λ(3λ

2 + 73µ)M2
∗

+ 12h21(141λ
2 + 242µ)M4

∗
+ 17424λh31M

6
∗
+ 39168h41M

8
∗

]
. (3.36)

From the structure of the series it is apparent that each coefficient h2n+1 is uniquely
determined by the previous ones. The highest order coefficient appears always lin-
early, guaranteeing a real solution. Thus given a specific non-local model (and the
appropriately fine-tuned cosmological constant) we have a one-parameter solution of
symmetric bounces, the parameter being h1, or equivalently, the value of Ḣ at the
bounce point. An important point to note is that although Ḣ ∝ h1 and hence can be
as small as one wants, the time scale of the bounce is still naturally governed by the
M∗ scale. As one can see from (3.34-3.36) all the higher order hn’s will naturally be
O(1), even if h1 → 0.



3.3 Bianchi Identities & the energy density at the bounce

So far we have only solved the trace equation, and one may wonder whether this is
sufficient. The answer is yes, and has to do with the fact that gravity is a constrained
system and satisfies the Bianchi identity. For time dependent solutions

G̃ = −4
Λ

M2
p

⇒ G̃00 =
ρ0
M2

p

a−4 . (3.37)

In other words, the modified Hubble equation can (at most) admit radiation which
being conformal is traceless and therefore doesn’t show up in the trace equation. Thus
the solutions that we obtain via our “local” ansatz provides a solution to the complete
set of ES equations (2.12), but in so doing may inherently assume the presence of
some amount of radiation as well. Although, there is nothing wrong with having a
bit of radiation, we need to determine ρ0 because ρ0 may turn out to be negative.
This would mean having a ghost like radiation degree of freedom, precisely the kind
of states we set out to avoid.

In order to compute ρ0 and p one has to look at the G̃00 and G̃ii equations:

G̃00 = F0R00 +
1

2
F − F̈0 −�F0 −

1

2

∞∑

1

[
Fn�

nR + Ḟn
˙(�n−1R)

]
, (3.38)

G̃ii = F0Rii −
a2

2
F − F0;ii + a2�F0 +

a2

2

∞∑

1

[
Fn�

nR− Ḟn
˙(�n−1R)

]
.(3.39)

where Fn’s are defined via (2.14). For our specific action this simplifies to

Fn =
∞∑

m=n

cm�
m−nR ∀n 6= 0

F0 = 2
∞∑

m=0

cm�
mR for n = 0 . (3.40)

For the energy density and pressure we then get, using the constraints (3.30)-(3.32)
from the trace equation:

ρ

M2
p

= 9
λ− 2c0µ/M

2
∗

3λ2 − µ

[
H
(
Hλ+ 2Ḧ

)
+ 6H2Ḣ − Ḣ2

]
+

1− 6c0λ/M
2
∗

12λ3 − 4λµ
µ2 ,(3.41)

p =
1

3
ρ+

µM2
p

3λ
. (3.42)

consistent with having the cosmological constant and radiation. It is easy to check
that the above two equations imply trace equation. Another consistency check is to
compute the continuity equation,

ρ̇+ 3H(ρ+ p) = 0, (3.43)



which now indeed holds identically. We note that the solutions do not depend on the
details of the higher order contributions to theory once the constraints (3.30)-(3.32)
are satisfied. Namely, the coefficients cn’s do not enter explicitly into the expressions,
but their sums have to satisfy the three conditions. Only the value of c0 is important,
though only when the cosmological constant is nonzero.

The expression for ρ0, the radiation energy density at the bounce point can be
obtained as follows: Notice because of our ansatz, at the bounce point H = Ḧ = 0
and Ḣ = h1M

2
∗
. Thus we have:

ρ0 =
3M2

p (λ− 2c0µ/M
2
∗
)(µ− 12h21M

4
∗
)

12λ2 − 4µ
. (3.44)

Again we find that as long as µ 6= 0, then even if h1 → 0, “naturally” we expect
ρ0 ∼ O(M2

pM
2
∗
). To have a consistent bouncing solution we must make sure that

ρ0 > 0.

3.4 An analytic example: hyperbolic cosine bounce & a spe-

cific class of non-local models

We have seen so far how we can find bouncing solutions given a non-local action.
For the purpose of illustration, let us now look at a specific analytic example of a
bouncing solution which obeys the ansatz (3.24) and was already discussed in [11]:

a(t) = a0 cosh

√
λ

2
t , (3.45)

where λ > 0. This background satisfies our ansatz with the specific parameter com-
bination

�R = λR− 6λ2 ⇒ µ = −6λ2 . (3.46)

The general results (3.32) and (3.44) imply that we need a cosmological constant,
and in general also radiation to support this solution

Λ =
3

2
λM2

pl , (3.47)

ρ0 = −
M2

pl

2λ
(λ2 + 2h21M

4
∗
)(1 + 12λc0/M

2
∗
) . (3.48)

The last equality implies we need a negative quadratic coefficient c0 < −M2
∗
/(12λ).

