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Abstract

Neural population equations such as neural mass or field models are widely used to study

brain activity on a large scale. However, the relation of these models to the properties of sin-

gle neurons is unclear. Here we derive an equation for several interacting populations at the

mesoscopic scale starting from a microscopic model of randomly connected generalized

integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the

same type but different populations account for different neuron types. The stochastic popu-

lation equations that we find reveal how spike-history effects in single-neuron dynamics

such as refractoriness and adaptation interact with finite-size fluctuations on the population

level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical

behavior of the population activities obtained frommicroscopic simulations of a full spiking

neural network model. The theory describes nonlinear emergent dynamics such as finite-

size-induced stochastic transitions in multistable networks and synchronization in balanced

networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to

rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which

allows us to predict spontaneous population activities as well as evoked responses to tha-

lamic input. Our theory establishes a general framework for modeling finite-size neural pop-

ulation dynamics based on single cell and synapse parameters and offers an efficient

approach to analyzing cortical circuits and computations.

Author summary

Understanding the brain requires mathematical models on different spatial scales. On the

“microscopic” level of nerve cells, neural spike trains can be well predicted by phenome-

nological spiking neuron models. On a coarse scale, neural activity can be modeled by

phenomenological equations that summarize the total activity of many thousands of neu-

rons. Such population models are widely used to model neuroimaging data such as EEG,

MEG or fMRI data. However, it is largely unknown how large-scale models are connected

to an underlying microscale model. Linking the scales is vital for a correct description of
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rapid changes and fluctuations of the population activity, and is crucial for multiscale

brain models. The challenge is to treat realistic spiking dynamics as well as fluctuations

arising from the finite number of neurons. We obtained such a link by deriving stochastic

population equations on the mesoscopic scale of 100–1000 neurons from an underlying

microscopic model. These equations can be efficiently integrated and reproduce results of

a microscopic simulation while achieving a high speed-up factor. We expect that our

novel population theory on the mesoscopic scale will be instrumental for understanding

experimental data on information processing in the brain, and ultimately link microscopic

and macroscopic activity patterns.

Introduction

When neuroscientists report electrophysiological, genetic, or anatomical data from a cortical

neuron, they typically refer to the cell type, say, a layer 2/3 fast-spiking interneuron, a parval-

bumin-positive neuron in layer 5, or a Martinotti cell in layer 4, together with the area, say pri-

mary visual cortex or somatosensory cortex [1–4]. Whatever the specific taxonomy used, the

fact that a taxonomy is plausible at all indicates that neurons can be viewed as being organized

into populations of cells with similar properties. In simulation studies of cortical networks

with spiking neurons, the number of different cell types, or neuronal populations, per cortical

column ranges from eight [5] to about 200 [6] with 31’000 to 80’000 simulated neurons for one

cortical column, but larger simulations of several columns adding up to a million neurons

(and 22 cells types) have also been performed [7]. In the following, we will refer to a model

where each neuron in each population is simulated explicitly by a spiking neuron model as a

microscopic model.

On a much coarser level, neural mass models [8–10], also called field models [11–13], popu-

lation activity equations [14], rate models [15], or Wilson-Cowan models [16] represent the

activity of a cortical column at location x by one or at most a few variables, such as the mean

activity of excitatory and inhibitory neurons located in the region around x. Computational

frameworks related to neural mass models have been used to interpret data from fMRI [17, 18]

and EEG [9]. Since neural mass models give a compact summary of coarse neural activity, they

can be efficiently simulated and fit to experimental data [17, 18].

However, neural mass models have several disadvantages. While the stationary state of neu-

ral mass activity can be matched to the single-neuron gain function and hence to detailed neu-

ron models [11, 14, 19–22], the dynamics of neural mass models in response to a rapid change

in the input does not correctly reproduce a microscopic simulation of a population of neurons

[14, 22, 23]. Second, fluctuations of activity variables in neural mass models are either absent

or described by an ad hoc noise model. Moreover, the links of neural mass models to local field

potentials are difficult to establish [24]. Because a systematic link to microscopic models at the

level of spiking neurons is missing, existing neural mass models must be considered as heuris-

tic phenomenological, albeit successful, descriptions of neural activity.

In this paper we address the question of whether equations for the activity of populations,

similar in spirit but not necessarily identical to Wilson-Cowan equations [16], can be systemat-

ically derived from the interactions of spiking neurons at the level of microscopic models. At

the microscopic level, we start from generalized integrate-and-fire (GIF) models [14, 25, 26]

because, first, the parameters of such GIF models can be directly, and efficiently, extracted

from experiments [27] and, second, GIF models can predict neuronal adaptation under step-

current input [28] as well as neuronal firing times under in-vivo-like input [26]. In our

Mesoscopic dynamics of interacting populations of spiking neurons
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modeling framework, the GIF neurons are organized into different interacting populations.

The populations may correspond to different cell types within a cortical column with known

statistical connectivity patterns [3, 6]. Because of the split into different cell types, the number

of neurons per population (e.g., fast-spiking inhibitory interneurons in layer 2/3) is finite and

in the range of 50–2000 [3]. We call a model at the level of interacting cortical populations of

finite size amesoscopicmodel. The mathematical derivation of the mesoscopic model equations

from the microscopic model (i.e. network of generalized integrate-and-fire neurons) is the

main topic of this paper. The small number of neurons per population is expected to lead to

characteristic fluctuations of the activity which should match those of the microscopic model.

