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Summary

Cloud computing provides universal access to a pool of shared resources to numerous stake-

holders/shareholders of the e-healthcare industry. The speedy adoption of cloud computing has

inevitably raised security concerns for the outsourced data. Since mobile devices are resource

constrained, the security solutions must discharge the computing comprehensive operations on

the cloud for implementation. Conventionally, any modification to uploaded record would com-

pel the mobile client to encrypt and compute the hash value from scratch. Through this paper,

we intend to propose a pairing-free incremental proxy re-encryption scheme, without certifi-

cates, which would run proportionate to the number of modifications in time, instead of the

document length for improvement in the file modification tasks. The proposed scheme shows a

significant improvement in the file modification system regarding the energy consumption and

the turnaround timer taken. The proposed scheme has been verified through a formal method

using Z3 solver.
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1 INTRODUCTION

The life-saving efforts in the eleventh hour have often fallen hard back even with advancements in the health care industry and medical services.

One of the reasons for such situation is the unavailability of the patient's records that are generally stacked in the piles of paperwork. Firstly, these

records are highly ambiguous with multiple gaps in information. Secondly, these records are generally scattered at several heath care centers

through the region with different physicians, pharmacies, and hospitals. A number of information systems that contribute to the development

of a more complete electronic health record (EHR) are being implemented by the hospitals nowadays to address these problems. Information

regarding the patient's health care can be accessed instantly with the help of the electronic systems. An EHR is a centralized source storing

medical and treatment history of patients' health information. These valuable patient-centered records can be accessed easily by all the approved

healthcare providers (laboratories, specialists, pharmacists, etc).

E-health applications generate a lot of data that become difficult for the health care units to store on a single computer because of catastrophic

failures. Cloud services thus provide techniques for outsourcing the restrictive expensive computations and data in a secure manner, and this

is prevalent in the research community.1-6 Muhameed et al7 proposed a ubiquitous health care framework (UbeHealth) encompassing edge

computing, Internet of things (IoT), high-performance computing to address the challenges including network latency, deep learning, reliability,

big data, bandwidth requirement, rising costs, etc, for satisfying next-generation health care needs.

The clients owning resource-constraint mobiles can outsource the heavy computations and massive data onto the suspicious cloud servers

and benefit from the unlimited computing and storage services in a pay-per-use manner. Despite the inherent advantages of cloud computing

in e-healthcare industry, the herculean task of migrating e-health data on the public cloud impedes its widespread adoption. A crucial aspect to

be addressed concerning the processing and storage of data on cloud is to safeguard the confidentiality and integrity of the patient's medical

information.8 The concerns regarding the confidentiality and integrity of patients' data is of utmost priority as any mischievous modification

on EHRs could result in erroneous health decisions. Although the role played by cloud computing is intermediary, the health care institutes
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employing such services are vulnerable as they lose the ownership, control, or management of the EHR data, which are indirectly processed and

stored on suspicious servers. Any malicious intentions on part of the cloud service providers (CSPs) would irrevocably endanger the reliability of

the patients' medical data records.

EHRs are distinguished from generic cloud data via their characteristic set of operational constraints, security, and regulatory.

• EHRs must adhere to the Health Insurance Portability and Accountability Act (HIPAA), General Data Protection Regulation, and other security

guidelines following its strict regulatory policies (administrative, technicalm and physical) for it to be law compliant. HIPAA mandates the

protection and confidential handling of medical documents and personal health information.

• Individual EHRs contain massive data in the form of X-rays, MRIs, CT scans, pathology lab test reports, medical transcripts, and physician's

diagnosis, etc, which keep on increasing over the life period of the respective patient. The security solution for e-healthcare data storage in

cloud should work proficiently on large data sets.

• Individual EHRs needs to be modified often as per the medical history of the respective patients. The security solution for e-healthcare data

storage in cloud should be capable of securely supporting the dynamic insert, delete, and update operations on cloud data.

• Presently, a major part of EHRs is examined and updated using low battery-powered mobile devices. It is imperative to design energy-efficient

security solution for e-healthcare data storage in cloud for a judicious use of the battery resources of the energy-starved mobile devices

operated by physicians, medical personnel, and the patients.

• EHRs should be accessible for longer periods, spanning for about an entire lifetime of the patient all the while maintaining its confidentiality

and integrity of ever-increasing EHRs during entire detainment period.

The above-mentioned constraints render the design of security mechanism for EHRs quite intricate and challenging. Due to the sensitive

nature of EHRs constituents, a mobile client should encrypt the e-healthcare data before outsourcing to cloud to prevent its exposure to intruders

and CSPs. Any health care confidentiality and integrity protocol should target the regulatory and operational requirements and the EHR security

to specify the migration of medical records to the cloud.

The digital universe is expanding just like the physical universe and may embrace nearly as many digital bits as there are stars in the universe

by 2020 and will reach 44 zettabytes.9 IoT Tsunami has created a mark for itself in the digital universe. The digital universe is purported to grow

from a mere 3.8% in 2016 to 10% by 2020 with the inception of IoT and related technologies. The engulfing waves of IoT comprise tens of

billions of sensors, billions of intelligent systems, and millions of applications flooding our memory system due to round-the-clock digital data

acquisition and generation. According to Gartner, Inc, there will be nearly 26 billion IoT devices by 2020, which will demand smart industry

solutions generating revenue in excess of $300 billion to IT vendors and service providers. According to Cisco recent forecast,10,11 ‘‘annual global

IP traffic passed the zettabyte threshold by the end of 2016 and will reach 2.3 ZB per year by 2020. Global mobile data traffic will increase

sevenfold between 2016 and 2021. Mobile data traffic will grow at a compound annual growth rate (CAGR) of 47% from 2016 to 2021, reaching

49.0 exabytes per month by 2021.’’ Thus, the scale of data being processed every day by various cloud services, sensor networks, distributed

storage systems, and digital media service demands for novel secure and efficient solutions based on the incremental cryptography paradigm. The

advent of IoT has given place for better monitoring and surveillance of patients' health via the acquisition of their body parameters through small

wearable and implantable sensors. The data collected are communicated over short-range wireless communication devices. The data captured

by the sensor nodes need to be stored for further analysis. With the wider adoption of wireless body area networks (WBANs) and reduction

in the cost of the sensors due to improvement in sensor technology, the data being generated and henceforth stored are expected to increase

exponentially. Thus, WBAN finds itself marred in the security and privacy concerns regarding the storage of EHRs either within the domain of

WBAN or outsourcing to third-party CSPs.

