
1

Towards a Systematic Test for Embedded
Automotive Communication Systems

Eric Armengaud, Andreas Steininger, and Martin Horauer

Abstract— The introduction of computer-controlled intelligent
safety and comfort features has turned cars into complex distri-
buted computing systems. In such a system the proper operation
of the communication backbone as well as the proper interaction
of components from different vendors must be ensured for all
configurations and operating conditions. This system-level test
goes far beyond the (isolated) test of single components and
represents a substantial problem, that seems to be still largely
unsolved, although its solution is crucial for maintaining the
consumers’ trust in modern automotive electronics.

In this paper we concentrate on the test of distributed
systems based on FlexRay, the protocol that is envisioned as
the communication backbone for future automotive systems.
The cornerstones of our approach are a decomposition of the
system into layers and mechanisms, and a versatile strategy
for monitoring and stimulation under various conditions. Our
concept can be adapted to diverse needs ranging from an early
debugging with full access to the system, over non-intrusive on-
line testing during inter-operability tests, to maintenance testing
that is restricted to a remote access only. We give detailed
discussions of the requirements and present our solutions for
the various issues involved. Selected use cases demonstrate the
usefulness of the taken approach.

Index Terms— System Test, Embedded Systems, Time-
Triggered Communication, Automotive Electronics, FlexRay.

I. MOTIVATION

DOZENS of complaints like “while overtaking another
car the engine unexpectedly went into emergency mode

and dropped to a crawl” or “windows open automatically
when in heavy rain” were reported to a local Austrian au-
tomotive magazine by its readers for a survey on problems
with electronics in new cars [1]. The fact that virtually all
brands were affected, from low-cost to luxury, clearly indi-
cates substantial problems with the integration of electronic
systems in general. Still nobody is seriously talking about
returning to the “good old days”. Electronics has been the
key innovation driver for automotive systems throughout the
last decade, and this situation is not going to change in the
near future. The vehicle networks are transforming automotive
components into truly distributed electronic systems, e.g. with
up to 72 units interconnected with various different fieldbus
systems in the new Mercedes S-class, see [2]. Replacing
rigid mechanical components with dynamically configurable
electronic elements triggers an almost organic, system wide

E. Armengaud and A. Steininger are with the Vienna University of Technol-
ogy, Treitlstr. 3, A-1040 Vienna, {armengaud, steininger}@ecs.tuwien.ac.at.

M. Horauer is with the University of Applied Sciences Technikum Wien,
Höchstädtplatz 5, A-1200 Vienna, horauer@technikum-wien.at.

This work has been supported within the FIT-IT research projects STEACS
(807146), ExTracT (810834), and the FHplus project DECS (811414) all
managed by the Austrian Research Agency FFG.

level of integration. As a result, the automotive industry
expects savings resulting in improved environmental tolerance
and cost reduction. Sophisticated and more complex features
for safety and comfort such as chassis control and smart
sensors are expected to be developed faster and more reliably
and will likely become mainstream. Unfortunately, all these
functionalities translate into higher performance (resource
usage), reliability and maintainability requirements for future
automotive systems, while stringent cost constraints and the
need to allow the interchangeable use of components from
different vendors rule out solutions found in other domains.
It seems that this development has brought us to the point
where today’s technology is not prepared to keep automotive
embedded systems at a quality level that is traditionally
expected from a car in general.

A cornerstone for the enormous success of embedded sys-
tems in automotive applications is their role as an enabler
for a tight coupling and interaction of multiple sensors and
functions. This ability has paved the way to services (e.g.
the electronic stability program) that are impossible to build
upon traditional mechanical solutions alone. The automotive
industry has recognized the central role of the communication
system in this context and recently introduced time-triggered
communication to succeed and supplant the presently em-
ployed event-triggered controller area network (CAN) [3]. In
particular, for advanced distributed control applications (“by-
wire systems”) an industrial consortium of leading automotive
and electronic manufacturers established a very promising
protocol termed FlexRay, cf. [4].

While enabling even more complex applications, the time
triggered approach itself requires a higher effort during the
design phase and introduces numerous new configuration pa-
rameters. Moreover, compared to traditional protocols FlexRay
is very young, and hence field experiences are scarcely avail-
able. This creates an unprecedented challenge with respect to
quality assurance, and an innovative, systematic approach for
testing and debugging on the system level is urgently needed
for application development and maintenance.

In this paper (i) we present an approach that facilitates
a partitioning of the test problem of a time-triggered com-
munication subsystem – and thus a systematic treatment –
while still retaining the system-test scope. This allows a
considerable reduction of test complexity. (ii) we stress the
option of transparent remote testing that makes our approach
even suitable for demanding test purposes. The key here is
the careful exploitation of the clock synchronization service
as a loop-back for diagnostic information. We present some
use cases to demonstrate the practical applicability of our



2

approach.

II. FLEXRAY BASICS

A FlexRay based system consists of nodes (“self-contained
computers with their own hardware and software” [5] p.75)
which cooperate to deliver services for their environment. Each
node comprises a communication controller that is in charge of
sending and receiving data over a communication network via
two channels that can be used in a redundant or non-redundant
fashion; see [4] for details. FlexRay supports different bus
topologies including linear bus or star topologies, and hybrids
thereof, cf. Fig. 1.

Node A Node B Node C Node E

Star

Node D

 time

Periodic 
communication cycles

communication slots in the static segment

A D B A D BIDLE

Fig. 1. Example Architecture of a FlexRay System

Time-triggered communication protocols such as FlexRay
implement a Time Division Multiple Access (TDMA) scheme
and divide the bus access into periodic, a-priori defined time
windows which are statically assigned among the nodes for
message transmission. This yields bounded and deterministic
communication delays independent of the traffic load. In
addition to the mandatory static segment the FlexRay protocol
also implements an optional dynamic segment to allow for
more flexibility. In this segment, however, bounds for commu-
nication delays cannot be guaranteed anymore. The dynamic
part is intended for communication that is not safety critical.