In our expansion for the Hubble parameter, if we choose ω =
√
λ and h1 = 1/2, the

general solution (3.34-3.36) give us

H(t) =
1

2
λt− 1

12
λ2t3 +

1

60
λ3t5 − 17

5040
λ4t7 + . . . , (3.49)



which is nothing but the expansion corresponding to (3.45). We have thus shown that
consistent hyperbolic cosine bounces with parameter λ > 0 exist in models satisfying
the following requirements:

Γ(λ) =
2

3
(1− 6c0λ/M

2
∗
) , (3.50)

Γ′(λ) =
Γ− 1

λ
, (3.51)

c0 < −M2
∗

12λ
(3.52)

Clearly, λ is over-determined, but there are infinite number of different sets of cn’s
which can satisfy the above constraints and therefore admits the background evolution
(3.45). For the purpose of illustration, let us provide a one-parameter family labeled
by Γ0 of non-local actions which satisfies (3.50-3.52). Consider the following Γ(�):

Γ(�) = exp

[
α1

(
�

M2
∗

)
+ α2

(
�

M2
∗

)2

+ α4

(
�

M2
∗

)4
]
. (3.53)

By solving (3.30) and (3.31) for the hyperbolic cosine bounce, and imposing

Γ0 = exp

[
α1

(
λ

M2
∗

)
+ α2

(
λ

M2
∗

)2

+ α4

(
λ

M2
∗

)4
]
, (3.54)

we can parameterize the α’s as

α1 =
3

2
Γ0 − 1 , (3.55)

α2 = 1 + 2 lnΓ0 −
9Γ0

4
+

1

2Γ0

, (3.56)

α4 =
3Γ0

4
− 1

2Γ0

− ln Γ0 , (3.57)

where we have used/chosen
µ = −6λ2 = −6M2

∗
. (3.58)

The bounce radiation density is given by

ρb =
3

2
M2

pM
2
∗
(Γ0 − 1) . (3.59)

Thus, as long as Γ0 > 1 the radiation density is positive and we obtain a consistent
hyperbolic cosine bounce in the nonlocal model. Below we show the values of α’s
as a function of the Γ0 parameter for which the solution exists. After some series
manipulations, we find that the coefficients cn in the action corresponding to this
theory are given by

cn = −M
2(n+1)
∗

6

n+1∑

m=0

n+1∑

k=0

αk
1α

1

4
(n+1−2m+k)

2 αm−k
4(

n+1−2m+k
4

)
!k!

, (3.60)
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Figure 1: Values of the three parameters α as a function of Γ0 as indicated in the
figure.

where only the terms where the factorial is a positive integer are counted in the sums.
Thus we have shown how one may also reverse-engineer nonlocal theories to generate
the desired background evolution.

In figure ?? we provide the range of the relevant parameters as a function of Γ0

for λ =M2
∗
.

4 Cosmologically viable non-local models

To summarize, we have found that given a specific higher derivative theory of the
form (2.2), i.e. given a specific Γ(�) function, we can find a one parameter family,
labeled by the first derivative of the Hubble parameter at the bounce, of symmetric
bouncing solutions. Each coefficient h2n+1 is uniquely determined by the previous
ones, and thus one may extend the solution in principle arbitrarily late in time.
However there are several important questions one needs to answer before we can
start taking them as serious candidates for consistent and phenomenologically viable
non-singular theories. In this section we want to discuss these issues.

The first question has to do with the radiation density at the bounce which is
fixed in terms of the model parameters and initial conditions (this could be turned
the other way around too), and is given by (3.44). Since we want to consider the-
ories without ghosts, this radiation energy density must be positive which provides
additional constraints on the parameters. The second issue has to do with whether
suitable GR limits of the solutions exist? Finally, it is important to find out whether
the bouncing solutions that we have found are generic, or are there background so-
lutions which end up in a singularity? In this section we will try to address these
questions staying within the confines of our ansatz equation.



4.1 λ < 0 Case, problems recovering a GR limit

Before we discuss the non-local theories let us revisit the much studied R2 modification
of gravity:

F (R) = R +
c0
M2

∗

R2 , (4.61)

In Ref.[57] it was shown that a zero-measure set of nonsingular solutions exists for this
model. Even in the absence of radiation and a cosmological constant, the cosh-bounce
is a solution in a closed universe [58]. Nonsingular solutions and attractor solutions
for conformally invariant fields have been found also taken into account quadratic
corrections to the gravity action [60], see also [61]. The bounce solution that we have
for R2 gravity is a reiteration of these results.

This quartic higher derivative action is actually unique because it is the only case
when the solutions are not over determined:

λ =
M2

∗

6c0
and µ = − 2ΛM2

∗

3c0M2
p

. (4.62)

This was checked in the appendix B.3. One can also check that there is a large
parameter space where the radiation density is positive. For instance, for the special
case when the cosmological constant and µ vanishes, the constraint (3.44) gives us
ρ0 = −3M2

ph
2
1ω

4/λ. Thus as long as λ < 0 we can have a consistent bouncing solution.
This is rather puzzling because it is also known that in a flat universe, if we allow
only a positive cosmological constant and radiation density, there are no viable non-
singular solutions (even for slightly more general models with an additional term due
to conformal anomaly) [59]. So, does this mean that just the simple R2 modification
can avoid the Big Bang singularity problem after all?

The answer turns out to be rather interesting. Let us try to understand the
attractor behavior of the ansatz equation when λ < 0. Let us start with a late time
trial solution

H(t) = h1t . (4.63)

(3.24) then reads
−72h31t

2 = 12λh21t
2 +O(1)

Thus we have a late time super-inflationary attractor solution given by

h1 → −λ
6
. (4.64)

In the expanding branch, since h1 > 0, this means that the attractor solution only
exists if λ < 0. Our numerical studies confirm this behavior, see figure 3, and we will
also provide a “Dynamical System Analysis” further corroborating it.