1.1 Related work

The traditional cryptography approach (symmetric or asymmetric encryption) hinders flexible sharing of data with multiple users as it requires

the data owner to share the keys for decryption. Proxy re-encryption (PRE) is a basic cryptographic primitive, which enables the re-encryption

of ciphertext from one secret key to other without knowing the actual secret keys. Blaze et al12 proposed an atomic re-encryption scheme

based on El-Gamal cryptosystem.13 Under re-encryption, the ciphertext encrypted with user A ′ s public key can be altered into ciphertext that

is encrypted by user B’s public key. The proxy re-encryption primitive offloads the re-encryption and data access–related tasks on to a trusted

third-party proxy server, which remains oblivious of the content to be re-encrypted. In the evolving cloud computing infrastructure, relying on

traditional integrity mechanisms such as message authentication codes (MACs) and digital signatures in their classical forms would not suit the

constraints of health care services. The existing security solutions for cloud environment14-16 neglected the resource-constrained nature of the

mobile devices.

Jia et al17 and Zhou et al18 suggested data security schemes based on the notion of proxy re-encryption for mobile cloud environment by

offloading the data-intensive operations from a mobile device to the cloud without exposing the security keys and data content to anyone.

Yang et al19 proposed modified public-verifiable data possession scheme for secure storing of data for resource-constrained mobile devices in

cloud computing. It comprises of a trustworthy third-party auditor to perform security-related tasks such as encryption, decryption, signature

generation, and verification. However, it relies on expensive bilinear mapping and Merkle hash trees for ensuring integrity.
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Tysowski and Hasan20 proposed a manager-based re-encryption (MReS) and cloud-based re-encryption (CReS) model to ensure data security

in cloud without incurring much handling overhead on mobile devices. The scalability of MReS is restricted by the servicing manager, which

becomes a bottleneck with the rush of read requests initiated by the mobile clients. In CReS, CSPs perform computation intensive data

re-encryption tasks, while the mobile client is responsible for the overall key management-related tasks. An enhancement over MReS and CReS,

cloud-manager–based re-encryption scheme (CMReS) was recommended by Khan et al.21 Unlike the manager in MReS, the role of manager in

CMReS is completely surpassed allowing the data owner to autonomously download and decrypt the data. The onus for generation of shared key

pair lies with the mobile client while re-encryption related tasks are offloaded to cloud without revealing secret keys. The major shortcoming of

CMReS is an expensive update operation for large data sets wherein mobile devices need to recompute and update the ciphertext from scratch

without specifically focusing on the altered portion(s) of the file.

Mollah et al22 proposed a protected data sharing and searching scheme by authorized users only which offloaded security opera-

tions to edge servers. The authors encrypted the data using secret key encryption (Advanced Encryption Standard), public key encryption

(Rivest-Shamir-Adleman (RSA)), and hash functions (Security Hash Algorithm 256 (SHA-256)). Khan et al23 proposed a workload distribution

model for offering resource-intensive, re-encryption, and decryption tasks on trusted entity. It has been assumed that the communication chan-

nel between mobile devices, encryption service providers, and decryption service providers are secure. The workload is distributed between a

mobile device and a trusted body as 10% minimum and 90% maximum. The message to be encrypted is split into two parts: one part for the

mobile device and the other for the trusted entity.

Zhang et al24 proposed privacy-aware secure health (PASH) attribute-based access-control system supporting large universe with hidden

attribute values. PASH was proved to be secure in the standard model addressing both data security and user privacy. PASH provides attribute

privacy and efficient decryption test in terms of bilinear pairing operations in comparison to existing schemes.25,26 Ali et al27 proposed SeSPHR

for sharing of personal health records (PHRs) securely by utilizing semitrusted proxy server for generating public, private and re-encryption

keys and ensuring access control. It relies on El-Gamal encryption and proxy re-encryption for providing data security and access control lists

(ACLs) for different sets of users. However, they assumed communication between client and proxy server secure by the use of IP security

or Secure Sockets Layer (SSL).

Bhatia et al28 explored various proxy re-encryption schemes and proposed an efficient proxy re-encryption scheme, without certificates,

as compared to existing schemes and proved its security in the random oracle model. Modi et al29 proposed a hybrid approach using linear

network coding for providing reliability, fault tolerance, and re-encryption based on ElGamal cryptography for securing health care data over

the cloud.

Bellare et al30,31 designed cryptographic algorithms founded on the notion of incremental cryptography that updates output efficiently as per

the underlying input modifications. A file visualized as a sequence of blocks would undergo re-computations for generating the ciphertext, only

for those blocks that underwent any alterations excluding the ones that remain unaltered.32,33 If we apply the incremental cryptographic algorithm

on a medical record and afterwards this record gets modified, it is feasible to update the result of the algorithm by only using the modified

record blocks rather than recomputing the algorithm on the entire record with incremental cryptography. This contributes to major performance

and energy effectiveness in e-healthcare setting because of the large size of medical documents and the frequent update mechanisms that are

performed on them. Alongside the confidentiality aspect of EHRs, it is imperative to ensure their integrity, which would prevent their accidental

or intentional modification.

Khan et al34 suggested an incremental version of security schemes on resource-constrained mobile devices such as EnS, CoS, and ShS14 to

improve the block modification tasks. The mobile user provides a password that transforms into encryption and integrity keys to ensure data

confidentiality. The progressive version consumes more resources of mobile devices during the early encryption and uploading phase. Itani et al35

proposed integrity-enforcement protocol that leverages incremental cryptographic primitive and trusted computing and provides integrity of

mobile users' EHRs stored on the cloud in mobile cloud computing (MCC) environment. However, confidentiality of the data is overlooked in

this scheme. Khan et al36 suggested first incremental proxy re-encryption scheme (I-PReS) as an extension of block-based sharing16 that utilizes

progressive cryptography for improving the file modification operations providing both integrity services and confidentiality.