Evidently, the establishment of a global time base is of
utmost importance for time-triggered systems. This global
time base is required, among other things, for collision free
communication in the above mentioned TDMA scheme and
for obtaining a consistent view of the environment among
the different nodes. However, the nodes are self-contained and
have their own (imperfect) quartz. Consequently, periodic re-
synchronization is required to correct the different deviations
and establish a system-wide synchronized global time base.
A distributed clock synchronization algorithm serves this pur-
pose. An instance of this algorithm is executed on every node,
where it determines the difference between the scheduled and
the actual reception time of so called “sync messages”. Based
on the mismatch observed for these sync messages it computes
a correction for its local time according to the fault tolerant
midpoint algorithm [6].

Like other protocols FlexRay provides CRC protection
for the messages, and diverse additional syntax checks are

performed on received frames that can be used to identify
an erroneous message (i.e. one sent by an erroneous sender
or one mutilated during transmission). In contrast to most
other protocols, however, the time triggered nature of FlexRay
allows performing checks in the temporal domain as well. In
particular, a message is only regarded valid by a receiver,
if it arrives within a defined window around the expected
arrival time (defined by the global schedule and the respective
receiver’s local notion of time), and if it fits within the sender’s
assigned time slot in the TDMA schedule. This accurate
interface definition both in the time and in the value domain
enables composability, i.e. existing services are not disturbed
by the introduction of a new one [7].

In principle, testing of time-triggered systems benefits from
so called temporal firewalls [8]. They split the distributed
system into multiple fault containment regions that can be
tested independently in isolation, e.g., using node tests and
a test of the communication subsystem, respectively. On top
of that, however, a system-level test plays an important role.
One reason is that FlexRay features more than 90 configuration
parameters that need to be configured properly for every
node, which makes a systematic approach for a system test
mandatory to cover the huge test space. Further arguments for
the need of a system test will be given below.

III. ELABORATION OF REQUIREMENTS

A. Terminology

Testability: The quality of a test result attainable with given
efforts strongly depends on the testability of the system under
test (SUT). The two key aspects in this respect namely (i)
controllability and (ii) observability are largely determined by
the accessibility of the SUT. In short, good accessibility leads
to good testability.

Remote Testing/Monitoring: A test is called remote if it does
not require direct physical access to test points on the target.
Instead, a communication path serves as the only interface for
the tester to control and observe the SUT. As the name implies,
a remote tester may be located distant from the SUT.

Monitoring vs. Testing: The normal test procedure is a
stimulus/response measurement: Well chosen test vectors are
applied to the SUT to exercise all relevant functions. The
response is observed and compared to a known good ref-
erence [9], [10]. This approach by its nature causes an in-
terference with a potentially ongoing operation of the SUT.
However, under certain conditions the normal system operation
can be considered a sufficient set of test vectors, and hence
the requirement to explicitly apply stimuli can be relaxed. It
is then sufficient to monitor the ongoing system operation
instead and check whether it meets the expectations [11].
Usually, without explicit stimulation some exceptional states
(e.g., emergency handling) are very likely not to be entered and
the associated resources hence not to be exercised and tested.
This limited test coverage may cause problems in the context
with latent errors [12]. The major advantage of monitoring is
that – since no active stimulation occurs – it is not necessarily
intrusive. Furthermore, in time-triggered communication one
can distinguish between a null-frame (when a node has no



3

data to transmit) and a missing frame. Hence, a failing node
or a broken link is easily identified.

On-line vs. Off-line Testing: In the classical sense the test
is a very specific mode of operation: The SUT is taken off-
line and stepped through a sequence of states to thoroughly
execute all relevant functions. The theory for this off-line test
approach is well developed and these tests usually achieve
good coverage, since having complete control over the sys-
tem facilitates good testability. On-line testing, in contrast,
is transparently performed while the SUT is still providing
its service [13]. The main advantages of continuous on-line
testing are its very fast detection of errors – as compared with
off-line tests that are usually performed after long periods
of (untested) system operation only – and the continuous
collection of a comprehensive and representative test record
for statistical assessment and projections. Such a record may
be useful for preventive maintenance [16].

On-line testing needs to be transparent for the application
(non intrusive both in the time and in the value domain), which
is a benefit as such but makes it extremely hard to implement.

B. Purposes of testing

According to [14] “testing is any activity aimed at evalu-
ating an attribute or capability of a program or system and
determining that it meets its required results”. Depending on
the current stage in the life cycle of the system this common
definition can be applied to testing of distributed automotive
real-time systems with different goals in mind:
• Verification (correctness wrt. certain properties [15])
• Conformance test (correctness wrt. a given standard)
• Robustness test (operate under stressful conditions [16])
• Inter-operability test (nodes from different vendors [17])
• Performance test (benchmarking [18])
• Identification of configuration parameters [19]
• Maintenance test (find ageing defects [15])
Obviously these different testing aims span a large scope.

During protocol and application development experienced
engineers are using the test tool in a lab environment for
debugging a prototype or even a simulation model, and flexi-
bility is the key issue. In context with maintenance testing,
on the other hand, repairpersons with comparatively low
protocol expertise are using it in a rough environment with
limited access, and hence standardization and ease of use are
most crucial. Verification, conformance, inter-operability, and
maintenance tests are qualitative tests with the purpose of
proving whether an assumption is correct or wrong, whereas
parameter identification as well as robustness and performance
tests are quantitative tests that aim at deriving a numerical
characterization for a given attribute.

C. Starting Point and Scope of Work

Monitoring of distributed embedded systems is frequently
used for debugging, logging and other analysis on the data
level; see [20], [21], [22] for some recent advances. Commer-
cial tools for the analysis and diagnosis of the most popular au-
tomotive or real-time communication protocols are available.

Examples are CANalyzer1 for the CAN protocol, TTView2

for the TTP protocol, or the BusDoctor3 and the CANalyzer
expansion for the FlexRay protocol. Implementation issues of
these and similar tools along with some use-case scenarios can
be found, e.g., in [23], [24].

All these solutions, however, only enable the monitoring
of the bus traffic on top of the data link or higher layers
employing COTS network controllers and device drivers in
a promiscuous mode (if available) where even corrupt frames
are forwarded to the processing CPU (plus some error flags).
For the systematic, in-depth testing of a FlexRay based com-
munication subsystem this needs to be complemented by bus
monitoring and dedicated measurements on lower abstraction
levels, as well as an appropriate data analysis.