The upshot is that as long as λ < 0, although these models admit nonsingular
bouncing solutions, they are phenomenologically not viable because we cannot recover



the GR phase but rather are stuck in the QG phase forever3. Hence, from now on
we are going to focus on non-local theories with positive λ. The difference to pure
R2 gravity is clear from Eq.(3.24). This is the trace equation for R2-gravity, but
in that case both λ and µ are uniquely fixed by (4.62), and one inevitably obtains
negative radiation energy density for the nonsingular solutions. In a nonlocal theory
of the form (2.1), c0 of course doesn’t alone fix these coefficients, and hence we can
get bouncing solutions with just positive-density sources.

4.2 λ > 0 case, and the issue of singularities

We have seen that if λ > 0 the QG super-inflationary late time attractor no longer
exists paving the path to recover GR cosmology at late times. However, we still have
to worry about singularities? Having a single bounce does not guarantee that the
evolution encounters no singularities in the future (or the past). Can we find if and
when we have completely nonsingular evolutions? In order to answer this we will look
at the two cases of positive and negative cosmological constant separately.

4.2.1 Λ > 0, Geodesically complete inflation

For inflationary applications we will be interested in the case when Λ > 0. The
expression for the cosmological constant (3.32) then tells us that µ < 0. From (3.44)
it is now clear that to have a positive ρ0

λ− 2c0µ/M
2
∗
< 0 .

Since µ < 0 and λ > 0, this means c0 < 0. Also note that we can always choose
|c0| = 1 by choosing M∗ appropriately. Hence setting c0 = −1, the inequality is given
by

µ < −λM
2
∗

2
. (4.65)

Now, since our universe is filled with radiation and vacuum energy, for a positive
cosmological constant the GR solution corresponds to a deSitter solution. It is obvious
that one of the late time solutions is the deSitter universe:

H = e±t
√

Λ/3M2
p . (4.66)

The important question we want to find out is how generic and stable this late time
deSitter solution is. Both numerical and analytical studies confirm that this is indeed
a stable attractor, we will see this in the next subsection 4.3. However, are there

3However, when considered within the first order formalism, which is an alternative way to avoid
some problems in higher (finite) derivative extensions to gravity, the quadratic model of the form
(4.61) does generate a bounce with a smooth transition to the GR phase [62].



other singular attractor solutions which may sometimes prevent the universe to reach
the above deSitter background?

Consider the ansatz
H(t) =

p

t
(4.67)

Then as t→ 0, the most singular contribution in the ansatz equation (3.24) isO(1/t4).
If we demand that the coefficient of the O(1/t4) term must vanish we end with two
possibilities:

p =
1

2
or p = 1 . (4.68)

The first one is the usual GR solution in radiation dominated era. This is in fact an
exact solution of (3.24) when Λ = µ = 0, but crucially this solution is unstable, as
we will discuss in the next subsection. The second solution however represents a Big
crunch singularity. Can these singular solutions be projected out when we restrict
ourselves to having positive radiation energy densities? A simple way to check this is
to compute the leading singular behavior in ρr as we approach the singularity. From
(3.41) we find

ρr
M2

p

= −27
λ+ 2µ/M2

∗

t4(3λ2 − µ)
+O

(
1

t2

)
(4.69)

(4.65) then implies that radiation is indeed positive. Thus we cannot exclude the ex-
istence of singular solutions and they represent genuine attractors. However, as will
be shown in detail below, for symmetric bounces we are considering, the singularity is
never reached, and the universe evolves asymptotically towards the global GR attrac-
tor solution at low curvature. Highly asymmetric bounces however can sometimes
end in a singular Big Crunch singularity, but there is a large region in the parameter
space of initial conditions for which we reach the deSitter phase asymptotically at late
times. This will be discussed in more details in section 4.3. Finally, one may worry
about other higher order singularities (H ∝ 1/tn with n > 1), but simple counting
arguments show that such singularities don’t exist.

Incidentally, using (4.65) one can also obtain a lower bound on the value of the
cosmological constant. We have

Λ = −
µM2

p

4λ
≥
M2

∗
M2

p

8
. (4.70)

Note that we can adjust the cosmological constant to lower values by lowering the
scale M∗ (or equivalently, by keeping M∗ fixed but allowing higher quadratic term c0
if one doesn’t choose the convention |c0| = 1 we used in this subsection).

4.2.2 Λ < 0, and cyclic universes

A rather interesting case emerges if one considers λ, µ > 0. In this case there are no
QG super-inflating attractors, and neither do the singular solutions exist for positive
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Figure 2: Cyclic evolution for some parameter combinations α, µ > 0. The Hubble
rate H and the time t are in units of M∗.

radiation energy densities, see Eq.(4.69). What we obtain instead are cyclic universes,
where QG effects trigger a bounce, while the universe turns around once the radiation
energy density dilutes and the negative cosmological constant cancels it. In figure 2
we show numerical solutions of such an evolution.

What is especially nice is that there is a special class of non-singular actions with
λ, µ > 0, and µ < 3λ2 which does not admit any singular solution. This is because
(4.69) tells us that singular solutions can only exist for negative radiation densities.
Conversely, if we have standard radiation, such solutions do not exist.

Phenomenologically, if we just have a negative cosmological constant, it is not
interesting because we end up in an eternal cyclic scenario where the period is too
short for structure formation. However, recently similar scenarios have been discussed
where once one takes into account of interaction between different species and entropy
production, viable cosmological scenarios emerge [51].

