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We assume that, having arrived at the transition state, the branching into the different product
states is independent of the initial quantum states of the reactants. This assumption plus the
familiar transition state approximation (that the reaction rate is the rate of the passage across the
barrier) yields an expression for the state-to-state cross section in terms of the state-to-all one, as
well as microcanonical rate constants. Models, adiabatic correlations, purely statistical
considerations, or collinear computations can provide the required input for the theory. Exact
quantal computations on the 3D H + H,, reaction are found to satisfy the assumed factorization
quite well. Furthemore, reaction probabilities derived from a line-of-centers model, with a barrier
height dependent on the approach angle, account for the probabilities derived from the exact

quantal computation.

I. INTRODUCTION

There are a number of motivations for the development
to be discussed in this paper. One, mentioned in the title, is to
formulate a state-to-state theory which, upon summing over
product states and averaging over an equilibrium distribu-
tion of reactant states, will yield the conventional transition
state theory TST.!

Another is to provide a framework where exact collin-
ear reaction probabilities can be used to compute three-di-
mensional state-to-state cross sections.? Alternatively, one
can employ reaction probabilities derived from models for
such calculations. One such model® based on a line-of-
centers approach is used here to compare against the results
of exact quantal computations* for the 3D H 4+ H, reaction.
Then, one can regard the present development as a natural
extension of the phase space theory” to reactions with a tight
transition state.>” These and other topics closely related to
our development have received extensive discussion in the
literature. Hence, the list of references in this paper can in no
way be complete and we apologize beforehand for our omis-
sions.

The discussion in this paper considers systems at a con-
stant total energy. Results at a given temperature can be
obtained by appropriate Boltzmann averages and will be
presented elsewhere with additional applications.

In Sec. IT we derive a set of exact relations involving
state-to-state, state-to-all, and all-to-all cross sections or rate
constants in a form appropriate for subsequent TST develop-
ments. In Sec. ITI we introduce a state-to-state reaction cross
section factorization, and use it to develop a state-to-state
TST. That factorization is tested in Sec. IV against exact 3D
H + H, quantal calculations. In Sec. V we show that in an
adiabatic formalism the condition for validity of the corre-
sponding all-to-all microcanonical rate constant is equiva-
lent to that for the thermal TST one derived previously.® A
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simple line-of-centers model is used in Sec. VI to calculate
state-to-state and state-to-all cross sections for that reaction
and shown to be in agreement with accurate quantum me-
chanical calculations. Section VII summarizes the conclu-
sions reached.

Il. STATE-TO-STATE, STATE-TO-ALL, AND ALL-TO-
ALL RELATIONS

Let us consider the partitioning of a polyatomic system
into a pair of molecules designated by the arrangement chan-
nel index A and let n; represent the set of quantum numbers
needed to specify the internal states of those molecules when
they are infinitely apart. Let Qi,}:;. (E') be the integral cross
section for the An; — 4 'n}. process at total energy E, which
isabimolecular reaction for 4 ' #A4. The corresponding state-
to-state rate constant is given by

K% (E) =0, (E)Q} (E)

A'ny.

= [kin(EV/ o, (E)|Q5% (E), (21)

where p,, is the density of states per unit volume of the
relative translational motion of the 4 molecules, and k,,,
anduv,,, thecorresponding wave number and velocity. These
three quantities are interrelated by

Pin(E) = (1/h*Wmplv,, = (1/h*2u,k,,,, (2.2)

where p; is the reduced mass of the pair of A molecules.
Summing Eq. (2.1) over 1} gives

KYME) = [k, (E)/Thp,,, (E)] QFHE), 2.3)

where the Q3" and K - are, respectively, the state-to-all
cross section and rate constant. Multiplying Eq. (2.3) by p,,,
and summing over 7, gives®

K5 (E)=[mhpi(E)]”'Y k2., (E)QHE), (2.4)
wherep, and K }. are, respectively, the total density of states
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per unit volume and the all-to-all microcanonical rate con-
stant defined by®

PAE)= pin,(E) (2.5)
and

PE)=[palE)] ZPM(E K 3HE). (2.6)

Equations (2.1), (2.3), and (2.4) express the state-to-state,
state-to-all, and all-to-all rate constants at a fixed total ener-
gy in terms of appropriate cross sections and serve as a bridge
between dynamics and rate theory.'®!!