The incremental hash functions have failed to make a mark in the industry due to following loopholes. Firstly, the known incremental hash

functions30,31 need to perform expensive modular operations over large prime integers to attain a certain level of security (for example, 2128

or 2256), which makes their performance lag behind those of the simple cryptographic hash functions. Secondly, the level of security of the

incremental hash functions is disproportional to the size of the calculated hash value by several thousand bits unlike ordinary cryptographic

hash functions such as SHA-1,37 SHA-2,38 and SHA-3,39 where claimed bit-security level of the hash function corresponds to the size of the

calculated hash value. Incremental hashing can be achieved using Merkle trees,40,41 which necessitate the storage of all the intermediate nodes'

hash values.

In 2005, the attacks on SHA-1 performed by cryptanalysts proved the inappropriateness of the algorithm for future use,42 and since 2010, many

organizations have replaced it by SHA-2 or SHA-3. This was followed by subsequent announcements by Apple, Microsoft, Google, and Mozilla

declaring SHA-1 SSL certificates unacceptable from 2017 onwards. CWI Amsterdam and Google successfully performed a collision attack against

SHA-1 on February 23, 2017,43 publishing two unrelated PDF files that gives the same SHA-1 hash value as an output. Mihajloska et al44 proposed

two incremental hash functions iSHAKE128 and iSHAKE256 for zettabyte era based on extendable-output functions (XOFs). iSHAKE128 and

iSHAKE256 have the flexibility of generating an output of any desired length. Technically, XOF can be employed as a hash function by choosing
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fixed output length, but the two outputs of a common message are closely related for two different outputs lengths, ie, hash output of longer

length is an extension of shorter length, which is an undesirable property of hash functions.

1.2 Motivation

A traditional way for including data confidentiality contains a significant cost overhead to the data owner in encryption of the data with public or

shared symmetric key before outsourcing to the cloud for various data recipients.28 PRE is a cryptographic scheme that allows Bob to delegate

his decryption rights to another user Alice. In a PRE scheme,12 a semihonest proxy agent of Bob re-encrypts the ciphertext encrypted under Bob's

public key on behalf of Bob into ciphertext encrypted under Alice's public key without learning anything about the message and private key of

Bob. The PRE schemes are useful in the scenarios where data are to be shared with the multiple authorized users over the cloud. Nevertheless,

the integrity of EHRs should also be preserved, and usually, such EHRs should be signed by a trusted party. In any case, data hashing is inevitable,

and as EHR is being updated, so the hash value needs to be recomputed to reflect the corresponding updations. The very context of medical data

confines the modifications of EHRs to appendments of new data from sensors and minimal updates. An entire recalculation of the hash value on

the updated EHR's sounds practically irrational if the size of the EHRs' is taken into perspective. Such modifications provide for an appropriate

implementation of the incremental approach of data hashing. Incremental cryptography can minimize the overhead associated with recalculation

of the hash value from the scratch by considering only modifications (insertion, update, and deletion) to a data set.

1.3 Our contribution

One of the crucial factors for enabling fast and secure computations in the Zettabyte era is the use of incremental cryptographic primitives. For

files ranging from severalmegabytes up to hundreds of gigabytes, incremental cryptographic primitives offer speedup factors measured inmultiple

orders of magnitude. There are only three security schemes34-36 as per our knowledge, which applies the concept of incremental cryptography for

MCC paradigm and only36 includes proxy re-encryption with incremental cryptography. The scheme by Itani et al35 enforces integrity only, and

confidentiality of data is overlooked. The scheme36 involves expensive bilinear pairing operations and downloading of intermediate MAC values

of all blocks from cloud by a mobile user while conducting block insertion, deletion, or update operation, thereby increasing communication and

storage overhead. It also suffers from a key escrow problem as proxy knows secret keys of all identities. The pairing-free incremental proxy

re-encryption is the novelty of our manuscript. We intend to propose an incremental version of proxy re-encryption scheme for improving the

file modification operations based on elliptic curves without certificates, in this paper. We employed recently proposed SHA-3 hash functions for

incremental cryptography. We verified the proposed scheme using high-level Petri nets (HLPNs) and Z3 solver.

1.4 Road map

The rest of the paper is prepared as follows. Section 2 provides formal security model. The proposed CL-iPRE scheme is discussed in Section 3

followed by block modification operations in Section 4. Section 5 provides formal security analysis and verifies the correctness using Z3 solver.

Section 6 deals with simulation results. Finally, conclusions are formulated in Section 7.

2 SECURITY MODEL

2.1 Indistinguishability of incremental encryption

The secrecy requirements for incremental cryptography are as follows: Firstly, the basic elliptic-curve cryptography (ECC) encryption algorithm

should be semantically secure. Secondly, the incremental modification step should not violate the semantic security of encryption algorithm

and should not leak information about underlying modifications. In contrast to Bellare et al,30 adversaries are allowed to know the location of

modification but not the content that is modified.

2.1.1 Security against type I adversary in game-I

In this section, a game is played between Type-I adversary Adv1 and challenger. Type-I adversary is allowed to replace public keys of any entity

but not access master secret key. The challenger maintains a list of public keys of identities and corrupted identities (whose secret key has been

mined or public key has been replaced and partial key is extracted by adversary).

• Initialization and setup phase: System setup is run by the challenger with security parameter k and computes master secret key x and a list of

public parameters 𝛿. It gives 𝛿 to Adv1 and keeps x secret.

• Phase-I: The challenger Adv1 can query partial key extract, public key extract, private key extract, public key replace, re-encryption key

generate, and re-encryption oracles as in the work of Bhatia et al.28 The challenger responds to all the oracles as mentioned by Bhatia et al.28

In addition to these oracles, Adv1 can call incremental modification oracle with a location index and modifications as inputs. The challenger

returns updated ciphertext and modified signature to the adversary.
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• Challenge phase: Once Adv1 decides Phase-I of Game1 is over, it yields target identity ID′ and two messages EHR0 and EHR1 having equal

number of blocks n or a ciphertext (CA ,C) with two modifications M0 and M1 of similar type and modifying same location (which adversary

may know beforehand) on which it wishes to be challenged. A random bit ß ∈ {0,1} is chosen by challenger and kept secret from adversary. In

the first case, EHRß is encrypted. In the second case, incremental modification algorithm is applied to Mß and (CA ,C) and the result is given to

the adversary Adv1.

