
Towards a Tactic-Based Evaluation of Self-Adaptive

Software Architecture Availability
Alireza Parvizi-Mosaed1, Shahrouz Moaven2, Jafar Habibi3, Abbas Heydarnoori4

Sharif University Of Technology
Tehran, Iran

{aparvizi1, moaven2}@ce.sharif.edu, { jhabibi3, heydarnoori4}@sharif.edu

Abstract— nowadays, several non-automatic or semi-automatic

software architecture evaluation methods have been proposed to

evaluate their quality attributes as availability. In spite of their

applicability, they are not effective in self-adaptive software

architectures due to their off-line properties; e.g., scenario-based

methods. Since the architectural tactics provide a bridge between

architectural designs and quality attributes, they have sufficient

potential to resolve this problem. In this paper, we assume that the

software architecture is completely composed of some architectural

patterns. Then we propose an automated evaluation method which

composes the architectural tactics and the patterns to measure the

availability of software architectures. In this method, the

composition of a few availability tactics and patterns are simulated

with appropriate probability distribution functions. To predict the

availability of patterns, a data mining approach is applied to these

simulated models to generate training models for each combination

of tactics and patterns. Furthermore, a utility function is defined to

compute the availability of systems by these models in O(n) where n

is the number of patterns of systems. This method improves the data

gathering and analysis activities of the SASSY (Self-Architecting

Software SYstems) framework. To validate our method, we have

applied it to the Rapidminer case study.

Keywords- Availability, Self-Adaptive Architecture,

Architectural Tactic, Architectural Pattern, Data Mining.

I. INTRODUCTION

Quality attributes are the best criteria for evaluating the
quality of software architectures [1]. Even though quality
management is an umbrella activity in the software
development process, its cost is different from one level of
modeling to another. In other words, the cost of the quality
management activity will be increased whenever the models
become more detailed (e.g., moving from architectural models
to design models). Therefore, architectural models enable us to
evaluate quality attributes with lower costs [2].

The architecture evaluation methods are categorized as
early or late methods to measure the quality of systems at the
architectural level. In early methods, architectures are
evaluated before the implementation step in the software
development process, whereas in late methods, this process is
postponed to test or execution times [3]. Architectural tactic
composition is a useful evaluation method as it provides a
bridge between the architectural design and quality attributes
to predict, control, and satisfy the quality of software
architectures [4]. This method has sufficient capability to
provide an early or late method when it is merged with
scenario-based, experience-based, or simulation-based

methods; e.g., ATAM (Architecture Tradeoff Analysis Method)
is a scenario-based evaluation method which is improved by
architectural tactics [2].

The best advantage of the tactic composition methods is
highlighted in self-adaptive software architectures due to their
dynamic and automatic properties. These systems are usually
mapped to a composition of architectural patterns; e.g., SASSY
(Self-Architecting Software SYstems) is a self-architecting
framework which applies an appropriate pattern composition
to the software architecture in order to maintain the quality of
SOA (Service Oriented Architecture) [5, 6]. Hence, the pattern
and tactic composition methods are appropriate methods for
evaluating the quality of self-adaptive software architectures.

Although various architecture evaluation methods have
been proposed recently [3], no tactic-based automated
methods have been presented to predict the availability of self-
adaptive architectures. In this paper, the composition of
architectural tactics and patterns is simulated by taking
advantage of Probability Distribution Functions (PDFs) and
the queuing theory [7] to resolve the aforementioned problem.
Due to the complexity of these simulations, there is no
mathematical formula to compute its availability. Thus,
numerous scenarios are applied to these simulations to create
a dataset. This dataset is then used to predict the availability of
patterns by employing a data mining technique.

It is supposed that components send or respond messages
with the Gaussian Probability Distribution Function (GPDF);
e.g., while clients send requests to a server, it responds them
with a GPDF rate. Results show that the relation between
PDFs of components of patterns and the availability metrics
can be modeled as declared previously by Kazman [8].
Therefore, this paper provides a utility function to represent the
relation between the availability of patterns and their
components. This utility function evaluates the quality of self-
adaptive software architectures when their structures are
imagined as a hierarchy of architectural patterns.

