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We study the stability of three-dimensional numerical evolutions of the Einstein equations, comparing the
standard ADM formulation to variations on a family of formulations that separate out the conformal and
traceless parts of the system. We develop an implementation of the conformal-tr&€dleapproach that has
improved stability properties in evolving weadnd strong gravitational fields, and for both vacuwand
spacetimes with active coupling to matter sources. Cases studied include weak and strong gravitational wave
packets, black holes, boson stars and neutron stars. We show under what conditions the CT approach gives
better results in 3D numerical evolutions compared to the ADM formulation. In particular, we show that our
implementation of the CT approach gives more long term stable evolutions than ADM in all the cases studied,
but is less accurate in the short term for the range of resolutions used in our 3D simulations.

PACS numbg(s): 04.25.Dm, 04.30.Db, 95.30.5f, 97.60.Lf

[. INTRODUCTION similar stability properties. More recently fully hydrody-
namical simulations employing the CT approach have been
Three dimensional3D) numerical relativity is an impor- reported in[12—14 in the context of collapse of rapidly
tant technique for exploring the strong field dynamics in re-rotating (isolated neutron stars and coalescence and merger
alistic astrophysical phenomena involving black holes and®f binary neutron stars. As we were preparing this manu-
neutron stars. It is expected to play a role in analyzing graviSCript we have also become aware of work by Lehner, Huq
tational wave forms to be observed soon, one expects, witAnd Garrison{15] where a comparison between the ADM
the new generation of gravitational wave detectors going on@"d CT formulation in spherical symmetry has been carried
line worldwide in the next few year§l,2]. However, Outin the context of black hole excision. .
progress in 3D numerical relativity, which has traditionally . In. the companlor)'papén] we perform an analytic inves-
been based on the Arnowitt-Deser-Misit&DM ) [3] system tigation of the S.tab'“ty properties Qf the ADM and the CT.
of evolution equations, has been slow. This is not only be_evo!utlon_ equations. Using a Ime_arlzed plane wave analysis,
cause of the immense computational difficulties that 3D |dgnt|fy feature:; of the equations the}t_ we behev_e are re-
onsible for the difference in their stability properties.

) . o s
simulations represent, but to a large extent it is due to severepln this paper we report the results of simulations of weak

instabilities (_)ften encountered during suph simulations. Pres;g strong gravitational wave packets, black holes, boson
ently there is no complete understanding of the causes Qliars and neutron stars in various slicing conditions, includ-
these |ns'tab|I|t|es in numerical evolutions of thg ADM equa-ing maximal slicing and a family of algebraic slicings, and
tions. This has prompted much recent effort in developingompare the results obtained by the ADM and CT equations
alternative formulations of the-31 Einstein equations. in different implementations_ We begin W|th a brief presen_
In this and a companion pappt] we focus on an alter- tation of the relevant equations in Sec. Il. We then discuss
native approach based on a conformal decomposition of thghe results of our numerical simulations in Sec. lll. We con-
metric and the trace-free components of the extrinsic curvasider vacuum spacetimes in Sec. Il A, and matter spacetimes
ture. The conformal-tracefre€CT) approach was first de- in Sec. lll B. In Sec. lll A 1, we describe the various imple-
vised by Nakamura in the 1980s in 3D calculatiph®], and  mentations of the CT equations using gravitational wave
then modified and applied to work on gravitational wavesspacetimes as an example. We identify two particular imple-
[7], and on neutron staf8,9]. This approach was not taken mentations, which we call AFA and AF2, that give the best
up by others in the community until a recent paper by Baumperformance in long term evolutions. The essence of these
garte and Shapirg10], where a similar formulation was implementations, is to “actively force'(AF, see belowthe
compared with the standard ADM approach and shown to b&ace of the conformally rescaled extrinsic curvat(a&A),
superior, in terms of both accuracy and stability, on testand for maximal slicing also the trace of the extrinsic curva-
involving weak gravitational waves, with geodesic and har-ture (AF2), to zero in each step of the numerical evolution.
monic slicing. In a followup paper, Baumgarte, Hughes, andn the sections that follow, we focus on comparing the AFA
Shapiro[11] applied the same formulation to systems with and AF2 implementations to the results of the ADM equa-
given (analytically prescribed matter sources, and found tions for evolutions of strong field systems including black
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holes, boson stars and neutron stars. We demonstrate that for A
this wide range of systems, these two implementations of the

CT equations always lead to more stable long term evolu- So far, these are just definitions of new variables, with no
tions. However, we also find that for a given resolution, theclear motivation for their introduction. Evolution equations
ADM results are often more accurate than the CT results E‘br these new quantities are easy to ﬁnd, and we summarize
early times, before the instabilities become apparent. Weere the Baumgarte-Shapifa0] discussion on these equa-
conclude with Sec. IV. A study of the stability properties of tions, but with an emphasis on the possible numerical impli-
the iterative Crank-NiChOISOIﬁlCN) scheme, used for the cations of various choices one can make.

spacetime evolution of the simulations presented in this pa- The evolution equations for the conformal three-metric

per, can be found in the Appendix. ’5/” , and its related conformal factgr are trivially written as

j=e YA ()

IIl. FORMULATION d- ~
o . qui= —2aAy, ©
We start reviewing briefly the formulations used for the
comparisons. q L
The standard ADM equations af&6] = —ZaK. (10
dt 6
d —_—
at Yi— —2aKj;, @) The evolution equation for the trace of the extrinsic cur-

vatureK can easily be found to be

d
&K”:_DiDJ“+“(R‘i+KKii_2KikKki_ DRy, EK:_ iD.Dia+a A Al + EK2+ 1( +s>}
@) dt Y Uilj ij 3 2 P )
(11
with where the Hamiltonian constraint was used to eliminate the
d Ricci scalar.
gih L 3 For the evolution equation of the trace-free extrinsic cur-

vaturelij there are many possibilities. A trivial manipulation
and whereL is the Lie derivative with respect to the shift of Eq. (2) yields
vector B'. HereR;; is the Ricci tensor an®; the covariant
derivative associated with the three-dimensional meyyjc
The 4-dimensional Ricci tensdf'R;; is usually written in
terms of the energy density and stress tensds; of the

d-
aAij=e_4¢[—DiDja+a(Rij—Sij)]TF (12)

matter as seen by the norm@&uleriarn observers: + a(KKij _23\”;&!1)' (13)
Wp.. — o } _ but as shown previously7,10] there are many ways to write
RIJ 8w Si] (S P) . (4) . . . .
2 several of the terms, especially those involving the Ricci

tensor. For example, one could eliminate the Ricci scBlar
The conformal, trace-free reformulations of these equaggain through the use of the Hamiltonian constraint.