The overall aims of our approach are two-fold. As a first aim, this study would like to

develop a theoretical framework for cortical information processing. The main advantage of a

systematic link between neuronal parameters and mesoscopic activity is that we can quantita-

tively predict the effect of changes of neuronal parameters in (or of input to) one population

on the activation pattern of this as well as other populations. In particular, we expect that a

valid mesoscopic model of interacting cortical populations will become useful to predict the

outcome of experiments such as optogenetic stimulation of a subgroup of neurons [29–31]. A

better understanding of the activity patterns within a cortical column may in turn, after suit-

able postprocessing, provide a novel basis for models of EEG, fMRI, or LFP [9, 17, 18, 24].

While we cannot address all these points in this paper, we present an example of nontrivial

activity patterns in a network model with stochastic switching between different activity states

potentially linked to perceptual bistability [32–34] or resting state activity [18].

As a second aim, this study would like to contribute to multiscale simulation approaches

[35] in the neurosciences by providing a new tool for efficient and consistent coarse-grained

simulation at the mesoscopic scale. Understanding the computations performed by the ner-

vous system is likely to require models on different levels of spatial scales, ranging from phar-

macological interactions at the subcellular and cellular levels to cognitive processes at the level

of large-scale models of the brain. Ideally, a modeling framework should be efficient and con-

sistent across scales in the following sense. Suppose, for example, that we are interested in neu-

ronal membrane potentials in one specific group of neurons which receives input from many

other groups of neurons. In a microscopic model, all neurons would be simulated at the same

level; in a multi-scale simulation approach, only the group of neurons where we study the

membrane potentials is simulated at the microscopic level, whereas the input from other

groups is replaced by the activity of the mesoscopic model. A multiscale approach is consistent,

if the replacement of parts of the microscopic simulation by a mesoscopic simulation does not

lead to any change in the observed pattern of membrane potentials in the target population.

The approach is efficient if the change of simulation scale leads to a significant speed-up of

simulation. While we do not intend to present a systematic comparison of computational per-

formance, we provide an example and measure the speed-up factor between mesoscopic and

microscopic simulation for the case of a cortical column consisting of eight populations [5].

Despite of its importance, a quantitative link between mesoscopic population models and

microscopic neuronal parameters is still largely lacking. This is mainly due to two obstacles:

First, in a cortical column the number of neurons of the same type is small (50–2000 [3]) and

hence far from the N!1 limit of classic “macroscopic” theories in which fluctuations vanish

[14, 36–38]. Systematic treatments of finite-size networks using methods from statistical phys-

ics (system size expansion [39], path integral methods [40, 41], neural Langevin equations

[42–45]) have so far been limited to simplified Markov models that lack, however, a clear con-

nection to single neuron physiology.

Second, spikes generated by a neuron are generally correlated in time due to refractoriness

[46], adaptation and other spike history dependencies [28, 47–51]. Therefore spike trains are

Mesoscopic dynamics of interacting populations of spiking neurons
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often not well described by an (inhomogeneous) Poisson process, especially during periods of

high firing rates [46]. As a consequence, the mesoscopic population activity (i.e. the sum of

spike trains) is generally not simply captured by a Poisson model either [52–54], even in the

absence of synaptic couplings [55]. These non-Poissonian finite-size fluctuations on the meso-

scopic level in turn imply temporally correlated synaptic input to other neurons (colored

noise) that can drastically influence the population activity [53, 54, 56] but which is hard to

tackle analytically [57]. Therefore, most theoretical approaches rely on a white-noise or Pois-

son assumption to describe the synaptic input [58–62], thereby neglecting temporal correla-

tions caused by spike-history dependencies in single neuron activity. Here, we will exploit

earlier approaches to treating refractoriness [23] and spike frequency adaptation [55, 63] and

combine these with a novel treatment of finite-size fluctuations.

Our approach is novel for several reasons. First, we use generalized integrate-and-fire mod-

els that accurately describe neuronal data [25, 26] as our microscopic reference. Second, going

beyond earlier studies [58–60, 64], we derive stochastic population equations that account for

both strong neuronal refractoriness and finite population size in a consistent manner. Third,

our theory has a non-perturbative character as it neither assumes the self-coupling (refractori-

ness and adaptation) to be weak [65] nor does it hinge on an expansion around the N!1
solution for large but finite N [55, 66, 67]. Thus, it is also valid for relatively small populations

and non-Gaussian fluctuations. And forth, in contrast to linear response theories [55, 68–72],

our mesoscopic equations work far away from stationary states and reproduce large fluctua-

tions in multistable networks.

In the RESULTS section we present our mesoscopic population equations, suggest an efficient

numerical implementation, and illustrate the main dynamical effects via a selected number of

examples. To validate the mesoscopic theory we numerically integrate the stochastic differen-

tial equations for the mesoscopic population activities and compare their statistics to those of

the population activities derived from a microscopic simulation. A detailed account of the der-

ivation is presented in the METHODS section. In the discussion section we point out limitations

and possible applications of our mesoscopic theory.

Results

We consider a structured network of interacting homogeneous populations. Homogeneous

here means that each population consists of spiking neurons with similar intrinsic properties

and random connectivity within and between populations. To define such populations, one

may think of grouping neurons into genetically-defined cell classes of excitatory and inhibitory

neurons [4], or, more traditionally, into layers and cell types (Fig 1A). For example, pyramidal

cells in layer 2/3 of rodent somatosensory cortex corresponding to whisker C2 form a popula-

tion of about 1700 neurons [3]. Pyramidal cells in layer 5 of the same cortical column form

another one (*1200 neurons [3]), fast-spiking inhibitory cells in layer 2/3 a third one (*100

neurons [3]) and non-fast-spiking inhibitory cells in layer 2/3 a fourth one (*130 neurons

[3]), and so on [3, 6, 73]. We suppose that the parameters of typical neurons from each popula-

tion [27, 73, 74], the number of neurons per population [3, 73] and the typical connection

probabilities [5] and strengths within and between populations [73, 75–79] are known from

experimental data. The resulting spiking neural network can be simulated on a cellular level by

numerical integration of the spiking dynamics of each individual neuron (Fig 1B). In the fol-

lowing, we will refer to this level of description as themicroscopic level. Apart from being com-

putationally expensive, the full microscopic network dynamics is highly complex and hence

difficult to understand. To overcome these shortcomings, we have developed a new mean-field

description for the mesoscopic dynamics of interacting populations.