Our previous works [9, 10, 29] have proposed Fuzzy logic,
AHP (Analytic Hierarchy Process) and Genetic algorithms to
select the best composition of architectural patterns and a
prototype have implemented. As they improve the planning
activity of the SASSY framework, this paper enhances its data
gathering and analysis activities. The remainder of this paper
is organized as follows. Section 2 provides a more detailed
explanation of architectural patterns, availability tactics, and
their compositions. Section 3 describes related work. Section 4

168

presents our proposed approach. Section 5 provides our
evaluations. Finally, Section 6 concludes the paper.

II. ARCHITECTURAL PATTERNS AND TACTICS

A. Architectural Patterns

Architectural patterns are practical solutions for a specific
problem in a certain context [11]. The quality measurement is
one of these problems which addressed in self-adaptive
software architectures when they monitor the context of
systems to analyze their quality in run time [12]. To this aim,
pattern composition methods have been proposed recently to
quantify the quality attributes. More specially, patterns
influence certain quality attributes according to some criteria
such as cohesion or coupling of interactions [13, 14, 15].

B. Availability Tactics

Tactics are design decisions which control the quality of the
architecture. They generally support the following three
activities: 1) measuring certain quality attributes, 2) preventing
systems from quality damages, and 3) recovering quality
attributes [2]. Although they support several activities, this
paper focuses on the quality measurement activity. Moreover,
specific tactics are proposed for certain quality attributes. As
mentioned in some literatures like [2] and [4], the availability
attribute involves prevention, recovery and fault detection
tactics. Fault detection tactics, such as Ping-Echo, Heartbeat,
Exception and Voting [16, 2, 4], are just measurement tactics
to quantify the availability of the software architecture. The
functionality of both components and connectors are affected
when tactics are applied to the software architecture [17].
RBML is a UML-based modeling language to describe these
manipulations [18]. More specifically, RBML describes tactics
as components and connectors with a specific functionality.
Hence, availability tactics have been modeled in the RBML-PI
add-in component by Kim [19].

C. Composing Architectural Tactics and Patterns

The combination of tactics and patterns provides a basis for
assessing the quality of self-adaptive software architectures.
Various approaches have been offered recently to formalize
this combination. For example, formal architectural map has
been introduced in [20, 21] to transparently exhibit
collaborations among tactics and patterns.

Some methods have been proposed to customize the
architectural patterns with availability tactics due to their
component-based structures. Moreover, the relationship among
tactics, patterns, and quality attributes has been diagnosed in
[17, 22]. They show the major operations to customize patterns
according to the tactics. In this regard, six operations for
implementing, replicating, adding (out of pattern), adding (in
the pattern), modifying, and deleting are introduced for
components or connectors. Moreover, they measure the
difficulty of implementing tactics in architectural patterns.

III. RELATED WORK

Although researchers are proposing many software
architecture evaluation methods, they are not usable for a few
software architecture domains such as real-time applications.
Therefore, a self-adaptive evaluation method is required to
measure the quality of applications in these domains. This
section overviews the related works and compares their
benefits and defects against our method.

The early evaluation methods such as scenario-based
methods cannot support self-adaptive systems due to their
offline process. Shanmugapriya and Suresh [23] have surveyed
various early evaluation methods. Although, various methods
evaluate different aspects of self-adaptive systems, none of
them quantify the availability of these systems. Zhu et al. [24]
have presented a mining approach which extracts the
architectural tactics from the architectural patterns for each
quality attribute. Although it measures the quality attributes of
patterns, it does not present any prediction methods. Moreover,
pattern comparison is a big challenge due to the dependency of
tactics to patterns. Paakki et al [25] have proposed a pattern
mining approach to detect the architecture patterns from the
software architecture. Then, they collect some metrics, such as
number of messages, to predict the quality of an architecture.
Immonen [26] has provided a reliability and availability
approach to predict these quality attributes. This approach
maps the reliability and availability requirements into
architectural models. Even though, it uses architectural
patterns, and provides analytical models such as state-based
models to predict the availability and reliability of
architectures, it is a case base method. Moreover, it requires
more time to predict the availability of software architectures.