4.3 Dynamical system analysis

The asymptotic state of the system can be studied by identifying the attractors in
the phase space. In terms of the dimensionless variables

ǫ ≡ − Ḣ

H2
, ΩR ≡ ρR

3M2
pH

2
, Σ ≡ 1

ξH2
, (4.71)

where we have defined the auxiliary quantity

ξ = 9
λ− 2c0µ/M

2
∗

3λ2 − µ
, (4.72)



the ansatz, Friedmann and continuity equations can be written as

Σ′ = 2ǫΣ , (4.73)

Ω′

R = 2(ǫ− 2)ΩR , (4.74)

ǫ′ =
3

2
(ǫ− 2)ǫ+

1

2
(ξλ− 3ΩR +

1

12
ξ2µΣ)Σ , (4.75)

ǫ′′ = [7ǫ′ + 6(2− ǫ)ǫ] (ǫ− 1) + (2− ǫ)ξλΣ +
1

6
ξ2µΣ2 . (4.76)

The system has the following fixed points:

• A: The radiation dominated solution ǫ = 2, Σ = 0. The linearized matrix for
perturbations about this fixed point has two positive eigenvalues, meaning the
solution is unstable.

• B: An inflating attractor Σ = ǫ = ΩR = 0, which is stable.

• C: The deSitter solution Σ = −12λ/(ξµ), ǫ = ΩR = 0. It is an attractor when
µ < 0, otherwise a saddle point.

To understand the meaning of these fixed points, it is useful to consider the
expansion-normalized energy contributions

Ω̃R =
ρR

|ξλ|M2
pH

2
, ΩΛ = − µ

12λH2
, Q1 = −1

λ
Ḣ(6 + ǫ) , Q2 = −2

λ

Ḧ

H
. (4.77)

The first two are the relative contributions from radiation and the cosmological con-
stant, respectively, and the latter two represent the non-local corrections to gravity4.
In terms of these, the Friedmann equation is

1 = sgn(ξλ)Ω̃R + ΩΛ +Q1 +Q2 . (4.78)

The sign appears in front of Ω̃R since its contribution can be negative if ξλ < 0,
though we always consider positive physical radiation energy density. The unstable
fixed point A corresponds to Ω̃R = 1, the attractor B to Q1 = 1 and the fixed
point C to ΩΛ = 1. It is then clear that B is the solution (4.63,4.64) we derived
previously. Since we are interested in the post-bounce evolution, we consider the
expanding branch, where the fixed point B only exists for negative λ. Then, the
universe will be super-inflating, but approaching ǫ → 0 instead of ending in a Big
Rip. This possibility would be interesting in the dark energy context, but in the
present study we do not regard evolutions ending in B as viable trajectories, since
the phantom expansion is driven by Q1 and we want to recover pure GR.

Thus, to underpin our reasoning in the preceding subsections, we have shown that
we need a positive λ to avoid the attractor B and a negative µ to be attracted towards

4Despite this intuitive form, these turn out to be less suitable for dynamical system analysis,
since the phase space spanned by these variables contains only the fixed point C.
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Figure 3: Dynamics at the bounce for two models for normalized relative energy
contributions, Q1 being the nonlocal and ΩR the radiation contribution. Left panel:
evolution in the λ < 0, µ < 0 case: the super-inflating solution B is reached after the
bounce. Right panel: the same model but with flipped sign of λ. Now the de Sitter
C attractor will be reached, and both Q1 and Ω̃R vanish asymptotically.

the GR evolution C where the nonlocal terms Q1 and Q2 both vanish. Example
evolutions of bounces evolving to B and to C are shown in Fig. 3. Numerical
experiments confirm that the GR phase C will be generically approached after the
turnover, given just the correct sign choices. The cosmological constant need not to
be large for this, but can be adjusted to the desired scale. Evolutions for both large
and small Λ-terms are shown in Fig. 4. Moreover, the convergence to the attractor
is insensitive to small perturbations in the initial conditions. Since H vanishes at
the bounce and we can normalize Ḣ to unity in units of M∗, the most general initial
conditions are given by varying Ḧ at the bounce, or equivalently, considering nonzero
h2. Only if h2 is large and negative, we fail to recover the GR regime, as illustrated
in Fig. 5 for several choices of λ.

We remind that we have only exhausted the possibilities within ansatz we have
made. In reality the dynamics will change as matter becomes non-relativistic and
dust sources render our system based on the ansatz invalid. Furthermore, even when
the energy sources consist only of radiation and Λ, there can be solutions which
do not obey equations (3.30-3.32), i.e. not each of the contributions to the trace
equation vanishes identically. Our stability analysis here concerns only the reduced
phase space where the trajectories obey these conditions and the ansatz (3.24). In
principle this class of trajectories need not be stable among the space of all solutions.
At a more fundamental level, ghost-free condition of section (2.1) is only about the
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Minkowski space, which may not be enough to guarantee that ghosts wouldn’t appear
at a nonlinear level in strongly curved backgrounds. In a complete analysis, one would
have to include perturbations in the metric as well and allow inhomogeneous modes.
To fully address these problems, one has to device other techniques to solve the full
non-local ES differential equations. This is beyond the scope of our present paper.

5 Perturbations

In this section, we show how the non-singular bouncing solutions satisfying our ansatz
can be used to study the evolution of large-scale perturbations by either series methods
or by numerically solving differential equations.