Mesoscopic dynamics of interacting populations of spiking neurons
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Mesoscopic population equations

A population α of size Nα is represented by its population activity Aa
NðtÞ (Greek superscripts

label the populations, Fig 1C) defined as

Aa
NðtÞ ¼

1

Na

X

Na

i¼1

sai ðtÞ: ð1Þ

Fig 1. Illustration of population models on themicroscopic andmesoscopic level. (A) Cortical columnmodel [5] with* 80’000
neurons organized into four layers (L2/3, L4, L5, L6) each consisting of an excitatory (“e”) and an inhibitory (“i”) population. On the
microscopic level, each individual neuron is described by a generalized integrate-and-fire (GIF) model with membrane potential ua

i ðtÞ,
dynamic threshold W

a

i ðtÞ and conditional intensity faðua
i ðtÞ � W

a

i ðtÞÞ. Inset: GIF dynamics for a specific neuron i of population L4e (α = L4e).
The neuron receives spikes from neurons in L4e, L4i and L6e, which drive the membrane potential ua

i ðtÞ. Spikes are elicited stochastically by
a conditional intensity la

i ðtÞ ¼ faðua
i ðtÞ � W

a

i ðtÞÞ that depends on the instantaneous difference between ua
i ðtÞ and the dynamic threshold W

a

i ðtÞ.
Spike feedback (voltage reset and spike-triggered threshold movement) gives rise to spike history effects like refractoriness and adaptation.
(B) Spike raster plot of the first 200 neurons of each population. The panels correspond to the populations in (A). Layer 4 and 6 are
stimulated by a step current during the interval (0.06s, 0.09s) mimicking thalamic input (gray bars). Solid lines show the population activities
Aa

NðtÞ computed with temporal resolution Δt = 0.5 ms, cf. Eq (2). The activities are stochastic due to the finite population size. (C) On the
mesoscopic level, the model reduces to a network of 8 populations, each represented by its population activity Aa

NðtÞ. Inset: The mesoscopic

model generates realizations of Aa
NðtÞ from an expected rate �AaðtÞ, which is a deterministic functional of the past population activities. (D) A

corresponding simulation of the mesoscopic model yields population activities with the same temporal statistics as in (B).

https://doi.org/10.1371/journal.pcbi.1005507.g001
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Here, sai ðtÞ ¼
P

kdðt � tai;kÞ with the Dirac δ-function denotes the spike train of an individual

neuron i in population α with spike times tai;k. Empirically, the population activity is measured

with a finite temporal resolution Δt. In this case, we define the coarse-grained population activ-

ity as

Aa
NðtÞ ¼

DnaðtÞ
NaDt

; ð2Þ

where Δnα(t) is the number of neurons in population α that have fired in a time bin of size Δt
starting at time t. The two definitions converge in the limit Δt! 0.

An example of population activities derived from spiking activity in a cortical circuit model

under a step current stimulation is shown in Fig 1B. To bridge the scales between neurons and

populations, the corresponding mean-field model should ideally result in the same population

activities as obtained from the full microscopic model (Fig 1D). Because of the stochastic

nature of the population activities, however, the qualifier “same” has to be interpreted in a sta-

tistical sense. The random fluctuations apparent in Fig 1B and 1D are a consequence of the

finite number of neurons because microscopic stochasticity is not averaged out in the finite

sum in Eq (1). This observation is important because estimated neuron numbers reported in

experiments on local cortical circuits are relatively small [3, 73]. Therefore, a quantitatively

valid population model needs to account for finite-size fluctuations. As mentioned above, we

will refer to the population-level with finite size populations (N* 50 to 2000 per population)

as themesoscopic level. In summary, we face the following question: is it possible to derive a

closed set of evolution equations for the mesoscopic variables Aa
NðtÞ that follow the same statis-

tics as the original microscopic model?

To address this question, we describe neurons by generalized integrate-and-fire (GIF)

neuron models (Fig 1A (inset) and METHODS, Sec. “Generalized integrate-and-fire

model”) with escape noise [14]. In particular, neuron i of population α is modeled by a leaky

integrate-and-fire model with dynamic threshold [49, 80]. The variables of this model are the

membrane potential ua
i ðtÞ and the dynamic threshold W

a

i ðtÞ ¼ uth þ
R t

�1 y
aðt � t0Þsai ðt0Þ dt0

(Fig 1A, inset), where uth is a baseline threshold and θα(t) is a spike-triggered adaptation kernel

or filter function that accounts for adaptation [26, 47, 81–84] and other spike-history effects

[14, 84] via a convolution with the neurons spike train sai ðtÞ. In other words, the dynamic

threshold depends on earlier spikes tai;k of neuron i: W
a

i ðtÞ � W
aðt; tai;k < tÞ. Spikes are elicited

stochastically depending on the present state of the neuron (Fig 1A, inset). Specifically, the

probability that neuron i fires a spike in the next time step [t, t + Δt] is given by λi(t)Δt, where
l
a

i ðtÞ is the conditional intensity of neuron i (also called conditional rate or hazard rate):

l
a

i ðtÞ ¼ f a ua
i ðtÞ � W

aðt; tai;k < tÞ
� �

ð3Þ

with an exponential function f aðxÞ ¼ caexpðx=Da

uÞ. Analysis of experimental data has shown

that the “softness” parameter Da

u of the threshold is in the range of 1 to 5 mV [85]. The parame-

ter cα can be interpreted as the instantaneous rate at threshold.