tions make use of a conformal decomposition of the three- - with the conformal decomposition of the three-metric, the
metric, and the trace-free part of the extrinsic curvature. Her®jcci tensor now has two pieces, which we write as

we follow closely the presentation of R¢fL0]. The confor-
mal three-metricy;; is written as Rij=Rij+R}. (14)

yij=e “yy, (50  The “conformal-factor” part R} is given directly by
straightforward computation of derivatives &f
with the conformal factor chosen to be
P— _oD.D.H— 2. DD
&%= yli=de( 5, )12 ©) Rij=—2DiDj¢—2v;D'D,¢ (15
~ D oD d—4~ D' dD
In this way the determinant of;; is unity. The trace-free +4Di¢D;$— 47D ¢D ¢, (16)
part of the extrinsic curvaturks;; , defined by while the “conformal” partR;; can be computed in the stan-
dard way from the conformal three-metﬁq,j . To simplify
Aij=Kij= 37K, (7)  notation, it is convenient to define what Rg10] calls the
“conformal connection functions:”

where K=IK;; is the trace of the extrinsic curvature, is i ~i
also conformally decomposed: [M=y) ij: AR (17
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where the last equality holds if the determinant of the conand the trace of the extrinsic curvatufe(11). If the T are

formal three-metricy is actually unity (notice that this promoted to the status of fundamental variables, as in Ref.

should be true analytically, but may not be numerically [10], they can be evolved with EQRO). (Note that the mixed
Using the conformal connection function, the Ricci tensorfirst and second order evolution system for

can be written: {$.K,; A; I'} is not in any immediate sense hyperbolic
1 [17].) In the original formulation of Shibata and Nakamura
Rij=— E}'”‘Nyijv,m+"§/k(iaj)l~“k+l~“kl~“(ij)k [7], the auxiliary variables; = —3/;; are used instead of
theI", and the final system of equations is somewhat more
+ 7" CTT et T L) (18 ~ complicated.

Reference[18] shows that the CT system can also be
Here again, one has choices in how the terms involvingnterpreted as a “conformal second-order” version of the

the conformal connection functionE' are computed. A Bona-Masswsystem with &/;=—(I';+84;¢).
straightforward computation based on the Christoffel sym-

bols could be usedand usually is in standard ADM formu- A. Gauge

lations, but this approach leads to derivatives of the three-

metric in no particular elliptic form. One would like to see an Systems of the CT type have been investigated with vari-

elliptic form as the principal part of this expression, as it Ous sllcmg condltllons in the past. The paper'of Baumgarte
_ ~ o~ ; . and Shapiro considered geodesic and harmonic slicing, while
brings they;; —A;; system a step closer to being hyperbolic. 4 rjier work by Shibata and Nakamura, and the more recent
Thanks to the definition of thé"’s, an explicitly elliptic  paper by Baumgarte, Hughes, and Shapia] have also
operator is singled out. However, if the terms involving theconsidered maximal slicing. Here we have studied maximal
T are evaluated directly in terms of derivatives of the three-slicing and a number of algebraic slicings, and used them
metric, this elliptic operator serves no special purpose, awith different implementations of the CT equations, on nu-

other second derivatives appear through derivatives of the Merical evolutions of many different spacetimes.
which spoils the elliptic nature of the operator as a whole. If, Maximal slicing has the property thit=0, leading to an

on the other hand, thE' are promoted to independent vari- elliptic equation for the lapse:

ables, for which evolution equations can be derived, then the V2a=a[K;Ki+4m(p+9)]. (21)
expression for the Ricci tensor retains its elliptic character.

The price to pay is that one must now evolve three additional Notice that in maximal slicing the evolution equations for
quantities in the evolution system. Whether this has any nuy andk become simply

merical advantage will depend on details of the implementa-

tion, and will be discussed below. d¢/dt=0, dK/dt=0. (22)

Following this argument of promoting tHé' to indepen-
dent variables, it is straightforward to derive their evolution The algebraic slicings that we will consider here corre-
equation: spond to the family originally introduced by Bona and Masso

[19], building on earlier work of Bernsteif20]:
§~i_ J Aj = m(j pi) 2~ij | 17
Sl =7 5| 2aAT =2y Bt Y Byt By -

. d
at ox) 9 qie=- f(a)a’K, (23

However, again there is a choice one can make in writingvith f(«)>0 but otherwise arbitrary. This family contains
this evolution equation; as pointed out in REE0] it turns ~ many well known slicing conditions. For example, takihg
out that the above choice leads to an unstable system. A1 we recover the “harmonic” slicing condition, which
choice which will be shown to be better can be obtained byafter a trivial integration becomes

eliminating the divergence oA with the help of the mo- o
mentum constraint: a=F(X)+y75 (24)

2 . . with F an arbitrary function of space. The name “harmonic”
T} AN — 37 K;=7'S+6A"4, slicing comes from the fact that it corresponds to the choice

0. .
EFI: —2Aq j+2a
of a harmonic time coordinate

J ~ ~ 2. ..
——.(,e'y”l—zymuﬁ')er—7'13'|). (20) Ot=0. (25)
axi\" 7T mre e

With this reformulation, in addition to the evolution equa- _ I\'IA}ZOt?.EirSUCS;gSZESE t?)otrrlm(:tgjemclesra(ljigfaa:jl:%gg'l?il;{?il:llg g
tions for the conformal three-metricy; (9) and the  condition[18] which after integration becomes
conformal-traceless extrinsic curvature variables (13), _

there are evolution equations for the conformal factqi0), a=F(x")+logyN. (26)
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(There is in fact some inconsistency in terminology as toaries, but it still introduces a considerable amount of reflec-
whether theN=1 or theN=2 case corresponds to the stan-tions.
dard “1+log” slicing; different choices being made by dif- Sommerfeld or “radiative” boundary condition: In this
ferent authorg. case we assume that the dynamical variables behave like a
These type of algebraic slicings have an advantage overonstant plus an outgoing radial wave at the boundaries, that
maximal slicing in terms of computational efficiency: It is is,
much faster to integrate an evolution equation for the lapse .
than to solve an elliptic equation. On the other hand, such f(x',)="fo+u(r—t)/r, (27)
algebraic slicings are prone to the development of gauge pa- )
thologies[21,22. The possibility of the appearance of such Wherer = yx“+y“+z* and where the constafy is taken to
pathologies when using algebraic slicings should always b€ one for diagonal metric components and zero for every-
with a numerical instability: one can lose a lot of sleep trying@ries are in the wave zone, where the speed of light is essen-
to cure an “instability” that is in fact a true solution of our tially one, and where the gravitational waves behave as
system of differential equations. spherical wavefronts. This boundary condition has been used
To finish discussing our choice of gauge, we need to menbefore by other authori7,10], and it has been found that in

tion the fact that all the simulations described here have beeRfactice it is very good at absorbing waves.
carried out with the shift vector set to zero. It is in fact easier to implement a differential form of the

radiative boundary condition than to use Eg7) directly.
Consider a boundary that corresponds to a coordinate plane
B. Boundary conditions X; = constant. Conditiori27) then implies

In standard 3-1 numerical simulations, the computational « “

domain covers only a finite region of space. One must there- 2o f+af+ _;(f —fo)=0. (28)

fore apply some sort of artificial boundary condition at the r r

edges of the numerical grid. Ideally, one would like to find a

boundary condition that does not introduce numerical insta©One can now use simple finite differences to implement this
bilities and allows gravitational waves to leave the gridlast condition. In our code we have implemented condition
cleanly, with no artificial reflections. This is in itself a very (28) consistently to second order in both time and space.
difficult problem, since in the first place, there is no local Robin boundary condition: This is a different type of “ex-
boundary condition that allows waves coming from any ar-trapolating” boundary condition, where one assumes that for
bitrary direction to leave the grid with no reflections, andlarger a given field behaves as

second, there does not even exist a clear way to define what A

a wave is in general relativity except at asymptotic infinity. f(x")y="fo+klr, (29

In practice, what one looks for is a condition that remains

stable and allows some “wave-like”’ solutions to leave theWwith k constant. This condition is clearly related to the radia-
grid without introducing large reflections at the boundariestive condition described above, but it contains no informa-
The amount of artificial reflection that results typically de- tion about the time evolution. Just as we did with the radia-
pends on the specific form of the boundary condition, and ortive condition, we in fact implement the Robin condition in
the direction of motion of the wave fronts as they hit the differential form:
boundary[23].