In addition to these monitoring approaches, a mechanism
in the reverse direction that allows some kind of stimulus
generation and injection or replay is required. In principle,
any fault injection tool serves this purpose; see [25] for a
survey. Obviously, however, some protocol specific support
is essential for performing efficient, well-aimed experiments
that can be triggered by events on diverse protocol layers,
e.g., and that also facilitates the generation of bus traffic
with specific properties. Implementations in this regard are
provided for existing automotive bus systems like LIN or
CAN. Unfortunately, the concepts underlying these tools for
event-triggered protocols can hardly be applied to the time-
triggered case: The existence of a global time, the static
schedule, and the high number of configuration parameters
establish a completely different test scenario that requires
a substantially different solution. The Disturbance Node for
TTP/C represents such a solution for a time-triggered protocol.
With its particular strength for injecting physical faults like bus
noise, short circuits, delays, etc., its focus, however, is on the
physical communication bus itself rather than the system.

AUTOSAR (AUTomotive Open System ARchitecture [26])
defines an open and standardized software architecture for
vehicle applications. This platform includes two main error
handling mechanisms: The Development Error Tracer is tar-
geted for integration support and reports node internal error
messages. The Diagnostic Event Manager enables the tracing
of status and errors during field operation. These mechanisms
present three main differences to our approach. First, they
require explicit integration within the application and are thus
application specific. Second, they require target node internal
resources (CPU time and memory). Third, the gathered data
is focused to high level information, and detailed information
about the communication status is difficult to obtain.

For a system test of a distributed, time-triggered communi-
cation subsystem a tester approach is required that tightly
integrates stimulation and observation to facilitate a well
controlled stimulus/response measurement. At the same time
we need maximum support for protocol related issues, and we
need access to different protocol layers, both for monitoring
and for stimulation. While suitable methods for testing of the

1http://www.vector-informatik.com
2http://www.ttautomotive.com
3http://www.decomsys.com



4

computing nodes themselves on the one side and the bus on
the other side do exist, a unified, accurate and systematic
test approach on the system level is required that does not
only consider the function of these singular components in
isolation. Experience shows that problems with interaction of
“fault-free” components are becoming increasingly relevant
in practice. The problem is further aggravated by the large
number of product variants. It is therefore the primary aim of
our work to develop a modular test approach that is powerful
enough to facilitate an efficient, well targeted check of system
attributes and system behavior, such that the properties and
services of interest for a given test purpose can be systemati-
cally investigated. Although, in principle, our approach shall
be suitable for all test purposes mentioned above, we will
focus the further presentation to those cases that pose specific
problems due to limited accessibility and/or due to the need
to perform the test on-line.

D. Preliminaries and requirements

To serve the various purposes listed above, an ideal tester
for a distributed embedded system based on FlexRay has the
following properties regarding its practical employment:

Remote Accessibility: For tests late in the product de-
velopment cycle (conformance, maintenance) test points on
individual nodes within the SUT are rarely accessible since
they are deeply embedded and sealed. This makes a remote
test approach via the communication network attractive.

Non-intrusiveness: The inter-operation of the nodes in
a distributed system often suffers from very subtle effects,
and this is where a probe effect is most troublesome. In this
situation on-line monitoring suggests itself.

No explicit test support: It would be quite unrealistic
to assume that specific “test hooks” will be appended to an
established protocol standard, or that series applications will
take care for providing support for our tester (like a shadow
bus for diagnostic information). Therefore a guiding principle
in our concept will be to come along without any supportive
provisions or architectural changes in the SUT.

At this point it becomes obvious that it will not be possible
to achieve all these contradicting goals at the same timewith a
single, monolithic tool, a bundle of complementary techniques
will rather be required that can be combined to serve a given
purpose.

Throughout this paper we assume the tester to be fault-free.
Since it is a somewhat unique component we can allow higher
cost and efforts for the tester, and an extensive self-test can
be performed before putting it into operation.

IV. PROBLEM DECOMPOSITION

It is well known that test complexity rises by far more than
linearly with the complexity of the SUT. The usual approach
to combat this effect is “divide and conquer”, i.e., partition
the system into small portions that are relatively easy to test.
In fact the ability to easily decompose a system into parts
with well defined behavior is one of the major merits of the
time-triggered approach (see Section II).

For a system test of a distributed, time-triggered communi-
cation subsystem, however, it is necessary to perform a test of
the assembled system even though all components may have
been tested in isolation already. Here, of course, a decomposi-
tion of the system into single components is counterproductive.
Performing an unstructured functional test of the configured
system, on the other hand, results in excessive test duration
and poor coverage (this is essentially the problem system
integrators are suffering from today). Thus, some different
kind of test structuring is mandatory.

Rather than structuring the physical system into components
we propose a two-step strategy instead:

1) Identify and separate all basic (i.e. top level) services
that are expected from the SUT. In case of our commu-
nication system these are the sending and the reception
of messages as well as clock synchronization.

2) Decompose each of these services into (ideally) indepen-
dent functions which we call mechanisms Mk. Ideally,
a mechanism has one single information input, one
single information output and (maybe) a status output.
Its operation is entirely described by a simple model in
a generic way, and one or several attributes can be used
to characterize it (see Figure 2). Attributes can either be
protocol configuration parameters (e.g., number of static
slots) or protocol constants (e.g., maximum clock fre-
quency deviation). Consider the CRC generation in the
transmit service as an example: Its input is the payload
data, its output the associated CRC, and its functional
model a linear feedback shift register implementing a
given polynomial that is typically a protocol constant.

Note that these services and mechanisms are not necessarily
bound to one physical node or component but may rather be
distributed (like in the case of clock synchronization), and it
is precisely these services (not the physical components) we
want to test.

The proposed decomposition substantially simplifies the test
problem (namely to a test of simple mechanisms), while still
retaining the system level view. Given the functional model of
a mechanism’s operation, we can project our system test to a
check whether all attributes are in the allowed range. The test
of an error detection mechanism, in turn, implies observing the
reaction of the system to a message that has been generated
with the associated attribute(s) being erroneous. The decom-
position can be performed in a systematic manner, which aids
in achieving a complete picture, and facilitates a systematic
exploration of the fault space along orthogonal single mecha-
nism failures (“basic faults”). Note that the granularity of the
fault model chiefly depends on the decomposition granularity.
Physical faults that are not directly reflected by one basic fault
can be mapped to unique combinations thereof (“syndromes”),
thus aiding in the generation of a fault dictionary.

