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Abstract
The Ghanaian economy relies heavily on maize and soybean production. The entire maize and soybean production system 
is low-tech, making it extremely susceptible to environmental factors. As a result, climate change and variability have an 
influence on agricultural production, such as maize and soybean yields. Therefore, the study’s ultimate purpose was to 
analyze the influence of  CO2 emissions, precipitation, domestic credit, and fertilizer consumption on maize and soybean 
productivity in Ghana by utilizing the newly constructed dynamic simulated autoregressive distributed lag (ARDL) model 
for the period 1990 to 2020. The findings indicated that climate change enhances maize and soybean yields in Ghana in 
both the short run and long run. Also, the results from the frequency domain causality showed that climate change causes 
maize and soybean yield in the long-run. These outcomes were robust to the use of the ordinary least squares estimator and 
the impulse response technique. The findings show that crop and water management strategies, as well as information avail-
ability, should be considered in food production to improve resistance to climate change and adverse climatic circumstances.
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Introduction

Food instability and hunger are on the rise worldwide, with 
over 30% of the world’s population currently experiencing 
food insecurity (Sibanda and Mwamakamba 2021). The 
research by the State of Food Security and Nutrition in 
the World (2021) showed that 927.6 million people expe-
rienced food insecurity in various stages in 2020. Out of 
this, 346.6 million people are food insecure representing 

37.3% in Africa (Xie et al. 2021). Although the coronavi-
rus (COVID-19) pandemic has been the dominant source of 
food insecurity in the previous year, climate change, eco-
nomic instability, and population expansion are still causing 
severe hunger in the majority of countries (FSIN and Global 
Network Against Food Crises 2020). According to Schilling 
et al. (2020), due to population growth, climate change, and 
economic instability, the prevalence of undernourishment 
has increased across Africa between 2017 and 2019. Food 
insecure nations are usually sensitive to climate change, and 
their ability to adapt is restricted (International Food Policy 
Research Institute 2020).

Climate change is having a substantial influence on food 
security and regional stability in West Africa, where over 
115 million people experience severe food insecurity. Gha-
na’s food insecurity has been increased by climate change 
due to prolonged dry seasons, rising temperatures across 
all ecological zones, and low rainfall (Forum 2020). Ghana 
is attempting to cut emissions and increase climate resil-
ience by 2030 under a business-as-usual scenario; however, 
efforts to implement Ghana’s Nationally Determined Contri-
butions (NDCs) are inadequate (Zakaria et al. 2020b). As a 
result of the delay, high temperatures and a lack of irrigation 
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infrastructure are lowering crop yields and raising food 
safety concerns. Modelling climate change’s implications on 
food security are crucial for reducing the agriculture sector’s 
vulnerability to climate change and mitigating its negative 
consequences (Atanga and Tankpa 2021). This study looked 
at the effects of carbon dioxide emissions, domestic credit, 
average precipitation, and fertilizer application on Ghana’s 
principal food (maize and soybean) production.

Agriculture, directly and indirectly, employs more than 
half of Ghana’s workforce and has a substantial impact on 
food security, economic growth, and the balance of pay-
ments (Fianko and Korankye 2020). Despite the achieve-
ments, Ghana’s heavy reliance on rain-fed agriculture and 
sensitivity to drought, as well as changing climatic condi-
tions, constitute a serious threat to the agricultural sector’s 
growth, especially because only around 2% of the country’s 
agricultural land is irrigated (Antwi-Agyei and Nyantakyi-
Frimpong 2021). Climate extremes are already affecting 
Ghana in a variety of ways, according to risk assessments, 
and the rise in temperature and decrease in precipitation 
will continue to have a direct impact on natural ecosystems 
and food production (Etwire 2020). Due to a loss in soil 
fertility, crop yields in Ghana’s sub-humid region, which is 
one of the country’s most important food-producing regions, 
are declining (Ampofo et al. 2020; Zubairu 2021). Under-
standing the threats of climate change to Ghana’s agriculture 
industry is crucial for building resilience. Similarly, an inte-
grated analysis that uncovers the effects of climate change 
on a variety of crops is required to provide a full picture 
of the ramifications. This is because the country’s agricul-
ture business is dominated by smallholder family farms that 
grow certain crops that are mostly rain-fed and consequently 
climate-sensitive.

The main staple crop in Ghana is maize (Zea mays L.), 
which is grown and consumed by the majority of farming 
households (Tachie-Obeng et al. 2013; Wongnaa et al. 2019). 
Maize is grown on about one million hectares, accounting 
for the majority of the national annual cereal production 
(Appiah-Twumasi et al. 2020). It is planted in all agro-
ecological zones and is mostly produced by smallholder 
resource-poor farmers under rain-fed circumstances (Dan-
quah et al. 2020; Cudjoe et al. 2021). The Eastern, Ashanti, 
Bono, and Ahafo regions of Ghana produce the majority 
of the country’s maize, accounting for more than 70% of 
total production (Sadiq et al. 2019). Maize production is the 
main staple for most Ghanaians, making it essential for the 
country’s food security (Tetteh Anang et al. 2020). Maize 
is as well used as a feed for poultry and livestock, as well as 
a brewing alternative (Scheiterle and Birner 2018). Despite 
the detrimental effects of climate change on crop yields, 
Ghana’s maize production has surged during the last 5 years 
as a result of the government’s Planting for Food and Jobs 
(PFJ) initiative (Ali et al. 2021).

Figure 1 depicts the area and maize production trends. 
Maize production and the area harvested have on average 
been on the rise since 1990; however, since 2016, maize pro-
duction and the area harvested experienced a sharp increase 
as compared to the previous years. This is not surprising 
since, in 2016, Ghana’s government implemented the Plant-
ing for Food and Jobs policy. This policy is a program aimed 
at enhancing on-farm productivity by increasing fertilizer 
rebates and adopting hybrid seeds of specific crops, result-
ing in the development of jobs in agriculture and allied 
businesses. By promoting efficient and sustainable agricul-
ture intensification and climate-proofing, the PFJ program, 
which is implemented by the Ministry of Food and Agricul-
ture (MoFA), collaborates with other existing agricultural 

Fig. 1  Trend of maize produc-
tion and area harvested
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initiatives and policies to fulfill the global goal of eliminat-
ing hunger, achieving food security, and improving nutrition 
by 2030 (Dawuni et al. 2021; Ismaila and Tanko 2021). This 
might account for this sharp increase.