• Phase-II: Adv1 is free to further call aforementioned oracles but may not submit the challenge ciphertext C.

• Guess phase: The challenger has to guess ß to win the game trivially.

Definition 1. An incremental certificateless proxy re-encryption scheme
(
t,𝕢par,𝕢pri,𝕢pub,𝕢pub_rep

qenc,𝕢re,𝕢re−enc, μ, qinc, n; v
)
is chosen plaintext

attack (CPA)–secure against indistinguishability if, for any time t, the adversary who makes at most 𝕢par queries to partial key extract oracle,

𝕢pub queries to public key extract, 𝕢pri queries to private key extract, 𝕢pub_rep queries to public key replace, 𝕢enc queries to encryption oracles

𝕢re queries to re-encryption key generate, 𝕢re−enc queries to re-encryption oracles, and 𝕢inc queries to incremental modification oracle (with

μ as total blocks on which encryption and incremental modification oracles are called), we have advantage of adversary Adv1 less than v.

2.1.2 Security against type II adversary in game-II

The master secret key can be accessed by Type II adversary but it is not allowed to replace public key. It can easily figure partial key of any entity

so access to private key extract oracle is not required. The rest of the game and access to oracles is similar to Game-I.

2.2 Unforgeability of ciphertext integrity of incremental encryption

In case of health care data sharing, incremental encryption is not sufficient. There is a need to ensure data integrity. An adversary should not be

allowed to modify or forge ciphertext stored over an insecure medium so that it turned out to be a valid plaintext when decryption oracle is used.

2.2.1 Security against type I adversary in game-I

A challenger and an adversary Adv1 participate in this game-I as follows:

• Initialization: System setup is run by the challengerwith security parameter k and computes master secret key x and a list of public parameters 𝛿.

It gives 𝛿 to Adv1 and keeps x secret.

• Queries: The adversary Adv1 can query partial key extract, public key extract, private key extract, public key replace, re-encryption key

generate, re-encryption oracles, incremental modification, and decrypt oracles. However, adversary is restricted to submit only valid queries

to aforementioned oracles.

• Forgery: Finally, the adversary has to output a ciphertext (CA ,C) or (CB ,C) which should be different from ciphertexts received from

aforementioned oracles. The adversary succeeds if (CA ,C) or (CB ,C) is a valid ciphertext. If the outcome of the Decrypt oracle is not an error

message, adversary Adv1 succeeds in the game, and Adv1 has not queried both partial key extract oracle and replace public key oracle or

secret key extract oracle of the receiver at any instant of the game.

Definition 2. An incremental certificateless proxy re-encryption scheme
(
t,𝕢par,𝕢pri,𝕢pub,𝕢pub_rep

qenc,𝕢re,𝕢re−enc, μ, qinc, n; v
)
is CPA-secure

against unforgeability if, for any time t, the adversary who makes at most 𝕢par queries to partial key extract oracle, 𝕢pub queries to public

key extract, 𝕢pri queries to private key extract, 𝕢pub_rep queries to public key replace, 𝕢enc queries to encryption oracles 𝕢re queries to

re-encryption key generate, 𝕢re−enc queries to re-encryption oracles, and 𝕢inc valid queries to incremental modification oracle (with μ as total

blocks on which encryption and incremental modification oracles are called), we have advantage of adversary Adv1 less than v.

2.2.2 Security against type II adversary in game-II

The master secret key can be accessed by Type II adversary but is not allowed to replace the public key. It can easily compute partial key of any

entity so access to private key extract oracle is not required. The rest of the game and access to oracles is similar to Game-I.

3 PROPOSED INCREMENTAL CERTIFICATELESS PROXY RE-ENCRYPTION (CL-IPRE) SCHEME

A lightweight certificateless incremental proxy re-encryption scheme (CL-iPRE) has been proposed for secure sharing of EHRs relying on the proxy

resident cloud for re-encryption operations. We assumed that the public cloud is fully untrusted and cloud-resident proxy server is semitrusted,

ie, it follows the protocol but can gather information to deduce private information. The certificateless cryptography solves key escrow problem

in traditional public key cryptography. Any incremental cryptographic algorithm must run faster than re-computing the transformation from

scratch. For example, if b denotes the block size, then a single modification to a block should take poly(b) time regardless of the number of blocks

or total size of entire EHR. The architecture of proposed CL-iPRE scheme is shown in Figure 1.
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FIGURE 1 Architecture of proposed CL-iPRE scheme for secure sharing of EHRs in MCC

Our proposed incremental CL-iPRE scheme is as follows:

- System setup: This algorithm is run by a key generation center (KGC). It chooses security parameter k and and elliptic curve E/Fp over prime

finite field Fp . Let G be the cyclic subgroup of elliptic curve group with P as generator of order q. It randomly selects master secret key ∈ Z∗q . It

further computes master public key y = xP and announces a list of public parameters 𝛿 = {E, Fp ,G, P,y} for encryption, decryption, and proxy

re-encryption.

- Partial key generation: This algorithm is executed by KGC, which takes public parameters 𝛿, cloud user identity IDU , master secret key x,

and master public key y as inputs. It randomly chooses zU ∈ Z∗q and computes WU = zUP and hU = 1 (IDU,WU) as U’ s partial public key

corresponding to user's identity IDU . It generates ZU = (zU + hUx) as U’ s partial private key. It further transmits partial key (ZU ,WU) to user U.

- Set secret value: This algorithm is called by every cloud user, which takes as inputs public parameters 𝛿 and user's identity IDU and outputs a

secret value vU ∈ Z
∗
q .

- Private key generation: This algorithm is executed by cloud user U with identity IDU; accepts public parameters 𝛿, partial private key ZU , and

secret value vU ∈ Z
∗
q as inputs; and outputs a full secret key SkU = (ZU − vU) for user U.