Since in this paper we are interested in the question of the
stability of the interior evolution, we will not worry too
much about the boundary conditions, and we will limit our-
selves to describing a few conditions that we have found tarhe Robin boundary condition is usually better suited for
work well in practice. The conditions we have used are thesolving elliptic problems than for use on dynamical vari-
following: ables.

Static boundary condition: The evolved variables are sim- Most of the simulations discussed below have been per-
ply not updated at the boundary, and remain with their initialformed using the radiative boundary conditi28) for the
values there. This condition is very bad at handling waveslynamical variables, and the Robin boundary conditia®)
since it reflects everything back in, but it can be very usefuboth for constructing the initial data and for solving the
when studying situations that are supposed to remain statidaximal slicing condition. Whenever a different boundary
(as are some of the systems studied be¢J@nd where all the  condition is used, we say so explicitly.
dynamics comes from numerical truncation errors.

Zero-oro!er extrgpola_ltion or “flat” boundary Condition: Ill. APPLICATIONS
After evolving the interior, the value of a given variable at
the boundary is simply copied from its value one grid point In this section we will apply the previous system of con-
in (along the normal direction to the boundaryhis condi-  formal trace-free equations, exploring different implementa-
tion allows for some dynamics at the boundaries, and igions, in a series of numerical experiments with different
somewhat better at absorbing waves than the static boundpacetimes. The various implementations we consider are

044034-4



TOWARDS A STABLE NUMERICAL EVOLUTION OF . .. PHYSICAL REVIEW D 62 044034

Promoting thel™’s to independent variables. 10 G)‘ T 4 b)'

Use the momentum constraints on the evolution equation 08

for theI'’s. 5

Enforcing trA=0. 05 N

For maximal slicing, enforcing =0. 04l

We will study the effects of these different implementa- 021 b
tions using strong gravitational waves spacetimes. ool s

All the numerical simulations presented here are carried 0 2 4 § § 100 2 4 8 8 10
out with the Cactus code for numerical relativity co- V5. time Koge vs. time
developed in our NCSA/Potsdam/Wash U collaboration and
elsewhere. FIG. 1. (a) Evolution of the minimum value of the lapse for an

axisymmetric Brill wave data set with=4, using the standard
] ADM formulation with maximal slicing. The simulation crashes at
A. Vacuum spacetimes t=8 with a catastrophic collapse of the lapés). Evolution of the
We begin our discussion of the numerical simulationsmaximum value of the trace of the extrinsic curvatie
with vacuum spacetimes in this subsection, examining the . . ) ]
evolution of both strong gravitational wave and black holehere were performed using an iterative Crank-Nicholson
spacetimes. In particular, we use the gravitational wavd!CN) scheme with 3 iterationtsee appendjx and radiative

simulations to illustrate the effects of the various implemen-oundary conditions.

tations of the CT approach. The first case presented is an initial configuration with
amplitudea=4, corresponding to a strong wave, but not
1. Pure gravitational waves quite strong enough to collapse to a black hole. In the evo-

lution of this data set the wave implodes through the origin,

We first turn to pure gravitational wave spacetimes. Theoscillates a few times, and finally disperses back to infinity

low amplitude Iinear case has beer_l studied, with a full 3Dleaving flat space behind, but in a non-trivial spatial coordi-

Z“gj&'fand Ipu_bhsheg ﬁre\gouslyﬁ) n bOthth.e fstandlard nate systenj25]. The evolution of this spacetime is highly

. ormulation and the Bona-Massiyperbolic formula- - non-linear, and the final configuration has metric compo-

tion by [24], where no fundamental differences were seen INents with a large dynamical range

performance at that time, af‘“.) by Shibata and Nakamura In Fig. 1(a) we show the evolutioﬁ of the minimum value

57] an_g I?jau?gartfarhang Shaplfﬂ;O] |ndthSehC'I'_£pprokach ?S of the lapse over the grid for a simulation done with the
escribed above. 1he Baumgarte an aliep work par standard ADM formulation, using maximal slicing, no shift

t_'C“'aF'y showed the strength of the CT formulation in the nd a radiative boundary condition. For this particular simu-
linearized case. Here we extend the study of these systems %{ion we used a resolution afx=0.08 and 67 grid points

@nc!utje highly dynamic, strong field regimes. The study here so, we used the fact that our data is symmetric across
is limited to tests that show the strengths and weaknesses ﬁi ’

the different formulations. A study of the phvsics of collaps.- ordinate planes to evolve only one octant. The simulation
. . s y ot the phy PS crashes at=8 when the lapse collapses catastrophically in
ing waves in full 3D numerical relativity is presented else-

where[25] response to a blqw up of the extrinsic curvature. Figui® 1
We coﬁsider here a three-metric of the form originaIIyShOWS.the evolution of th_e maximum value of the trace of the
considered by Bril[26]; extrmsm cu_ryatureK. Notice that even though we are using
: maximal slicing,K does not remain zero, and blows up to-
o wards the end of the simulation. The fact thk&atdoes not
ds’=W[e*(dp?+dZ’) +p?d¢*]=W¥*ds’, (381  remain zero is not surprising, since the maximal slicing con-
dition is solved numerically, and thus a residual time deriva-
whereq is a free function subject to certain regularity andtive of K is to be expected. The catastrophic blow-up, how-
fall-off conditions. Different forms of the functiolgf have ever, is a different matter and points towards the existence of
been considered by different auth¢?5—30, but most work  an unstable solution of our system of equations.
so far has concentrated only in constructing and analyzing Figure 2 shows the same simulation, but now using the

the initial data. so-called “K-driving” technique[35]. The idea here is to
As in Ref.[25], we use a generalized form for the func- add counter terms to the elliptic equation for the lapse to
tion g, giving it a full 3D dependence, followingB31-34: drive the numerically produced non-zeko(the trace of the
extrinsic curvaturg back towards zero. With K-drivingk
, —r2(1+sz co€(mo)) re_mains_ much smaller gntil close to the point of crashing at
g=ap“e 5 , (320 t=9, with a catastrophic blow-up of the lapse at the end.
(1+p%) This shows that a better control of the time slicing is not

enough to cure the instability in the evolution: There exist
wherea andc are constants,?=p?+z? andmis an integer. unstable modes that are not controlled by keeping the value
In this paper we focus on the axisymmetric case,0, for  of K small. (For an analysis of possible unstable modes of
simplicity, although using a non-zero value ofdoes not the ADM equations, segt].)
affect the results we discuss below. All the runs discussed Next, we show the evolution of the same system using
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10
038