5.1 Tracking perturbations across bounce

We want to investigate how we can track the evolution of small perturbations around
a specific bouncing background solution. This is obviously a hard problem and we fall
back on our intuition that was developed by dealing with scalar fields. In the scalar
field case perturbations around a background satisfied the same local differential
equation as the background. Since we are looking at small perturbations around the
background solution which satisfies a “local field equation”, it seems likely that the
perturbed solutions also satisfy the same “local field equation”, by virtue of which
they will also solve the full non-local equations. This is where the covariant nature of
our ansatz comes into play. This strategy was successful in the scalar field case and for
our gravity theory, in analogy, all we need to do is to perturb our ansatz (3.24). In this
approach, at worst, we might be throwing away some modes of perturbations (which
solve the full ES equations (2.12), but not the ansatz equation (3.24)), but at least
we should be able to successfully track the ones which satisfy the ansatz equation. A
further drastic simplification arises if we assume that there are no more than ∼ 70
e-foldings of inflation after the bounce. In this case, the physical wavelengths of the
perturbations, that we see today in the CMB sky, at the bounce point are still too
large as compared to the Planck length. In other words, the perturbations behave
as super-Hubble modes during the bounce, the time scale of bounce is too short as
compared to the physical wavelength. We can therefore ignore any spatial dependence
of the perturbations and just look at the fluctuations of the zero-mode or the scale
factor. (Note, if the fluctuations in the metric just depend on time, one can always
perform a coordinate transformation such that the only independent function is the
scale factor.). Thus, just by looking at time dependent fluctuations of the ansatz
equation we can unambiguously track the perturbations across the bounce, and this
formalism will be explained in details in [63].

Now fluctuations of the scale factor, δ(t), can be encoded as follows:

ds2 = −dt2 + a2(t)dx2 with a(t) = ā(t)[1 + δ(t)] , (5.79)



so that
H(t) = H̄(t) + δ̇ . (5.80)

The linearized expressions for R and �R is given by

R = R̄ + 6(δ̈ + 4H̄δ̇) ≡ R̄ + δR ,

�R = �̄R̄− ( ¨δR + 3H̄ ˙δR + 3δ̇ ˙̄R) . (5.81)

Thus the perturbation equation reads

¨δR + 3H̄ ˙δR + 3δ̇ ˙̄R = −λδR . (5.82)

This is a linear fourth order differential equation and in principle can be solved. In
practice, one has to again employ power-series methods to solve for δ(t). However, it
is clear that a trivial solution of the above equation is δ̇ = 0, or δ is a constant. This
is analogous to the statement in GR that the super-Hubble perturbations remain
constant. However, a crucial thing one has to check is whether any of the above
modes are spurious or not. In other words, one has to substitute δ(t) obtained by

solving (5.82) in the G̃00 equation and check that it is also satisfied, just as we did
for the background.

Let us then expand δ as

δ(t) = δ1(M∗t) + δ2(M∗t)
2 + δ3(M∗t)

3 + · · · (5.83)

From zeroth to the third order, the coefficients in the expansion of the perturbed
ansatz equation (5.82) as a power series in t then give

0 = δ2λ+ 4(2δ2h1)M
2
∗
, (5.84)

0 = 7δ1µ+ 18(δ1h1 − 2δ3)λM
2
∗
− 12(60δ5 + h1(45δ3 − 2δ1h1))M

4
∗
, (5.85)

0 = 11δ2µ+ 6(7δ2h1 − 6δ4)λM
2
∗
− 24 [45δ6 + h1(33d4 − 2δ2h1)]w

4 , (5.86)

0 = −1

2
δ1λµ+

1

3

[
156δ3µ− δ1h1(9λ

2 + 29µ)
]
M2

∗
− 6 [20δ5 + h1(7δ1h1 − 40δ3)]λM

4
∗

− 8 [630δ7 + h1(435δ5 + 8h1(δ1h1 − 6δ3))] . (5.87)

where we have used the solutions (3.34-3.36) for the background quantities in terms
of h1. From the structure of the expansion we see that once δ2 is given, each δ2n
where n > 1 is determined uniquely. Since δ2n appears linearly in the coefficient of
the t2(n−2) term, the solutions are guaranteed to be real. Similarly, given δ1 and δ3,
each δ2n+1 where n > 0 is determined by the constraint from the t2n−3 coefficient. To
fix δ2, we can use the Friedmann constraint at the zeroth order. This gives

3(λ− 2c0µ/M
2
∗
)
[
δ0µ− 12h1(δ2 + δ0h1)M

4
∗

]
= 0 . (5.88)

This allows us to solve δ2 in terms of δ0 (barring the special case M2
∗
λ = 2c0µ,

when both δ0 and δ2 will be left as free parameters). It follows that all δ2n will be



proportional to δ0, which may be regarded as an initial condition. Up to the seventh
order, the full solution is then explicitly

δ2 = δ0

(
−h1 +

µ

12h1M4
∗

)
, (5.89)

δ4 = δ0
(λ+ 8h1M

2
∗
)(−µ+ 12h21M

4
∗
)

144h1M6
∗

, (5.90)

δ5 =
7δ1µ+ 18(δ1h1 − 2δ3)λM

2
∗
+ 12h1(2δ1h1 − 45δ3)M

4
∗

720M4
∗

, (5.91)

δ6 = δ0
(µ− 12h21M

4
∗
)(3λ2 + 11µ+ 132h1λM

2
∗
+ 576h21M

4
∗
)

12960h1M8
∗

, (5.92)

δ7 =
1

30240M6
∗

[
− 10δ1λµ+ 3

[
12(δ3 − δ1h1)λ

2 + (104δ3 − 87δ1h1)µ
]
M2

∗

+ 42h1(72δ3 − 19δ1h1)λM
4
∗
+ 36h21(499δ3 − 30δ1h1)M

6
∗

]
. (5.93)

This could be continued to track the evolution further from the bounce at t = 0. Only
the constant part of the Friedmann constraint, (5.88) contained nontrivial informa-
tion. The solution (5.89-5.93) satisfies the time-dependent part of the Friedmann
constraint identically. We also note that as for the background, the details of the
higher order derivatives, i.e. cn where n > 0, are not important for the perturbations.
This is because the superhorizon modes have the same symmetries as the background.
Inhomogeneous perturbations could in principle be sensitive to the higher order terms
in the action.