Besides the effect of a spike on the threshold as mediated by the filter function θα(t), a

spike also triggers a change of the membrane potential. In the GIF model (METHODS, Sec.

“Generalized integrate-and-fire model”), the membrane potential ua
i ðtÞ is reset after spiking

to a reset potential ur, to which u
a
i ðtÞ is clamped for an absolute refractory period tref. Abso-

lute refractoriness is followed by a period of relative refractoriness, where the conditional

intensity Eq (3) is reduced. This period is determined by the relaxation of the membrane

Mesoscopic dynamics of interacting populations of spiking neurons
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potential from the reset potential to the unperturbed or “free” potential, denoted h(t), which

corresponds to the membrane potential dynamics in the absence of resets.

The GIF model accurately predicts spikes of cortical neurons under noisy current stimula-

tion mimicking in-vivo like input [25, 26] and its parameters can be efficiently extracted from

single neuron recordings [26, 27]. Variants of this model have also been suggested that explic-

itly incorporate biophysical properties such as fast sodium inactivation [86, 87], conductance-

based currents [88] and synaptically-filtered background noise [89].

Mean-field approximations. In order to derive a mesoscopic mean-field theory for popu-

lations of GIF neurons, we first approximate the conditional intensity la

i ðtÞ of an individual

neuron by an effective rate la

Aðtĵtai Þ that only depends on its last spike time t̂ai and on the his-

tory of the population activity Aa
Nðt0Þ, t0 < t (as expressed by the subscript “A”). This is called

the quasi-renewal approximation [63]. Taking into account the dependence on the last spike is

particularly important because of neuronal refractoriness.

To obtain such a quasi-renewal description we make two approximations. Firstly, we

approximate the random connectivity by an effective full connectivity with proportionally

scaled down synaptic weights (“mean-field approximation”). As a result, all neurons of the

same population are driven by identical synaptic input (see METHODS). This implies that for all

neurons that had the same last spike time, the time course of the membrane potential is identi-

cal, ua
i ðtÞ � uAðt; t̂ai Þ. Secondly, we make the quasi-renewal approximation for GIF neurons

[63], which replaces the threshold ϑi(t) by an effective threshold W
a

Aðt; t̂ai Þ. Again, the effective
threshold only depends on the last spike time and the history of the population activity. As a

final result we obtain the conditional intensity for all neurons with a given last spike time t̂ as

l
a

AðtĵtÞ ¼ f a ua
Aðt; t̂Þ � W

a

Aðt; t̂Þ
� �

ð4Þ

(Fig 1C, inset). A comparison of Eq (4) with Eq (3) shows that the explicit dependence on all

past spike times tai;k < t̂ of a given neuron i has disappeared. Instead, the conditional intensity

now only depends on the last firing time t̂ and the past population activity Aa
Nðt0Þ, t0 < t. To

keep the notation simple, we omit in the following the population label α at all quantities.

Finite-size mean field theory. In this section, we present the main theoretical results with

a focus on the finite-size effects arising from neuronal refractoriness. So far, we have effectively

reduced the firing probability of a neuron to a function lAðtĵtÞ that only depends on its last

spike time t̂ (Fig 2A). This allows us to describe the evolution of the system by the density of

the last spike time [23, 68, 88, 89]. Because the last spike time characterizes the refractory state

of the neuron, this density will also be referred to as the refractory density. Before we describe

the novel finite-N theory, it is instructive to first recall the population equations for the case of

infinite N (Fig 2B and 2C). Let us look at the population of neurons at time t and ask the fol-

lowing question: What fraction of these neurons has fired their last spike between t̂ and

t̂ þ dt̂? This fraction is given by the number of neurons Aðt̂Þdt̂ that have fired in this interval

multiplied by the survival probability SðtĵtÞ that such a neuron has not fired again until time t.

In other words, the product Q1ðt; t̂Þ ¼ SðtĵtÞAðt̂Þ evaluated at time t represents the density of

last spike times t̂ . Because a neuron with last spike time t̂ emits a spike with rate lAðtĵtÞ, the
total population activity at time t is given by the integral [23]

AðtÞ ¼
Z t

�1
lAðtĵtÞSðtĵtÞAð̂tÞ dt̂ : ð5Þ

This situation is depicted in Fig 2B. At the same time, the survival probability SðtĵtÞ of neurons

Mesoscopic dynamics of interacting populations of spiking neurons
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Fig 2. How fluctuations of the refractory density effect the population activity. (A) The conditional intensity lAðtĵtÞ shown as a function of t̂
(left) and t (right). Typically, the conditional intensity increases as the time since the last spike grows and the neuron recovers from refractoriness.