IV. PROPOSED AVAILABILITY EVALUATION APPROACH

In this section, a tactic-based method is introduced to
evaluate the availability of self-adaptive software
architectures. The proposed approach takes advantage of
RBML modeling language to describe the composition of
tactics and patterns. While RBML explains the major
operations of tactics, numerous scenarios are applied to tactics
to generate a huge dataset of availability samples. The
generated results are enough to make a training model for
predicting the availability of patterns.

Figure 1. High level structure of tactic based evaluation method

169

Fig.1 depicts a high level structure of the tactic-based
evaluation method. While software engineers are constructing
the availability models with a repetitive mining process, the
SASSY starts the evaluation process to measure the availability
of a software architecture by using training models. SASSY
follows the MAPE (Monitor, Analyze, Plan and Execute)
automation model to re-architect the software architecture
based on quality attributes. It can start the proposed method to
measure the availability of a self-adaptive architecture before
re-architecting. In the following, the proposed method is
explained in more details.

A. Modeling the Composition of Tactics and Patterns

The corresponding relationships among the components of
patterns and the tactics are recognized by software engineers.
The patterns are customized with appropriate operations
before their combination with architectural tactics. Then, the
customized patterns are specifically described with the RBML
modeling language. In this paper, the RBML models for
composing the patterns of Pipes-and-Filters and Microkernel
with the tactics of Ping-Echo and Heartbeat are provided.
Moreover, these tactics and patterns are simulated according
to the proposed approach in literatures [2, 4, 16, 19, 22].

Pipes-and-Filters is a distributed pattern which basically
has at least three components involving two filters and one pipe
where filters process the flow of data and the pipe links filters
together. Since all Pipes-and-Filters patterns can be produced
from a basic one, the Ping-Echo and Heartbeat tactics have
been composed with basic Pipes-and-Filters pattern.

Reliability::Availability::Ping/Echo

|checks►

|notifies►
|Filter1

|maxWatingTime

|timeInterval

|elapsedTime

|echo()

|Filter2

|ping()

|FaultMonitor|Pipe

|DelayTime

|Divert()
|checks►

Figure 2. RBML model of composing Pipes-and-Filters and Ping-Echo

The RBML model of composing Pipes-and-Filters and
Ping-Echo is represented in Fig.2. Filter1 sends packets in
timeinterval periods and waits to receive the corresponding
response from the Pipe component. Pipe buffers the packets
and diverts them to Filter2. Finally, Pipe routes answers from
Filter2 to Filter1. The packet will be dropped whenever this
process takes more than the defined threshold.

Tf=Uf(c,d)
Queue

F
il

te
r1

P
ip

e

F
il

te
r2

Tp=Up(a,d)

Ts=Ns(µ,σ)

Figure 3. Simulation of composing Pipes-and-Filters and Ping-Echo

To simulate this composition, it is supposed that Filter1
generates asynchronous packets with a uniform distribution
rate while the Pipe component makes some delays and
forwards packets to Filter2. Since systems imitate the queuing
theory, packets are buffered in a finite queue as Fig.3 displays.
In other words, Filter2 returns packets in periods with a GPDF

rate due to the normal behavior of real systems. The Pseudo
code of this simulation is given below. This algorithm
generates numerous automated scenarios to collect an
appropriate dataset for the data mining activity. In order to
normalize the simulation results and cover all possible
scenarios, scenarios have been limited to distinct ranges.