To summarize, once the background evolution is known, by fixing three initial
conditions the perturbations can be determined order by order by the method above.
Alternatively, one can integrate the differential equation

δ(4) + 7
(
H + δ̇

)
δ(3) + 4

(
δ̈ + 6Hδ̇ + 3δ̇2 + 2Ḣ + 2H2 + λ

)
δ̈ + 2(6Ḣ + 6δ̈ + λ)δ̇2

+
(
7Ḧ + 4H(6Ḣ + λ)

)
δ̇ = 0 . (5.94)

where we have omitted the bars from background quantities. In the linear approxi-
mation this simplifies to

δ(4) + 7Hδ(3) + (8Ḣ + 12H2 + λ)δ̈ +
(
7Ḧ + 4H(6Ḣ + λ)

)
δ̇ = 0 . (5.95)

Below we provide analytical and numerical solutions to these equations.

5.2 Example of hyperbolic cosine solution

A more complete analysis of perturbations will be presented elsewhere, but here we
look at a special case to understand how the perturbations evolve. Let us go back to
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Figure 6: Numerical solutions of the perturbation evolution in the cosh-bounce for
different initial conditions at ti = 0. Units are such that M∗ = 1. Solid (black)

line: δi = δ̇i = 1.0e−5. Dashed (red) lines: δi = δ̇i = δ̈i = δ
(3)
i = 1.0e−5. We also

plot a decaying mode with dash-dotted (blue) line: δi = δ̇i = −1.0e−5. Note that
the linear perturbation δ can always be rescaled as the normalization does not affect
the evolution. The results confirm that the superhorizon perturbations freeze in the
expanding phase.

the hyperbolic cosine bounce, so that (5.95) reads

δ(4) + 7

√
λ

2
tanh

(√
λ

2
t

)
δ(3) +

[
4λsech2

(√
λ

2
t

)
+ 6λ tanh2

(√
λ

2
t

)
+ λ

]
δ̈

+
[7λ3/2√

2
tanh

(√
λ

2
t

)
sech

2

(√
λ

2
t

)

+ 4

√
λ

2
tanh

(√
λ

2
t

)(
3λsech2

(√
λ

2
t

)
+ λ

)]
δ̇ = 0 . (5.96)

The above equation can be solved numerically. We also show numerical examples of
the perturbation evolution in figure 6 for three choices of initial conditions. As the
perturbations are small, the solutions of both the linear equation (5.95) and nonlinear
equation (5.94) agree (we have checked that in the case of large perturbations, the
effect of nonlinearities is to stabilize the growth). We see that there exists a linear
growing mode in the contracting phase. Consequently, the amplitude of the pertur-
bations is enhanced before they freeze in the expanding phase to a constant value,
precisely what one would like for the inflationary mechanism to work.

One can actually understand this feature analytically as well. At late times, the



equation simplifies considerably:

δ(4) + 7

√
λ

2
δ(3) + 7λδ̈ +

(
4

√
λ3

2

)
δ̇ = 0. (5.97)

The solutions are of the form δ = exp(νt) with

ν4 + 7

√
λ

2
ν3 + 7λν2 +

(
4

√
λ3

2

)
ν = 0. (5.98)

The solutions are
ν√
2λ

= {0,−1/2,−2,−1} (5.99)

Thus all the solutions are decaying except the first one which is the usual constant
mode, and the standard inflationary mechanism can operate successfully.

6 Conclusions

In this work we have shown how ghost and asymptotically free non-perturbative ef-
fective actions of gravity motivated from string theory are able to realize non-singular
bouncing cosmologies. We studied a class of solutions with two parameters, which
solves the non-local and non-linear equations of motion for gravity in presence of a
cosmological constant and radiation energy density. In particular, a specific class of
non-singular bouncing solutions is given by a hyperbolic cosine scale factor of the
universe.

We studied cosmological scenarios with both positive and negative cosmologi-
cal constants. In the former case we have found that an inflationary (deflationary)
solution arises as a late time attractor after (before) the bounce, the non-local contri-
butions to gravity vanishes, and the space-time asymptotes towards the GR deSitter
limit. This result is very relevant for inflationary cosmology as now time-like and null-
like trajectories can be made geodesically complete within the inflationary framework.
Without the non-singular bounce the trajectories in the past light cone would always
be finite, which would render inflation geodesically past incomplete. Furthermore,
the Bunch-Davies vacuum would be pathological in the infrared.

When the cosmological constant becomes negative an interesting stable solution
arises which leads to a cyclic universe in presence of radiation. Although just with
radiation a cyclic universe does not lead to any phenomenologically viable cosmology,
exciting cosmology can arise if we add a non-relativistic matter component and inter-
actions between radiation and matter. As shown in [51], such an interaction would
lead to a cyclic inflationary scenario with distinct signatures for the cosmic microwave
background perturbations. Also, our non-local model provides a concrete setting to
study how perturbations are transmitted through a nonsingular bounce which is im-
portant for cyclic and bouncing models in general. Finally, the non-local actions with



λ > 0,Λ < 0 and µ < 3λ2, constitutes an especially nice class of actions because
they don’t seem to contain any singular solutions (at least within the confines of our
ansatz), which is not the case for actions with λ,Λ > 0. An important task for the
future is to determine whether these non-local actions admit any singular solutions
at all or not.

