
Towards A Swarm of Agile Micro Quadrotors

Alex Kushleyev, Daniel Mellinger, Vijay Kumar

GRASP Lab, University of Pennsylvania

Abstract—We describe a prototype 73 gram, 21 cm diameter
micro quadrotor with onboard attitude estimation and control
that operates autonomously with an external localization system.
We argue that the reduction in size leads to agility and the
ability to operate in tight formations and provide experimental
arguments in support of this claim. The robot is shown to be
capable of 1850

◦/sec roll and pitch, performs a 360
◦ flip in 0.4

seconds and exhibits a lateral step response of 1 body length
in 1 second. We describe the architecture and algorithms to
coordinate a team of quadrotors, organize them into groups and
fly through known three-dimensional environments. We provide
experimental results for a team of 20 micro quadrotors.

I. INTRODUCTION

The last decade has seen rapid progress in micro aerial

robots, autonomous aerial vehicles that are smaller than 1

meter in scale and 1 kg or less in mass. Winged aircrafts

can range from fixed-wing vehicles [14] to flapping-wing

vehicles [6], the latter mostly inspired by insect flight. Rotor

crafts, including helicopters, coaxial rotor crafts [9], ducted

fans[22], quadrotors [10] and hexarotors, have proved to be

more mature [15] with quadrotors being the most commonly

used aerial platform in robotics research labs. In this class,

the Hummingbird quadrotor sold by Ascending Technologies,

GmbH [2], with a tip-to-tip wingspan of 55 cm, a height of

8 cm, mass of about 500 grams including a Lithium Polymer

battery and consuming about 75 Watts is a remarkably capable

and robust platform as shown in [16, 17].

Of course micro aerial robots have a fundamental payload

limitation that is difficult to overcome in many practical

applications. However larger payloads can be manipulated

and transported by multiple UAVs either using grippers or

cables [20]. Applications such as surveillance or search and

rescue that require coverage of large areas or imagery from

multiple sensors can be addressed by coordinating multiple

UAVs, each with different sensors.

Our interest in this paper is scaling down the quadrotor

platform to develop a truly small micro UAV. The most

important and obvious benefit of scaling down in size is

the ability of the quadrotor to operate in tightly constrained

environments in tight formations. While the payload capacity

of the quadrotor falls dramatically, it is possible to deploy

multiple quadrotors that cooperate to overcome this limitation.

Again, the small size benefits us because smaller vehicles

can operate in closer proximity than large vehicles. Another

interesting benefit of scaling down is agility. As argued later

and illustrated with experimental results, smaller quadrotors

exhibit higher accelerations allowing more rapid adaptation to

disturbances and higher stability.

Fig. 1. A formation of 20 micro quadrotors in flight. See video at
http://youtu.be/50Fdi7712KQ

II. AGILITY OF MICRO QUADROTORS

It is useful to develop a simple physics model to analyze a

quadrotor’s ability to produce linear and angular accelerations

from a hover state. If the characteristic length is L, the rotor

radius R scales linearly with L. The mass scales as L3 and the

moments of inertia as L5. On the other hand the lift or thrust,

F , and drag, D, from the rotors scale with the cross-sectional

area and the square of the blade-tip velocity, v. If the angular

speed of the blades is defined by ω = v
L

, F ∼ ω2L4 and D ∼

ω2L4. The linear acceleration a scales as a ∼ ω2L4

L3 = ω2L.

Thrusts from the rotors produce a moment with a moment arm

L. Thus the angular acceleration α ∼ ω2L5

L5 = ω2.

The rotor speed, ω also scales with length since smaller

motors produce less torque which limits their peak speed

because of the drag resistance that also scales the same

way as lift. There are two commonly accepted approaches

to study scaling in aerial vehicles [28]. Mach scaling is used

for compressible flows and essentially assumes that the tip

velocities are constant leading to ω ∼ 1
R

. Froude scaling is

used for incompressible flows and assumes that for similar

aircraft configurations, the Froude number, v2

Lg
, is constant.

Here g is the acceleration due to gravity. This yields ω ∼ 1√
R

.