Soybean (Glycine max L.) is another significant crop 
grown in both industrialized and developing countries (Sia-
mabele 2021). In Ghana, soybean growing is a moderately 
new practice (Avea et al. 2016; Asodina et al. 2020). In 
the country, there is a rising market for soya beans, with 
domestic demand continuously outstripping supply (Aso-
dina et al. 2021). Soya bean meal, a vital element in ani-
mal feed, is consumed heavily in Ghana’s agriculture and 
aquaculture sectors. Its economic relevance is gaining trac-
tion and acceptance among farmers in the country. Soya is 
mostly grown in Ghana’s northern regions and brought to the 
country’s southern regions for processing. Soybean grains 
are in high demand not just for household use, but also for 
manufacturing into cooking oil and animal feed, especially 
in the poultry industry, which consumes approximately 75% 
of all soya beans annually (Amoakoah Twum et al. 2021). 
Domestic demand for soybean grains exceeds 300,000 MTs 
per year, with 91% of that going to Ghana’s industrial sec-
tor. Meanwhile, domestic supply is at 144,926 MTs, with 
a shortfall of over 150,000 MTs, which is frequently sup-
plemented by imports from Brazil and China. According to 
Asodina et al. (2021), and Anang et al. (2021), high tem-
peratures, poor rainfall, and drought in most farming com-
munities impede Ghana’s poor productivity of 1.8 mt/ha, 
compared to 4.26 mt/ha, 3.49 mt/ha, 3.47 mt/ha, and 3.39 
mt/ha for Turkey, Italy, the USA, and Brazil, respectively 
(Leng and Hall 2019; Piccoli et al. 2021). Figure 2 depicts 
the area and soybean production trends. Soybean produc-
tion and the area harvested have on average seen an increase 
over the study period; however, Ghana saw a sharp increase 
in soybean production in 2007 and in 2016. However, the 

increase in 2016 is larger than that in 2007. This can also be 
ascribed to the Planting for Food and Jobs policy.

Climate change has affected major crops such as maize 
and soybeans, according to previous studies (Basche et al. 
2016; Dumortier et al. 2021). An investigation by Wang 
et al. (2020) looked at the effects of drought on maize and 
soybean output in China and found that drought frequency 
and intensity were negatively affecting the two crops. Hampf 
et al. (2020) studied the implications of climate change and 
technological advancement on double-cropping systems in 
Brazil. Lower precipitation and higher temperatures con-
tinue to reduce maize and soybean production, according 
to the study. However, innovations in genetics and crop 
management are expected to mitigate the negative effects of 
climate change by raising soybean yields by 40% and maize 
productivity by 68%, according to the study. Management 
measures that buffer against short-term water stress, accord-
ing to Zipper et al. (2016), may be the most effective at sup-
porting long-term agricultural yield. In contrast to Ghana, 
which is dependent on rain-fed agriculture and is subject to 
environmental shocks, all of these studies were undertaken 
in countries with the capacity to counteract bad climatic con-
ditions. Crop management and other methods that can lessen 
the negative challenges of climate change on Ghana’s main 
food crops are required for the agricultural sector to produce 
food sustainably. As a result, a study on climatic variables 
and their impact on major crops such as maize and soybeans, 
which is currently lacking in Ghana’s setting, can enhance 
food production and contribute to SDG 2 of Zero Hunger.

Although warmer temperatures increase crop yields in 
some regions Montoya et al. (2021), Ghana’s agricultural 
industry is subject to climatic variation and change since it 
depends on rainfall (Yiran and Stringer 2016). As a result, 
the industry is known for its low productivity. Only 2% of 
Ghana’s irrigation capacity is used, and the majority of the 

Fig. 2  Trend of soybean pro-
duction and area harvested
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country’s agriculture is still dependent on rain-fed culti-
vation (Abdul-Rahaman et al. 2021). Erratic precipitation 
patterns have serious effects on productivity (Arshad et al. 
2018). Temperature rises are expected to reduce the produc-
tion of major main crops (Boonwichai et al. 2018). There-
fore, this research aims to examine the long- and short-term 
linkages between carbon dioxide emissions, domestic credit, 
precipitation, fertilizer application, and maize and soybean 
productivity.

This study makes the following contributions to the litera-
ture: First, this is a nationwide investigation that looks into 
the significant long- and short-term implications of carbon 
dioxide emissions, domestic credit, precipitation, and fer-
tilizer application on maize and soybean. Despite several 
studies on climate change and food production, there is a 
paucity of studies on the two major crops indicated above. 
The study makes use of time-series data from the Food and 
Agriculture Organization and World Development Indica-
tors (WDI 2021). Second, unlike previous studies, this study 
used the recently developed dynamic simulated autoregres-
sive distributed lag (ARDL) technique of Jordan and Philips 
(2018). This study differs from previous research because 
this technique simulates, estimates, and automatically plots 
the predictions of one independent variable on the depend-
ent variable without interfering with the outcomes of the 
other variables (Jordan and Philips 2018). Furthermore, this 
study estimated the causality relationship among the vari-
ables using the frequency domain causality of Breitung and 
Candelon (2006). The technique captures short-, medium-, 
and long-term causation links between the variables. Finally, 
this research offers an important policy for improving cli-
mate change mitigation and adaptation techniques, as well as 
improving crop yields and working towards food sustainabil-
ity. The findings of this study are particularly important for 
policymakers, as they highlight how climate-smart agricul-
ture can boost agricultural productivity (e.g., maize and soy-
bean production), and how, in the face of climatic change, 
governments and policymakers should develop effective and 
efficient policies to combat climate change and boost agri-
cultural productivity.

The study’s remaining components are a literature review, 
data and methods, results and discussion, and conclusion and 
policy implications. The influence of climate change on agri-
cultural productivity, particularly maize and soybean yields, 
is explained in the “Literature review” section. It also goes 
over the econometric models that were used to explore the 
influence of climate change on agricultural productivity. In 
the “Materials and methods” section, the research describes 
the data (variable definitions) and methodology (theoreti-
cal and economic models) that were used. The effects of 
using the dynamic simulated ARDL approach based on a 
data technique are shown in the “Results and discussion” 
section. We give the study’s main findings as well as policy 

scenarios for limiting climate change in maize and soybean 
in the section “Conclusion and policy implications.”