Compose Pipe-and-Filter and Ping-Echo (CPFPE)

1: Set Iteration number and appropriate ranges for Threshold, Queue size, Uf, Up,
 Ns’s parameters.
2: For i=1 to Iteration
3: Initialization: generate random parameters for Uf, Up, Ns and random number
 for Queue size and Threshold with uniform distribution.
4: Tf←Uf, Tp←Up

5: while {stable dropped and received packet curves} do

6: Ts←Ns

 execute one of the following statements with minimum time
7: Drop arrived packets to the full Queue.
8: Drop timed out packets from the Queue.
9: Filter1 sends a packet with Tf time interval.
10: Pipe inserts a packet to the Queue with Tp time interval.
11: Filter2 responds to arrived packets with Ts time period.
12: For each packet If Tf+Tp+Ts<Threshold
13: Pipe increases received packet numbers.
14: else

15: Pipe increases dropped packet numbers.
16: End Program

Let packets be produced with Tf and Tp constant delay times
in each iteration. Filter2 services queued packets by different
Tss while the buffer is receiving packets in a Tf+Tp time period.
In fact, Filter2 frequently services packets by a GPDF with
constant mean and variance till the simulation result is stabled.

Reliability :: Availability :: Heartbeat

|ChekingTime

|LastUpdatedTime

|ChekingInterval

|ExpireTime

|Pitapat()

|CheckAlive()

|UpdateTime()|FaultMonitor

|Filter1

|SendingInterval

|notifies► |Pipe

|TimeDelay

|Divert()

|Filter2

|notifies►

|UpdateTime()

◄|notifies

Figure 4. RBML model of composing Pipes-and-Filters and Heartbeat

Fig.4 depicts the RBML model of composing Pipes-and-
Filters and Heartbeat. Filter1 sends packets toward the Pipe
component periodically in durations of SendingInterval. Before
the Pipe routes packets to Filter2, it updates the heartbeat time
by the operation UpdateTime. Based on the Heartbeat
definition, Filter2 compares the received time of packet with
the previous one to check whether it is alive or not.

This composition has been simulated with the uniform and
Gaussian probability distributions. Although it provides the
same structure of Pipes-and-Filters and Ping-Echo
compositions, it refuses to use the queuing theory due to the
Heartbeat behavior. In fact, as Filter2 takes advantage of a
single entry buffer to service packets with a GPDF rate, when
it receives two packets simultaneously, it just services one
packet and drops other.

As the below pseudo code demonstrates, packets are
received when the absolute difference between the total delay
and the previous receive time is less than the defined threshold.
To model the composition of the microkernel pattern and the
Ping-Echo tactics, it has been supposed that both client and
adapter components are integrated in the adapter component
as Fig.5 depicts.

170

Compose Pipe-and-Filter and Heartbeat

1: Set Iteration number appropriate ranges for Threshold, Uf, Up, Ns’s parameters.
2: For i=1 to Iteration
3: Initialization: generate random parameters for Uf, Up, Ns and random number
 for Threshold with uniform distribution.
4: Tf←Uf, Tp←Up

5: while {stable dropped and received packet curves} do

6: Ts←Ns

 Execute one of the following statements with minimum time
7: Filter1 sends a packet with Tf time interval.
8: Pipe forwards a packet to Filter2 with Tp time interval.
9: For each packet If |Tf+Tp+Ts-previous received time|<Threshold
10: Filter2 increases received packet numbers.
11: else

12: Filter2 increases dropped packet numbers.
13: End Program

Adapter sends packets to External Server and Microkernel
components directly while Internal Server receives packets
indirectly. Microkernel spends some time to divert packets to
Internal Sever from the Microkernel.

Reliability :: Availability :: Ping/Echo

|checks►

|Adapter

|maxWatingTime

|timeInterval

|elapsedTime

|echo()

|Microkernel

|DelayTime

|Divert()

|ping()

|External Server

|ping()

|checks►

|Internal Server

|ping()

|checks►

|notifies► |FaultMonitor

|
n

o
ti

fi
e

s►

|notifi
es►

Figure 5. RBML model of composing microkernel and Ping-Echo

In addition, as depicted in Fig.6, Microkernel and Ping-
Echo composition is simulated with three queues. This model
utilizes the queuing theory while queues work independently. In
other words, while the Adapter is sending packets, router
decides to dispatch packets among queues with specific
probabilities. Then, Microkernel, Internal, and External Server
will respond to packets by a GPDF rate. Although Microkernel
answers packets rapidly, it takes a little time for Internal and
External Servers to respond packets due to their physical
distance in real networks.