However, neither Froude or Mach number similitudes take

motor characteristics nor battery properties into account. While

motor torque increases with length, the operating speed for the

rotors is determined by matching the torque-speed character-

istics of the motor to the drag versus speed characteristics

of the propellors. Further, the motor torque depends on the

ability of the battery to source the required current. All these

variables are tightly coupled for smaller designs since there

are fewer choices available at smaller length scales. Finally,

the assumption that propeller blades are rigid may be wrong

and the performance of the blades can be very different at

smaller scales, the quadratic scaling of the lift with speed may



Fig. 2. A prototype micro quadrotor.

not be accurate. Nevertheless these two cases are meaningful

since they provide some insight into the physics underlying

the maneuverability of the craft.

Froude scaling suggests that the acceleration is independent

of length while the angular acceleration α ∼ L−1. On the

other hand, Mach scaling leads to the conclusion that a ∼ L

while α ∼ L−2. Since quadrotors must rotate (exhibit angular

accelerations) in order to translate, smaller quadrotors are

much more agile.

There are two design points that are illustrative of the

quadrotor configuration. The Pelican quadrotor from Ascend-

ing Technologies [2] equipped with sensors (approx. 2 kg gross

weight, 0.75 m diameter, and 5400 rpm nominal rotor speed

at hover), consumes approximately 400 W of power [25]. The

Hummingbird quadrotor from Ascending Technologies (500

grams gross weight, approximately 0.5 m diameter, and 5000

rpm nominal rotor speed at hover) without additional sensors

consumes about 75 W. In this paper, we outline a design for

a quadrotor which is approximately 40% of the size of the

Hummingbird, 15% of its mass, and consuming approximately

20% of the power for hovering.

III. THE MICRO QUADROTOR

A. The Vehicle

The prototype quadrotor is shown in Figure 2. Its booms

are made of carbon fiber rods which are sandwiched between

a custom motor controller board on the bottom and the main

controller board on the top. To produce lift the vehicle uses

four fixed-pitch propellers with diameters of 8 cm. The vehicle

propeller-tip-to-propeller-tip distance is 21 cm and its weight

without a battery is 50 grams. The hover time is approximately

11 minutes with a 2-cell 400 mAh Li-Po battery that weighs

23 grams.

B. Electronics

Despite its small size this vehicle contains a full suite of

onboard sensors. An ARM Cortex-M3 processor, running at

72 MHz, serves as the main processor. The vehicle contains

a 3-axis magnetometer, a 3-axis accelerometer, a 2-axis 2000

deg/sec rate gyro for the roll and pitch axes, and a single-

axis 500 deg/sec rate gyro for the yaw axis. The vehicle also

contains a barometer which can be used to sense a change in

−0.1 0 0.1 0.2 0.3
0

10

20

30

40

50

P
it
c
h
 A

n
g
le

 (
d
e
g
)

Time (sec)

(a) Pitch angle step input re-
sponse

(b) Data for the flipping maneuver

Fig. 3. Attitude controller performance data

altitude. For communication the vehicle contains two Zigbee

transceivers that can operate at either 900 MHz or 2.4 GHz.

C. Software Infrastructure

The work in this paper uses a Vicon motion capture system

[5] to sense the position of each vehicle at 100 Hz. This

data is streamed over a gigabit ethernet network to a desktop

base station. High-level control and planning is done in

MATLAB on the base station which sends commands to each

quadrotor at 100 Hz. The software for controlling a large

team of quadrotors is described later in Sec. V (see Fig. 7).

Low-level estimation and control loops run on the onboard

microprocessor at a rate of 600 Hz.

Each quadrotor has two independent radio transceivers,

operating at 900 MHz and 2.4 GHz. The base station sends,

via custom radio modules, the desired commands, containing

orientation, thrust, angular rates and attitude controller gains

to the individual quadrotors. The onboard rate gyros and

accelerometer are used to estimate the orientation and angular

velocity of the craft. The main microprocessor runs the attitude

controller described in Sec. IV and sends the desired propeller

speeds to each of the four motor controllers at full rate

(600Hz).

D. Performance

Some performance data for the onboard attitude controller

in Fig. 3. The small moments of inertia of the vehicle enable

the vehicle to create large angular accelerations. As shown in

Fig. 4(a) the attiude control is designed to be approximately

critically damped with a settling time of less than 0.2 seconds.

Note that this is twice as fast as the settling time for the attitude

controller for the AscTec Hummingbird reported in [18]. Data

for a flip is presented 3(b). Here the vehicle completes a

complete flip about its y axis in about 0.4 seconds and reaches

a maximum angular velocity of 1850 deg/sec.

The position controller described in Sec. IV uses the roll

and pitch angles to control the x and y position of the vehicle.