(B) ForN!1, the population activity A(t) (hatched bin) results from lAðtĵtÞ averaged over the last spike times t̂ with a weighting factor SðtĵtÞAðt̂Þ
(blue) corresponding to the density of last spike times. Here, SðtĵtÞ is the survival probability. (C) The last spike times t̂ are discretized into time
bins. In the bin immediately before t, a large fluctuation (blue peak) was induced by forcing some of the neurons with last spike time around t* to
fire. At time t, the density of last spike times (blue) has a hole and a peak of equal probability mass. The red line shows the pseudo-density

S0ðtĵtÞAðt̂Þ that would be obtained if we had used the survival probability S0ðtĵtÞ of the unperturbed system. The peak at t̂ ¼ t � Dt does not
contribute to the activity A(t) because of refractoriness, but the hole at t̂ ¼ t� contributes with a non-vanishing rate (A), implying a reduction of A(t)

(hatched bin). (D) For a finite population size (hereN = 400), the refractory density SNðtĵtÞAN ð̂tÞ (blue), determines the expectation �AðtÞ (hatched
bin) of the fluctuating activity AN(t). Analogous to the forced fluctuation in (C), the finite-size fluctuations are associated with negative and positive

deviations in the refractory density (holes and overshoots) compared to the non-normalized density SðtĵtÞANðt̂Þ (red line) that would be obtained if

only the mean SðtĵtÞ and not the exact survival fraction SNðtĵtÞ had been taken into account. The variance of the deviations is proportional to vðt; t̂Þ
given by Eq (12). As a function of t̂, vðt; t̂Þ shows the range of t̂ where deviations are most prominent (bottom). (E, F) Given the number of neurons

firing in the bin ½̂t; t̂ þ DtÞ, Dnð̂tÞ, the fraction of neurons that survive until time t is shown for ten realizations (gray lines, one highlighted in black for

clarity). The mean fraction equals the survival probability SðtĵtÞ (red line, top panel). The variance of the number of survived neurons at time t,

vðt; t̂ÞNDt, is shown at the bottom (red line: semi-analytic theory, Eq (12); circles: simulation). (E) Dnð̂tÞ ¼ 5, (F) Dnð̂tÞ ¼ 40.

https://doi.org/10.1371/journal.pcbi.1005507.g002
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that fired their last spike at t̂ decays according to

@SðtĵtÞ
@t

¼ �lAðtĵtÞSðtĵtÞ ð6Þ

with initial condition Sð̂t ĵtÞ ¼ 1 (Fig 2E and 2F red line). Eqs (5) and (6) define the population

dynamics for N!1 [16, 23, 89].

In the limit N!1, the dynamics of AN(t) = A(t) is deterministic because microscopic

noise averages out. Nevertheless, the infinite-N case is useful to understand the main effect of

fluctuations in the finite-N case. To this end, let us perform the following thought experi-

ment: in a small time interval of length Δt immediately before time t, we induce a large, posi-

tive fluctuation in the activity by forcing many of the neurons with last spike close to a given

time t̂ ¼ t� to fire a spike (Fig 2C). As a result, the density of last spike times at time t exhibits

a large peak just prior to time t corresponding to the large number of neurons that have been

forced to fire in the time interval [t − Δt, t). At the same time, these neurons leave behind a

“hole” in the density around t̂ ¼ t�. Because the number of neurons is conserved, this hole

exactly balances the area under the peak, and hence, the density of last spike times remains

normalized. However, the two fluctuations (the hole and the peak) have two different effects

on the population activity after time t. Specifically, the hole implies that some of the neurons

which normally would have fired at time t with a nonzero rate λA(t|t�)> 0 are no longer

available. Moreover, neural refractoriness implies that neurons which fired in the peak have

a small or even vanishing rate λA(t|t − Δt)� 0 at time t. As a result, the population activity is

reduced shortly after the perturbation (Fig 2C). This example highlights the importance of

the normalization of the refractory density as well as the state-dependence of the firing prob-

ability for understanding the effect of fluctuations. In particular, the normalization condition

and neuronal refractoriness imply that a positive fluctuation of the population activity is suc-

ceeded by a negative fluctuation, and vice versa. This behavior is characteristic for spiking

neurons, which are known to exhibit negative auto-correlations of their mean-centered

spike trains at short time lags (see e.g. [14, 53, 90]).

We now turn to the finite-size case. In this case, it is advantageous to discretize the last

spike times into small bins of size Δt that begin at the grid points t̂k ¼ kDt, k 2 Z. Further-
more, we adopt the definition of the coarse-grained population activity, Eq (2), i.e. we consider

the number of spikes Dnðt̂ kÞ in the time bin ½̂t k; t̂ k þ DtÞ. Instead of the survival probability,

we introduce the fraction of survived neurons SNðtĵtkÞ, t > t̂k, such that SNðtĵtkÞDnðt̂ kÞ is the
number of neurons from bin k that have not fired again until time t (Fig 2D and 2E). Dividing

this number by NΔt and taking the continuum limit Δt! 0, yields the density of last spike

times QNðt; t̂Þ ¼ SNðtĵtÞANðt̂Þ in the case of finite N. Since all neurons are uniquely identified

by their last spike time, this density is normalized [23]

1 ¼
Z t

�1
SNðtĵtÞANðt̂Þ dt̂ : ð7Þ

We note that differentiating this equation with respect to time t yields the population activity