“Gam” (for gamma, introduces thd"', but does not use the
momentum constraints to rewrite their evolution equations.
The third run uses the implementation “Mor{for momen-
tum constraintsand represents a straightforward coding of
the the full set of CT equatiori§,10], where the momentum
constraints are used to modify the evolution equations for the
0.2 I'', but without adding anything else. In the fourth run, which
00 0 ; uses the implementation “AFK”(for “actively enforcing
o 2 4 6 8 W0 2 4 6 8 10 K” ), we have forced to remain zero by simply not evolv-
Oy V5. {ime Ko, v5. time ing it, and we have also kept time independenfsee Eq.
FIG. 2. (a) Evolution of the minimum value of the lapse for an (10)]. In the fifth run we use the |mplementat|on~AFA,
axisymmetric Brill wave data set wita=4, using the standard Where we allovK to evolve freely, but actively forca (the

ADM formulation with maximal slicing ad a K driver. The simu- ~ trace ofA;;) to remain zero by subtracting it fromy; after
lation goes somewhat further, and now crashes=&@ with a cata- each time step:

strophic blow-up of the lapséb) Evolution of the maximum value

of the trace of the extrinsic curvatute. The trace now remains ~ ~ . -

much smaller during the simulation. Aij—Aij— 37 rA. (33

0.6

041

again maximal slicing, and different implementations of thepng finally, in the sixth run we use the implementation

CT formulation. In Fig. 3 we show again the central value of«aro» that combines implementations AFK and AFA

the lapse for the same |n|t|al.data. The different runs corre, ) e by actively enforcing botk=0 and A=0. Notice
spond to the following cases:

that bothK andA should be zero in principle in an exact
remove €Vvolution using the CT_equations with _maximal ;Iicing, but
they do not remain so in actual numerical evolutions unless

use of use momentum force

i : _ ~
I constraints K=0 wA actively enforced.
Res no } no no As can be seen from the figure, runs Res, Qam, Mom,
Gam yes no no no AFK and AFA eventually crash, but run AF2 with double
Mom yes yes o no active enforcement does not, a_t least for the_ time sc_ale under
study. The lapse returns to unity, and the final static space-

AFK yes yes yes no time can be followed for a long time with no sign of an
AFA yes yes no yes instability (we have in fact followed run AF2 past=100
AF2 yes yes yes yes and it still remains stabje From the figure we also see that

by enforcing onlyK=0 or A=0 separately, as is done in
runs AFK and AFA, one still obtains improved stability, with
rescalg. It differs from the standard ADM equations only in the simulations crashm_g at late times after th_e lapse has al-
: . ready returned to 1. This shows that by enforcing only one of
the conformal rescaling and the fact thatand K (which ) . .
] ) ) ~ the two constraints, and keeping the other options turned on,
enter into the evolution equation fdx;;) are now evolved \ye g;ill get a rather robust system when compared to stan-
separately. The second run, with the implementation denote((_jiard ADM. Moreover enforcing'fl\:O appears to be more

important than enforcing =0, as can be seen from the fact
1op Fes 1 lop Com 3 that run AFA crashes much later than run AFK.
ng j0s 3 Finally, notice that run Gam crashes even sooner than run
02 %E/\] 3 Res, which shows that it is in fact better not to use he
o 10 20 30 4 5 0 10 20 30 40 50 than to use them without modifying their evolution equation.

The first run uses the implementation denoted “Ré®it

1.2 1.2

s o 5. time - %, ¥S. time For understanding the need to use the momentum constraints
iop ter 3 rop M 3 in the CT a h th i

o8k 1 osf 3 pproach, see the companion pdgér

oer ER 1 3 We note that the results found above for the different
g;gw\ 1 92 E implementation are generic for strong gravitational wave

o 10 20 30 4 5 0 10 20 30 40 50 spacetimes, quite independent of the precise parameter

O v3: HTE i T choices. However, for weak gravitational waves in the linear

ook 1 ook ] regime, the straightforward coding of the CT equations
>t E 8;§i/kf/ E (implementation “Mom”) leads also to stable evolutions as
68 i85 3 do the AFK, AFA and AF2 cases. In Fig. 4 we show again
o o 20 S0 40 500 10 20 30 40 50 the minimum value of the lapse for the evolution of a wave
" e with an amplitude ofa=0.01, using the ADM formulation
FIG. 3. Evolution of the minimum value of the lapse for an and also the Mom, AFK and AFA implementations of the

axisymmetric Brill wave data set wita=4, using the 6 different CT systenfsince the lapse remains very close to 1, we are in
variations of the CT system described in the text. fact plotting (@—1)x 10°]. We see that while the ADM run
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0.5 0.5
0.0F O 1 00f

0.5
10 E

1.5 E
20

0.50
0.40

Mom

0.30

0.20
0 5 10 15 20 0 5 10 15 20 4/
(a=1)x10° vs. time (a,,~1)X10° vs. time 0i0p "

0.00E

0.5 0.5
ook AFK 0ok AFA

0.5
1.0

1.5
2.0

IHaml, vs. time IHaml, vs. time

FIG. 5. L2 norms of the Hamiltonian constraint for ttee
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We have also performed convergence tests by running the
FIG. 4. Evolution of the minimum value of the lapse for an Same initial data with different resolutions, and we have
axisymmetric Brill wave data set with=0.01 for the ADM system found that both the ADM and AF2 evolutions are second
and three variations of the CT systgiMom, AFK, AFA). Notice order accurate. As an example of this, Fig. 6 shows the L2-
that since the lapse remains very close to 1, we are in fact plottingjorms of the Hamiltonian constraint for both the ADM and
(a—1)x10°. the AF2 systems for two different resolutions: The dashed

h i v time=15) with tastrophi I lines show the L2 norm for a resolution dix=0.16 (3%
crashes at an early timé=t15) with a catastrophic collapse grid pointg, while the solid lines show the L2 norm for a

of the lapse, all three implementations of the CT equation . - . . -
give stable evolutions and yield basically the same results l‘orreSOIUtlon ofdx=0.08 (67 grid points multiplied by a fac-

a weak wave. We have followed these three runs past ;[jor rc]Jthl)_ur. F?]r Sl?jc]?rrld order ;:onvErgehnceFthe sglidf_ and
—100 with no instabilities developinghe AF2 implemen- 9ashed lines should fall on top of each other. From the figure

tation is in fact just as stable, but we do not include it in theWe Se€ that this is indeed true for most of the run in both
figure). cases. For the ADM run, second order convergence starts to

rameters that we have donse can conclude that, for maxi- Un we obtain slightly degraded convergeribat still better
mal slicing, the CT formulation has better stability propertiesthan first order for times betweert=5 andt=15 when the

for the evolution of strong field systems, as long as spacetime is very dynamic, indicating that we have not quite
. reached the second order convergence regime for the resolu-
TheI" are promoted to independent variables. tions considered here.

_ Though in this section we have concentrated in the case of
The momentum constraints are used to transform the evQyayimal slicing, we should mention that we have also per-
lution equation for thd™. Evolving thel without modi-  {omeq many simulations using the generalized+lag”
fying their evolution equation is worse than not using gjicings. The results are in fact very similar to those reported
them at all. here, except for the fact that implementations AFK and AF2
can no longer be use@inceK is non-zero for these slicing
conditions. We find that for these algebraic slicings, imple-
mentation AFA is by far the best performer.