For this reason, a stiff attitude controller is a required for stiff

position control. Response to step inputs in the lateral and

vertical directions are shown in Fig. 4(b). For the hovering

performance data shown in Fig. 4 the standard deviations of

the error for x and y are about 0.75 cm and about 0.2 cm for

z.



(a) Position error (b) Position step input re-
sponse

Fig. 4. The red, green, and blue lines in (a) represent the x, y, and z errors
while hovering. (b) shows the step response for the position controller in x

(top) and z (bottom).

Fig. 5. The reference frames and propeller numbering convention.

IV. DYNAMICS AND CONTROL

The dynamic model and control for the micro quadrotor

is based on the approach in [17]. As shown in Figure 5, we

consider a body-fixed frame B aligned with the principal axes

of the quadrotor (unit vectors bi) and an inertial frame A with

unit vectors ai. B is described in A by a position vector r to

the center of mass C and a rotation matrix R. In order to avoid

singularities associated with parameterization, we use the full

rotation matrix to describe orientations. The angular velocity

of the quadrotor in the body frame, ω, is given by ω̂ = RT Ṙ,

whereˆdenotes the skew-symmetric matrix form of the vector.

As shown in Fig. 5, the four rotors are numbered 1-4, with

odd numbered rotors having a pitch that is opposite to the

even numbered rotors. The angular speed of the rotor is ωi.

The resulting lift, Fi, and the reaction moment, Mi, are given

by:

Fi = kFω
2
i , Mi = kMω

2
i .

where the constants kF and kM are empirically determined.

For our micro quadrotor, the motor dynamics have a time

constant less than 10 msec and are much faster than the

time scale of rigid body dynamics and aerodynamics. Thus

we neglect the dynamics and assume Fi and Mi can be

instantaneously changed. Therefore the control input to the

system, u, consists of the net thrust in the b3 direction,

u1 = Σ4
i=1Fi, and the moments in B, [u2, u3, u4]

T , given

by:

u =









kF kF kF kF
0 kFL 0 −kFL

−kFL 0 kFL 0
kM −kM kM −kM

















ω2
1

ω2
2

ω2
3

ω2
4









, (1)

where L is the distance from the axis of rotation of the

propellers to the center of the quadrotor.

The Newton-Euler equations of motion are given by:

mr̈ = −mga3 + u1b3 (2)

ω̇ = I−1



−ω × Iω +





u2
u3
u4







 (3)

where I is the moment of inertia matrix along bi.

We specify the desired trajectory using a time-parameterized

position vector and yaw angle. Given a trajectory, σ(t) :
[0, tf ] → R

3 × SO(2), the controller derives the input u1
based on position and velocity errors:

u1 = (−Kpep −Kvev +mga3) · b3 (4)

where ep = r − rT and ev = ṙ − ṙT . The other three inputs

are determined by computing the desired rotation matrix. We

want to align the thrust vector u1b3 with (−Kpep −Kvev +
mga3) in (4). Second, we want the yaw angle to follow the

specified yaw ψT (t). From these two pieces of information

we can compute Rdes and the error in rotation according to:

eR =
1

2
(RT

desR−RTRdes)
∨

where ∨ represents the vee map which takes elements of

so(3) to R
3. The desired angular velocity is computed by

differentiating the expression for R and the desired moments

can be expressed as a function of the orientation error, eR,

and the angular velocity error, eω:

[u2, u3, u4]
T
= −KReR −Kωeω, (5)

where KR and Kω are diagonal gain matrices. Finally we

compute the desired rotor speeds to achieve the desired u by

inverting (1).

V. CONTROL AND PLANNING FOR GROUPS

A. Architecture

We are primarily interested in the challenge of coordinating

a large team of quadrotors. To manage the complexity that

results from growth of the state space dimensionality and

limit the combinatorial explosion arising from interactions

between labeled vehicles, we consider a team architecture

in which the team is organized into labeled groups, each

with labeled vehicles. Formally, we can define a group of

agents as a collection of agents which work simultaneously to

complete a single task. Two or more groups act in a team to

complete a task which requires completing multiple parallel

subtasks [7]. We assume that vehicles within a group can

communicate at high data rates with low latencies while the

communication requirements for coordination across groups

are much less stringent. Most importantly, vehicles within a

group are labeled. The small group size allows us to design

controllers and planners that provide global guarantees on



!"#$%&'& !"#$%&(&
!"#$%&!"