- Public key generation: This algorithm is called by every cloud user U having identity IDU which computes VU = vUP and a public key PkU = SkUP

for user U. Any user who wishes to use this public key can validate the received public key as

PkU =WU + hUy − VU

where hU = 1 (IDU,WU)

- Re-encryption key generation: This algorithm is called by data owner A for generating re-encryption key RkA→B = SkB∕SkAusing secure two-party

integer division algorithm,45 which is forwarded to cloud resident proxy server 𝓅 without leaking any information about SkB or SkA to data

owner, data recipient, or proxy server. This algorithm45 permits two ormore mutually mistrusting parties to evaluate a function on confidential

data without revealing further information to the parties involved.

- Encryption: The mobile data owner A wants to upload data on cloud. Koblitz method46 is used for encoding a plaintext message as an elliptic

curve point EHR. The owner A splits EHR into n blocks EHR1, EHR2,… . . . ., EHRn , where each block has fixed size of b bits except possibly

the last.

EHR = ‖n
i=1 (EHRi)

bj =
⌈
s

n

⌉
where 1 ≤ j ≤ n − 1

bn = s −
(⌈
s

n

⌉
∗ (n − 1)

)
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where EHRi denotes the ith block of EHR, s denotes the total size of EHRs, bj denotes the size of the jth block of EHR, and
⌈
s

n

⌉
denotes the

mathematical floor function to remove the fractional part. To provide confidentiality, data owner A encrypts each block EHRi before storing on

cloud. Data owner A generates a random number 𝛼 ∈ Z∗q and encrypts the message using its public key PkA .

CA = 𝛼.PkA,Ci = EHRi + 𝛼.P

C = ‖n
i=1 (Ci)

where 1 ≤ i ≤ n.

Similarly, hash for each block of EHR is generated using the recently proposed SHA-3 algorithm. The hash function has to map b bits of each

block to l bits, ie, h : {0,1}b → {0,1}l where l is a multiple of 64 bits. The individual hash values are then combined using wordwise addition in

the commutative group ((Z264 , )
l∕64 ⊞64) to generate final hash value for verifying integrity of stored EHRs. The group combining operator ⊞64

represents 64-bit wordwise addition of l∕64 words and ⊟64 represents the inverse of addition operation, ie, wordwise subtraction of l∕64 words.

The final hash value Hfinal is digitally signed to obtain Sfinal, which provides authentication and nonrepudiation.

Hi = SHA−3 (EHRi) where 1 ≤ i ≤ n

Hfinal = H1 ⊞64H2 ⊞64 … .. ⊞64 Hn

The encrypted EHRs (CA ,C),the number of blocks n and Sfinal are uploaded on cloud for storage. The data owner needs to save the file name of

EHRs and the number of blocks n for each EHR file in its local memory of mobile device.

- Proxy re-encryption: The data recipient B who wants to download data uploaded by user A requests semitrusted proxy, which alters first-level

ciphertext CA ∈ 1 as received from data ownerA into second-level ciphertext CB ∈ 2 for data recipient B. Proxy sends re-encrypted message

(CB ,C) to user B for decryption and integrity verification.

CB = CARkA→B = 𝛼.SkA.P

(
SkB

SkA

)
= 𝛼SkBP,Ci = EHRi + 𝛼.P

C = ‖ni=1 (Ci)

where 1 ≤ i ≤ n

- Decrypt: This algorithm is executed by cloud user U ∈ {A, B}, which takes ciphertext CU corresponding to user U as an input and corresponding

plain text message is given as output or an error symbol Υ if 𝒸U is invalid. The data owner A decrypts the message using CA and its secret key

SkA as follows:

EHRi = Ci −

(
1

SkA

)
CA where 1 ≤ i ≤ n.

The data recipient B decrypts the message using CB and its secret key SkB as follows:

EHRi = Ci −

(
1

SkB

)
CB where 1 ≤ i ≤ n.

The mobile user concatenates individual blocks of the file to get original EHR and verifies integrity of the downloaded file as follows:

EHR = ‖n
i=1 , (EHRi) where 1 ≤ i ≤ n

Hi
′ = SHA−3, (EHRi) where 1 ≤ i ≤ n

Hfinal
′ = H1 ⊞64 H2 ⊞64 … .. ⊞64 Hn.

The data recipient B uses A′ s public key to decrypt (de-sign) the digital signature Sfinal and obtains Hfinal. It verifies integrity of EHR received by

comparing Hfinal with calculated Hfinal
′. If both values match, then integrity is confirmed. EHR is decoded using46 to obtain the original message.

4 BLOCK MODIFICATION OPERATIONS

The block modification operations include block(s) update, insertion, and deletion. The overhead involved in dividing EHRs and calculating hash

values of individual blocks increase resource utilization on the mobile device as compared to proxy re-encryption schemes; however, incremental
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concept improves resource utilization on the mobile device while performing block modification operations on uploaded EHRs as hash values

need not to be recalculated from scratch for each block modification query.

4.1 Incremental block updation operations

Once the hash function is applied on individual blocks and Sfinal is stored on cloud, there is no need to repeat the entire procedure on the mobile

device while updating the block(s). We can apply an incremental update operation and perform wordwise-subtraction ⊟64 of old hash values of

updated blocks and wordwise-addition ⊞64 of updated hash values of modified blocks. Thus, only two hash operations are required for each

modified block. The storage and communication overhead is also reduced because a CSP needs to store the signature value on cloud and the

mobile device needs to download the l-bit hash value for recomputing the hash value.

Let data owner A wants to modify q block(s) represented by EHRupdate in the uploaded record starting from location index idx. The data owner

A needs to download encrypted EHR, ie, (CA ,C) and Sfinal corresponding to record EHR from cloud storage on its device. CA is used for encrypting

updated blocks as follows:

Cupdatej = EHRupdatej +

(
1

SkA

)
CA where 1 ≤ j ≤ q.

The data owner A then calculates updated hash value Hnew and sends an update request to CSP along with Cupdate , location index idx, number

of modified blocks q, and Hnew . The updated hash value Hnew is digitally signed to obtain Snew using the A
′

s private key.