Moreover, the global picture of how a given service is
composed by individual mechanisms makes the interrelations
between the involved mechanisms explicit and can hence
substantially simplify diagnosis and an inspection of fault
propagation, cf. [27]. If potential error signals issued by a
mechanism (as a status output, e.g.) are included in this global



5

Comparator Mk-1

Sampler Mk

Glitch Filter Mk+1

digital stream ak-1

oversampled stream ak

encoded bit stream ak+1

Threshold Values Ck-1

Sampling Rate Ck

Filter Parameters Ck+1

mechanism

abstraction level

configuration 

parameters

Fig. 2. Some Examples of Mechanisms

model, a hierarchy of error signals can be constructed that
further eases diagnosis.

Our approach is somewhat similar to the OSI layer model,
however, finer-grained. In [28] we have illustrated the com-
plete model for the FlexRay communication services. The
following key property of this model shall be highlighted that
will become important later on: Mechanisms can be hierar-
chically ordered in levels, such that a high-level mechanism
Mk builds upon the functionalities provided by the lower-
layer mechanisms Mk−1 . . .M1. Therefore the function of
mechanism Mk does not suffer from an erroneous behavior
or incorrect configuration of a higher-layer mechanism Mk+i,
while it does suffer from an error of a lower layer mechanism
Mk−i.

Imagine the example of the channel decoder mechanism
from the receive service here: Its output is expected to provide
a (e.g. Manchester-) decoded bit stream representation of the
message received on the physical line. Clearly this output will
still be correct even if the CRC check mechanism that further
processes this output should fail, while it will be incorrect if
the sampling mechanism that supplies the decoder’s input is
configured with an erroneous clock rate, for example.

This property allows us to check the mechanisms one by
one, starting with the lowest level mechanism and successively
increasing the level. Thereby every step builds upon the results
of the previous one(s).

Let us investigate how we can apply our structuring ap-
proach to the test of the FlexRay communication system. We
have already identified 3 services, namely transmission of
messages, reception of messages and clock synchronization.
The nodes’ transmit services can most easily be tested, since
a tester that is connected to the bus, only needs to passively
observe the traffic and draw the appropriate conclusions. Since
the transmission service is composed of a linear chain of mech-
anisms, all mechanisms are sufficiently exercised during nor-
mal operation, such that plain monitoring is indeed a sufficient
test here. The identification of a faulty node is easily possible
due to the static TDMA schedule. Diagnosis with respect to the
faulty mechanism can be based on the hierarchical structure of
the mechanisms outlined above: Should, e.g., the sender’s CRC
generation mechanism be faulty (or incorrectly configured,
in case of another mechanism), then all mechanisms below

(encoding etc.) will still operate properly such that a message
containing the incorrect CRC will finally be transmitted. The
tester will receive this message, decode it, strip all of the
framing information, etc., until it comes to CRC decoding.
Here an error will be signalled. Assuming a fault free tester
(and physical line) this error can be directly projected to
the sender’s CRC encoding mechanism. This correspondence
between the sender’s and the tester’s abstraction levels is
illustrated in Figure 3.

CHI

Processing 

Unit

C
o
m
m
u
n
ic
a
ti
o
n
 

C
o
n
tr
o
ll
er

CHI

Processing 

Unit

C
o
m
m
u
n
ic
a
ti
o
n
 

C
o
n
tr
o
ll
er

Node 1 Node n

CHI

E
m
b
ed
d
ed
 

T
es
te
r

Test Control 

Host

System-under-Test (SUT)

X !

Fig. 3. Remote Testing

Testing the receive service, however, requires additional
provisions. The first problem is that the operation of the
receive service cannot be directly observed on the FlexRay
bus. We have two options here: (a) Directly access diagnostic
information on the nodes of the SUT. This is a very powerful
approach but obviously inhibits a remote test. (b) Draw
conclusions from the node’s behavior that can be observed
on the FlexRay bus. Here we can exploit the fact that a node
that does not receive messages on the bus will run out of sync,
since clock synchronization is based on the reception of (valid)
messages. How to leverage the clock synchronization service
as a virtual, transparent channel for such meta-information
(and how to finally test it) will be treated in more detail in
section V-B.

The second problem is that the receive service includes
many error detection mechanisms that are not regularly ex-
ecuted during normal operation, i.e. the mechanisms are not
linearly aligned within the service, but there are branches. Ac-
tive stimulation will be required to exercise all these branches.
This issue will also be treated below.

V. IMPLEMENTATION CONCEPTS

A. Systematic test approach

With the layer approach we can decompose the entire
communication system into a collection of services and mech-
anisms, and the remaining task is to check the values of the
attributes that characterize every mechanism of interest. For
this purpose we need access to its inputs and outputs as well
as to the configuration interface for monitoring and – in some
cases – for control. Beyond just this mere physical access, an



6

elaborate strategy of how to interpret the observed information
and how to prepare a stimulation is mandatory. Here our con-
cept relies on generic building blocks as illustrated in Figure 4
for one abstraction layer. The same approach can be reused
for every other abstraction layer within the communication
system and, in principle, can be targeted effortlessly to other
bus-protocols as well.

System 

Under test

Data  

monitoring Data injection

Correct behavior 

generation

Data 

interpretation

Stimulus 

activation

Current 

configuration
Fault model

Data 

transformation

Data 

generation
System model

Results 

Library

Bus traffic 

configuration

Service 

specification

M
o
n
it
o
ri
n
g
 p
a
th

In
je
ct
io
n
 p
a
th

Fig. 4. Test Approach for one Layer

In this model the monitoring path aims at providing means
to observe ongoing system operation, (automatically) extract
the attributes of interest and evaluate their correctness (e.g.
whether they are within the expected limits). The data moni-
toring module processes the received data up to the abstraction
layer where the selected attributes can be best analyzed.
Therefore, this module takes as input the bus traffic at the
physical layer and de-encapsulates all data up to the particular
layer by removing information used by the lower layers solely.
The data transformation module takes the de-encapsulated
information and reduces its dimensionality by extracting in-
formation relevant for processing the attribute values and for
relating it to its source (node). The data interpretation module
interprets the monitored attribute values and thus the according
system behavior by comparing it with reference values. For
more details see [29], [30].