In order to make sure that both inflationary and cyclic attractors are stable,
and there exists no instabilities during the bounce, we studied the long wavelength,
super-Hubble perturbations. We found that all the modes of the long wavelength
perturbations are decaying except the one which is frozen. The presence of a constant
mode is a good news for seeding density perturbations for the cosmic microwave
background radiation during, before or after the bounce. The perturbation analysis
suggests that there are no pathologies at least on large scales which would affect
the non-singular bounce solution. Studying the sub-Hubble perturbations is more
difficult in higher derivative theories of gravity. However, this is necessary to consider
the ghost problem in the bouncing backgrounds, whereas we have yet only shown that
the theories are not plagued by this problem in Minkowski backgrounds. We hope to
revisit this issue in a separate publication.

To summarize, we have found non-singular bouncing solutions for the scale factor
of the universe in a special class of nonlocal gravitational models which are ghost and
asymptotically free in the ultra violet, but nevertheless recover the GR limit at large
distance and time scales. We also made preliminary progress to study perturbations
around the bouncing background and in particular demonstrated that the bouncing
solutions are late time attractors and perturbatively stable.
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A Condition for ”ghost-freeness”

In section 2.1, we explained how the condition for ghost-freeness arises by looking at
the field equations and identifying the poles in Eq.(2.9). An equivalent, and perhaps
a more rigorous, way to see this is to work in terms of the action involving the two
auxiliary scalar fields φ and ψ directly. On a Minkowskian background the momentum
space action looks like

S =
M2

p

2

∫
d4kΨkK(−k2)Ψk , (A.100)



where we have defined

Ψk =

(
φk

ψk/M
2
∗

)
and K(−k2) =

(
3
2
(−k2) −1

2
M2

∗

−1
2
M2

∗
M2

∗

∑
∞

n=0 cn

(
−k2

M2
∗

)n
.

)
(A.101)

Now, as long as the determinant of the kinetic operator has at most a single root
we can be assured that there are no ghosts in the theory. One can see this in the
following way. One can perform a linear transformation to diagonalize the kinetic
operator so that it would be of the form

K′ =

(
Γ1(−k2) 0

0 Γ2(−k2)

)
.

It is now clear that the number of perturbative physical degrees of freedom simply
corresponds to the number of zeroes of the product Γ1(−k2)Γ2(−k2) which is nothing
but the determinant of the kinetic operator. This in turn means that we can simply
count the zeroes of the original kinetic operator K(−k2) to determine the perturbative
states. As long as we have a single or no zeroes, we are perfectly safe from any
problems with ghosts. For more that two zeroes there is always a ghost while the
case with two zeroes may or may not have a problem depending on the sign of the
residues at the poles. We do not explore this possibility here.

Now, it is easy to check that

det(K) =
M4

∗

4
Γ(−k2) (A.102)

and thus indeed we obtain the same condition for the action to ghost free as deduced
from 2.9. It is also straightforward to show that the same condition emerges if one
integrates out the field φ and considers the propagator for the field ψ. We then obtain
the equation of motion

�
−1Γ(�)ψ = 0 . (A.103)

In the special case k = 0 it is not legitimate to integrate out φ, and when∑
∞

n=0 cn

(
−k2

M2
∗

)n
= 0 one cannot integrate out ψ. However, as we saw above also

in these special cases the same condition for Γ determines the nature of the propa-
gating degrees of freedom.

B Series expansions

For the matter content we assumed a Λ-term and conformal matter, and for the
metric the ansatz (3.24)

�R = λR + µ . (B.104)



Then the Friedmann equation (3.41) was derived,

ρ

M2
p

= 9
λ− 2c0µ/M

2
∗

3λ2 − µ

[
H
(
Hλ+ 2Ḧ

)
+ 6H2Ḣ − Ḣ2

]
+

1− 6c0λ/M
2
∗

12λ3 − 4λµ
µ2 .(B.105)

To look for bouncing solutions, the series expansion (3.33) for H was made:

H =M∗

∞∑

n=0

h2n+1(M∗t)
2n+1 . (B.106)

It follows that the scale factor behaves as

a(t)

a(0)
= 1 +

1

2
(h1M∗t)

2 +
1

8
(h21 + 2h3)(M∗t)

4 +
1

48
(h31 + 6h1h3 + 8h5)(M∗t)

6

+
1

384
(h41 + 12h21h3 + 12h23 + 32h1h5 + 48h7)(M∗t)

8 +O((M∗t)
10) .(B.107)

and in the following we set a(0) = 1. The energy density is then expanded as

ρ(t) = −
µM2

p

4λ
+ ρ0

[
1− 2h1(M∗t)

2 +
(
2h21 − h3

)
(M∗t)

4 − 2

3

(
2h31 − 3h1h3 + h5

)
(M∗t)

6

+
1

6

(
4h41 − 12h21h3 + 3h23 + 8h1h5 − 3h7

)
(M∗t)

8 +O((M∗t)
10)
]
.(B.108)

The first term is the cosmological constant given by the constraint (3.30), and the
rest of the terms describe the radiation density.