In the following subsections, we show that the above re-

So far we have focused on the issue of long term stabilitySults on the stability and accuracy of the ADM and CT sys-

The trace of the extrinsic curvatukeis actively forced to
be zero(the definition of maximal slicing

The trace of theT-\ij is also actively forced to be zero.

Now we want to compare accuracy of the CT and ADM 20 08

formulations. We concentrate on the best implementation of A2

the CT equations, the one we labeled AF2. In Fig. 5 we show 1.5 0.6

the L2-norms of the Hamiltonian constraint for the=0.01

anda=4 cases discussed above, using the AR¥dlid line) 101 0.4¢

and the AF2 system@lashed ling In both cases we see that /

for the ADM system, the L2-norm of the Hamiltonian con- 05r  f 02

straint grows more or less linearly for some tirtthis is 00 00

more evident in the=0.01 casguntil just before the crash ‘ 0 2 4 6 8 0 ) A 5 ]'0 ]'5 2'0 %

when it blows up catastrophically. In contrast, in the AF2 ol vs. fime ol vs. time
AR YR

runs the L2-norm of the Hamiltonian constraint initially
grows faster, but it later settles on a constant value. The fact FiG. 6. Convergence of the L2 norms of the Hamiltonian con-
that the ADM runs are more accurate than the AF2 runs adtraint for thea=4 case for both the ADM and the AF2 systems.

early times appears to be quite generic: we have found esthe dashed lines show the L2 norm for a resolution of 0.16, while
sentially the same behavior for all the different parametershe solid lines show the L2 norm for a resolution of 0.08 multiplied

that we have studied. by a factor of four.
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FIG. 7. Evolution of the radial-radial metric component along a
line on the equatorial plane at various times for Misner data ( FIG. 8. Evolution of the lapse function along a line on the equa-
=2.2). Plots are every 3\ in time. The ADM system crashes torial plane at various times for Misner data£2.2). Plots are
aftert=14M, while the AF2 system remains stable. every 3.3 in time. The ADM system crashes aftier 14M, while
the AF2 system remains stable.

tems are basically the same for systems ranging from black . ) .
holes to spacetimes coupled to dynamical source fields. Ut the evolution ADM vs AF2); all computational param-
eters, such as parameters in the ICN finite differencing

scheme, grid parameters, radiative boundary conditions, and
2. Black holes maximal slicing condition are the same. In Fig. 7, first panel,

Black holes have been the target of an intense researalie show the radial-radial metric component along a line on
effort in recent years in numerical relativity, and have provedhe equatorial plane at various times for the ADM case. We
particularly difficult to handle in 3D evolutions. In the “stan- can clearly see the familiar ever-growing peak caused by the
dard” numerical evolution of black holes using the ADM grid stretching associated with singularity avoiding slicings.
equations together with singularity avoiding slicings, 3D In the first panel of Fig. 8 we show the lapse function along
simulations generally develop instabilities and crash befora line on the equatorial plane at various times for the ADM
t=50M, whereM is the mass of the systef36—38. This  case, and here an instability becomes apparent at around
falls far short of the time required to model the complete=14M which is not yet reflected in the metric. This short
inspiral of two black holes, or even the head-on collision.wave length instability grows rapidly and causes the code to
Still, singularity avoiding slicings combined with the ADM crash at=14M. In the second panel we show the AF2 case.
equations make it possible to evolve through a brief part oNo metric instability is seen until towards the end of the
the merger phase of two black holes with momenta andimulation att=24M, although the peak appears to be de-
spins, and from this point of view give the most generallyformed. At this time the radial metric function peak has
applicable method available. Future cures for grid stretchinggrown to about two times higher than that attained in the
are expected to be based on black hole excif8h40Q or  ADM case. The lapse for the AF2 case in Fig. 8 does not
characteristic slicingf41]. show an instability.

In the following we carry out a preliminary study of the ~ However, note that a smooth and stable evolution of the
CT formulation in black hole evolutions with grid stretching. lapse does not mean that the computed data is still useful. To
It is inevitable that the sharp peaks that develop in the metriemphasize this point, Fig. 9 shows the same run as above
function due to grid stretching will cause the code to crash atvith AF2 on a smaller grid with only 66points, but with the
some point in the evolution. We consider the evolution of thesame grid spacing as befofso the boundaries are much
Misner data as a concrete example. The 3D numerical evaloser in. While ADM crashes when the gradients in the
lution of the Misner data in the standard ADM setting with metric become too severe, the AF2 run is able to continue
singularity avoiding slicing has previously been studied uswith a smooth lapse even after the metric becomes deformed
ing the so-called “G” codd 37,31 and its derivative$36], (cmp. [18] where the evolution of the metric is not dis-
developed by the NCSA/WashU group. Comparable resultsussedl The lapse eventually collapses in the whole grid,

for a single black hole can be found [ih8]. freezing the evolution(so one could keep running “for-
In Fig. 7 and Fig. 8 we compare the results of evolutionsever,” but the evolution becomes meaningless
of Misner data with the separation parameiser 2.2, corre- Next, we compare the accuracy of both simulations. In

sponding to two initially well separated black holes, on aFig. 10 we show the L2 norm of the Hamiltonian constraint
grid of size 136 with grid spacing 0.08. The only difference for a grid size of 138 The dashed line represents the ADM
in the simulations is the system of equations used to carryun, and the solid line the AF2 run. We see that the ADM
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CT-AF2 CT-AF2 proach a static final state. However, the CT formulation still

' ' ' ' offers some advantages over ADM in achievable run time.
1 ] We find stability far beyond were the runs are meaningful,

and it remains to be explored how far one can push the CT
runs while maintaining convergence.

0.756
B. Matter spacetimes
In the previous sections we studied the stability properties
of the vacuum Einstein equations. What will happen if these
equations are coupled to dynamical matter sources that are
themselves governed by evolution equations coupled to the
spacetime geometry? The complete set of equations can now
have more complicated types of unstable modes. What
would be the effects of switching from the ADM formulation
to the CT formulation?
; To respond to this question we consider next the follow-
6 0 2 4 6 ing systems(i) the evolution of boson stars governed by the
) ) ) ) scalar field Klein-Gordon equation arfil) the evolution of
.FIG. 9. Evolution of the lapse and the met_rlc at various times forneutron stars governed by the hydrodynamical equations
Misner data f=2.2). Plots are everyM in time. With the AF2 o0 hora) relativistic Euler equationsThe numerical evolu-
system the evolution remains stable even after the metric peak I%%n of the Klein-Gordon equation is straightforward with
severely deformed. .
many well-known stable schemes. However, the numerical
evolution of the hydrodynamical equations is considerably
results are more accurate than the AF2 results until jUSt bq'nore Cha”enging, especia”y in the presence of shocks or
fore timet=14M, when the instability in the ADM evolu- highly relativistic flows. For this purpose we use a recently
tion begins to dominate and the code crasheith higher  developed hydrodynamical codé2?] which employs a con-
resolution this crash time can be delayed somewliarting  servative formulation of the equations together with high-
at aroundt=20M for AF2, there is a spurious growth in the resolution shock-capturingHRSO schemes based on ap-
Hamiltonian constraint that corresponds to the deformatiorproximate Riemann solvers. 2] we demonstrated that
in the metric. For maximal slicing one expects continuousthis code is capable of handling hydrodynamical evolutions
growth of a smooth metric peak, but with AF2 the shoulderin a stable and accurate fashion for a range of scenarios.
in the lapse seems to overtake the outward movement of the \we focus here on analyzing the stability and accuracy of
metric peak, freezing its growth in an irregular manner.  eyolutions of both static boson stars and static neutron stars
These results for black holes with grid stretching cannofysing the ADM formulation and the AFA implementation of
be compared directly to the wave runs in the previous sectiothe CT equations discussed above. We use the AFA imple-
because in the case of the black hole runs we do not agnentation rather than AF2 because the simulations discussed
here have all been performed using algebraic slicings and
' ' implementation AF2 applies only to maximal slicing. The
] main motivation for this has been the fact that, as we will
show below, implementation AFA with algebraic slicings al-
ready gives excellent results when compared with standard
ADM and is far less computationally expensive than runs
that use maximal slicing.