Fig. 6. The team of quadrotors is organized into m groups. While vehicles
within the group are tightly coordinated and centralized control and planning
is possible, the inter-group coordination need not be centralized.

shapes, communication topology, and relative positions of

individual, agile robots.

Our approach is in contrast to truly decentralized approaches

which are necessary in swarms with hundreds and thousands

of agents [21]. While models of leaderless aggregation and

swarming with aerial robots are discussed in the robotics

community [11, 26, 19], here the challenge of enumerating

labelled interactions between robots is circumvented by con-

trolling such aggregate descriptors of formation as statistical

distributions. These methods cannot provide guarantees on

shape or topology. Reciprocal collision avoidance algorithms

[27] have the potential to navigate robots to goal destinations

but no guarantees are available for transient performance and

no proof of convergence is available.

On the other hand, the problem of designing decentralized

controllers for trajectory tracking for three dimensional rigid

structures is now fairly well understood[12, 13, 8], although

few experimental results are available for aerial robots. Our

framework allows the maintenance of such rigid structures in

groups.

B. Formation Flight

Flying in formation reduces the complexity of generating

trajectories for a large team of vehicles to generating a trajec-

tory for a single entity. If the controllers are well-designed,

there is no need to explicitly incorporate collision avoidance

between vehicles. The position error for quadrotor q at time t

can be written as

epq(t) = ef (t) + elq(t) (6)

where ef (t) is the formation error describing the error of

position of the group from the prescribed trajectory, and elq(t)
is the local error of quadrotor q within the formation of the

group. As we will show in Sec. VI the local error is typically

quite small even for aggressive trajectories even though the

formation error can be quite large.

A major disadvantage of formation flight is that the rigid

formation can only fit through large gaps. This can be ad-

dressed by changing the shape of the formation of the team

or dividing the team into smaller groups, allowing each group

to negotiate the gap independently.

C. Time-Separated Trajectory Following

Another way to reduce the complexity of the trajectory

generation problem is to require all vehicles to follow the same

team trajectory but be separated by some time increment. Here

we let the trajectory for quadrotor q be defined as

rTq(t) = rTT (t+∆tq) (7)

where rTT is the team trajectory and ∆tq is the time shift for

quadrotor q from some common clock, t. If the team trajectory

does not intersect or come within an unsafe distance of itself

then vehicles simply need to follow each other at a safe

time separation. Large numbers of vehicles can follow team

trajectories that intersect themselves if the time separations,

∆tq , are chosen so that no two vehicles are at any of the

intersection points at the same time. An experiment for an

intersecting team trajectory is shown in Sec. VI.

D. Trajectory Generation with MIQPs

Here we describe a method for generating smooth, safe

trajectories through known 3-D environments satisfying spec-

ifications on intermediate waypoints for multiple vehicles. In-

teger constraints are used to enforce collision constraints with

obstacles and other vehicles and also to optimally assign goal

positions. This method draws from the extensive literature on

mixed-integer linear programs (MILPs) and their application

to trajectory planning from Schouwenaars et al. [23, 24].

1) Basic Method: As described in [17] an optimization

program can be used to generate trajectories that smoothly

transition through nw desired waypoints at specified times,

tw. The optimization program to solve this problem while

minimizing the integral of the krth derivative of position

squared for nq quadrotors is shown below.

min
∑nq

q=1

∫ tnw

t0

∣

∣

∣

∣

∣

∣

dkr
rTq

dtkr

∣

∣

∣

∣

∣

∣

2

dt (8)

s.t. rTq(tw) = rwq, w = 0, ..., nw; ∀q
djxTq

dtj
|t=tw = 0 or free, w = 0, nw; j = 1, ..., kr; ∀q

djyTq

dtj
|t=tw = 0 or free, w = 0, nw; j = 1, ..., kr; ∀q

djzTq

dtj
|t=tw = 0 or free, w = 0, nw; j = 1, ..., kr; ∀q

Here rTq = [xTq, yTq, zTq] represents the trajectory for

quadrotor q and rwq represents the desired waypoints for

quadrotor q. We enforce continuity of the first kr derivatives

of rTq at t1,...,tnw−1. As shown in [17] writing the trajectories

as piecewise polynomial functions allows [8] to be written as

a quadratic program (or QP) in which the decision variables

are the coefficients of the polynomials.