Literature review

Climate change has a variety of impacts on crop yields. Gul 
et al. (2022) investigated how climate change affects main 
yield crops and found a long-term relationship between cli-
matic and non-climatic factors and major food crop yields. 
While cereal yields are more sensitive to temperature in cer-
tain areas according to Senapati and Goyari (2020), climate 
variability is also lowering crop growth and yields (Kim 
et al. 2018; Ozdemir 2022). Rehman et al. (2022) studied 
 CO2 emissions and climate effects on major agricultural crop 
output, such as wheat, maize, sugarcane, cotton, and others, 
and showed that crop yields and  CO2 emissions had a posi-
tive relationship. According to Mason-D’Croz et al. (2019), 
climate change is predicted to have a considerable influence 
on the agricultural sector of the world’s poorer countries, 
especially in Sub-Saharan Africa (SSA), where the major-
ity of countries are climate change exposed. The entirety of 
crop production in SSA is low-tech and thus very vulnerable 
to environmental influences (Mbuli et al. 2021). Changes 
in temperature, precipitation intensity, windstorms, and the 
distribution and extreme weather events’ severity are the 
key climatic drivers in SSA, according to previous research 
(Ariga et al. 2019; Salahuddin et al. 2020). Crop yields in 
Ghana are being limited by several obstacles, including a 
lack of domestic capital for the private sector and a scarcity 
of fertilizer.

Climate change’s impact on agricultural yields, such as 
maize, has been extensively studied. According to Maïga 
et al. (2021), who studied the effects of climate change on 
maize output in Mali, precipitation and temperature had an 
adverse and highly significant impact on maize productiv-
ity in both short- and long-term assessments. Ureta et al. 
(2020) investigated the link between maize output and many 
climate variables in rain-fed and irrigated crop areas, finding 
that temperature was the most important component in rain-
fed settings, whereas precipitation was the most important 
element in irrigated crop areas. Climate change and main 
crop yields in Pakistan were explored by Abbas (2022), who 
discovered that rising temperatures have a significant nega-
tive influence on chosen crop yield in the long run but had 
no effect in the short run. The impact of climate and carbon 
dioxide emissions on maize crop output in Pakistan was 
researched by Rehman et al. (2020), who discovered that 
maize crop production had a positive coefficient, indicating a 
long-term relationship with carbon dioxide emissions. In the 
long and short runs, explanatory variables like the acreage 
under production and fertilizer application have significant 
positive effects. Climatic conditions have a consequence on 
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maize production, according to the following studies (Pick-
son et al. 2020; Khan et al. 2021; Rehman et al. 2022).

Several studies on the effect of climate change on soy-
bean output have also been carried out (Coleman et al. 2021; 
Gong et al. 2022). Durodola and Mourad (2020) discovered 
that yearly soybean yields are influenced by the meteorologi-
cal conditions of the agricultural season while estimating the 
influences of climate change on soybean output in Nigeria. 
The studies of He et al. (2020), and Liu and Dai (2020) in 
China concluded that mean temperature is the most impor-
tant climatic element impacting soybean output. Accord-
ing to simulation research conducted by Mall et al. (2004), 
higher temperatures can reduce soybean yields by 10 to 20%. 
Changes in climatic factors have a variety of effects on soy-
bean climate potential productivity, according to a recent 
study (Gong et al. 2022). Weather changes have already 
affected global food production, according to the study. 
Also, climate change has a negative impact on agricultural 
productivity (Chandio et al. 2020, 2022; Satari Yuzbash-
kandi and Khalilian 2020; Rehman et al. 2021a). All of these 
findings point to the soybean as one of the most important 
grains and oil crops, and any change in soybean production 
under future climatic projections will have a national and 
worldwide impact on food and edible oil security.

Although Ghana is aware of climate change and the con-
sequent environmental and food production concerns, there 
is insufficient financing to adopt the essential mitigation and 
adaptation measures (Jayne et al. 2018). Furthermore, as a 
holistic response to climate change, Ghana’s National Cli-
mate Change Policy establishes a clear path for dealing with 
the danger within the country’s socioeconomic framework, 
even though it looks to be deficient in terms of execution, 
much alone sustainability. As a result, it’s critical to research 
the effects of climate change on developing countries like 
Ghana, where agriculture is the primary source of income 
(Firdaus et al. 2020; Luh and Chang 2021). For example, 
in a study on climate change and global food production 
by Ray et al. (2019), agricultural yields are predicted to fall 
under future climate conditions. That is, extreme weather 
has already had an impact on the global food supply, and 
global estimates for the future are mostly unfavorable. 
According to Wollenberg et al. (2016), climate change will 
have severe consequences on crops; thus, the focus should 
shift to an action-oriented research agenda, with four pri-
mary challenges: modernizing research culture; designing 
stakeholder-driven portfolios of solutions for farmers, locali-
ties, and countries; ensuring that adaptability initiatives are 
useful to people most at risk from climate change; and merg-
ing climate resilient efforts.

The use of econometric models to investigate the impact of 
climate change on agricultural productivity is comparatively 
modern, with only a few studies on this subject. Chandio et al. 
(2021) studied the long- and short-run effects of climatic and 

non-climatic factors on wheat and rice output in Turkey using 
the ARDL technique and the Johansen and Juselius cointegra-
tion (JJC) model. Both climatic and non-climatic variables 
have a considerable impact on crop output, according to the 
research. To establish the link between carbon dioxide emis-
sions  (CO2 emissions) and food production, Rehman et al. 
(2021a, b) used the STIRPAT (stochastic impact by regres-
sion on population, affluence, and technology) model with the 
expansion of an ARDL approach. During long- and short-run 
interactions, food production had a negative impact on  CO2 
emissions, according to the study. Asumadu-Sarkodie and 
Owusu (2016) employed the vector error correction model 
(VECM) and the ARDL model to investigate the association 
between  CO2 emissions and agriculture in Ghana. The models 
revealed that  CO2 emissions and agriculture have a long-term 
equilibrium. An asymmetric technique was used to analyze 
the influence of  CO2 emissions on agricultural fruit produc-
tion (Hussain et al. 2022). The results of short- and long-run 
estimations showed that both positive and negative shocks to 
fruit output increase  CO2 emissions significantly.