DI=UI(a,b)

Microkernel Queue
TM=NM(µ1,σ1)

Internal Queue

External Queue

ρ2

ρ1

ρ3

TI=NI(µ2,σ2)

TE=NE(µ3,σ3)

DE=UE(c,d)

DA=UA(e,f)

Microkernel

Internal

Server

External

Server

A
d

a
p

te
r

Figure 6. Simulation of composing microkernel and Ping-Echo

To predict the availability of the Microkernel pattern, the
received and dropped packets are computed for Microkernel,
Internal, and External Services separately as depicted in Fig.6.
Finally, they are integrated to measure the availability of the
Microkernel pattern.

Moreover, the composition of Heartbeat and Microkernel
has been simulated with two independent scenarios. As
represented in Fig.7, Adapter sends packets with the uniform
distribution where Microkernel either responds to packets with
a GPDF rate as previous simulations, or forwards them to the
Internal Server.

TM=NM(µ,σ)

DA=UM(a,b)

TM=NM(µ1,σ1)DA=UM(a,b)

TI=NI(µ2,σ2)

Scenario1:

Scenario2:
Internal

Server
MicrokernelAdapter

Adapter
Microkernel or

External Server

Figure 7. Simulation of composing microkernel and Heartbeat

B. Data Mining Process
Data mining process is a repetitive activity which gathers

datasets, prepares them, generates training models, and
reanalyzes results. Accuracy of learning relies on several
conditions such as the way datasets have been prepared, and
the learning algorithms applied to training datasets. Therefore,
this process improves training models based on the previous
learning experiences. In the following, we describe how the
data mining process has made highly accurate models for the
aforementioned compositions of patterns and tactics. The
following steps are followed in this process:

 Scenario Execution. This activity applies different
simulation scenarios to generate training data. The input
and output simulation parameters, including Threshold,
Queue Size, UA, UI, UE, NM, NE, NI, Received Time, and
Drop Time make up the dataset features. We have divided
input parameters into inner (which are set in the nested
loop) and outer (other inputs) parameters in the
aforementioned algorithms. Number of dropped and
received packets will be stabilized when numerous
scenarios with fixed inner parameters are applied to
simulation models. As Table1 shows, the maximum
fluctuation of received and dropped packets is less than 10-6

when they are stable.

 Preprocessing the Availability of Tactics & Patterns. To
predict future events, the data mining process analyzes
datasets to learn models. Besides, anomalies, null values,
correlations, and outliers are common events in datasets
which reduce the training accuracy. We have cleaned the
simulation datasets by some preprocessing methods, like
duplicate removal, anomaly reduction and type conversion
methods. Moreover, we have labeled RecievedPacket
feature to make a classification model in the next step.
Thus, we have converted this feature to polynomial values.

 Learning Model. This activity learns a training model
when it provides a learning algorithm to analyze data
relationships. Since the data mining process has been
implemented in the Rapidminer (http://rapidminer.com)
application, we have chosen the classification algorithm of
this application to learn the simulation models. Although
different classification models have been examined in next
iterations, we explored that Neural Network algorithms
have highest accuracy in comparison with other algorithms
as table1 shows. Moreover, recall, precision, and f-measure
are other criteria that we use in our evaluations of models.

 Post Processing. The results of the evaluation show that both
Ping-Echo on Microkernel and Heartbeat on Microkernel
(Internal Component) have the lowest precisions against
other simulations. By analyzing results with visualization
methods, some classes consisting of a few records were

171

found. Although these classes could be removed by
sampling, we would like to propose an appropriate
algorithm to handle this challenge without dropping scarce
scenarios in the future work.