For quadrotors, since the inputs u2 and u3 appear as

functions of the fourth derivatives of the positions, we generate

trajectories that minimize the integral of the square of the

norm of the snap (the second derivative of acceleration,

kr = 4). Large order polynomials are used to satisfy such

additional trajectory constraints as obstacle avoidance that are

not explicitly specified by intermediate waypoints.

2) Integer Constraints for Collision Avoidance: For col-

lision avoidance we model the quadrotors as a rectangular

prisms oriented with the world frame with side lengths lx, ly ,

and lz . These lengths are large enough so that the quadrotor

can roll, pitch, and yaw to any angle and stay within the prism.

We consider navigating this prism through an environment



with no convex obstacles. Each convex obstacle o can be

represented by a convex region in configuration space with

nf (o) faces. For each face f the condition that the quadrotor’s

desired position at time tk, rTq(tk), be outside of obstacle o

can be written as

nof · rTq(tk) ≤ sof , (9)

where nof is the normal vector to face f of obstacle o in

configuration space and sof is a scalar that determines the

location of the plane. If (9) is satisfied for at least one of the

faces then the rectangular prism, and hence the quadrotor, is

not in collision with the obstacle. The condition that quadrotor

q does not collide with an obstacle o at time tk can be enforced

with binary variables, bqofk, as

nof · rTq(tk) ≤ sof +Mbqofk ∀f = 1, ..., nf (o) (10)

bqofk = 0 or 1 ∀f = 1, ..., nf (o)
nf (o)
∑

f=1

bqofk ≤ nf (o)− 1

where M is a large positive number [23]. Note that if bqofk
is 1 then the inequality for face f is always satisfied. The last

inequality in (10) requires that the non-collision constraint be

satisfied for at least one face of the obstacle which implies

that the prism does not collide with the obstacle. We can

then introduce (10) into (8) for all nq quadrotors for all no

obstacles at nk intermediate time steps between waypoints.

The addition of the integer variables into the quadratic program

causes this optimization problem to become a mixed-integer

quadratic program (MIQP).

3) Inter-Quadrotor Collision Avoidance: When transition-

ing between waypoints quadrotors must stay a safe distance

away from each other. We enforce this constraint at nk

intermediate time steps between waypoints which can be

represented mathematically for quadrotors 1 and 2 by the

following set of constraints:

∀tk : xT1(tk)− xT2(tk) ≤ dx12 (11)

or xT2(tk)− xT1(tk) ≤ dx21

or yT1(tk)− yT2(tk) ≤ dy12

or yT2(tk)− yT1(tk) ≤ dy21

Here the d terms represent safety distances. For axially sym-

metric vehicles dx12 = dx21 = dy12 = dy21. Experimentally

we have found that quadrotors must avoid flying in each

other’s downwash because of a decrease in tracking perfor-

mance and even instability in the worst cases. Therefore we

do not allow vehicles to fly underneath each other here. Finally,

we incorporate constraints (11) between all nq quadrotors in

the same manner as in (10) into (8).

4) Integer Constraints for Optimal Goal Assignment: In

many cases one might not care that a certain quadrotor goes

to a certain goal but rather that any vehicle does. Here we

describe a method for using integer constraints to find the

optimal goal assignments for the vehicles. This results in a

lower total cost compared to fixed-goal assignment and often

a faster planning time because there are more degrees of

freedom in the optimization problem. For each quadrotor q

and goal g we introduce the integer constraints:

xTq(tnw
) ≤ xg +Mβqg (12)

xTq(tnw
) ≥ xg −Mβqg

yTq(tnw
) ≤ yg +Mβqg

yTq(tnw
) ≥ yg −Mβqg

zTq(tnw
) ≤ zg +Mβqg

zTq(tnw
) ≥ zg −Mβqg

Here βqg is a binary variable used to enforce the optimal goal

assignment. If βqg is 0 then quadrotor q must be at goal g at

tnw
. If βqg is 1 then these constraints are satisfied for any final

position of quadrotor q. In order to guaruntee that at least ng

quadrotors reach the desired goals we introduce the following

constraint.
nq
∑

q=1

ng
∑

g=1

βqg ≤ ngnq − ng (13)

Note that this approach can be easily adapted if there are more

quadrotors than goals or vice versa.