Using panel data methodologies, Etwire et al. (2019), 
Owusu and Asumadu-Sarkodie (2017), and Antwi-Agyei 
and Stringer (2021) confirmed the consequence of climate 
change on agricultural production. These studies suggest that 
climate change and agricultural productivity have a long- 
and short-run equilibrium relationship.

From the literature review, it is obvious that most of the 
studies focused on aggregate agriculture production with 
few or limited studies on maize and soybean production. 
Also, the existing studies omitted factors such as domestic 
lending to the private sector, fertilizer usage, and precipita-
tion. Finally, most of the studies used the ordinary causal-
ity analysis which fails to capture the short-, medium-, and 
long-term impact of climate change on agriculture produc-
tion. As a result, the goal of this study is to fill in the gaps 
in the literature.

Materials and methods

Data

The data for this study came from Ghana’s annual time-
series data, which spanned 31 years from 1990 to 2020. 
Data on maize production and soybean production come 
from the Food and Agriculture Organization (FAO), while 
 CO2 emissions, precipitation, domestic credit, and fertilizer 
consumption come from the World Development Indica-
tors (WDI). To achieve efficient results and to portray the 
results as elasticities, all of the variables used in the study 
are converted to a logarithm form. The data variables, code, 
definition, sources, and summary of descriptive statistics are 
all shown in Table 1.
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Table 2 presents the descriptive analysis for the varia-
bles under investigation. The averages of maize production, 
soybeans production, carbon dioxide emissions, domestic 
credit, fertilizer consumption, and precipitation are 14.100%, 
10.840%, 8.943%, 2.351%, 2.244%, and 7.056%, respec-
tively. The standard deviations of the variables are below 
the mean suggesting that the variables are not volatile.

Table 3 shows the correlation matrix for maize produc-
tion. The outcomes demonstrate that there exists a sturdy 
positive linear correlation between carbon dioxide emis-
sions, domestic credit, fertilizer consumption, precipitation, 
and maize production. There also exists a strong positive 
direct correlation between domestic credit, fertilizer appli-
cation, and carbon dioxide emissions. Fertilizer application 

has a robust positive linear correlation with domestic credit. 
The variance inflation factor of carbon dioxide emissions, 
domestic credit, fertilizer consumption, and precipitation 
is below 10 suggesting that the study does not suffer from 
multicollinearity problems.

Table 4 also displays the correlation matrix for soybean 
production. It was found that there exists a strong positive 
linear correlation between carbon dioxide emissions, domes-
tic credit, fertilizer consumption, and soybean production 
while there exists a weak positive linear correlation between 
precipitation and soybean production.

Figure 3 indicates the trend of maize production, soybean 
production, and carbon dioxide emissions over the study 
period. It can be seen that the variables are positively related 
over the study period. Thus, an increase in carbon dioxide 
emissions might increase maize and soya production.

Model

ARDL bounds test

This research used the ARDL bounds testing model (Pesaran 
et al. 2001; Pesaran and Shin 1995) to look at the cointegra-
tion link among the variables.

The ARDL bounds testing models are specified in Eq. 1 
and Eq. 2:

Table 1  The study variables in 
detail

Authors’ compilations based on Food and Agriculture Organization data (2021), and World Development 
Indicators data (2021)

Variables Code Definition Sources

Maize production lnmaize Maize production in tons FAO
Soybean production lnsoya Soybean production in tons FAO
Carbon dioxide emissions lnco2 CO2 emissions in kt WDI
Precipitation lnprec Average annual precipitation in mm WDI
Domestic credit lndc Lending domestically to the private sector (% of GDP) WDI
Fertilizer consumption lnfert Fertilizer consumption in kilograms per hectare WDI

Table 2  Descriptive statistics

Authors' calculations based on Food and Agriculture Organization 
data (2021), and World Development Indicators data (2021)

Variables Obs Mean Std. dev Min Max

lnmaize 31 14.100 0.389 13.222 14.938
lnsoya 31 10.840 1.095 8.070 12.150
lnco2 31 8.943 0.604 7.848 9.840
lndc 31 2.351 0.448 1.297 2.765
lnfert 31 2.244 0.863 0.994 3.615
lnprec 31 7.056 0.090 6.831 7.243

Table 3  Correlation matrix for 
maize production

* p < 0.05, **p < 0.01, ***p < 0.001

Variables lnmaize lnco2 lndc lnfert lnprec VIF

lnmaize 1
lnco2 0.917*** 1 6.70
lndc 0.630*** 0.821*** 1 4.12
lnfert 0.763*** 0.869*** 0.692*** 1 3.09
lnprec 0.508** 0.348 0.296 0.308 1 1.14
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where Δ is the first difference. lnmaize, lnsoya, lnco2, 
lndc, lnfert, and lnprec denote maize production, soybeans 
production, carbon dioxide emissions, domestic credit, ferti-
lizer application, and precipitation. The error term is denoted 
by �t . The bounds testing procedure relies on the Wald test 
(F-statistics). The null hypothesis of no cointegration and 
the alternative hypothesis of cointegration are shown below:

(1)
Δ lnmaizet = �o +

n
∑

i=1

�
1iΔ lnmaizet−i +

n
∑

i=0

�
2iΔ ln co2t−i+

n
∑

i=0

�
3iΔ ln dct−i +

n
∑

i=0

�
4iΔ ln fertt−i

+

n
∑

i=0

�
5iΔ ln prect−i + b

0
lnmaizet−1 + b

1
ln co2t−1 + b

2
ln dct−1 + b

3
ln fertt−1 + b

5
ln prect−1 + �t

(2)
Δ ln soyat = �o +

n
∑

i=1

�
1iΔ ln soyat−i +

n
∑

i=0

�
2iΔ ln co2t−i+

n
∑

i=0

�
3iΔ ln dct−i +

n
∑

i=0

�
4iΔ ln fertt−i

+

n
∑

i=0

�
5iΔ ln prect−i + b

0
ln soyat−1 + b

1
ln co2t−1 + b

2
ln dct−1 + b

3
ln fertt−1 + b

5
ln prect−1 + �t

Ho ∶ b
0
= b

1
= b

2
= b

3
= b

4
= b

5
= 0

Table 4  Correlation matrix for soybean production

* p < 0.05, **p < 0.01, ***p < 0.001

Variables lnsoya lnco2 lndc lnfert lnprec

lnsoya 1
lnco2 0.968*** 1
lndc 0.833*** 0.821*** 1
lnfert 0.838*** 0.869*** 0.692*** 1
lnprec 0.385* 0.348 0.296 0.308 1