According to the principle of microscopic reversibility®

I ENQ (B)=Kk2., (E)Q3, (E), 2.7)
Summing over nj. furnishes
3,07 =mhp, (E)K %, (E), (2.8)

where K}, is the total rate constant into state n; of A reac-
tion products from a microcanonical ensemble of A ' reagents
at energy E and is given by

K%, (E)=p;i \(E) zpi w \EVK M (E). (2.9)

In the spirit of TST, we write the factor hp, . K 7, onthe
right-hand side of Eq. (2.8) as the product of a number N%.

and a probability P}, and rewrite that equation as

k3, Q5" =nN}.(EP}, (E), (2.10)
where the P4 ,1,,1 are normalized over n :

ZPA,,A(E)=1. (2.11)

Equatlon (2.10) is not an approximation, but together
with Eq. (2.11} it constitutes a unique definition of the quan-
tities N3. and P7, . Indeed, we obtain immediately from
these equations the equivalent defining expressions

FIE)= "Zka,.A(E)QA"‘(E) (2.12)
and
An E ﬁ"AE
P E)= i E1OLHE) (2.13)
ka(E)Q‘"‘E)

It is easy to prove from microscopic reversibility that N ;.
and N7’ are equal, which is an important property for a TST
formulation, as developed in Sec. III, since these numbers
will be eventually associated with the number of states of the
transition state accessible at energy E and should not depend
on whether we approach it from the A or the A ' directions.

Replacing Eq. (2.10) on the right-hand side of Eq. (2.4)
and using Eq. (2.11) gives for the microcanonical rate con-
stant'®-'?

N7 (E)
hPA(E)'

This expression, although exact, has the same form as the

K3.(E)=

(2.14)

corresponding TST equation, in which &, rather than being
defined by Eq. (2.12), is the number of transition state states
mentioned in the previous paragraph.

Let us now define a set of state-to-state reaction probabi-
lities'?

P (E)=Q7" (EVQIHE),

which are obviously normalized over n}.
we get

o \E)=[m/k}, (E)NA.(E)PS, (EIPY, .(2.16)

(2.15)
. Using Eq. (2.10)

Once more, this expression is exact but has a form appropri-
ate for TST. In the same spirit we define the transmission
factors

T5,\E)=P}, (EWZ(E) (2.17)

/{nA

and

T, (E)=P P EWNL(E) (2.18)

in terms of which Eq. (2.16) can be rewritten in the equiva-
lent exact form

o E)=[m/k 3 E)| T4, (EVT (EVNS.(E).
(2.19)
Equations (2.16) or (2.19) are useful for the development of
state-to-state reaction cross section theories by replacing in
them the N, P, P, T, or T by appropriate approximations.

. STATE-TO-STATE REACTION CROSS SECTION

FACTORIZATION AND TRANSITION STATE THEORY
So far we have only used formal developments, without

any approximations. We will now make the first one, by
assuming that the following relation holds:

P (E)=P}.. . (3.1)
This expressmn is equivalent to
Q' (E) K3, (E1QIME
i ki (E)QIE) 52)
Q:-(E) zkm(E 0 HE)
Replacement of Eq. (3.1) into Eq. (2.15) gives
Q)% (E)=QE)P,.,, (E). (3.3)

This factorization implies that the n,, n;. dependence of
.
pendson 2, only and one onnj. only.' This s in the spirit of
TST, in the sense that the partitioning of the reaction flux
among the products should not depend on how the system
reached its transition state.
Using the definition of Qi’f‘ and the microscopic rever-
sibility expression (2.7) we rewrite Eq. (3.2) as

zkmw)g‘“ (E)

can be expressed as the product of a factor that de-

o (E)
MNE)

(3.4)
Z ks, QHE)

Generally speaking, 1t is not expected that this expression
should be valid, since it formally contains an n, dependence
on its left-hand side but not on its right-hand side. However,
if the factorization property (3.3) is satisfied, the n; depen-
dencies in the numerator and denominator of the left-hand
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TABLE L Rotational branching probabilities P/, for H + H, — H, + Hat
E=06¢eV.