ANðtÞ ¼ �
R t

�1 @tSNðtĵtÞANðt̂Þ dt̂ as the formal finite-size analog of Eq (5). The change of the

survival fraction @tSNðtĵtÞ, however, is not deterministic anymore as in Eq (6) but follows a

stochastic jump process (Fig 2E and 2F): In the time step [t, t + Δt), the number of survived

neurons for a given bin t̂k in the past, SNðtĵtkÞDnðt̂ kÞ, makes a downstep Xðt; t̂kÞ that corre-
sponds to the number of neurons that fire in the group with last spike time t̂k. For sufficiently

small Δt, this number is Poisson-distributed with mean lAðtĵt kÞSNðtĵtkÞDnðt̂ kÞDt. Hence, the
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fraction of survived neurons SNðtĵtkÞ evolves in time like a random stair case according to the

update rule SNðt þ DtĵtkÞ ¼ SNðtĵtkÞ � Xðt; t̂kÞ=Dnðt̂kÞ. The activity AN(t) = Δn(t)/(NΔt) in the

time bin starting at t is given by the sum of all the downsteps, DnðtÞ ¼Pt̂ k<t
Xðt; t̂kÞ, where

the sum runs over all possible last spike times. This updating procedure represents the evolu-

tion of the density of last spike times, QNðt; t̂Þ ¼ SNðtĵtÞANðt̂Þ, for finite N under the quasi-

renewal approximation (cf. METHODS, Eqs (41) and (42)). Although it is possible to simulate

such a finite-N stochastic process using the downsteps Xðt; t̂kÞ, this process will not yield the
reduced mesoscopic dynamics that we are looking for. The reason is that the variable SNðtĵt kÞ
refers to the subpopulation of neurons that fired in the small time bin at t̂k. For small Δt, the
size of the subpopulation, Dnðt̂ kÞ, is a small number, much smaller than N. In particular, in the

limit Δt! 0, the simulation of SNðtĵtkÞDnðt̂ kÞ for all t̂k in the past would be as complex as the

original microscopic dynamics of N neurons. Therefore we must consider such a simulation as

a microscopic simulation. To see the difference to a mescoscopic simulation, we note that the

population activity AN(t) involves the summation of many random processes (the downsteps

Xðt; t̂kÞ) over many small bins. If we succeed to simulate directly AN(t) from an underlying

rate dynamics that depends deterministically on the past activities AN(t
0), t0 < t, we will have a

truely mescoscopic simulation. How to arrive at a formulation directly at the level of mescoco-

pic quantities will be the topic of the rest of this section.

The crucial question is whether the stochasticity of the many different random processes

fSNðtĵtkÞgt̂ k<t can be reduced to a single effective noise process that drives the dynamics on the

mesoscopic level. To this end, we note that for small Δt and given history Dnðt̂kÞ, t̂ k < t, each

bin t̂k contributes with rate lAðtĵtkÞSNðtĵtkÞDnðt̂ kÞ a Poisson random number of spikes to the

total activity at time t (Fig 2D). Therefore, the total number of spikes Δn(t) is Poisson distrib-

uted with mean N �AðtÞDt, where �AðtÞ is the expected population rate

�AðtÞ ¼
Z t

�1
lAðtĵtÞSNðtĵtÞANðt̂Þ dt̂ : ð8Þ

Here, the integral extends over all last spike times t̂ up to but not including time t. Eq (8) still

depends on the stochastic variables fSNðtĵtkÞgt̂ k<t . The main strategy to remove this micro-

scopic stochasticity is to use the evolution of the survival probability SðtĵtÞ, given by Eq (6),

and the normalization condition Eq (7). For finite N, the quantity SðtĵtkÞ is formally defined

as the solution of Eq (6) and can be interpreted as the mean of the survival fraction SNðtĵtkÞ
(Fig 2E and 2F, see METHODS). Importantly, SðtĵtkÞ is a valid mesoscopic quantity since it

only depends on the mesoscopic population activity AN (through lAðtĵt kÞ, cf. Eq (6)), and
not on a specific microscopic realization. Combining the survival probability SðtĵtÞ with the

actual history of the mesoscopic activity ANðt̂Þ for t̂ < t yields the pseudo-density

Qðt; t̂kÞ ¼ SðtĵtkÞANðt̂kÞ. In contrast to the macroscopic density Q1ðt; t̂Þ ¼ SðtĵtÞAðt̂Þ in Eq

(5) or the microscopic density QNðt; t̂kÞ ¼ SNðtĵtkÞANðt̂kÞ, the pseudo-density is not normal-

ized. However, the pseudo-density Sðtĵt kÞANðt̂ kÞ has the advantage that it is based on meso-

scopic quantities only.

Let us split the survival fraction into the mesoscopic quantity SðtĵtkÞ and a microscopic

deviation, SNðtĵtkÞ ¼ SðtĵtkÞ þ dSðtĵt kÞ. In analogy to the artificial fluctuation in our thought

experiment, endogenously generated fluctuations in the finite-size system are accompanied by

deviations of the microscopic density SNðtĵtkÞANðt̂kÞ from the pseudo-density SðtĵtkÞANðt̂kÞ
(Fig 2C and 2D, red line). A negative deviation (dSðtĵtkÞ < 0) can be interpreted as a hole and

a positive deviation (dSðtĵtkÞ > 0) as an overshoot (compare red curve and blue histogram in
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Fig 2D). Similar to the thought experiment, the effect of these deviations needs to be weighted

by the conditional intensity lAðtĵtkÞ in order to arrive at the population activity. Eq (8) yields

�AðtÞ ¼
Z t

�1
lAðtĵtÞSðtĵtÞANðt̂Þ dt̂ þ

Z t

�1
lAðtĵtÞdSðtĵtÞANðt̂Þ dt̂ : ð9Þ

Analogously, the normalization of the refractory density, Eq (7), can be written as

1 ¼
Z t

�1
SðtĵtÞANðt̂Þ dt̂ þ

Z t

�1
dSðtĵtÞANðt̂Þ dt̂ : ð10Þ

We refer to the second integral in Eq (9) as a correction term because it corrects for the error

that one would make if one sets SN = S in Eq (8). This correction term represents the overall

contribution of the holes (δS< 0) and overshoots (δS> 0) to the expected activity.