Fig. 3  Trend of maize produc-
tion, soybean production, and 
carbon dioxide emissions

If the F-statistics value is above I(1), we infer that the var-
iables have long-run cointegration. Also, if the F-statistics 
value is below I(0), then there is no cointegration between 
the variables. Finally, if the F-statistics value falls between 
I(0) and I(1), then the findings are questionable.

The ARDL error correction models underpinning this 
study are specified in Eqs. 3 and 4:

where λ denotes the speed of adjustment and ect is the 
error-correction term which ranges from − 1 to 0. The lag 
form of the variables was derived using the Schwarz infor-
mation criterion (SC) (Pesaran et al. 2001; Pesaran and Shin 

H
1
∶ b

0
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1
≠ b

2
≠ b

3
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4
≠ b

5
≠ 0

(3)
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1995). The SC selected 1 as the optimal lag length of the 
variables (see Appendix Table 10 and Table 11); accordingly 
this study used lag 1 for all the variables.

Dynamic simulated ARDL

The ARDL model is mostly associated with the problem of 
complex lag structure with lags, first differences, lagged first 
differences of the independent variables and sometimes the 
dependent variable, and contemporaneous values appearing 

Table 5  Unit root test of variables

***p < 0.01, ** p < 0.05, * p < 0.1

ADF test PP test

Variables Level First difference Level First difference

lnmaize  − 4.194**  − 9.716***  − 4.194**  − 9.973***

lnsoya  − 2.149  − 4.050**  − 3.957**  − 4.294**

lnco2  − 3.924**  − 5.619***  − 2.678  − 9.795***

lndc  − 1.095  − 7.852***  − 0.833  − 12.945***

lnfert  − 4.346***  − 5.806***  − 4.433***  − 9.843***

lnprec  − 6.108***  − 10.637***  − 6.105***  − 20.636***

in the specification of the model (Jordan and Philips 2018). 
This impedes the comprehension of the short-, medium-, 
and long-term effects (Jordan and Philips 2018). Accord-
ingly, Jordan and Philips (2018) introduced the dynamic 
simulated ARDL technique to cure these challenges. This 
technique simulates, estimates, and automatically plots the 
predictions of one independent variable on the dependent 
variable without interfering with the outcomes of the other 
variables (Jordan and Philips 2018). The dynamic simulated 
ARDL models are presented in Eq. 5 and Eq. 6.

(5)
Δ lnmaizet = �o + �

0
lnmaizet−1 + �

1
Δ ln co2t + �

1
ln co2t−1 + �

2
Δ ln dct + �

2
ln dct−1 + �

3
Δ ln fertt+

�
3
ln fertt−1 + �

4
Δ ln prect + �

4
ln prect−1 + �t

(6)
Δ ln soyat = �o + �

0
ln soyat−1 + �

1
Δ ln co2t + �

1
ln co2t−1 + �

2
Δ ln dct + �

2
ln dct−1 + �

3
Δ ln fertt+

�
3
ln fertt−1 + �

4
Δ ln prect + �

4
ln prect−1 + �t

where � denotes long-run coefficients while � is the short-
run coefficients.

Frequency domain causality

This study further used the frequency domain causality of 
Breitung and Candelon (2006) to gauge the causality rela-
tionship among the variables. The frequency domain cau-
sality has the advantage of capturing the short-, medium-, 
and long-term causality relationships between the variables 
which the ordinary Granger causality test of Dumitrescu and 
Hurlin (2012) fails to account for.

Results and discussion

Unit root analysis

This study used the augmented Dickey-Fuller (ADF) 
(Dickey and Fuller (1979)) and the Phillips and Perron 
(1988) unit root tests to look at the stationarity properties 
of the variables. Table 5 displays the unit root results. The 
outcomes show that maize production, fertilizer application, 
and precipitation are stationary at both levels and the first 
difference of the ADF and the PP tests. Also, soybean pro-
duction is stationary at the first difference of the ADF test, 
and the level and first difference of the PP test, respectively. 
Furthermore, carbon emission is stationary at the level and 
first difference of the ADF test. The PP test also confirmed 
that carbon emission is stationary at the first difference. 
Finally, domestic credit is stationary at both the first differ-
ence of the ADF and PP tests.

Bounds test results

Table 6 demonstrates the bounds test results. The findings 
show that the F-statistics value of model 1 is above I(1) 
at the 2.5%, 5%, and 10% significance levels, respectively, 
while it is lower than the I(1) at the 1% significance level. 
We reject the null hypothesis of no cointegration using the 
5% significance level, indicating that maize production, car-
bon dioxide emissions, domestic credit, fertilizer usage, and 
precipitation are all long-run cointegrated. Also, the value of 
the F-statistics value of model 2 is above the I(1) at all the 
significance levels. Thus, we argue that soybean production, 
carbon dioxide emissions, domestic credit, fertilizer usage, 
and precipitation are all long-run cointegrated.

Dynamic simulated ARDL results

The dynamic simulated ARDL findings are shown in 
Table 7. The findings reveal that past maize and soybean 
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production values have a statistically detrimental effect on 
current maize and soybean production values. As a result, 
poor maize and soybean production the previous year will 
lead to increased maize and soybean production this year, 
and vice versa.