-

J
j 0 1 2
0 0.262 0.473 0.265
1 0.255 0.482 0.263
2 0.257 0.472 0.272

side of Eq. (3.4) cancel, eliminating this inconsistency.
With the help of Eq. (3.1), we can cast Egs. (2.16) and
(2.19) in the approximate form

i (E)=[7/k}, (E)|NL(EWPS,,(E)PS,, (E)

A'ny.
(3.5)
= [7/k3(E)] T4, (E)TE, (EVNLE)

The description of a test of this equation is given in Sec. IV.

We now introduce TST in Eq. (3.5) by replacing N .(E)
by N ’lé(E ), the total number of transition state states'® or
activation barrier tops whose energies do not exceed E. The
most obvious way of defining such barrier is based on adiaba-
tic correlations between the transition state and the states of
the reagents.® We also replace P}, by an approximate prob-
ability P%,2°, which is still normalized over 7, as in Eq.
(2.11) but is otherwise arbitrary, no longer needing to satisfy
Eq. (2.13). We then get the following state-to-state TST cross
section expression:

u E) = [7/k3, (E)|NL,(E)Pr (E)PLE)

A'njy.
= [7/k %, (E)] T2.MEVT %28 (E)/N L (E),
(3.6)
where the 7°PP are related to the corresponding PP by an

expression analogous to Eq. (2.17) in which N}, is replaced
by N ji' Replacement of this expression into Eq. (2.10) and

1673
comparison of the result with Eq. (2.8) gives
(E)K “E) =~ N* (E)P42(E) (3.7)
pln;. A’ - h i} Any . .

Summing this expression over n, and using Eq. (2.6) and

the normalization condition of the Pﬁ,’,‘:”" results finally in
N (E)
Ki(E)=—"3—. (3.8)
hpi(E)

This is the correct TST version of Eq. (2.14) and shows that
regardless of the choice of the normalized model Pj’?:z used

for the calculation of the state-to-state cross section j"'n;.
we will always get the correct TST microcanonical all-to-all

rate constant K 4. (E ).

IV. A TEST OF FACTORIZATION

Using the state-to-state reaction cross sections for the H

+ H, system obtained from an exact quantal calculation,*

we have tested the factorization assumption of Sec. III. The

energy used was 0.6 eV, for which only the ground vibration-
al state of the reagent and product is open.

The first test was on the summed and averaged cross
sections. Replacing in Eq. (2.15) n; by j, m; and summing
over m;. and averaging over m; we get, for the summed and
averaged cross sections,

Qi = Q'Pi. (4.1)
Using the values of Qj':',{j of Table VI of Ref. 4 (and repro-
duced in Table IT of this paper) we calculated the @’ and ¢,
and from those we obtained the values of ﬁjl given in Table I.
From the relatively small variation of these quantities with j
we conclude that the factorization of @7, into a j dependent
(butj’ independent) factor and a;’ dependent (but j indepen-
dent) factor is a very good one for this case. This is in agree-
ment with the Franck—Condon model proposed and tested
previously.'®

TABLE 1I. Integral reactive cross sections Q}'"f} for the H + H, — H, + H reaction at £ = 0.6 eV.*