To eliminate the microscopic deviations dSðtĵtÞ in Eq (9) we use the normalization condi-

tion, Eq (10). This is possible because the correction term is tightly constrained by the sum of

all holes and overshoots,
R t

�1 dSðtĵtÞANðt̂Þ dt̂ , which by Eq (10), is completely determined by

the past mesoscopic activities. Eqs (9) and (10) suggest to make the deterministic ansatz
R t

�1 lAdSðtĵtÞANðt̂Þ dt̂ � LðtÞ
R t

�1 dSðtĵtÞANðt̂Þ dt̂ for the correction term. As shown in METH-

ODS (“Mesoscopic population equations”), the optimal rate Λ(t) that minimizes the mean

squared error of this approximation is given by

LðtÞ ¼

Z t

�1
lAðtĵtÞvðt; t̂Þ dt̂
Z t

�1
vðt; t̂Þ dt̂

: ð11Þ

Here, the quantity vðt; t̂Þ, called variance function, obeys the differential equation
@v

@t
¼ �2lAðtĵtÞvþ lAðtĵtÞSðtĵtÞANðt̂Þ ð12Þ

with initial condition vðt̂ ; t̂Þ ¼ 0 (see METHODS, Eq (51). Importantly, the dynamics of v

involves mesoscopic quantities only, and hence v is mesoscopic. As shown in METHODS and

illustrated in Fig 2D (bottom), we can interpret vðt; t̂ kÞNDt as the variance of the number of

survived neurons, SNðtĵt kÞDnðt̂kÞ. To provide an interpretation of the effective rate Λ(t) we

note that, for fixed t, the normalized variance vðt; t̂Þ=
R t

�1 vðt; t̂Þ dt̂ is a probability density
over t̂ . Thus, the effective rate Λ(t) can be regarded as a weighted average of the conditional

intensity lAðtĵtÞ that accounts for the expected amplitude of the holes and overshoots.

Using the effective rate Λ(t) in Eq (9) results in the expected activity

�AðtÞ ¼
Z t

�1
lAðtĵtÞSðtĵtÞANðt̂Þ dt̂ þ LðtÞ 1�

Z t

�1
SðtĵtÞANðt̂Þ dt̂

� �

: ð13Þ

Looking at the structure of Eq (13), we find that the first term is the familiar population inte-

gral known from the infinite-N case, Eq (5). The second term is a correction that is only pres-

ent in the finite-N case. In fact, in the limit N!1, the pseudo-density SðtĵtÞANðt̂Þ converges
to the macroscopic density SðtĵtÞAð̂tÞ, which is normalized to unity. Hence the correction

term vanishes and we recover the population Eq (5) for the infinite system.

To obtain the population activity we consider an infinitesimally small time scale dt such

that the probability of a neuron to fire during an interval [t, t + dt) is much smaller than one,

i.e. �AðtÞdt � 1. On this time scale, the total number of spikes dn(t) is an independent, Poisson
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distributed random number with mean �AðtÞNdt, where �AðtÞ is given by Eq (13). From Eq (2)

thus follows the population activity

ANðtÞ ¼
1

N

dnðtÞ
dt

; dnðtÞ � Pois½�AðtÞNdt�: ð14Þ

Alternatively, the population activity can be represented as a δ-spike train, or “shot noise”,
ANðtÞ ¼ 1

N

P

kdðt � tpop;kÞ, where ftpop;kgk2Z is a random point process with a conditional inten-

sity function lpopðtjHtÞ ¼ N �AðtÞ. Here, the conditionHt denotes the history of the point pro-

cess {tpop,k} up to (but not including) time t, or equivalently the history of the population

activity ANðt̂Þ for t̂ < t. The conditional intensity means that the conditional expectation of

the population activity is given by hANðtÞijHt ¼ �AðtÞ, which according to Eq (13) is indeed a

deterministic functional of the past activities. Finally, we note that the case of large but finite

populations permits a Gaussian approximation, which yields the more explicit form

ANðtÞ ¼ �AðtÞ þ
ffiffiffiffiffiffiffiffiffi

�AðtÞ
N

r

xðtÞ: ð15Þ

Here, ξ(t) is a Gaussian white noise with correlation function hξ(t)ξ(t0)i = δ(t − t0). The correla-
tions of ξ(t) are white because spikes at t0 and t> t0 are independent given the expected popula-

tion activity �AðtÞ at time t. However, we emphasize that the expected population activity �AðtÞ
does include information on the past fluctuations ξ(t0) at time t0. Therefore the fluctuations of

the total activity AN(t) are not white but a sum of a colored process �AðtÞ and a white-noise pro-
cess ξ(t) [55]. The white noise gives rise to the delta peak of the auto-correlation function at

zero time lag which is a standard feature of any spike train, and hence also of AN(t). The col-

ored process �AðtÞ, on the other hand, arises from Eq (13) via a filtering of the actual popula-

tion activity ANðt̂Þ which includes the past fluctuations xðt̂Þ. For neurons with refractoriness,
�AðtÞ is negatively correlated with recent fluctuations xðt̂Þ (cf. the thought experiment of Fig

2B) leading to a trough at small time lags in the spike auto-correlation function [14, 53, 90].

The set of coupled Eqs (6), (12), (11)–(14) constitute the desired mesoscopic population

dynamics and is the main result of the paper. The dynamics is fully determined by the history

of the mesoscopic population activity AN. The Gaussian white noise in Eq (15) or the indepen-

dent random number involved in the generation of the population activity via Eq (14) is the

only source of stochasticity and summarizes the effect of microscopic noise on the mesoscopic

level. Microscopic detail such as the knowledge of how many neurons occupy a certain micro-

state t̂ has been removed.