5) Relaxations for Large Teams: The solving time of the

MIQP grows exponentially with the number of binary vari-

ables that are introduced into the MIQP. Therefore, the direct

use of this method does not scale well for large teams. Here

we present two relaxations that enable this approach to be used

for large teams of vehicles.

a) Planning for Groups within a Team: A large team

of vehicles can be divided into smaller groups. We can then

use the MIQP method to generate trajectories to transition

groups of vehicles to group goal locations. This reduces

the complexity of the MIQP because instead of planning

trajectories for all nq vehicles we simply plan trajectories

for the groups. Of course we are making a sacrifice here by

not allowing the quadrotors to have the flexibility to move

independently.

b) Planning for Sub-Regions: In many cases the en-

vironment can be partitioned into nr convex sub-regions

where each sub-region contains the same number of quadrotor

start and goal positions. After partitioning the environment

the MIQP trajectory generation method can be used for the

vehicles inside each region. Here we require quadrotors to

stay inside their own regions using linear constraints on the

positions of the vehicles. This approach guarantees collision-

free trajectories and allows quadrotors the flexibility to move

independently. We are gaining tractability at the expense

of optimality since the true optimal solution might actually

require quadrotors to cross region boundaries while this re-

laxed version does not. Also, it is possible that no feasible

trajectories exist inside a sub-region but feasible trajectories

do exist which cross region boundaries. Nonetheless, this

approach works well in many scenarios and we show its

application to formation transitions for teams of 16 vehicles

in Sec. VI.



Fig. 7. Software Infrastructure

VI. EXPERIMENTAL RESULTS

A. Software Infrastructure for Groups

Our architecture (Sec. V-A) is important for a very practical

reason. For a large team of quadrotors it is impossible to run

a single loop that can receive all the Vicon data, compute the

commands, and communicate with each quadrotor at a fast

enough rate. As shown in Fig. 7, each group is controlled

by a dedicated software node, running in an independent

thread. These control nodes receive vehicle pose data from

a special Vicon node via shared memory. The node connects

to the Vicon tracking system, receives marker positions for

each subject, performs a 6D pose fit to the marker data

and additional processing for velocity estimation. Finally, the

processed pose estimates are published to the shared memory

using the Boost C++ library [3]. Shared memory is the fastest

method of inter-process communication, which ensures the

lowest latency of the time-critical data.

The control nodes, implemented in Matlab, read the pose

data directly from shared memory and compute the com-

manded orientation and net thrusts for several quadrotors based

on the controller described in IV. For non-time-critical data

sharing we use Inter Process Communication (IPC) [4]. For

example, high-level user commands such as desired vehicle

positions are sent to a planner which computes the trajectories

for the vehicles which are sent to the Matlab control nodes via

IPC. IPC provides flexible message passing and uses TCP/IP

sockets to send data between processes.

Each Matlab control node is associated with a radio module

containing a 900 MHz and 2.4 GHz Zigbee transceivers, which

is used to communicate with all the vehicles in its group.

The radio module sends control commands to several vehicles,

up to five in this work. Each vehicle operates on a separate

channel and the radio module hops between the frequencies

for each quadrotor, sending out commands to each vehicle at

100 Hz. The radio modules can also simultaneously receive

high bandwidth feedback from the vehicles, making use of the

two independent transceivers.

B. Formation Flight

In Fig. 8 we present data for a team of four quadrotors

following a trajectory as a formation. The group formation

error is significantly larger the the local error. The local x and

y errors are always less than 3 cm while the formation x error

is as large 11 cm. This data is representative of all formation

trajectory following data because all vehicles are nominally

(a) Top view (b) Error time histories

Fig. 8. Formation following for a 4 quadrotor trajectory. In (a) the colored
lines represent the desired trajecotories for each of the four vehicles and the
black lines represent the actual trajecotries. The errors are shown in (b). Here
the black line represents the formation error, ef (t), from the desired trajectory
and the colored lines represent the local errors, eli(t), for each quadrotor.

(a) Error Data (b) Time-Separated Trajectory
Following

Fig. 9. Part (a) shows the Average Standard Deviation for x, y, and z (shown
in red, green and blue respectively) for 20 quadrotors in a grid formation. In
(b) we show 16 quadrotors following a figure eight pattern. See the video at
http://youtu.be/50Fdi7712KQ

the same and are running the same controller with the same

gains. Therefore, even though the deviation from the desired

trajectory may be large, the relative position error within the

group is small.

In Fig. 9(a) we show average error data for 20 vehicles

flying in the grid formation shown in Fig. 1. For this exper-

iment the vehicles were controlled to hover at a height of

1.3 meters for at least 30 seconds at several quadrotor-center-

to-quadrotor-center grid spacing distances. The air disturbance

created from the downwash of all 20 vehicles is significant and

causes the tracking performance to be worse for any vehicle

in this formation than for an individual vehicle in still air as

presented in 4. However, as shown in Fig. 9(a), the separation

distance did not have any affect on the hovering performance.