0.5

4 025

15

——- ADM
— CT-AF2

10+

1. Boson stars

IHam,|

We begin with a simple kind of matter source: self-
gravitating scalar fields. This system has served as a useful
testbed for developing numerical techniques for dealing with
relativistic matter coupled to the Einstein equations
[43,35,44,4% and also has a distinguished history in the
field, having provided the first example of critical phenom-
0.0 . . ena in relativity[46].

00 10.0 20.0 30.0 40.0 The dynamics of a massive scalar field are described by
Miom the minimally coupled Klein-GordofKG) equation

I
|
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|
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!
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I

FIG. 10. Evolution of the L2 norm of the Hamiltonian constraint Dg¢= m2¢ (39
for Misner data £1=2.2). The ADM system crashes at around
=14M, while the AF2 remains stable. However, the accuracy of the(see, e.g[43]). The KG equation can be obtained from the
AF2 run degrades significantly after aroutyd 20M. Lagrangian
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1 1 1.59 F . .
L=509""$,,. 0%, +5m 4% (35) ;
P\ — T=0
; L N T=3.1
which leads to the stress-energy tensor [ e T=6.2
P — - T=75
1891 | \
P (36) .'
“" =g ag" N

which is used as the matter source for the Einstein equations
Self-gravitating massive scalar fields have bound, star- 1.19
like solutions called boson stars with stability properties very
much like those of neutron stars. These objects have bee
studied numerically, extensively in 1[%#3,45 and also in
3D [35]. Apart from the fact that their evolution equation is
much simpler than the hydrodynamical equations, boson 0-990'
stars are also easier to handle numerically when compared t r
neutron stars because they have no sharp changes in the de
sity distribution near the surface layer of the star. For more 139 |
details on the properties of boson stars and their behaviol
under perturbations s¢d3] and references cited therein. : ;314
We perform our numerical evolutions of boson stars by " A o
writing the KG equation as a flux-conservative system of the
form

1.29

Up=dpF 2+ SPuy, (37 S 119

whereu contains the scalar field and its time and space de-
rivatives. The method used to integrate this equation is a
symmetrized MacCormack with both directional and Strang
splitting. Symmetrized here means that the order of left-hand
and right-hand differencing changes every time $tbjs im-
proves the stability of the scalar field evolutjoThe code 0.99
for solving the KG equation converges to second order in
time and space. See Reff47,48 for details of the numerical
methods. FIG. 11. Evolution of the radial metric functiag, using ADM

We have carried out evolutions of equilibrium boson star(upper panel and the AFA implementatior{lower panel. The
configurations with the metric background held fixed artifi- ADM evolution crashes at=8.
cially (not updating the metric functionsand evolutions of
the metric of such configurations with the scalar field heldthe code to crash. The tinidere is expressed in terms of the
fixed artificially (not updating the scalar figldfor a range of intrinsic oscillation time scale of the scalar figlthe exact
compactness of the boson stars, using both the ADM andquilibrium boson star field has the forgr)e'!]. In the
AFA schemes. For all these cases, we have seen that tRecond panel we show the evolution with exactly the same
simulations are stable and second order convergent. The casétup but using now implementation AFA instead of ADM.
of coupled spacetime-scalar field evolution is much morewe see that the static configuration is maintained for a much
challenging, and we focus on that below. longer time. Towards the end of the evolution, nearl50,

We begin by showing an equilibrium boson star with awe see that numerical error starts to build-up near the bound-
central density near the maximum stable valigd strength  ary of the computational domain.
at center¢,=0.26, total mas =0.6322 m3/m, with m, In Fig. 12, we compare the L2-norm of the Hamiltonian
the Planck massn the mass of the scalar figldn Fig. 11,  constraint for the ADM and AFA runs. We see that at early
we show the evolution of radial metric componegppt in a  times the ADM run gives a more accurate result, but insta-
fully coupled simulation, using a three step ICN schemepilities cause the L2-norm to blow ky=8. For the AFA run
1+log slicing withN=2, no shift, a radiative boundary con- the constraint violation is larger at first, but the evolution
dition on the metric, and a flat boundary condition on theremains stable or a much longer time. The oscillation of the
scalar field. A 32 grid is used to cover only one octant. In Hamiltonian constraint we see here can be understood as a
the first panel we show the results of the ADM evolution. reaction of the scalar field to the numerical truncation error,
We see that for a short time, the spacetime remains nearlyhich can be interpreted as a kind of perturbation. The fre-
static(as it should. However, a short wavelength instability quency of these oscillations coincides with the ones obtained
becomes significant by timte=7, and quickly grows causing in 1D studies of perturbed boson stars. Notice that with the

0 10 20
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FIG. 12. Evolution of the L2 norm of the Hamiltonian constraint (ms)
for a static and stable fully coupled boson star using the ADM and FIG. 13. Evolution of the L2 norm of the Hamiltonian constraint
AFA systems. The evolutions where carried out on 3@, with for a N=1.0 polytropic neutron star modé&oupled spacetime and
a resolution ofAx=0.45. hydrodynamical evolution The ADM system crashes after less
than 2.7 ms, while the AFA system evolves stably for a signifi-
ADM run the code crashes so early that one can not even sg@ntly longer time. A 63 grid was used to cover the first octant.
the first oscillation.

We focus next on the coupled spacetime and hydrody-
namical evolution of static Tolman-Oppenheimer-Volkoff

We turn now to the study of hydrodynamical evolutions (TOV) [49] neutron stargin isotropic coordinates Again,
of neutron stars. 1H42] we developed a three-dimensional, we compare the results obtained using the AFA implemen-
fully relativistic code to integrate the hydrodynamical equa-tation of the CT equations to those of the ADM equations. In
tions coupled to the ADM equations. Convergence studieprinciple both the matter distribution inside the star and the
using polytropic neutron stars showed that the code is secorgpacetime should remain static. In practice they evolve due
order accurate in both space and time. For the integration db truncation errors of the finite-difference scheme, with the
the hydrodynamical equations we used HRSC schemes dfydrodynamics and the spacetime responding to one another.
the total-variation-diminishing (TVD) class, with a The static TOV solution provides a reference to monitor the
piecewise-linear reconstruction of a sufficient set of hydro-accuracy of the coupled numerical evolution. Note that in
dynamical variableqrest-mass density, three-velocity and these evolutions, static outer boundary conditions were used.
internal energy density For more details on the schemes In Fig. 13, we show the evolution of the L2-norm of the
available in the code, s¢d2]. In the studies reported in this Hamiltonian constraint for a polytropi®y=1, TOV star of
paper we use the ICN scheme for the integration of theyravitational mass 1M, and compactness ratid1/R
spacetime equation@ither ADM or AFA) and Roe’s ap- =0.146. A 64 grid is used to cover the first octant, with
proximate Riemann solver for the hydrodynamical equationsdx=dy=dz=0.34 km. The dashed line corresponds to the
We use “1+log” slicing with N=2. ADM system and the solid line to the AFA system. Again, as