m,

jm;
im 00 11 10

1—1 22 21 20 2-1 2-2
00 0.432¢-01 0.322¢-02 0.717e-01 0.322e-02 0.227e-03 0.474e-02 0.338e-01 0.474e-02 0.227e-03
0.432¢-01 0.337¢-02 0.726e-01 0.337e-02 0.226¢-03 0.462¢-02 0.327e-01 0.462e-02 0.226¢-03
11 0.337e-02 0.549¢-03 0.596e-02 0.835e-03 0.488¢-04 0.709e-03 0.261e-02 0.127e-02 0.774e-04
0.354¢-02 0.276e-03 0.595e-02 0.276e-03 0.185e-04 0.379¢-03 0.268e-02 0.379¢-03 0.185e-04
10 0.751e-01 0.596e-02 0.128 0.596¢-02 0.380e-03 0.812e-02 0.578e-01 0.812¢-02 0.380e-03
0.761e-01 0.595e-02 0.128 0.595e-02 0.398e-03 0.815¢-02 0.577¢-01 0.815e-02 0.398¢-03
1-1 0.337e-02 0.835e-03 0.596e-02 0.549¢-03 0.774¢-04 0.127¢-02 0.261e-02 0.709¢-03 0.488¢-04
0.354¢-02 0.276e-03 0.595e-02 0.276¢-03 0.185e-04 0.379¢-03 0.268e-02 0.379¢-03 0.185¢-04
22 0.262¢-03 0.538¢-04 0.419¢-03 0.855e-04 0.111e-04 0.811e-04 0.209¢-03 0.134¢-03 0.146¢-04
0.262¢-03 0.205¢e-04 0.441e-03 0.205¢-04 0.137e-05 0.281e-04 0.199¢-03 0.281e-04 0.137e-05
21 0.549¢-02 0.783e-03 0.890e-02 0.140e-02 0.811e-04 0.113e-02 0.407e-02 0.228e-02 0.134e-03
0.537¢-02 0.419¢-03 0.902¢-02 0.419¢-03 0.281e-04 0.575e-03 0.407e-02 0.575e-03 0.281e-04
20 0.391e-01 0.288¢-02 0.638e-01 0.288e-02 0.209¢-03 0.407e-02 0.286e-01 0.407e-02 0.209¢-03
0.380e-01 0.297e-02 0.639¢-01 0.297¢-02 0.199¢-03 0.407¢-02 0.288e-01 0.407¢-02 0.199¢-03
2—1 0.549¢-02 0.140e-02 0.897¢-02 0.783e-03 0.134e-03 0.228e-02 0.407e-02 0.113e-02 0.811e-04
0.537¢-02 0.419¢-03 0.902¢-02 0.419¢-03 0.281e-04 0.575e-03 0.407e-02 0.575e-03 0.281e-04
2-2 0.262¢-03 0.855e-04 0.419¢-03 0.538e-04 0.146e-04 0.134e-03 0.209e-03 0.811e-04 0.111e-04
0.262¢-03 0.205¢-04 0.441e-03 0.205¢-04 0.137e-05 0.281e-04 0.199¢-03 0.281e-04 0.137e-05

*The top number in each entry is the exact quantal value from Ref. 4, and the bottom one the result of a least-mean-square fit of Eq. (3.5).
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In order to test the detailed state-to-state factorization
assumption we least-mean-square fitted the mentioned
i ,» values by Eq. (3.5), using N and the six quantities P,
(f = 0,1,2) as parameters. The results are given in Table II,
where the top number in each entry represents the accurate
quantal calculation of Ref. 4 and the lower one the fitted
values. The resulting optimal probability parameters are giv-
en in the second column of Table III. From these param-
eters, we can calculate the P; by summing over the m;. The
results are

P,=0.262,
P, =0.481,
P, =0.257.

These values are in good agreement with the -13§ values of
Table I, which is an indication of the overall validity of Eq.
(3.1) when used for the summed and averaged quantities.

A comparison between the quantal and fitted cross sec-
tions of Table II indicates an overall qualitative agreement
between them, showing that the factorization expression
(3.5) is reasonable even on a single quantum state (rather
than averaged) level.

The optimal value of N is 5.89. We used Eq. (30) of Ref.
17 to compute the transition state N, for this system at 0.6
eV. The result was 172. Therefore, although the factoriza-
tion assumption works quite well, microcanonical TST for
this system at this energy is too large by a factor of about 30.
This is consistent with deviations between thermal TST and
quantal results found previously.*®

V. AN ADIABATIC STATE-TO-STATE TRANSITION
STATE THEORY

As aresult of the remarks of Sec. I11, we conclude that a
necessary and sufficient condition for the validity of micro-
canonical all-to-all TST is that N%., (E), defined after Eq.
(2.12), be equal to N}, (E), defined after Eq. (3.5). On the
other hand, it was prev1ous1y proven® that a necessary and
sufficient condition for the validity of thermal adiabatic TST
is that certain reaction probabilities (not those defined in this
paper so far) be step functions of the energy. The mathemat-
ical language used on that proof invoked an adiabatic corre-
lation between each state of the reagents and a correspond-
ing state of the transition state. This implies, physically, that
the evolution of the system follows separate adiabatic path-