The evaluation result may be either a match/no-match (use-
ful for conformance tests) or the distance from the observed
towards the expected reference values (useful for robustness
tests). As an example consider the observation of a specific
transmitter’s bit width. The tester can analyze the received
frame with respect to this attribute (using a precision oscillator
in this case, of course) and check whether it is within the
specified bounds.

Furthermore, due to the high data compression attained by
the attribute extraction, one can easily record a result log for
attributes over time, thus gaining insight to the evolution of
attribute values. This feature is especially useful during system
operation to obtain information for preventive maintenance,
e.g. to identify the weakness of certain components. In the
above example such a log might reveal an abnormal evolution

of the bit width – even if it is still within bounds – that might
point to a sneaking defect of the node’s crystal oscillator or to
thermal problems. Fixing is possible then even before a failure
has actually occurred.

Another typical application of the monitoring path is for au-
tomatic configuration parameter identification, see also [19].

As outlined in Section IV monitoring may be sufficient for
testing the transmit service, but active stimulation by the tester
is definitely required for testing the receive service and the
clock synchronization. More specifically our tester must be
capable of generating traffic on the FlexRay bus in a well
controlled manner. Therefore we have included a stimulation
path in our concept. This path is shown in the center of
Figure 4.

Depending on the purpose one can choose between two
options for stimulus generation. One is to simply replay a
previously recorded bus traffic, which presents the advantage
of producing representative bus traffic, however, requires an
operational system prototype and does not necessarily conform
to the specification. This approach is well suited for robustness
tests where good representativeness plays an important role
and a running system is usually at hand anyway. In contrast,
a “perfect” bus traffic can be generated from a reference
model. This approach does not require a running cluster and
provides bus traffic conform to the specification, which is
more appropriate, e.g., for conformance tests. While additional
efforts are required to design the reference model (system
model in Figure 4), this second method typically allows more
freedom in generating suitable bus traffic.

In either case the data generation module is responsible for
(optionally) modifying attributes within this normal bus traffic
according to a fault model and under control of the stimulus
activation module. Such a modification may be desirable
for exercising error detection mechanisms. Eventually, the
data injection module processes the resulting bus traffic and
transforms it into an appropriate representation to finally push
it onto the wires with the appropriate timing.

A practical example here is the generation of frames with
a temporal offset relative to their ideal position within the
assigned slot. Such an experiment may be useful to test the
receivers’ tolerance with respect to such a shift in the scope
of a robustness test.

Both previously discussed data generation approaches can
be applied either on-line or off-line. While the on-line ap-
proach allows a study of the “live” behavior of the system, it
is quite demanding for the tester’s real time performance. A
possible implementation of on-line modification is an active
star capable of modifying data instead of simply passing it
through. For more details see [29], [30].

B. Making the remote test transparent

So far our implementation concept has assumed accessi-
bility of any desired point within the SUT. As outlined in
Section III this may be a valid assumption during system
development and debugging, but for purposes later in the life
cycle a remote access is desirable. We have already motivated
in Section IV that even straightforward remote monitoring



7

of the network traffic can yield an appreciable amount of
diagnostic information with respect to the transmit services
of the individual nodes within the SUT, if it is supported
by a careful interpretation that incorporates detailed protocol
know-how. In contrast, remote diagnosis of the receive services
is much more difficult, since neither its output nor its error
status can be directly observed on the communication bus
The most attractive solution here is to exploit the existence
of an inherent loop-back that is established by the clock
synchronization service as illustrated in Figure 5:

Remote 
tester

Fig. 5. Loop-back via the Clock Synchronization Service

The precise alignment of an outgoing frame within its
associated TDMA slot is influenced by the sending node’s
local notion of time, which, in turn is determined by the clock
synchronization service. As outlined in Section II this service
evaluates the temporal position of all valid incoming messages,
which closes the loop between sending and receiving: In
principle it makes a difference on the temporal alignment of
a node’s outgoing frame, whether or not it has received a
certain message during the previous round. This loop-back
is very elegant and generic since it reuses existing standard
mechanisms. Therefore, no additional service (and resource)
is required, and this method can be applied with every FlexRay
compliant system. There are several approaches to make use
of this loop-back:

(a) The first approach is based on the observation that
a node failing to receive valid messages will run out of
synchronization. Seen in the reverse direction, the fact that
a node stays synchronized with the others implies that it must
have received (at least some) valid messages recently. Note
that this exploitation of basic protocol properties facilitates a
first assessment of the receive services by monitoring alone,
i.e. remotely and completely non-intrusive.

(b) We can go one step further and have our tester send
messages that will – if properly received – impact the global
time in an a-priori known way (e.g. causing a speed-up). Note
that adapting the global time to a faster or slower node is
a normal procedure within the clock synchronization service,
hence, such an impact does not necessarily represent a protocol
violation. More specifically, we have shown that our test
approach can be mapped to standard nodes with correlated,
specification conform quartz drifts [31]. Since we are able
to forecast the quartz drift a standard node would have to
present the same output as our tester, we precisely know
wether the test operation violates the quartz specification or
not. On every node that receives the tester frame, the clock
correction mechanism will exhibit the expected impact on the
local time, whereas on those nodes that did not receive the

tester frames or discarded it as invalid the impact will not
occur. As outlined above, any variation of a node’s local time
is reflected by the position of its outgoing frames and can
therefore be observed by a monitoring tool on the FlexRay
bus. The tester can thus distinguish whether its stimulus has
been received by a particular node.

Note that this is also a completely remote test procedure. It
is intrusive in that the tester occupies time slots (sync messages
to be more precise) in the TDMA schedule. The payload of the
tester frames will be ignored by the application and is therefore
irrelevant – it is just the framing that serves the purpose of
testing the receive services. Therefore, the intrusiveness is very
limited.