B.1 Solutions for the Hubble parameter

In the following we assume 3λ2 6= µ. To solve for the coefficients h2n+1 we use the
expansions for the matter (B.108) and for the Hubble parameter (B.106) in the two
equations (B.104) and (B.105). Order by order, the ansatz equation (B.104) yields
the following constraints:

0 = µ+ 6h1λM
2
∗
+ 12(2h21 + 36h3)M

2
∗
, (B.109)

0 = (2h21 + 3h3)λ+ 6(2h31 + 11h1h3 + 10h5)M
2
∗
, (B.110)

0 = (4h1h3 + 5h5)λ+ 6(10h21h3 + 13h23 + 30h1h5 + 35h7)M
2
∗
. (B.111)

Leaving M∗ and h1 as free parameters, as they correspond to the initial conditions
for the Hubble parameter and its first derivative, we can solve the three following
coefficients as

h3 = − 1

36M2
∗

(
µ+ 6h1M

2
∗
(λ+ 4h1M

2
∗
)
)
, (B.112)

h5 =
1

720M6
∗

(
λµ+ 2h1(3λ

2 + 11µ)M2
∗
+ 132λh21M

4
∗
+ 384h31M

6
∗

)
, (B.113)

h7 = − 1

90720M8
∗

[
µ(3λ2 + 26µ) + 6h1λ(3λ

2 + 73µ)M2
∗

+ 12h21(141λ
2 + 242µ)M4

∗
+ 17424λh31M

6
∗
+ 39168h41M

8
∗

]
. (B.114)



From the structure of the series it is apparent that each coefficient h2n+1 is uniquely
determined as by the previous ones. The highest order coefficient appears always
linearly, guaranteeing a real solution. Let us then consider the Friedmann equation
(B.105) to determine the density ρ0. The first three nontrivial constraints are

0 = 3λµ− 6c0µ
2/M2

∗
− 4(3λ2ρ0/M

2
p + µ)ρ0/M

2
p − 36h21(λ− 2c0µ/M

2
∗
)M4

∗
,(B.115)

0 = (3λ2 − µ)2h1ρ0/M
2
p + 9h1

(
λ− 2c0µ/M

2
∗

) [
h1λ+ 6

(
h21 + h3

)
M2

∗

]
M2

∗
,(B.116)

0 = −ρ0(2h21 + h3)
(
3λ2 − µ

)
/M2

p

+ 9(λ− 2c0µ/M
2
∗
)M2

∗

[
3
(
10h3h

2
1 + 10h5h1 + h23

)
M2

∗
+ 2h1h3λ

]
. (B.117)

By construction, we expect all of these to be identically satisfied, once the solution to
the ansatz equation is used in conjunction with one of them to fix ρ0. This is because
the form of Friedmann equation was already dictated by the Bianchi identity given
the ansatz we have. Thus the redundant system (B.115-B.117) serves as a consistency
check. The density we obtain is

ρ0 =
3M2

p (λ− 2c0µ/M
2
∗
)(µ− 12h21M

4
∗
)

12λ2 − 4µ
. (B.118)

The parameters of the model should be chosen such that ρ > 0.

B.2 Special case µ = 3λ2

The hyperbolic cosine bounce a(t) = a0 cosh
√

λ
2
t belongs to the class of models

satisfying our ansatz, in particular when µ = −6λ2. There are solutions of this type
and its generalizations admitted by the nonlocal field equations as we saw above. One
special case which our treatment in (B.1) however does not cover is when µ = 3λ2.
Let us consider now this. Now the constraints (3.30-3.32) dictate we should have

c0λ

M2
∗

=
1

6
, Λ = −3

4
λM2

p . (B.119)

So the quadratic coefficient is fixed by λ, but now the propagator Γ(λ) is not deter-
mined by the trace equation and is left as free variable. We cannot now write the
energy density as Eq.(B.105) but obtain instead

ρ

M2
p

= 3(1− Γ(λ))

[
H2 +

1

λ

(
6H2Ḣ + 2HḦ − Ḣ2

)]
− 3

4
Γ(λ)λ . (B.120)

The three first conditions from the ansatz equation (B.104) are equivalent to
Eqs.(B.109-B.111). The first one can be now simplified to

0 = λ2 + 2h1λM
2
∗
+ 4(2h21 + 3h3)M

4
∗
, (B.121)



the rest remain the same. From the constant part of the Eq.(B.120) we get the
expression for radiation density as

ρ0 = −
3M2

p (1− Γ(λ))(λ2 − 4h21M
4
∗
)

4λ
. (B.122)

Again we can check that the constraints from the Friedmann equation expansion at
higher order in (M∗t) are identically satisfied.

B.3 Quadratic model

To briefly check the consistency of the solution for the model (4.61) that includes
only the near-trivial truncation of the theory, we recall that in fourth order gravity
the Friedmann equations can be written as

3f(Ḣ +H2)− 1

2
F = 3Hḟ − ρ , (B.123)

f(Ḣ + 3H2)− 1

2
F = f̈ + 2Hḟ + p , (B.124)

where f = dF/dR. If we now plug in (4.61) and say H(t) = h1ω
2t + . . . , at ze-

roth order the above equations yield ρ = 18M2
p c0h

2
1M

4
∗
/a4 and p = 6M2

p c0h
2
1M

4
∗
/a4,

matching with our constraints. The expansion of H , which does not terminate, could
be continued to higher orders. Thus solutions can be obtained, but they are not
cosmologically viable as shown in 4.1.

B.4 Harmonic Ricci-spaces

Also the case of vanishing λ is a special case apart from the previous ones considered in
B.1,B.2, since we have used the assumption λ 6= 0 there. Now the constraints (3.30-
3.32) from the trace turn out to imply the following relations between the model
parameters

c1
M4

∗

=
1

2µ
, Λ = −3µc0

2M2
∗

− µ2c2
2M6

∗

, c1 = 0 . (B.125)

These are impossible to satisfy. So in our case we must have nonzero λ. However, a
different set-up can be considered when the trace equation is T = −R as usually and
not identically satisfied. The simplest example is µ = λ = 0. In these spacetimes the
solutions of GR and the nonlocal model coincide exactly. Perturbations can of course
behave completely differently, and therefore the stability of these spaces would be
interesting to study. However, since these spaces are not bouncing we don’t pursue
this further here.
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