TABLE 1. EVALUATING SIMULATIONS

R
ec

ei
ve

d

F
lu

ct
u

a
ti

o
n

D
ro

p
p
ed

F
lu

ct
u

a
ti

o
n

A
lg

o
ri

th
m

R
ec

a
ll

P
re

ci
si

o
n

F
-m

ea
su

re

7
10

Ping-Echo on Pipe-Filter 1.72 4.06 Neural Network 0.85 0.8 0.82

Ping-Echo on

Microkernel
16.26 18.20

Bagging Neural
Network

0.72 0.73 0.72

Heartbeat on Pipe-Filter 5.00 3.85
Auto
MLP

0.75 0.74 0.74

Heartbeat on Microkernel

(External Component)
2.38 2.63 Neural Network 0.91 0.92 0.91

Heartbeat on Microkernel

(Internal Component)
3.53 5.14 Neural Network 0.81 0.72 0.76

V. EVALUATION OF THE SYSTEM AVAILABILITY

As supposed that architects take advantage of pattern-
based designing approaches, each subsystem will be designed
by a distinct pattern where its components completely develop
functionalities of the corresponding subsystems. While
architects are thinking about system of systems, architectures
will be produced by a hierarchical structure of patterns.

As Fig.1 depicts, SASSY analyzes the base architecture to
map its components into appropriate patterns. By the previous
assumption, software architectures are designed by a
hierarchical structure of patterns where the root pattern
distributes subsystems among its components.

As Fig.8 depicts, patterns are decomposed into several
patterns except those that occur in the leaves. In fact, the
decomposition of leaf patterns generates design patterns
whereas the design models are out of the scope of architectural
models.

Pattern1

CM1

AV1

Pattern0

CM0

AV0

….

Patternn

CMn

AVn

Root

Patternt

CMt

AVt
Patternm

CMm

AVm

Patternk

CMk

AVk

…

…
…

.

Leaf

Figure 8. Hierarchical structure of patterns

 1,1

,T

,

}{

AVT

i
T

i
AVsubsystemsi

Where

Leaf

Leaf
ofchildAV

 (1)

Let CMi and AVi represent the ith component and its
availability value respectively. Also, Tß determines the
availability of pattern ß which is earned by running
architectural tactics. By this assumption, equation (1)
formulates the availability of pattern ß.

While availability is defined as the probability of access to
services whenever authorized users request them, AVi and Ti
variables are stochastic variables. Moreover, when patterns

and their components have independent distributions, the
probability of access to all components is equal to the
production of probability of access to each component
separately. The below algorithm represents evaluation steps:

Availability Evaluation Alghorithm

1: Explore PDF parameters of components
2: Post order search hierarchical structure of patterns
3: For each pattern do

4: Fetch corresponding model from Model Library
5: Set model parameters
6: Predict availability of pattern(T variable) from the model
7: Measure total availability of pattern(AV) from components and patterns availability.
8: End Program

While we have supposed that components send requests or

respond them by specific PDFs, the self-adaptive systems
analyze components to explore basic parameters of their PDFs.
In fact, they recognize the average and variance of components
where they imitate the GPDF. Besides, they explore the
uniform distribution function value where components either
send or respond to packets with this function.

To measure the total availability, the hierarchical structure
of patterns is traced with a post order search. Therefore, the
availability of subsystems is measured before their parent.
While supposed that each subsystem is designed by an
architectural pattern, its corresponding training model is
fetched from the library model. To predict the availability of a
pattern, the PDF of that pattern and its parameters are
required. The PDF of aforementioned patterns is GPDF
because the Ping-Echo and Heartbeat messages go through the
independent components of patterns. Therefore, if Ni(µ i,σi) is
the GPDF of ith component then N (µ,σ) is the GPDF of pattern
with the following parameters [27]:

patternofComponentsi
i

patternofComponentsi
i

22
,

Finally, self-adaptive systems make use of (1) to measure

the total quality of patterns with regard to their components.
This process continues to compute the availability of the root
pattern which represents the quality of the system.