We have indeed been able to implement this loop-back and
shown that this principle actually works in practice (in spite of
noise and jitter). This kind of stimulation is a very powerful
aid for testing error detection capabilities, e.g.: The tester can
send frames that violate certain properties and then check
whether these frames are actually discarded by a node. In a
similar manner the tolerance intervals for certain attributes can
be explored. Furthermore, this approach can be extended to
having the tester send a sequence of stimuli in such a way that
it forces the nodes in the SUT to follow a non-conventional
but still valid progression of global time. This allows an
assessment of attributes related to the clock synchronization
service, e.g. (maximum tolerable rate correction, etc.). This
issue will be further pursued in Section VI. Another possible
application of our test approach is to perform on-line remote
quartz measurement, see [32] for more information.

Considering the stringent constraints associated with remote
testing the above approaches attain an appreciable coverage.
Obviously, however, their coverage is not as good as in the
unrestricted case. In particular, services situated above the
clock synchronization in the layer model are not included in
the loop-back and hence not covered.

VI. USE CASES

A. Test Environment

One issue while developing an application is the capacity
to reproduce a scenario that led to a fault in the system.
Herein, recording bus traffic and deterministic replay enable
efficient cyclic debugging. Using these options it is possible
to repeatedly re-execute a recorded scenario in order to track
down the errors after a fault has been detected.

Likewise, the capacity to generate and/or alter bus traffic
allows to create new scenarios. This on one hand enables
the emulation of services that are not available at this point
of development and on the other hand fault injection permits
the validation of error detection/correction mechanisms. Fur-
thermore, fault forecasting [15] for the purpose of robustness
evaluation can be achieved, too. More generally, the generation
of test scenarios and the capability to deterministically apply
them to a system is required for every kind of validation and
benchmarks.

To achieve these aims, our tester node is complemented with
off-line software tools to generate different test scenarios. Our
tester implementation presents three access points namely (1)



8

at the digital level (serial bit stream), (2) at the packet level
(FlexRay frames without checks of the timing information),
and (3) at the frame level (FlexRay frames after timing
checks). Concerning the software part of the tester, a bus
traffic generation tool permits the generation of bus traffic from
scratch. Additionally, a bus traffic modification tool allows
the insertion of deviations by manipulating an existing bus
traffic logfile. These deviations can model both disturbances
from the environment as well as service deviations resulting
from transient or permanent failures inside the communication
controller, see [33] for details. An important feature of these
software tools is the capability to process the data stream at
different abstraction levels. Hence, the physical access (see
Figure 4) is performed by the tester hardware while the filter-
ing can be performed both by the hardware or software. The
transformation (modification of the stream for fault injection)
is performed by our software tools.

The interface between the on-line tester and the off-line
tools is realized with the help of bus traffic logfiles, which
completely describe the bus traffic behavior. In particular
the communication scenario is divided into packets, each
consisting of an identifier, a packet length descriptor, a time
stamp, and the actual frame described at a defined abstraction
level. This encapsulated format not only provides flexibility for
further development, but builds a bridge between a simulation
and hardware prototype environment. Both simulation and
hardware prototyping complement each other for debugging
purposes in order to track down errors to their roots.

Bus Traffic
Logfile

Bus Traffic
Logfile

01000101011
00010101101

….

01000101011
00010101101

….

Node B

Tester

Replay

Alteration

Generation

Node A Node B Node C

Tester

Monitoring

Node A Node B Node C

Tester

Simulation

Fig. 6. Test Flow

Figure 6 shows a flow-chart for the possible test operations.
First, a scenario is generated using bus monitoring or via
the help of the bus traffic generation tool. In either case the
resulting scenario is stored in a logfile that can be directly used
for replay (in a real-world cluster or in a suitable simulator)
or further altered. The aim of the alteration is to insert
deviations into the bus traffic, in order to either explicitly inject
failures (e.g. a wrong CRC) thus testing the fault detection
mechanisms, or to test the system’s tolerance margins (e.g. by

shifting a frame towards the slot boundaries).

B. Testing error detection mechanisms of the receive service

In a first application we used this test environment to
systematically test the error detection mechanisms of our node
based tester prototype. Syntax errors were introduced by a
tester node A at the digital level while boundary violations
and content error were injected at the packet level. Table I
summarizes the error flags as they were recorded in a test cam-
paign using standard FlexRay controllers (column “FlexRay
status”) and in comparison with a finer differentiation with
a different tester node B (column “Tester status”). Herein,
the syntax errors were injected at the digital level while the
boundary violations and content error were injected at the
packet level, cf. Figure 4. All resulting errors have been
successfully detected, therefore the detection coverage is 100%
in this experiment.

TABLE I
TEST CAMPAIGN SUMMARY

# of deviations # of cycles FlexRay status Tester status
234 5000 vSS!SyntaxError CODERR
234 5000 vSS!SyntaxError TSSVIOL
234 5000 vSS!SyntaxError HCRCERR
234 5000 vSS!SyntaxError FCRCERR
234 5000 vSS!SyntaxError FESERR

1092 5000 vSS!BViolation BVIOL
468 5000 vSS!BViolation BVIOL
46 3000 vSS!BViolation SWVIOL
46 3000 vSS!BViolation NITVIOL
78 5000 vSS!BViolation SOVERR
78 5000 vSS!ContentError NERR
156 5000 vSS!ContentError SSERR
78 5000 vSS!ContentError FIDERR
46 3000 vSS!ContentError CCERR
234 5000 vSS!ContentError SPLERR

From Table I it is obvious that our tester reveals a much
more detailed status information than a standard node.

C. Testing the clock synchronization service

The aim of this second use case is to test the distributed
clock synchronization algorithm. Since this mechanism can
not be tested in isolation (partitioning), methods to focus
on the service itself (layering) as presented in this work are
strongly required. The main advantage of our test concept is
the capability for the user to directly access this mechanism.
The other (lower) layers involved are automatically emulated
by our test environment. During this test campaign, we applied
a deterministic replay and varied the maximum rate- and step
correction values until the nodes in the SUT switched to silent
mode. For both experiments our tester generated two messages
(ID 13 and ID 14) with the SYNC bit set, thus, dictating the
clock synchronization in our setting.