TABLE III. Probability parameters ij,-'

B,
L”y
a b
0,0 0.262 0.172
1,0 0.440 0.417
L,+1 0.0204 0.02
2,0 0.198 0.308
2,+1 0.0280 0.03
2,+2 0.0014 0.0012

*From fit to quantal results—See Sec. IV.
>From model described in Sec. VI.

ways. Since the microcanonical TST involves less averaging
than the thermal one, it is important to show that (in the
framework of an adiabatic formalism) the condition for va-
lidity of the former is not less restrictive than that of the
latter. We will now show that these two necessary and suffi-
cient conditions are acutally equivalent. As a result, we shall
be able, from Eq. (2.13), to provide explicit expressions for
the transition probabilities (or the transmission coefficients)
which appear in Eq. (3.6). These are the central practical
results of the section. Of course, both the proof and the ex-
plicit results are dependent on the aforementioned adiabatic
correlation.

The state-to-state cross section can be expressed as
Qi (E)= z 7+ 1] (1-S'(E)I}%,
ini(

(5.1)
where J is the system’s total angular momentum quantum
number, I is the identity matrix and S’ a scattering matrix
whose open part is symmetric and unitary. As a result, the J
partial wave An, — A 'n. transition probability defined by

P (B)=| 8B |? (5.2)
is norrnallzed with respect to 4 'nj.:

S P (E)=

A'ny.

(5.3)

Summing Eq. (5.1) over n}. for A '#A (i.e., for reactive
processes) we get

MHE) = —Z— 3 pPE), 5.4

Qi ME) T )EA‘; (E) (5.4)
where

P HE) = zp“"*(E) (5.5)

is the state-to-all J partial wave reaction probability and M is
the quantum number of the projection of the total angular
momentum of the system on a laboratory-fixed axis. This
probability is degenerate, with respect to M, lies (as any
probability should) in the range

0<p;™E)<1 (5.6)

and is normalized with respect to A ' but not with respect to
n,. Replacing Eq. (5.4) into Eq. (2.12) we get the exact
expression

Ni(E)=3 pi(E), (5.7)

L2

where u,; represents the set of quantum numbers J, M, n, .

As described previously,® we now define a set of curvi-
linear coordinates consisting of a reaction coordinate g and a
set of transverse coordinates p, such that as g changes from
~ 00,100, + oo the system evolves from the separated rea-
gent molecules in the A arrangement channel, to the saddle
point of the potential energy surface between arrangement
channels A and A ' to the separated product molecules in the
A’ arrangement channel. Let H (p;g) be the Hamiltonian of
the system for a fixed ¢, which describes the transverse p
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motion. For each ¢ let us consider the simultaneous eigen-
functions of H (p;q), the square of the systems’s total angular
momentum and its component along the laboratory-fixed
axis mentioned above. Let the corresponding energy eigen-
values be denoted by E +** (g). The E ;"% vs ¢ curves usually
represent barriers which at the saddle point have values E j’f‘
(0), and in general have maxima E ;"™ which occur at val-

ues ¢+4%™* of ¢ which depend on J and n; (in addition to A
and A'). The E}“* ( — o) are the energy eigenvalues of the
separated reagents, and are independent of 4.

It was previously proven® that if we use the E ;"™ to
calculate the transition state partition functions, a necessary
and sufficient condition for the validity of all-to-all thermal

adiabatic TST is that

/lu,l(E) _ H(E Eluimax) 0 forE<EAu,1max

(5.8)
= 1for E> E ™,

where H denotes the Heavyside step function. Note however
that it is possible in principle to use alternative (i.e., nonadia-
batic) correlation schemes to define the transition state ener-
gy levels and corresponding partition functions.'® The rela-
tion of adiabatic TST to generalized TST has been discussed
recently.'® We now wish to calculate what N 4. (E) Eq. (5.8)
implies. Replacement of this equation into Eq. (5.7) shows
that NZ%.(E) is in this case equal to the total number of
E }“*(g) barriers (i.e., u, sets)for which E ;™ < E. This is
by definition the number N j;(E ) of transition state states
whose energy is below E. If we changed the definition of
E ;™ and used the new E ;™ to compute the partition
functxons of the transition state in this modified TST, the
modified N 4 (E ) would still be the number of u, sets for

which the new E ;™ < E.?® We thus conclude that Eq.
(5.8) is a sufficient condition for the validity of

N3-(E)=N% (E), (5.9)

and therefore for the validity of microcanonical transition
state theory.