Using maize production as an example, the findings show 
that carbon dioxide emissions have a statistically signifi-
cant positive effect on maize yield in both the short run and 
long run. In both the short run and long run, a 1% increase 
in carbon dioxide emissions increases maize production by 
0.599% and 0.611%. The findings here are similar to those 
of Kucharik and Serbin (2008), and Jiang et al. (2020) that 
a warmer climate can help support higher corn and soy-
bean yields. These findings are also consistent with those 
of Rehman et al. (2020), Rehman et al. (2021a), Warsame 
et al. (2021), and Zhang et al. (2021), all of whom found 
that carbon dioxide emissions have a considerable posi-
tive impact on maize output. Carbon dioxide emissions, 
on the other hand, have a detrimental influence on maize 
output (Chen et al. 2020; Feng et al. 2020; Liu et al. 2022). 

Because irrigation is a potential remedy for ensuring a con-
sistent water supply and mitigating heat stress, it is critical 
to expand the use of groundwater irrigation in measuring 
the carbon dioxide emissions of agricultural production and 
underpinning the prospects for their reduction to sustain-
ably develop farming strategies that increase yield with a 
minimal environmental cost. Furthermore, no-tillage inter-
cropping with plastic film mulching and straw covering is 
the most practical and efficient cropping production method 
that needs to be researched, as intercropping has been found 
to increase crop yield and make better use of land.

Lending domestically has a statistically significant 
adverse effect on maize output in both the short and long 
runs. In the short and long runs, a 1% increase in domes-
tic credit reduces maize output by 0.287% and 0.479%, 
respectively. These findings are in agreement with those of 
Brandt et al. (2018), Diallo et al. (2020), Aye and Mungatana 
(2011), and Bai et al. (2015), who found that domestic credit 
reduces maize yields due to high lending rates and funding 
unavailability. However, the research contradicts the findings 

Table 6  Bounds test results

Authors’ calculations based on Food and Agriculture Organization data (2021), and World Development Indicators data (2021)

Models Dependent variable F-stats 10%
(0)

10%
(1)

5%
(0)

5%
(1)

2.5%
(0)

2.5%
(1)

1%
(0)

1%
(1)

1 Flnmaize(lnmaize/lnco2, lndc, lnfert, lnprec) 4.51 2.45 3.52 2.86 4.01 3.25 4.49 3.74 5.06
2 Flnsoya(lnsoya/lnco2, lndc, lnfert, lnprec) 8.79 2.45 3.52 2.86 4.01 3.25 4.49 3.74 5.06

Table 7  Dynamic simulated 
ARDL results

***p < 0.01, **p < 0.05, *p < 0.1; dynamic ARDL (1,1,1,1, 1) for both maize and soybean production

Variables Coefficient Std. error t-stats Variables Coefficient Std. error t-stats

l.lnmaize  − 0.831*** 0.202  − 4.11 l.lnsoya  − 0.250** 0.108  − 2.32
Short-run results Short-run results
lnco2 0.599*** 0.191 3.13 lnco2 0.035 0.218 0.16
lndc  − 0.287*** 0.098  − 2.91 lndc 0.048 0.094 0.51
lnfert  − 0.030 0.053  − 0.57 lnfert 0.115* 0.066 1.73
lnprec 1.297*** 0.350 3.70 lnprec 0.969** 0.394 2.46
Long-run results Long-run results
∆lnco2 0.611*** 0.206 2.97 ∆lnco2 0.028 0.289 0.10
∆lndc  − 0.479*** 0.113  − 4.25 ∆lndc  − 0.241 0.151  − 1.59
∆lnfert  − 0.085* 0.041  − 2.05 ∆lnfert 0.022 0.055 0.41
∆lnprec 0.885*** 0.207 4.28 ∆lnprec 0.351 0.268 1.31
Constant  − 2.027 2.191  − 0.92 Constant  − 4.682 2.870  − 1.63
ect(− 1)  − 0.831*** 0.202  − 4.11 ect(− 1)  − 0.250** 0.108  − 2.31
R.2 0.697 R.2 0.700
F-statistics p-value 0.000*** F-statistics p-value 0.001***

Observations 30 Observations 30
Simulation 300 Simulation 300
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of prior studies (Awunyo-Vitor 2017; Belete 2020; Melkani 
et al. 2021). They concluded that domestic finance facilitates 
the timely purchase and effective distribution of agricultural 
inputs, resulting in the highest possible production. Domes-
tic lending to maize farmers should enhance productivity; 
but, due to high lending rates, most farmers are unable to 
reap these gains. Farmers who have access to little or moder-
ate agricultural credit, according to Siaw et al. (2021), have 
an 8% higher probability of boosting technical efficiency, 
which influences maize output, than those who do not have 
access to credit. Farmers should create cooperatives to form 
better partnerships with financial institutions to boost pro-
duction, and governmental initiatives aimed at expanding 
smallholder farmers’ access to domestic financing should 
be pushed aggressively. Above all, interested parties should 
make it easier to get better seedlings and fertilizer, financing, 
farm technology, and short-term training.

Fertilizer application has a minor adverse impact on 
maize output in the short term, but a considerable negative 
impact on maize production in the long term. A 1% increase 
in fertilizer application reduces maize output by 0.030% in 
the short run and 0.085% in the long run, respectively. This 
research backs up the findings of Pelletier et al. (2020) and 
Epper et al. (2020), who claim that fertilizer use is only 
weakly linked to deforestation and food insecurity. However, 
according to Diamoutene and Jatoe (2020), Sajadinia et al. 
(2021), and Jena et al. (2021), fertilizer use has a positive 
effect on maize yield. To improve fertilizer use for sustain-
able food production, we propose that, based on our find-
ings, focused outreach of extension services be explored to 
promote fertilizer use and yields in less-productive regions, 
as well as regulations that integrate provisions for weather 
shocks. Furthermore, precipitation has a statistically signifi-
cant positive impact on maize yields in both the short run 
and long run. A 1% increase in precipitation boosts maize 
production by 1.297% in the short term and 0.885% in the 
long run. These observations back up these conclusions 
(WU et al. 2021; Arunrat et al. 2022). Nonetheless, Row-
hani et al. (2011) found that a 20% increase in intra-seasonal 
precipitation irregularity affects maize, sorghum, and rice 
yields by 4.2, 7.2, and 7.6%, respectively. To increase farmer 
knowledge and future yields in Ghana, it is necessary to 
invest in improving climatic data. The ordinary least squares 
(OLS) results in Appendix Table 12 support the long-run 
results of carbon dioxide emissions, domestic credit, fer-
tilizer application, and precipitation on maize production.