As in the boson star studies we have first considered evadn the vacuum studies, we see that the ADM evolution sud-
lutions which test separately the individual components ofdenly becomes unstable at roughly 2.7 ms, while the AFA
the code. In these, we either solve the hydrodynamical equavolution remains stable after more than 6w followed
tions in a prescribedstatio spacetime or the gravitational the evolution for more than twice that
field equations for a prescribed matter source. In particular, In Fig. 14 we show the evolution of the radial component
we have evolved static neutron star configurations with af the metric(constructed from the evolved Cartesian metric
zero-temperature polytropic equation of state, of the formcomponents The first panel of Fig. 14 corresponds to the
P=Kp" (whereP is pressure ang is rest-mass density evolution obtained with ADM. We see that the star basically
This included stars with a large polytropic indéx (very  maintains its initial equilibrium, until the high-frequency in-
stiff) having density profiles with a discontinuous first de- stability crashes the code. In the second panel, we shpw
rivative at the surface. In the case of prescribed matteat various times, obtained with the AFA implementation. All
sources, we have confirmed that the comparison of the AFMther parameters are the same as in the ADM evolution. The
and AF2 systems to the ADM system, in terms of stability ADM run is more accurate, before it becomes unstable,
and accuracy, remains the same as in the vacuum cases stughile the AFA run is stable but less accurdtiere is a
ied above. Static neutron stars with polytropic indéx 2 secular drift away from the initial configuratipn
have also been studied jal] using the CT equations with The truncation errors of the coupled evolution code ini-
prescribed hydrodynamical sources. tiate a pulsation of the star in, mainly, its radial modes of

2. Static neutron stars
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FIG. 14. Comparison of the evolution of the radial metric com-
ponent for aN=1.0 polytrope with ADM (left pane) and AFA.
The evolution with the latter system proceeds well beyond the time
at which the ADM system becomes unstable.

t(ms)

FIG. 15. Convergence of the L2 norm of the Hamiltonian con-
straint, at three different resolutions, for a=N.0 polytropic neu-

pulsation. These pulsations are damped in time due to th&on star model. The AFA system is used.
viscosity of the numerical schenisee[50,51]). The TVD

schemes we are using describe well the physical pulsations
of the fluid, except in a small region around the center of the ) i .
star, where short wavelength noise appears in the radial ve- N this paper we have studied the stability of three-
locity. Our trials with other HRSC schemes show that thisdimensional numerical evolutions of the Einstein equations

behavior seems to be generic for higher order HRSCN @ formulation that separates out the conformal and trace-

schemed.In all such schemes, the radial momentum near thd€SS parts of the system. In our study we have considered
center has a small residual value of constant sign. This mdlifferent spacetimes including gravitational waves, black

mentum appears in the right-hand sid®HS) of the evolu-  Nles, boson stars and neutron stars.

. . ~. L We investigated several implementations of the
1

Flon equatlon.forl“ [Eq.(20)]. Th's’ in turn, leads to_an error onformal-traceles§CT) evolution equations. We identified

in the spacetime evolution. It is noteworthy that this does no

X o " wo of them which give the best long term stability behavior:
cause an instability in _the poupled evolutl_on, except at V€¥he AF2 implementation for maximal slicing, and the AFA
late times, when the violation of the Hamiltonian constraint; - algebraic slicings. The AFA implementati'on actively en-

has already become extremely large. S
. for he tr f th nformally r I Xtrinsi rva-
We note that as the TVD schemes are only f|rst—order0 ces the trace of the conformally rescaled extrinsic curva

accurate at local extrema, such as the maximum of the derdr® (A) to zero at each step of the time evolution, while the
sity at the center of the star, so the increase in the HamilAF2 implementation enforces as well the fact that the trace

tonian constraint at the center converges to roughly first or2f the extrinsic curvaturéK) should vanish in maximal slic-

der with increasing resolution. Away from the center, the!nd- On the analytic level, the CT evolution equations imply
scheme is second order convergent. The convergence of tieat A=0 throughout the evolution, but this is inevitably
L2-norm of the Hamiltonian constraint with the AFA system, Violated in numerical evolution due to truncation error, un-

for different grid-sizegand for the same initial configuration less actively enforced. Similarly, for maximal slicing,will
as abovg is shown in Fig. 15. not remain zero numerically unless actively forced to do so.

We find that these two implementations of the CT equations
lead to a more stable evolution compared to what one can
Iwe have extensively experimented with other hydrodynamicaObtaln using the .Standard ADM evo.ll.Jtlon equafuons, under

khe same resolution, boundary condition and grid parameter

evolution schemes. If one uses a first-or@@odunoy scheme, us- hoices. for all svstems investigated. In comparison. a
ing piecewise constant reconstructed data for the Riemann problerﬁ L . y . 9 ) P !
traightforward implementation of the CT equations

instead of piecewise linear, the radial velocity oscillates around zerg,, oo . .

near the center of the star, without any short wavelength noise. But, Mom™ ) is Ca_pable of giving a stable evolution _for weak
a low-order scheme is not capable of accurately describing the evcp-ut not strong field systems. We should also mention that we
lution of the stellar surface where the density distribution is changNave recently become aware of the work of Lehner, Huq and

ing rapidly (unless prohibitively large grids are ugeand large  Garrison[15] where a comparison of the ADM and CT for-
errors from the surface layers soon propagate inside the star. w@ulations has been carried out and where it is also found that
have also experimented with a mixed system: first-order near théreezing the evolution oK (what these authors call “locked
center and second-order near the surface. In this case the err@rolution”) improves considerably the stability of simula-
grows at the interface of the two regime, yielding a even less accutions that use the CT formulation.

rate evolution overall. Beyond stability, we have also compared the accuracy of

IV. DISCUSSION AND CONCLUSIONS
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the evolutions obtained by the ADM equations and CT equa- The iterative scheme itself is only convergent if the stan-
tions. For all spacetimes considered we have found that the dard Courant-Friedrichs-LewyCFL) stability condition
ADM system is consistently more accurate than the CT sys- is satisfied, otherwise the iterations diverge.
tem in short term evolutions, before the instabilities set in. ) )
Although at present we can offer no explanation of this dif- 1heS€ two results taken together imply that there is no
ference in accuracy between the different formulations, wéeason(at least from the point of view of stabiliryo ever do
believe that it is not a consequence of our numerical impleMore that three ICN iterations. Three iterations are already
mentation, but is rather a property of the system of differenS€cond order accurate, and provide us wilt@nditionally
tial equations. It therefore points in the direction for a pos-Stable scheme. Increasing the number of iterations will not
sible improvement of the CT approach. We note thatMmpProve the stability properties of the scheme any further. In
formulations combining the CT approach and the hyperboncparticular, we will never achieve the unconditional stability
approach have been propos®,53. A similar investiga- properties of the full implicit CN scheme, since if we violate
tion of the stability and accuracy properties of such formu-the CFL condition the iterations W|Il_d|vergfe_z. _
lations will be presented elsewhere. For our stability analysis we will consider the simple
In this paper we have focused on the implementations an@ve equation in N-dimensions. Numerical experiments
the numerical properties of their evolutions. Some underhave shown that the full Einstein equations have essentially

standing of the different stability of properties on the analyticth® same stability properties. ' '
level is discussed in a companion papél: Consider then the N-dimensional wave equation written

in “3+1 like” form:
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An+1:An+ E 5_2(¢n+1_,’_¢n), (A4)
APPENDIX A: STABILITY ANALYSIS OF THE " mo2ax)zE T m