Let us now show that Eq. (5.8) is a necessary condition
for the validity of Eq. (5.9) and therefore that Egs. (5.8) and
(5.9) are equivalent. Indeed, replacing Eq. (5.9) into Eq. (5.7)
and changing the summation index to #; we get

S PHE) =N, (E).

We now order the u; according to a criterion of increasing
E}“™ and designate by u, — 1 the set of quantum
numbers which immediately precedes u, according to this
criterion. Then, over the entire E range, defined by

(5.10)

Ea}:ul—ljmax E Eﬂ.ulmax’ (511)

the left-hand side of Eq. (5.10) contains N 4. (E ) terms. Since,
according to Eq. (5.6), none of them can exceed unity, the
only way in which Eq. (5.10) can be satisfied is if all those
terms are unity over this energy range. By allowing E to
assume all possible values, we conclude that we must have, in
general,

Au,;max

PIYE) = 1 for E> E 3™ (5.12)

Itis furthermore 1mphclt in any adiabatic TST theory, mi-
crocanonical or thermal, that the corresponding pf,"‘(E )
must vanish for E < E }*™. As a result of this and of Eq.
(5.12), Eq. {5.8) is valid, and the conditions for validity of
adiabatic microcanonical and thermal TST are inded equi-
valent, as stated.

We turn now to deriving explicit expressions for the
transition probabilities in terms of the barrier heights (or
energy levels) of the transition state. With the notation intro-
duced after Eq. (5.7) we get, replacing Eq. (5.8) into Eq. (5.4),
the adiabatic state-to-all TST cross section

}.nAATST( E)= E’I" Amax)'

5.13
ki, (E ) JZW & 1)
Using this result in Eqgs. (2.13) and (3.5) we get the corre-
sponding ATST probabilities and state-to-state cross sec-
tions. To implement a calculation of these quantities it suf-
fices to obtain the heights E ;™ of the barriers which
adiabatically connect the Au, state of the reagents with the
A’ products. A calculation of the cross section given by Eq.
(5.13) for the H + H, exchange reaction has been reported
previously.®

VI. MODEL REACTION PROBABILITIES

A model for the reaction cross section as a function of
the orientation angle has been described in Ref. 3 and suc-
cessfully tested for the H + D, reaction. Using @ for the
angle between the diatom axis and the vector from the center
of mass of the diatom to the atom the result is

or(0) =md?[1 — E\(0)/E.. ], (6.1)

where E, (@) is the barrier height for a fixed orientation and
E . is the relative translation energy.

To convert Eq. (6.1) to quantal cross sections we average
og over a probability distribution of & for a given j, m; state,
according to*!

0% = [ 92(6)| Y 6.0)|sin 6.d6 d.

We performed this integration numerically, using the E, (@)
form Fig. 1 of Ref. 3. The resulting Q”™ cross sections were
used in Eq. (2.10) to compute the model Pj,,,j. The corre-
sponding values are given in the third column of Table IIIL
The agreement with the ones obtained by the accurate quan-
tal cross sections described in Sec. IV and given in the second
column of Table III is quite reasonable [but the numerical
values based on Eq. (6.2) are sensitive to the precise value of
the translational energy, particularly for j = 2]. Using these
Pj,,,j together with Eqgs. (2.12) and (3.5) we can calculate the
state-to-state cross sections from a remarkably simple mod-
el.

(6.2)

The addition theorem of spherical harmonics insures
that the degeneracy-averaged reaction cross section

(6.3)

is given by the classical’ angle-averaged value
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04=-L f o1 (6)sin 6 d6 dp. (6.4)
4

VII. CONCLUSIONS

From a rather simple factorization assumption, given by
Eq. (3.3), and tested for the H + H, system at 0.6 eV, we
were able to obtain a simple expression which permits the
calculation of state-to-state cross sections in terms of state-
to-all cross sections. This assumption also permitted the de-
velopment of a microcanonical TST theory for state-to-state
and state-to-all processes.
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