In terms of soybean production, the data show that car-
bon dioxide emissions and lending domestically have insig-
nificant stimulus on yield in both the short and long ranges; 
however, fertilizer application and precipitation have a sta-
tistically favorable impact on yield in the short run. Accord-
ing to the research, a 1% rise in carbon dioxide emissions 
enhances soybean output by 0.035% in the short term and 

0.028% in the long term. This finding lends credence to the 
study of Dumortier et al. (2020) and Branco et al. (2021). 
A 1% increase in domestic credit boosts soybean produc-
tion by 0.048% in the short run, while in the long run, it 
decreases soybean production by 0.241%. This is consist-
ent with Ali and Awade (2019) study, which found a link 
between credit and soybean production. Again, the study 
found that increasing fertilizer application by 1% enhances 
soybean yield by 0.115% and 0.022% in the short run and 
long run, respectively. This study supports the findings of 
Roobroeck et al. (2021) and Yan et al. (2020), who found 
that fertilizer use boosts soybean output. Furthermore, a 1% 
increase in precipitation boosts soybean yields by 0.969% 
in the short term and 0.351% in the long run, according to 
the study. This research backs up previous findings (Arri-
eta et al. 2018; Kukal and Irmak 2018). The OLS results 
in Appendix Table 13 also support the long-run results of 
carbon dioxide emissions, domestic credit, fertilizer applica-
tion, and precipitation on soybean production.

The coefficients of the error-correction term for both 
maize and soybean production were negative and statistically 
significant implying that there is a long-term link between 
the variables. The R-squared coefficient also suggested that 
the explanatory variables explained almost 70% of the varia-
tion in the dependent variables. The F-statistics’ probability 
value further revealed that dynamically simulated ARDL 
models are well described.

Impulse response analysis

This section presents the impulse response analysis of car-
bon dioxide emissions, domestic credit, fertilizer applica-
tion, and precipitation on maize production.1 The average 
projection value is indicated by the black dots in the middle, 
while the blue dark line represents the 75%, 90%, and 95% 
confidence intervals. Figure 4 shows the response of maize 
production to ( ±10% ) change in carbon dioxide emissions. 
The outcomes show that both 10% positive and negative 
shocks in carbon dioxide emissions have a positive influence 
on maize output in both the short and long runs. Figure 5 
shows ( ±10% ) actual change in domestic credit on maize 
production. The results also showed that both 10% posi-
tive and negative shocks in domestic credit have a positive 
impact on maize yields in the short and long runs. Figure 6 
shows ( ±10% ) actual change in fertilizer application on 
maize production. The results showed that both 10% positive 
and negative shocks in fertilizer application increase maize 

1 The impulse response analysis of soybean production to carbon 
emissions, domestic credit, fertilizer application, and precipitation 
are not reported here to save space. However, they are available upon 
request as a supplementary appendix.
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Fig. 4  Maize production and 
carbon dioxide emissions

Fig. 5  Maize production and 
domestic credit

Fig. 6  Maize production and 
fertilizer application
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output in the short and long runs. Figure 7 shows ( ±10% ) 
actual change in precipitation on maize yields. The find-
ings revealed that a 10% increase in precipitation enhances 
maize output in both the short and long runs, while a 10% 
decrease in precipitation boosts maize output in the short run 
but decreases it in the long run.

Diagnostic testing

Table 8 shows the diagnostics tests of the dynamic simu-
lated ARDL models. Serial correlation, heteroscedasticity, 
model specification, and normality were tested using the 
Breusch-Godfrey LM test, Breusch-Pagan-Godfrey test, 

Fig. 7  Maize production and 
precipitation

Table 8  Diagnostic tests

Authors’ calculations based on Food and Agriculture Organization data (2021), and World Development 
Indicators data (2021)

Test Chi-squared 
p-values

Test Chi-
squared 
p-values

Maize production Soybean production
Breusch-Godfrey LM test 0.083 Breusch-Godfrey LM test 0.092
Breusch-Pagan-Godfrey test 0.307 Breusch-Pagan-Godfrey test 0.202
Ramsey RESET test 0.345 Ramsey RESET test 0.071
Jarque–Bera test 0.664 Jarque–Bera 0.673

Fig. 8  CUSUM and CUSUM of 
square test for maize production
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Ramsey RESET test, and the Jarque–Bera test. Since the 
chi-squared p-values of the various test statistics are above 
the 5% significance level, we suggest that the study is free 
of serial correlation, heteroscedasticity, and misspecification 
and that the residuals for maize and soybean production are 
normally distributed.

The models’ stability was also tested using the cumula-
tive sum of recursive residuals (CUSUM) and cumulative 
sum of squares of recursive residuals (CUSUM of squares) 
tests. The results in Fig. 8 and Fig. 9 show that the models 
are stable since both CUSUM and CUSUM of squares for 
maize and soybean production are within the 5% threshold.

Frequency domain causality

Table 9 displays the frequency domain causality results. The 
results indicate that carbon dioxide emissions cause maize 
and soybean production only in the long run while domestic 
credit, fertilizer application, and precipitation do not cause 
maize and soybean production.

Conclusion and policy implications

Farmers and the wider communities who rely on farmers 
for food face a plethora of issues due to climate change. 
According to research, food supply and security will be 
seriously harmed if little or no action is taken to combat 
climate change and the food system’s susceptibility to cli-
matic changes. As a result, this study examined the effects of 
 CO2 emissions, domestic credit, average precipitation, and 
fertilizer use on Ghana’s principal food (maize and soybean) 
production using annual data for the period 1990 to 2020. 
The stationarity of the variables was confirmed using the 
ADF and P-P unit root tests. The findings indicated that cli-
mate change enhances maize and soybean yields in Ghana in 
both the short and long runs. The findings also showed that 
precipitation has a positive influence on maize and soybean 
production. The results further revealed that domestic credit 
negatively and positively affects maize and soybean produc-
tion respectively in the long term, while fertilizer consump-
tion negatively affects both maize and soybean production 
in the long term. The findings of the diagnostic testing of 