Hupdate = Hidx ⊞64 Hidx+1 ⊞64 … .. ⊞64 Hidx+q

Hnew = Hfinal ⊟64 Hidx ⊟64 Hidx+1 ⊟64 … .. ⊟64 Hidx+q ⊞64 Hupdate.

CSP updates encrypted EHR and stores Snew obtained by signing Hnew corresponding to stored EHR.

C =‖idxi=1 (Ci)
‖‖‖
q

j=1
Cupdatej

‖‖‖
n

k=q+1
(Ck)

4.2 Incremental block insertion operations

The mobile data owner A who wishes to insert q new blocks represented by EHRinsert after location index idx in previously uploaded record

EHR sends a download request to the cloud server. The data owner A downloads (CA ,C) and Sfinal corresponding to record EHR. CA is used for

encrypting new blocks as follows:

Cinserti = EHRinserti +

(
1

SkA

)
CA where 1 ≤ i ≤ q

The data owner A downloads Sfinal from cloud corresponding to stored EHR and apply ⊞64 to obtain hash values of newly inserted blocks.

Thereafter, it combines it to Hinsert to obtain new hash value denoted by Hnew . The data owner then sends an insert request to CSP including Snew

obtained by signing Hnew , location loc after which blocks are to be inserted and newly encrypted blocks Cinserti where 1 ≤ i ≤ q.

Hinsert = Hinsert1 ⊞64 Hinsert2 ⊞64 … .. ⊞64 Hinsertq

Hnew = Hfinal ⊞64 Hinsert.

CSP insert(s) the block(s) into corresponding encrypted EHR and updates ciphertext as follows:

C =‖idxi=1 (Ci)
‖‖‖
q

j=1

(
Cj
)‖‖‖
n

k=idx+1
(Ck)

Sfinal value is updated to Snew and number of blocks b = b+ q for corresponding EHR. The block insertion can be done at multiple locations also.

4.3 Incremental block deletion operations

To delete q blocks at some random location index idx from uploaded EHR on cloud, data owner A downloads Sfinal of corresponding EHR from the

cloud storage. The data owner recalculates hash as follows:

Hnew = Hfinal ⊟64 Hidx ⊟64 Hidx+1 ⊟64 … .. ⊟64 Hidx+q
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where Hidx, Hidx+1,… . . . . ,Hq is the corresponding hash values of deleted block(s). The data owner sends a delete request to the CSP along with

recalculated value Snew , location index idx, and number of blocks to be deleted q. The CSP deletes corresponding block(s) in stored encrypted

EHR and stores updated signature corresponding to stored EHR.

C =
‖‖‖
idx−1
i=1

(Ci)
‖‖‖
n

j=idx+q+1

(
Cj
)

5 FORMAL ANALYSIS AND VERIFICATION

The basic ECC encryption algorithm is semantically secure relying on elliptic-curve discrete logarithm problem, ie, given a base point, it is infeasible

to find discrete logarithm of an elliptic curve. Since our proposed CL-iPRE scheme is based on well-recognized atomic BBS re-encryption whose

security is proven in the work of Blaze et al12 and indistinguishablity and unforgeability of incremental encryption is well proved in the work of

Buonanno et al,32 we will bound our analysis to the verification of the proposed CL-iPRE scheme using formal methods as used by Khan et al.23,36

Figure 2 represents the HLPN model of the proposed scheme. The data types and mappings are represented in Tables 1 and 2. In the HLPN

model, the circle represents places p ∈ 𝔓, where 𝔓 = {KGC,Proxy,Mobile User,Cloud}, and the rectangular blocks represent transition t ∈ T.

The system starts with setup and partial private key generation phase for each user having access to data partition d on cloud using transition

Gen _ Partial _ Key shown by the following rule:

R (Gen_Partial_Key) = ∀x1 ∈ X1,∀x2 ∈ X2 ∣

x2
[
3
]
← gen_zi

(
x1

[
2
])

∧ x2
[
4
]
← gen_x

(
x1

[
1
])

∧ x2
[
1
]
← gen_𝛿

(
x1

[
1
])

∧

x2
[
5
]
← gen_Zi

(
x1

[
2
]
, x2

[
3
]
, x2

[
4
])

X′
2
= X2 ∪

{
x2

[
1
]
, x2

[
3
]
, x2

[
4
]
, x2

[
5
]}

.

FIGURE 2 HLPN model of proposed CL-iPRE scheme
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TABLE 1 Data types for CL-iPRE scheme Data type Meaning

IDi Unique identity identifier

Di Unique identifier of data partition i over cloud

𝛼 A random number

𝛿 System parameters generated by KGC

Ski Secret key of user i

Pki Public key of user i

Zi Partial private key of user i

Wi Partial public key of user i

EHR A record to be encrypted and stored on cloud

n Total number of blocks in EHR

EHRi String representing ith block of EHR

Ci Encrypted block EHRi

C Encrypted EHR such that C =‖ni=1 (Ci)
CA Number representing 𝛼. PkA

CB Number representing 𝛼. PkB

Hi Hash value of EHRi

Hfinal Final hash value of n blocks

Cupdate A record to be encrypted and stored on cloud

EHRupdate Blocks user wants to update

Cupdate Encrypted EHR of updated blocks

Hnew Hash value after modification operation

q Number of blocks to be modified

RkA→ B Re-encryption key from mobile user A to B

EHRinsert New blocks user wants to insert in uploaded file

Cinsert Encrypted EHR of newly inserted blocks

TABLE 2 Places and mappings used in HLPN model of CL-iPRE Place Mapping

𝜑(KGC) 𝔓 = (δ × IDi × zi × Zi × x ×Wi )

𝜑(Proxy) 𝔓 = (δ × IDi × CA × CB × RkA→B)

𝜑(Mobile _ User)

𝔓 = (IDi × vi × Zi ×Wi × Ski × Pki × δ × 𝛼 × EHR

× n × EHRi × C × Ci × Hfinal × RkA→B × Hi × q × Cupdate

×EHRupdate × Hnew × Cinsert × EHRinsert
)

𝜑(Cloud) 𝔓 = (Di × IDi × CA × C × Hfinal)

𝜑(Rk) 𝔓 = (CB)

The generated partial keys are forwarded to authorized cloud users by transition Send_Partial_Key by the following rule:

R (Send_Partial_Key) = ∀x3 ∈ X3,∀x4 ∈ X4 ∣

x4
[
3
]
←

(
x3

[
3
])

∧ x4
[
6
]
←

(
x3

[
1
])

X′
4
= X4 ∪

{
x4

[
3
]
, x4

[
6
]}

.