For the rate correction experiment the tester linearly in-
creased the rate of its logical clock. Concerning the step
correction experiment we modified after about 300 commu-
nication cycles the step correction value of the tester by
increasing it by δs = 25ns (one microtick: nominal period
of our internal quartz). Then we left this value constant for



9

40 communication cycles and set it back to the original value
for the following 40 communication cycles. Afterwards we
applied a step correction value increased by additional 25ns
(i.e. δs = 50ns) for the following 40 communication cycles
before we set this value back once more. This procedure
was applied periodically resulting in a stimulus as depicted
in Fig. 7 (upper plot). At the same time we monitored the
cycle length (the number of microticks after clock correction
applied to the local node quartz) of the SUT nodes. These
values followed the stimulus – as can be seen in Fig. 7 (lower
plot) – up to a logical clock state deviation of δs = 450ns.
Afterwards, they were no longer able to follow suite; the nodes
turned silent.

TABLE II
RESULTS OF THE CLOCK SYNCHRONIZATION EXPERIMENTS

Parameter Results Specification
max. rate correction 4.5µs 4.5µs
max. step correction 450 ns 500 ns

Table II summarizes our findings for both, rate correction
and step correction. Herein the values given in the “Specifica-
tion” column reflect the theoretical values from the FlexRay
specification for the configuration of pRateCorrectionOut with
180µT and pOffsetCorrectionOut with 20µT (µT stands for
microtick). As expected, the nodes of the SUT turned silent
when the shift for the rate correction exceeded 4.5µs. For the
step correction a value of 500ns was expected according to
the specification, while our measurement yielded 450ns. We
have traced back this deviation to a correction ”overshoot”
that results from the need for a punctual correction of the
accumulated clock state difference just after the immediate
frequency jump dictated by our tester.

 4.9997e+006

 4.9999e+006

 5.0001e+006

 5.0003e+006

 5.0005e+006

 5.0007e+006

 0  200  400  600  800  1000  1200  1400

C
yc

le
 le

ng
th

 (
ns

)

Time (communication cycle)

ID 15
ID 16
ID 17
ID 18

 4.9997e+006

 4.9999e+006

 5.0001e+006

 5.0003e+006

 5.0005e+006

 5.0007e+006

C
yc

le
 le

ng
th

 (
ns

)

ID 13
ID 14

Fig. 7. Step Correction Experiment: Stimulus (upper plot) and Response
(lower plot)

VII. CONCLUSION

Being the enabler for (cost) optimizations as well as new
comfort and safety features distributed computer architectures

will definitely play a central role in future car generations. We
have motivated that system-level testing as well as testing the
communication subsystem are crucial during development, in-
tegration and maintenance of these complex systems, and that
systematic improvements to the current practice are urgently
needed. With this motivation we have proposed a comprehen-
sive test strategy for system-level testing of FlexRay based
systems. Care has been taken to keep the approach flexible
enough to be adapted to the partly contradicting needs of
different test procedures during the life cycle of the system.
This has been attained by providing a bundle of techniques
that can be combined to fit the given purpose.

The foundation of our approach is a fine-grained layer
model that allows horizontal decomposition of the system
into services and mechanisms, but, in contrast to the usual
component test approaches, without consideration of their
physical allocation. The attributes that we introduced to char-
acterize the function of the individual mechanisms are at the
center of our stimulation and monitoring concepts: From the
comprehensive stream of information collected on the FlexRay
bus by monitoring, the attributes of interest are extracted,
thus precisely reducing the information to the necessary. With
respect to fault injection the attributes can be viewed as a fault
space in which a systematic treatment becomes viable.

The bundle of methods we propose allows considering
specific restrictions such as remote access or the avoidance
of a probe effect. Our approach is based on (a) careful
and detailed interpretation of the observed bus traffic, and
(b) the exploitation of the clock synchronization service as
an application transparent vehicle for stimulation and fault
injection as well.

Our concept for stimulation allows both, the emulation
of part of the system (faulty or non-faulty) as well as the
introduction of faults into the bus traffic. The bus traffic
required for emulation can be derived either from a bitstream
actually observed on the bus or synthesized by virtue of a
parameterized protocol model, and in both cases modifications
can be applied for selected attributes. Depending on the
purpose these procedures can be performed on-line or off-line.

Ongoing research is concerned with a refinement of the
remote identification and check of the individual crystal oscil-
lator frequencies of the nodes in the system by way of well-
controlled stimulation of the clock synchronization service.
Another research direction is the use of a star coupler test
architecture to cover the important class of asymmetric faults.

REFERENCES

[1] K. Zeillinger, “Fehler im System,” auto touring, das ÖAMTC Magazin
(in German), vol. 6, pp. 6–10, 2006.

[2] P. Hansen, “New S-Class Mercedes: Pioneering Electronics,” The
Hansen Report on Automotive Electronics, vol. 18, no. 8, pp. 1–2, Oct.
2005.

[3] “CAN Specification Version 2.0, available at
http://www.semiconductors.bosch.de/pdf/can2spec.pdf,” Robert Bosch
GmbH, 1991.

[4] “Flexray Communications Systems – Protocol Specification Version 2.1,
available at http://www.flexray.com,” FlexRay Consortium, 2003.

[5] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications. Norwell, MA, USA: Kluwer Academic Publish-
ers, 1997.



10

[6] J. Lundelius-Welch and N. Lynch, “A New Fault-Tolerant Algorithm for
Clock Synchronization,” Information and Computation, vol. 77, no. 1,
pp. 1–36, 1988.

[7] H. Kopetz and G. Bauer, “The Time-Triggered Architecture,” Proceed-
ings of the IEEE, vol. 91, no. 1, pp. 112 – 126, Jan. 2003.

[8] H. Kopetz and R. Nossal, “Temporal Firewalls in Large Distributed Real-
Time Systems,” in Proceedings of the Sixth IEEE Computer Society
Workshop on Future Trends of Distributed Computing Systems, Oct.
1997, pp. 310–315.

[9] H. Thane and H. Hansson, “Towards Systematic Testing of Distributed
Real-Time Systems,” in Proceedings of the 20th IEEE Real-Time Sys-
tems Symposium, December 1999, pp. 360–369.