Note that at 35 cm grid spacing the nominal distance between

propeller tips is about 14 cm.

C. Time-Separated Trajectory Following

In Fig. 9(b) we show a team of 16 vehicles following a

cyclic figure eight pattern. The time to complete the entire

cycle is tc and the vehicles are equally spaced in time along

the trajectory at time increments of tc
16 . In order to guaruntee

collision-free trajectories at the intersection, vehicles spend
15
32 tc in one loop of the trajectory and 17

32 tc in the other.



Fig. 10. Four groups of four quadrotors flying through a window

A trajectory that satisfies these timing constraints and has

some specified velocity at the intersection point (with zero

acceleration and jerk) is generated using the optimization-

based method for a single vehicle described in [17].

D. MIQP trajectories

In this paper, we use a branch and bound solver [1] to

solve the MIQP trajectory generation problem. The solving

time for the MIQP is an exponential function of the number

of binary constraints and also the geometric complexity of

the environment. The first solution is often delivered within

seconds but finding the true optimal solution and a certificate

of optimality can take as long as 20 minutes on a 3.4Ghz Core-

i7 Quad-Core desktop machine for the examples presented

here.

1) Planning for Groups within a Team: In Fig. 10 we

show snapshots from an experiment for four groups of four

quadrotors transitioning from one side of a gap to the other.

Note that in this example the optimal goal assignment is

performed at the group-level.

2) Planning for Sub-Regions: In Fig. 11 we show snapshots

from an experiments with 16 vehicles transitioning from a

planar grid to a three-dimensional helix and pyramid. Directly

using the MIQP approach to generate trajectories for 16

vehicles is not practical. Therefore, in both experiments the

space is divided into two regions and separate MIQPs with 8

vehicles each are used to generate trajectories for vehicles on

the left and right sides of the formation. Note that, in general,

the formations do not have to be symmetric but here we exploit

the symmetry and only solve a single MIQP for 8 vehicles for

these examples. Optimal goal assignment is used so that the

vehicles collectively choose their goals to minimize the total

cost.

VII. CONCLUSION

In this paper we describe the design, manufacture, modeling

and control of a micro quadrotor that has a 73 gram mass and

is 21 cm in diameter, and the architecture and software for

coordinating a team of micro quadrotors with experimental

Fig. 11. A team of sixteen vehicles transitioning from a planar grid to a
three-dimensional helix (top) and pyramid (bottom)

results. While our quadrotors rely on an external localization

system for position estimation and therefore cannot be truly

decentralized at this stage, these results represent the first

step toward the development of a swarm of micro quadrotors.

The small size is shown to facilitate agility and the ability

to fly in close proximity with less than one body length

separation. Mixed integer quadratic programming techniques

are used to coordinate twenty micro quadrotors in known

three-dimensional environments with obstacles.

The videos of all experiments are available at

http://youtu.be/50Fdi7712KQ

REFERENCES

[1] IBM ILOG CPLEX V12.1: Users manual for CPLEX,

International Business Machines Corporation, 2009.

[2] Ascending Technologies, GmbH. http://www.asctec.de.

[3] Boost C++ Libraries. http://www.boost.org.

[4] Inter Process Communication.

http://www.cs.cmu.edu/ ipc/.

[5] Vicon Motion Systems, Inc. http://www.vicon.com.

[6] Aeroenvironment. Aeroenvironment nano hummingbird,

August 2011. Online: http://www.avinc.com/nano.

[7] C. Anderson and N. R. Franks. Teams in animal societies.

Behavioral Ecology, 12(5):534540, 2001.

[8] R. W. Beard, J. Lawton, and F. Y. Hadaegh. A coordina-

tion architecture for spacecraft formation control. IEEE

Trans. Control Syst. Technol., 9(6):777–790, November

2001.

[9] C. Bermes. Design and dynamic modeling of autonomous

coaxial micro helicopters. PhD thesis, ETH Zurich,

Switzerland, 2010.

[10] S. Bouabdallah. Design and Control of Quadrotors

with Applications to Autonomous Flying. PhD thesis,

Ecole Polytechnique Federale de Lausanne, Lausanne,

Switzerland, February 2007.