ITERATIVE CRANK-NICHOLSON SCHEME

) ) ) _ where the finite difference operato#$ are defined as
The numerical scheme used for the simulations described

in this paper is the so-called iterative Crank-Nichol$kZN) SN =fN  —2fN 4N . (AB)
scheme, which is an iterative, explicit version of the standard ' ' o
implicit Crank-Nicholson(CN) schemg54,55. The idea be- The implicit CN scheme is well known to be uncondition-

hind this method is to solve the implicit equations by anally stable for the wave equatidie. stable for any value of
iterative procedure, where each iteration is an explicit operaat).

tion depending only on previously computed data. Normally, The ICN scheme is defined in the following way:
this process is stopped after a certain number of iterations, or

; ; : ; : 1)_

gntll some tqlerance is ach!eved. For a_lmear equataom ¢§n)— om+AtA], (AB)

in particular in one dimensionthe iterative procedure can

easily be much more computationally expensive than the ma- L N

trix inversion required to solve the original implicit scheme. AD=AD + Atzl bm (AT)
=

For a non-linear system, however, solving the implicit
scheme directly can prove to be extremely difficult.
In this appendix we study the stability properties of the
ICN scheme in the particular case of the simple wave equa-°As we were finishing this manuscript we became aware of a
tion, and derive two very important results: paper by S. Teukolsky where he does essentially the same analysis

) and obtains the same resuft6]. His analysis and ours comple-
In order to obtain a stable scheme one mustatiteast  ment each other, since he considers any finite number of iterations,

three iterations, and not just the two one would normallywhile we consider only 1, 2 and 3 iterations. On the other hand,
expect(two iterations are enough to achieve second ordehere we also consider the question of the convergence properties of
accuracy, but they are unstaple aninfinite number of iterations.
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W=+ = (A(' V+AD), (A8) N+l ¢m+AtA"+—Z 2n, (A20)
N
A =AL+ 282 ;1 SP(ph D+ dh), (A9) ANl E S2(24" + AtAY), (A21)
and finally, As before, a simple Taylor expansion shows that this ap-
it X) proximation is now second order both in time and space.
m =gy m (A10) Using again the ansatA13) we find now that
f 2 2,,2 4.4 __

From these expressions it is clear that if the iterations Solving again for\ we obtain

converge, we V\_/i_II recover_the implicit CN scheme. A=1—p2ul=] \/Epu, (A23)
For the stability analysis of the ICN scheme we use the
standard von Neumann ans{54,57| which implies
pm=E\"e! (e mAX, (A12) IN|=1+ptut>1. (A24)
Al = g,\"e! (k-max (A13) Comparing again with Eq(A14) we conclude that the

2-step ICN scheme is also unstable for any valuA bfThis
with k the “wave vector.” Notice that the highest wave result is surprising, sinca priori one might expect that the
number that can be represented on the finite difference grid-step scheme should behave like a predictor-corrector
corresponds té&;Ax= . The stability condition for our nu- scheme, and should therefore be stable.

merical scheme will then be Finally, let us consider the 3-step scheme. By taking the
ICN scheme above with,,,=3, and doing the appropriate
IN[=1. (A14)  substitutions we now find

Let us consider first the “1-step” ICN scheme, that is, the o p? N 5
so-called forward-time centered-spa&&CS scheme. This m = dmT AtAL+ Z 5(2m+ AtAL),
scheme is well known to be only first order accurate, and =t
unconditionally unstable. The fact that is only first order ac-
curate can be easily seen from a simple Taylor expansion in 5 N
time. For the stability analysis we substitute the von Neu- ANl AN 4 Ll > 52240 + AtAY)
mann ansatzA13) into the ICN scheme defined above with 2 =
imax=1. Doing this we obtain 5 N 5
2 n
Z-2N+1+2p%u?=0, (A15) + —4AX(21 5i) bm- (A26)

(A25)

wherep:=At/Ax is the Courant parameter and A Taylor expansion now shows that this 3-step scheme is

still only second order accurate in both time and space. Us-

uzzzg uiz, (A16) ing the ansatZA13) on this scheme we now find
U2 1— ot kiAX). (AL7) N2+ 2N (p2uP—1)+1—ptut+ ;pﬁ 6=0. (A27)
Solving for\ we find And solving forA we obtain
A=1%i\2pu, (A18) A=1-p2u=xi2pu|1-p2u?/2|, (A28)
which implies which now implies
IN=142p2u?>1. (A19)

1
N =1-p*ut+ EpGUG. (A29)
Comparing with Eqg.(Al14) we conclude that the 1-step

scheme is unstable for any value . Comparing now with Eq(A14) we obtain the following
Let us now consider the 2-step scheme. If we take thetapility condition:

ICN scheme above with,,,=2, and do the appropriate sub-

stitutions we find p2uP<2. (A30)
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And finally, from the fact that the maximum value of is
2N we find

p$l/\/ﬁ.

Notice that this is just the standard CFL conditionNndi-
mensions. We then conclude that in order to obtaiican-

(A31)

PHYSICAL REVIEW D 62 044034

We now use the von Neumann ansatz again
Fil)=falelkemax) (A36)
ol =t nlelkmax, (A37)

Substituting this ansatz back into the equations above we

ditionally) stable scheme we need to do at least three iterafind

tions.

Next, we address the question of the stability of the itera-
tions themselves, that is, if we iterate an infinite number of

times do we converge to somethifidpat is, to the implicit

CN schemg? For this we consider two consecutive iteration

steps {(—1,i), and subtract them to get

. At -

¢ — ol = (ALTV-ATD), (A32)
At O

AD_Al-1) (i-1)_ 4(i-2)y A33

h = AL 2(Ax)2i21(¢m ) (A33)

Let us now defineF;{)=¢)— 4{ " and F,)=Af)
—AlU~Y  The above equations become

LAt

Fif)=—Fan . (A34)
N

Fo0)= F 00, A35

M= a2 T (A35)

1
A2+ §p2u2=0, (A38)
from which we obtain
A=+i 28 (A39)
=*ji—.
V2

In this case, the condition for the iterations to converge
implies that the norm of the successive differences should go
to zero, which in turn impliesn|<1. Using again the fact
that the maximum value ai? is 2/N we see that the con-
vergence condition reduces to

p<1/\/ﬁ.

This is again the standard CFL stability condition. So we
have just shown that if this condition is violated, the itera-
tions will fail to converge. This means that there is no reason
to try to iterate to convergence in the hope of improving
stability. If At was too big in the first place the iterations will
never converge.

(A40)
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