Fig. 9  CUSUM and CUSUM of 
square test for soybean produc-
tion
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Table 9  Frequency domain causality results

***p < 0.01, **p < 0.05, *p < 0.1

Direction of causality Short term Medium term Long term Direction of causality Short term Medium term Long term

�
i=2.50

�
i=1.50

�
i=0.05

�
i=2.50

�
i=1.50

�
i=0.05

lnco2 → lnmaize  < 2.92 >  < 0.60 >  < 4.96 > lnco2 → lnsoya  < 2.87 >  < 1.82 >  < 16.71 > 
(0.23) (0.74) (0.08)* (0.24) (0.40) (0.00)***

lndc → lnmaize  < 0.86 >  < 0.80 >  < 0.79 > lndc → lnsoya  < 1.55 >  < 1.55 >  < 1.55 > 
(0.65) (0.67) (0.67) (0.46) (0.46) (0.46)

lnfert → lnmaize  < 0.48 >  < 0.42 >  < 0.57 > lnfert → lnsoya  < 0.30 >  < 0.15 >  < 2.24 > 
(0.79) (0.81) (0.75) (0.86) (0.93) (0.33)

lnprec → lnmaize  < 3.85 >  < 3.71 >  < 4.51 > lnprec → lnsoya  < 0.97 >  < 0.97 >  < 2.24 > 
(0.15) (0.16) (0.10) (0.61) (0.62) (0.33)
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the dynamic simulated ARDL models showed that the study 
is devoid of serial correlation, heteroscedasticity, and mis-
specification and that the error terms follow a normal distri-
bution for maize and soybean production. The models were 
stable, according to the CUSUM and CUSUM of squares 
tests, because they both fell under the 5% limit for maize 
and soybean production.

Although the findings of this study showed that  CO2 
emissions enhance maize and soybean production, it is still 
important for policymakers to promote climate-resistant 
maize and soybean varieties in Ghana. Domestic credit has 
an important role in increasing maize and soybean produc-
tion; consequently, this research advises that financial insti-
tutions should provide low-interest financing to agricultural 
communities with easy installments so that farmers may 
reap the benefits of climate change adaptation. This study 
discovered that fertilizer application has an impact on maize 
and soybean production; as a result, fertilizer use should 
be increased; nevertheless, the type of soil is also a major 

Tables 10, 11.

Table 10  Lag length selection 
criteria for maize production

Note: LR, sequential modified LR test statistic; FPE, final prediction error; AIC, Akaike information cri-
terion, SC, Schwarz information criterion; HQ, Hannan-Quinn information criterion *** p < 0.01, ** p < 
0.05, * p < 0.1.

Lag LogL LR FPE AIC SC HQ

0 22.925 NA 2.00e-07  − 1.236  − 1.000  − 1.162
1 112.028 141.335* 2.48e-09*  − 5.657*  − 4.243*  − 5.214*

2 130.074 22.402 4.74e-09  − 5.178  − 2.584  − 4.365

Table 11  Lag length selection 
criteria for soybean production

Note: LR, sequential modified LR test statistic; FPE, final prediction error; AIC, Akaike information cri-
terion, SC, Schwarz information criterion; HQ, Hannan-Quinn information criterion *** p < 0.01, **p < 
0.05, * p < 0.1.

Lag LogL LR FPE AIC SC HQ

0 3.808 NA 7.47e-07 0.082 0.318 0.156
1 103.745 158.520 4.39e-09  − 5.086  − 3.671*  − 4.643
2 136.087 40.149* 3.13e-09*  − 5.592*  − 2.999  − 4.780*

factor in deciding the kind and timing of fertilizer applica-
tion. Crop and water management strategies, as well as infor-
mation availability, should be considered in food production 
to improve resistance to climate change and adverse climatic 
circumstances.

This study has the following limitations that can be 
extended by future studies: First, this research focused 
on maize and soybean output; thus, the results cannot be 
applied to other major food crops. As a result, more studies 
may be done in Ghana and other African countries to assess 
the influence of climate change on other agricultural goods, 
allowing for more effective policy decisions to be made. 
Also, this study used the dynamically simulated ARDL tech-
nique for the empirical analysis; thus, other techniques such 
as the quantile regression and the non-linear ARDL tech-
nique can be applied. Finally, this study used only  CO2 emis-
sions to proxy climate change; thus, future studies should 
use other greenhouse gas measures such as nitrous oxide 
and methane emissions.

Appendix 1

Dynamic ARDL technique specification
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Appendix 2

Ordinary least squares results

Table 12  Linear regression for 
the impact of climate change on 
maize production

***p < 0.01, **p < 0.05, *p < 0.1

lnmaize Coef St.Err t-value p-value [95% Conf Interval] Sig

lnco2 0.854 0.081 10.57 0.000 0.688 1.021 ***
lndc  − 0.345 0.074  − 4.65 0.000  − 0.497  − 0.192 ***
lnfert  − 0.084 0.044  − 1.88 0.071  − 0.175 0.008 *
lnprec 0.958 0.225 4.26 0.000 0.495 1.420 ***
Constant 0.700 1.591 0.44 0.664  − 2.570 3.970
Mean dependent var 14.100 SD dependent var 0.389
R-squared 0.939 Number of obs 31.000
F-test 99.565 Prob > F 0.000
Akaike crit. (AIC)  − 48.191 Bayesian crit. (BIC)  − 41.021

Table 13  Linear regression for 
the impact of climate change on 
soybean production

***p < 0.01, **p < 0.05, *p < 0.1

lnsoya Coef St.Err t-value p-value [95% Conf Interval] Sig

lnco2 1.553 0.218 7.14 0.000 1.106 2.001 ***
lndc 0.284 0.199 1.42 0.166  − 0.126 0.694
lnfert  − 0.005 0.119  − 0.04 0.966  − 0.251 0.240
lnprec 0.657 0.605 1.09 0.288  − 0.587 1.901
Constant  − 8.346 4.280  − 1.95 0.062  − 17.143 0.451 *
Mean dependent var 10.840 SD dependent var 1.095
R-squared 0.944 Number of obs 31.000
F-test 109.752 Prob > F 0.000
Akaike crit. (AIC) 13.161 Bayesian crit. (BIC) 20.331

Tables 12, 13.
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