The user i generates secret key Ski and public key Pki through transition Gen_Keys by the following rule:

R (Gen_Keys) = ∀x5 ∈ X5,∀x6 ∈ X6 ∣

x6
[
2
]
← gen_vi

(
x5

[
1
])

∧ x6
[
4
]
← gen_Ski

(
x6

[
2
]
, x5

[
3
])

∧ x6
[
5
]
← gen_Pki

(
x5

[
1
])

∧

X′
6
= X6 ∪

{
x6

[
2
]
, x6

[
4
]
, x6

[
5
]}

.

The parameter 𝛼 is generated by cloud user through transition Gen_𝛼 and the following rule:

R (Gen_𝛼) = ∀x7 ∈ X7,∀x8 ∈ X8 ∣

x8
[
7
]
← gen_𝛼

(
x7

[
1
])

∧

X′
8
= X8 ∪

{
x8

[
7
]}

.
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The data owner who wants to upload encrypted EHR on cloud splits it into multiple blocks by following rule over transition Split_EHR:

R (Split_EHR) = ∀x9 ∈ X9,∀x10 ∈ X10 ∣

x10
[
10

]
← split

(
x9

[
8
]
, x9

[
9
])

∧

X′
10

= X10 ∪
{
x10

[
10

]}
.

The mobile data owner encrypts EHR and generates corresponding MAC represented by transaction Encrypt_EHR and the following rule:

R (Encrypt_EHR) = ∀x11 ∈ X11,∀x12 ∈ X12 ∣

x12
[
1
]
← x11

[
1
]
∧ x12

[
12

]
← encrypt

(
x11

[
10

]
, x11

[
9
])

∧ x12
[
11

]
← concat

(
x12

[
12

])
∧

x12
[
13

]
← concat

(
gen_mac

(
x12

[
10

]))
∧

X′
11

= X11 ∪
{
x12

[
1
]
, x12

[
11

]
, x12

[
12

]
, x12

[
13

]}
.

The mobile data owner sends re-encryption key RkA→ B to proxy.

R (Sends_Rk) = ∀x13 ∈ X13,∀x14 ∈ X14 ∣

x14
[
5
]
← x13

[
14

]
∧

X′
14

= X14 ∪
{
x14

[
5
]}

.

The mobile user B who wishes to view EHR uploaded by A request proxy for download. The proxy checks its ACL, and if an entry for user B is

missing, the request fails as shown by the following rule:

R (Req_CB_fails) = ∀x15 ∈ X15,∀x16 ∈ X16,∀x17 ∈ X17 ∣

x16
[
2
]
← x15

[
1
]
∧

X′
16

= X16∧

X′
17

= X17.

If the requesting user B has access rights for EHR uploaded by A, proxy re-encrypts CA to CB using re-encryption key RkA→ B received from A

and sends CB to user B as represented by transition Req_CB_success:

R (Req_CB_success) = ∀x18 ∈ X18,∀x19 ∈ X19,∀x20 ∈ X20,∀x21 ∈ X21 ∣

x19
[
2
]
← x18

[
1
]
∧ x20

[
4
]
← prod

(
x19

[
3
]
, x19

[
5
])

X′
19

= X19 ∧ X
′
21

= X21∧

∀x22 ∈ X22 ∣

x21
[
1
]
← x20

[
4
]
∧ x22

[
1
]
← x21

[
1
]

X′
22

= X22 ∪
{
x22

[
1
]}

.

The mobile user B decrypts encrypted EHR (CB ,C) into plaintext EHR at transition Decrpyt_CB with the following rule:

R (Decrypt_CB) = ∀x22 ∈ X22,∀x23 ∈ X23,∀x24 ∈ X24,∀x25 ∈ X25 ∣

x23
[
10

]
← decrypt

(
x25

[
4
]
, x22

[
1
]
, x23

[
1
])

∧

X′
23

= X23 ∪
{
x23

[
10

]}
.

After decryption, mobile user B concatenates the blocks and verifies integrity with transition Cmb_EHR and the following rule:

R (Cmb_EHR) = ∀x26 ∈ X26,∀x27 ∈ X27 ∣

x27
[
15

]
← gen_mac

(
x26

[
10

])
∧ x27

[
13

]
← gen_mac_final

(
x27

[
15

])
∧

x27
[
8
]
← x26

[
10

]

X′
27

= X27 ∪
{
x27

[
15

]
, x27

[
13

]
, x27

[
8
]}

.
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When data owner A wishes to modify the EHR stored on cloud, it calls Update_EHR, Insert_EHR, and Delete_EHR transitions:

R (Update_EHR) = ∀x28 ∈ X28,∀x29 ∈ X29 ∣

x28
[
17

]
← encrypt

(
x28

[
18

]
, x28

[
7
]
, x28

[
16

])
∧

x28
[
19

]
← gen_mac_final

(
x28

[
13

]
, x28

[
18

]
, x28

[
16

])
∧

x28
[
11

]
← update

(
x28

[
17

])
∧ x28

[
13

]
← update

(
x28

[
19

])
∧

x29
[
4
]
← x28

[
11

]
∧ x29

[
5
]
← x28

[
13

]
∧

X′
28

= X28 ∪
{
x28

[
17

]
, x28

[
11

]
, x28

[
13

]
, x28

[
19

]}

X′
29

= X29 ∪
{
x29

[
4
]
, x29

[
5
]}

R (Insert_EHR) = ∀x30 ∈ X30,∀x31 ∈ X31 ∣

x30
[
20

]
← encrypt

(
x30

[
21

]
, x30

[
7
]
, x30

[
16

])
∧

x30
[
19

]
← gen_mac_final

(
x30

[
13

]
, x30

[
21

]
, x30

[
16

])
∧

x30
[
11

]
← insert

(
x30

[
20

])
∧ x30

[
13

]
← insert

(
x30

[
19

])
∧

x31
[
4
]
← x30

[
11

]
∧ x31

[
5
]
← x30

[
13

]
∧

X′
30

= X30 ∪
{
x30

[
20

]
, x30

[
11

]
, x30

[
13

]
, x30

[
19

]}

X′
31

= X31 ∪
{
x31

[
4
]
, x31

[
5
]}

R (Delete_EHR) = ∀x32 ∈ X32,∀x33 ∈ X33 ∣

x32
[
11

]
← delete

(
x32

[
16

])
∧ x32

[
19

]
← gen_mac_final

(
x32

[
16

]
, x32

[
13

])
∧

x33
[
4
]
← x32

[
11

]
∧ x33

[
5
]
← x32

[
19

]
∧

X′
32

= X32 ∪
{
x32

[
11

]
, x32

[
19

]}

X′
33

= X33 ∪
{
x33

[
4
]
, x33

[
5
]}

.

The aforementioned HLPN model was translated to SMT-Lib and Z3 solver is used for verification of the proposed CL-iPRE scheme to check

if it works according to specifications and gives accurate results. The solver verifies that the encryption of EHR is done correctly by mobile data

owner A as specified by the system. Decryption requests for uploaded EHR are handled by the proxy correctly, and data recipient B is able to

decrypt data correctly from re-encrypted ciphertext. The block modification operations are also verified if the mobile user is able to get modified

content correctly.

6 RESULTS AND COMPARATIVE ANALYSIS

The proposed scheme is evaluated in terms of turnaround time and energy consumption on the mobile device for block updation operations

in comparison to proxy re-encryption scheme (PReS) and I-PReS.36 Khan et al36 assumed proxy as fully trusted entity possessing secret keys

that can decrypt message of any entity suffering from key escrow problem. It involves expensive bilinear pairing operations and downloading

of intermediate MAC values of all blocks from cloud by mobile user for block modification operations thereby, increasing communication,

computation, and storage overhead on mobile device as well as on cloud. Android SDK is used for developing mobile cloud client application

deployed on Nexus smartphone with 1-GB RAM and 2.53-GHz processor. A web instance is hosted on GAE, which provides cloud-based

infrastructure for testing Android apps. A standard cryptographic library, MIRACL,47 has been used to compute the running time of the CL-iPRE

scheme. To achieve 1024-bit RSA-level security for bilinear pairing–based schemes, we have used Type A pairing defined over the elliptic curve

E/Fp : y
2 = x3+x with embedding degree 2, where q is a 160-bit Solinas prime and p is a 512-bit prime. To achieve an equivalent security in the

ECC-based scheme, we employed the verifiably random elliptic curve secp160r148 over Fp , where p = 2160 − 231 − 1. We have used SHA3-512 in

the proposed CL-iPRE scheme as hash function as it is more resistant to pre-imaging and collision attacks than its predecessors. SHA-2 was used

in I-PReS. Each experiment is repeated five times and average results are taken. We have evaluated turnaround time and energy consumption

for files of different sizes as shown in Table 3 with eight blocks in each file. We have taken readings while updating one, two, and four blocks

represented as CL-iPRE(1), CL-iPRE(2), and CL-iPRE(4), respectively.

Total turnaround time = tread + tencrypt + tupload

where tread refers to file reading time, tencrypt represents block updating time and tupload represents block uploading time.

Energy consumed = Eread + Eencrypt + Eupload,
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File size in bytes Total files Block size in bytes

51200 50 6400

102400 50 12800

153600 50 19200

204800 50 25600

TABLE 3 Data set used for file modification operations
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FIGURE 3 Turnaround time while block updating operations on data set.

A, Updating one block; B, Updating two blocks; C Updating four blocks

where Eread refers to energy consumed in file reading, Eencrypt represents energy consumed in block updating, and Eupload represents energy

consumed in file uploading.

Figures 3 and 4 show the variation in turnaround time (in seconds) and energy consumption (in %) with different file sizes. As depicted in

Figure 3, the average turnaround time (with files of varying sizes) in the proposed CL-iPRE scheme is 26.49% of I-PReS and 4.1% of PReS with

one modified block, 26.52% of I-PReS and 8.4% of PReS with two modified blocks, and 33.96% of I-PReS and 20.43% of PReS with fourmodified

blocks. The average energy consumption (with files of varying sizes) in the proposed CL-iPRE scheme is 67.22% of I-PReS and 11.03% of PReS

with one modified block, 71.37% of I-PReS and 23.78% of PReS with two modified blocks, and 78.63% of I-PReS and 48.17% of PReS with four

modified blocks as shown in Figure 4.

This clearly depicts that the proposed scheme is computationally efficient than existing schemes PReS and I-PReS for file modification

operations. The communication overhead of proposed CL-iPRE scheme is less as compared to I-PReS because individual MAC values need not

to be uploaded on cloud for storage and cost of elliptic curve point multiplication is less as compared to pairing based scalar multiplication.
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FIGURE 4 Energy consumption while block updating operations on data

set. A, Updating one block; B, Updating two blocks; C, Updating four blocks
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7 CONCLUSION AND FUTURE SCOPE

Secure EHRs storage and sharing is a serious issue while utilizing underlying cloud infrastructure. Certificate-based cryptography incurs huge

overhead involved in management of certificates, and identity-based cryptography suffers from key-escrow problem. Certificateless incremental

proxy re-encryption primitive can overpower these issues and offer secure EHR sharing. Recently, the proposed I-PRes scheme involves

expensive bilinear pairing operations and downloading of intermediate MAC values of all blocks from cloud by mobile user while block insertion,

deletion, or update operation, thereby increasing communication, computation, and storage overhead on a mobile device as well as on the cloud.

A lightweight pairing-free CL-iPRE scheme for secure sharing of EHRs in mobile cloud computing paradigm has been proposed based on elliptic

curves. The proposed scheme handles block modification operations efficiently and reduces storage overhead on mobile device and public cloud

making it feasible for mobile devices. In future, we can further design a group-based incremental proxy re-encryption scheme.
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