A. Case Study

Rapidminer is a platform that provides an environment for
data mining [28]. In this study, we reverse engineered this
application with the Enterprise Architect to extract its class
diagram. Then, we selected the main operator classes. As
Fig.9 depicts, this subsystem is produced with the Microkernel
and Pipes-Filters patterns. To explore the GPDF parameters
of these components, we ran sample data mining projects on a
five-core system with 2.66 GHz CPU and 4.00 GB of RAM and
stored the execution time of components. The average results
are summarized in Table2. Moreover, we enhanced the
components with 3 threads to implement a queue with 3
entries. To explore the values of DI, DE, DA, TP and TF we
have computed the delay between components. In addition, we
have supposed that ping request must be receive lower than
50000µs time. The comparison between the results of the
Ping-Echo tactic on the entire subsystem and our method
illustrated that our method can predict the availability of this
case study with a precision of more than 67%.

172

Internal Server

External

Server
Pipes-Filters

Microkernel

Figure 9. The main frame class diagram of Rapidminer

TABLE2. GPDF PARAMETERS OF MAIN COMPONENTS BASED ON MILISECOND(µS)

 Operator OperatorChain OperatorDescription ExecutionUnit

µ 20000 25320 32010 45040

σ 123 102 89 141
Uniform Distribution Values

DI DE DA TP+ TF

50 48 65 59

VI. CONCLUSIONS

Self-adaptive architectures demand on evaluating the
quality of the system in a short period of time. According to the
SASSY framework, software architecture can be completely
designed by a collection of patterns. This paper introduced an
automated quality evaluation method that composes
availability tactics and patterns with the RBML modeling
language. Simulating RBML models with PDFs will result in
useful datasets that can be applied in a data mining process to
create a library of training models. The results illustrate that
composing Ping-Echo and Heartbeat tactics with Microkernel
and Pipes-and-Filters patterns make highly accurate models.
Moreover, a mathematical formula to estimate the availability
of an architecture by using training models was suggested.
Applying the proposed method on a subsystem of the
Rapidminer application shows that it can predict its
availability with a permissible precision. In the future work, we
want to expand the aforementioned method for other
availability tactic and pattern compositions, quality attributes,
and PDFs. Moreover, our future work purpose is development
of a self-adaptive tool that endures the proposed method.

REFERENCES

[1] D. G. Firesmith, P. Capell, and et al, The method framework for
engineering system architectures, CRC Press, 2008, pp. 39-70.

[2] L. Bass, Software Architecture in Practice, 3rd ed., Addison-Wesley
Professional, 2003, pp. 87-250.

[3] B. Roy and T. Graham, Methods for evaluating software architecture: A
survey. Tech. Rep., Queen's University at Kingston, 2008.

[4] F. Bachmann, L. Bass, and M. Klein, Deriving architectural tactics: A
step toward methodical architectural design. Tech. Rep., CMU/SEI-
2003-TR-004, 2003.

[5] E. D. Nitto, C. Ghezzi, and et al, “A Journey to highly dynamic, self-
adaptive service-based applications,” Automated Software Engineering,
Vol. 15, pp. 313-341, December 2008.

[6] D. Menasce, H. Gomma, and et al, “SASSY: A Framework for Self-
Architecting Service-Oriented Systems,” Software, IEEE, Vol. 28, pp.
78-85, December 2011.

[7] S. Kim, D. Kim, and et al, “Quality-driven architecture development
using architectural tactics,” Journal of Systems and Software, Vol. 82,
pp. 1211-1231, August 2009.

[8] R. Kazman, S. J. Carrière, and S. G. Woods, “Toward a discipline of
scenario‐based architectural engineering,” Annals of Software
Engineering, Vol. 9, pp. 5-33, January 2000.

[9] S. Moaven, J. Habibi, and et al, A Fuzzy Model for Solving Architecture
Styles Selection Multi-Criteria Problem. In Proc. Computer Modeling
and Simulation. Liverpool, United Kingdom, pp. 388-393, 2008.

[10] S. Moaven, A. Kamandi, and et al, Toward a Framework for Evaluating
Heterogeneous Architecture Styles. In Proc. Intelligent Information and
Database Systems. Dong Hoi, Vietnam, pp. 155-160, 2009.