[10] W. Schütz, “Fundamental Issues in Testing Distributed Real-Time Sys-
tems,” Real Time System Journal, vol. 7, no. 2, pp. 129–157, 1994.

[11] A. Steininger and C. Temple, “Economic Online Self-Test in the Time-
Triggered Architecture,” in Design and Test of Computers, IEEE, vol. 16,
July–Sept 1999, pp. 81–89.

[12] C. Scherrer and A. Steininger, “Dealing with Dormant Faults in an
Embedded Fault-Tolerant Computer System,” in IEEE Transaction on
Reliability, December 2003, pp. 512–522.

[13] M. Nicolaidis and Y. Zorian, “On-Line Testing for VLSI – A Com-
pendium of Approaches,” Journal of Electronic Testing: Theory and
Applications, vol. 12, no. 1-2, pp. 7–20, February 1998.

[14] W. Hetzel, The Complete Guide to Software Testing, Second Edition.
Wiley, 1988.

[15] J.-C. Laprie and B. Randell, “Basic Concepts and Taxonomy of Depend-
able and Secure Computing,” IEEE Trans. Dependable Secur. Comput.,
vol. 1, no. 1, pp. 11–33, 2004, fellow-Algirdas Avizienis and Senior
Member-Carl Landwehr.

[16] A. Mukherjee and D. P. Siewiorek, “Measuring Software Dependability
by Robustness Benchmarking,” IEEE Transactions on Software Engi-
neering, vol. 23, no. 6, pp. 366–378, June 1997.

[17] S. Mosely, S. Randall, and A. Wiles, “Experience within ETSI of the
Combined Roles of Conformance Testing and Interoperability Testing,”
The 3rd Conference on Standardization and Innovation in Information
Technology, pp. 177–189, Oct 2003.

[18] J. Arlat, K. Kanoun, H. Madeira, J. Busquests, T. Jarboui, A. Johansson,
and R. Linström, “State of the Art,” DBench project deliverables, Aug.
2001.

[19] E. Armengaud, A. Steininger, and M. Horauer, “Automatic Parameter
Identification in FlexRay Based Automotive Communication Networks,”
11th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA’06), pp. 897–904, Sep. 2006.

[20] I. Smaili, “Real-Time Monitoring for the Time-Triggered Architecture,”
Ph.D. dissertation, Technische Universität Wien, Institut für Technische
Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2004.

[21] H. Thane, “Monitoring, Testing and Debugging of Distributed Real-Time
Systems,” Ph.D. dissertation, Mälardalen Real-Time Research Centre
(MRTC), Department of Computer Engineering, Mälardalen University
(MDH), 2000.

[22] J. Tsai, Y.-D. Bi, S. Yang, and R. Smith, Distributed Real Time System:
Monitoring, Visualization, Debugging and Analysis. New York, NY,
USA: Wiley-Interscience, 1996.

[23] P. Peti, R. Obermaisser, W. Elmenreich, and T. Losert, “An Architecture
supporting Monitoring and Configuration in Real-Time Smart Trans-
ducer Networks,” in Proceedings of the IEEE Sensors 2002, vol. 2, June
2002, pp. 1479–1484.

[24] M. S. Reorda and M. Violante, “On-Line Analysis and Perturbation
of CAN Networks,” in DFT ’04: Proceedings of the Defect and Fault
Tolerance in VLSI Systems, 19th IEEE International Symposium on
(DFT’04). Washington, DC, USA: IEEE Computer Society, 2004, pp.
424–432.

[25] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault Injection Techniques
and Tools,” Computer, vol. 30, no. 4, pp. 75–82, April 1997.

[26] H. Fennel, “Achievements and Exploitation of the AUTOSAR Develop-
ment Partnership,” in Convergence 2006, October 2006, p. 10.

[27] M. Hiller, A. Jhumka, and N. Suri, “An Approach for Analysing the
Propagation of Data Errors in Software,” in DSN ’01: Proceedings of
the 2001 International Conference on Dependable Systems and Networks
(formerly: FTCS). Washington, DC, USA: IEEE Computer Society,
2001, pp. 161–172.

[28] E. Armengaud, A. Steininger, M. Horauer, and R. Pallierer, “A Layer
Model for the Systematic Test of Time-Triggered Automotive Com-
munication Systems,” 5th IEEE International Workshop on Factory
Communication Systems, pp. 275–283, September 2004.

[29] E. Armengaud, A. Steininger, and M. Horauer, “Efficient Stimulus
Generation for Remote Testing of Distributed Systems – The Flexray
Example,” in 10th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA’05), L. L. Bello and T. Sauter,
Eds., vol. 1, Catania, Italy, September 2005, pp. 763–770.

[30] E. Armengaud, F. Rothensteiner, A. Steininger, R. Pallierer, M. Horauer,
and M. Zauner, “A Structured Approach for the Systematic Test of
Embedded Automotive Communication Systems,” in IEEE International
Test Conference (ITC2005), Nov. 2005, pp. 1–8.

[31] E. Armengaud, M. Fuegger, and A. Steininger, “Safe Deterministic
Replay for Stimulating the Clock Synchronization Algorithm in Time-
Triggered Systems (to appear),” in 7th IEEE International Workshop on
Factory Communication Systems (WFCS’08), Mai 2008.

[32] E. Armengaud, “Non-Intrusive Remote Oscillator Drift Measurement
for Time-Triggered Systems,” Vienna University of Technology, Institue
of Computer Engineering, Treitlstr. 3/3/182-1, 1040 Vienna, Austria
(available at http://vmars.tuwien.ac.at/frame-papers.html), Tech. Rep.
RR-62/2007, 2007.

[33] E. Armengaud, F. Rothensteiner, E. Schwaiger, and M. Zauner,
“STEACS Test Environment,” Technical Report (Decomsys Confiden-
tial), 2005.


	Motivation
	FlexRay Basics
	Elaboration of Requirements
	Terminology
	Purposes of testing
	Starting Point  and Scope of Work
	Preliminaries and requirements

	Problem Decomposition
	Implementation Concepts
	Systematic test approach
	Making the remote test transparent

	Use Cases
	Test Environment
	Testing error detection mechanisms of the receive service
	Testing the clock synchronization service

	Conclusion
	References