[11] F. Bullo, J. Cortés, and S. Martı́nez. Distributed Con-

trol of Robotic Networks: A Mathematical Approach to

Motion Coordination Algorithms. Applied Mathematics

Series. Princeton University Press, 2009.

http://www.avinc.com/nano


[12] J. P. Desai, J. P. Ostrowski, and V. Kumar. Modeling and

control of formations of nonholonomic mobile robots.

IEEE Trans. Robot., 17(6):905–908, December 2001.

[13] M. Egerstedt and X. Hu. Formation constrained multi-

agent control. IEEE Trans. Robot. Autom., 17(6):947–

951, December 2001.

[14] Dario Floreano, Jean-Christophe Zufferey, Adam Klap-

tocz, Jrg Markus Germann, and Mirko Kovac. Aerial Lo-

comotion in Cluttered Environments. In Proceedings of

the 15th International Symposium on Robotics Research,

2011.

[15] V. Kumar and N. Michael. Opportunities and challenges

with autonomous micro aerial vehicles. In International

Symposium on Robotics Research, 2011.

[16] S. Lupashin, A. Schollig, M. Sherback, and R. D’Andrea.

A simple learning strategy for high-speed quadrocopter

multi-flips. In Proc. of the IEEE Intl. Conf. on Robot. and

Autom., pages 1642–1648, Anchorage, AK, May 2010.

[17] D. Mellinger and V. Kumar. Minimum snap trajectory

generation and control for quadrotors. In Proc. of the

IEEE Intl. Conf. on Robot. and Autom., pages 2520–

2525, Shanghai, China, May 2011.

[18] D. Mellinger, N. Michael, and V. Kumar. Trajectory

generation and control for precise aggressive maneuvers.

In Int. Symposium on Experimental Robotics, December

2010.

[19] N. Michael and V. Kumar. Control of ensembles of aerial

robots. Proc. of the IEEE, 99(9):1587–1602, September

2011.

[20] N. Michael, J. Fink, and V. Kumar. Cooperative ma-

nipulation and transportation with aerial robots. Auton.

Robots, 30(1):73–86, January 2011.

[21] J. Parrish and W. Hamner, editors. Animal Groups in

Three Dimensions. Cambridge University Press, New

York, 1997.

[22] D. Pines and F. Bohorquez. Challenges facing future

micro air vehicle development. AIAA J. of Aircraft, 43

(2):290–305, 2006.

[23] Tom Schouwenaars, Bart DeMoor, Eric Feron, and

Jonathan How. Mixed integer programming for multi-

vehicle path planning. In European Control Conference,

pages 2603–2608, 2001.

[24] Tom Schouwenaars, Andrew Stubbs, James Paduano, and

Eric Feron. Multi-vehicle path planning for non-line of

sight communication. In American Control Conference,

2006.

[25] S. Shen, N. Michael, and V. Kumar. Autonomous

multi-floor indoor navigation with a computationally

constrained MAV. In Proc. of the IEEE Intl. Conf. on

Robot. and Autom., pages 20–25, Shanghai, China, May

2011.

[26] H. Tanner, A. Jadbabaie, and G. J. Pappas. Flocking

in fixed and switching networks. IEEE Trans. Autom.

Control, 52(5):863–868, May 2007.

[27] Jur van den Berg, Stephen J. Guy, Ming C. Lin, and

Dinesh Manocha. Reciprocal n-body collision avoidance.

In INTERNATIONAL SYMPOSIUM ON ROBOTICS RE-

SEARCH, 2009.

[28] C. H. Wolowicz, J. S. Bowman, and W. P. Gilbert. Simil-

itude requirements and scaling relationships as applied to

model testing. Technical report, NASA, August 1979.


	Introduction
	Agility of Micro Quadrotors
	The Micro Quadrotor
	The Vehicle
	Electronics
	Software Infrastructure
	Performance

	Dynamics and Control 
	Control and Planning for Groups 
	Architecture 
	Formation Flight
	Time-Separated Trajectory Following
	Trajectory Generation with MIQPs
	Basic Method
	Integer Constraints for Collision Avoidance
	Inter-Quadrotor Collision Avoidance
	Integer Constraints for Optimal Goal Assignment
	Relaxations for Large Teams


	Experimental Results
	Software Infrastructure for Groups
	Formation Flight
	Time-Separated Trajectory Following
	MIQP trajectories
	Planning for Groups within a Team
	Planning for Sub-Regions


	Conclusion