[11] P. Coad, “Object-oriented patterns,” Communications of the ACM, Vol.
35, pp. 152-159, september 1992.

[12] M. D. P. Romay, L. Fernández-Sanz, and D. Rodríguez, A Systematic
Review of Self-adaptation in Service-oriented Architectures. In Proc.
The Sixth International Conference on Software Engineering Advances.
Barcelona, Spain, pp. 331-337, 2011.

[13] R. T. Fielding, Architectural Styles and the Design of Network-Based
Software Architectures, PhD dissertation, Dept. of Computer Science,
Univ. of California, Irvine, Calif., 2000.

[14] R. Cloutier, Applicability of Patterns to Architecting Complex Systems,
PhD dissertation, Stevens Institute of Technology, 2006.

[15] N. Harrison, and P. Avgeriou, Leveraging architecture patterns to
satisfy quality attributes. In Proc. The First European Conference on
Software Architecture. Berlin, Germany, pp. 263-270, 2007.

[16] P. Trivedi, A. k. Dubey, and S. Pachori, Reliability tactics. In Proc. The
Electronics Computer Technology. Kanyakumari, pp. 167-169, 2007.

[17] S. Malek, and et al, Self-Architecting Software Systems (SASSY) from
Qos-Annotated Activity Models. In Proc. Principles of Engineering
Service Oriented Systems. Vancouver, Canada, pp. 62-69, 2009.

[18] R. B. France, D. Kim, and et al, “A UML-based pattern specification
technique,” IEEE Transaction on Software Engineering, Vol. 30, pp.
193–206, March 2004.

[19] S. Kim, D. Kim, and S. Park, Tool Support for Quality-Driven
Development of Software Architecture. In Proc. The IEEE/ACM
international conference on Automated software engineering. Antwerp,
Belgium, pp. 127-130, 2010.

[20] H. Bagheri, Y. Song, and K. Sullivan, Architectural style as an
independent variable. In Proc. The 25th IEEE/ACM International
Conference on Automated Software Engineering. Belgium, 2010.

[21] H. Bagheri, and J. S. Kevin, A Formal Approach for Incorporating
Architectural Tactics into the Software Architecture. In Proc. The 23th
International Conference on Software Engineering and Knowledge
Engineering. Miami , USA, pp. 770-775, 2011.

[22] N. B. Harrison, and P. Avgeriou, “How do architecture patterns and
tactics interact? A model and annotation,” Journal of Systems and
Software, Vol. 83, pp. 1735-1758, October 2010.

[23] P. Shanmugapriya, and R. M. Suresh, “Software Architecture
Evaluation Methods – A survey,” International Journal of Computer
Applications, Vol. 50, pp. 19-26, July 2012.

[24] L. Zhu, M. A. Babar, and R. Jeffery, Mining Patterns to Support Software
Architecture Evaluation. In Proc. The Fourth Working IEEE/IFIP
Conference on Software Architecture. 2004.

[25] J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and A. I. Verkamo.
Software metrics by architectural pattern mining. In Proc. The
International Conference on Software: Theory and Practice. Beijing,
China, pp. 325-332, 2000.

[26] A. Immonen, A method for predicting reliability and availability at the
architectural level. In Research Issues in Software Product-Lines -
Engineering and Managemen. T. Kakola and J. C. Duenas, Eds. Berlin
Heidelberg, pp. 373-422, 2006.

[27] V. Capasso, D. Bakstein, An Introduction to Continues Time Stochastic
Processes: theory, models, and applications to finance, biology, and
medicine, 2rd ed, Birkhauser, 2012, pp. 28-30.

[28] M. Hofmann, R. Klinkenberg, RapidMiner: Data Mining Use Case and
Business Analytics Applications, 1rd ed., CRC Press, 2013, pp. 3-19.

[29] S., Moaven, J., Habibi, H., Ahmadi, and A., Kamandi, A decision support
system for software architecture-style selection. In Proc. SEKE. Boston,
USA, pp. 147-151. 2009

173