One may wonder where the neuronal interactions enter in the population equation. Synap-

tic interactions are contained in the conditional intensity lAðtĵtÞ which depends on the mem-

brane potential uAðt; t̂Þ, which in turn is driven by the synaptic current that depends on the

population activity via Eq (29) in METHODS. An illustration of the derived mesoscopic model is

shown in Fig 1C (inset). In this section, we considered a single population to keep the notation

simple. However, it is straightforward to formulate the corresponding equations for the case of

several equations as shown in METHODS, Sec. “Several populations”.

Stochastic population dynamics can be efficiently simulated forward in time. The sto-

chastic population equations provide a rapid means to integrate the population dynamics on a

mesoscopic level. To this end, we devised an efficient integration algorithm based on approxi-

mating the infinite integrals in the population equation Eq (13) by discrete sums over a finite

number of refractory states t̂ (METHODS, Sec. “Numerical implementation”). The algorithm

involves the generation of only one random number per time step and population, because the
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activity is sampled from the mesoscopic rate �AaðtÞ. In contrast, the microscopic simulation

requires in each time step to draw a random number for each neuron. Furthermore, because

the population equations do not depend on the number of neurons, we expect a significant

speed-up factor for large neural networks compared to a corresponding microscopic simula-

tion. For example, the microscopic simulation of the cortical column in Fig 1B took 13.5 min-

utes to simulate 10 seconds of biological time, whereas the corresponding forward integration

of the stochastic population dynamics (Fig 1D) took only 6.6 seconds on the same machine

(see Sec. “Comparison of microscopic and mesoscopic simulations”).

A pseudocode of the algorithm to simulate neural population dynamics is provided in

METHODS (Sec. “Numerical implementation”). In addition to that, a reference implementation

of this algorithm is publicly available under https://github.com/schwalger/mesopopdyn_gif,

and will be integrated in the Neural Simulation Tool (NEST) [91], https://github.com/nest/

nest-simulator, as a module presumably named gif_pop_psc_exp.

Two different consequences of finiteN

For a first analysis of the finite-size effects, we consider the special case of a fully-connected

network of Poisson neurons with absolute refractory period [14]. In this case, the conditional

intensity can be represented as lAðtĵtÞ ¼ f ðhðtÞÞYðt � t̂ � trefÞ, where tref is the absolute
refractory period, Θ(�) is the Heaviside step function and h(t) is the free membrane potential,

which obeys the passive membrane dynamics

tm
dh

dt
¼ �hþ mðtÞ þ tmJ ð� � ANÞðtÞ; ð16Þ

where τm is the membrane time constant, μ(t) = urest + RI(t) (where urest is the resting

potential and R is the membrane resistance) accounts for all currents I(t) that are indepen-

dent of the population activities, J is the synaptic strength and �(t) is a synaptic filter kernel

(see METHODS, Eq (27) for details). For the mathematical analysis, we assume that the activ-

ity AN(t) and input μ(t) have started at t = −1 so that we do not need to worry about initial

conditions. In a simulation, we could for example start at t = 0 with initial conditions

AN(t) = δ(t) for t� 0 and h(0) = 0.

For the conditional intensity given above, the effective rate Λ(t), Eq (11), is given by

Λ(t) = f(h(t)) because the variance vðt; t̂Þ is zero during the absolute refractory period
t � tref � t̂ < t. As a result, the mesoscopic population Eq (13) reduces to the simple form

�AðtÞ ¼ f ðhðtÞÞ 1�
Z t

t�tref
ANðt̂Þ dt̂

� �

: ð17Þ

This mesoscopic equation is exact and could have been constructed directly in this simple

case. For N!1, where AN(t) becomes identical to �AðtÞ, this equation has been derived by

Wilson and Cowan [16], see also [14, 23, 92]. The intuitive interpretation of Eq (17) is that the

activity at time t consists of two factors, the “free” rate λfree(t) = f(h(t)) that would be expected

in the absence of refractoriness and the fraction of actually available (“free”) neurons that are

not in the refractory period. For finite-size populations, these two factors explicitly reveal two

distinct finite-size effects: firstly, the free rate is driven by the fluctuating population activity

AN(t) via Eq (16) and hence the free rate exhibits finite-size fluctuations. This effect originates

from the transmission of the fluctuations through the recurrent synaptic connectivity. Sec-

ondly, the fluctuations of the population activity impacts the refractory state of the population,

i.e. the fraction of free neurons, as revealed by the second factor in Eq (17). In particular, a

large positive fluctuations of AN in the recent past reduces the fraction of free neurons, which
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causes a negative fluctuation of the number N �AðtÞDt of expected firings in the next time step.

Therefore, refractoriness generates negative correlations of the fluctuations hΔA(t)ΔA(t0)i for
small |t − t0|. We note that such a decrease of the expected rate would not have been possible if

the correction term in Eq (13) was absent. However, incorporating the effect of recent fluctua-

tions (i.e. fluctuations in the number of refractory neurons) on the number of free neurons by

adding the correction term, and thereby balancing the total number of neurons, recovers the

correct Eq (17).

The same arguments can be repeated in the general setting of Eq (13). Firstly, the condi-

tional intensity lAðtĵtÞ depends on the past fluctuations of the population activity because of

network feedback. Secondly, the fluctuations lead to an imbalance in the number of neurons

across different states of relative refractoriness (i.e. fluctuations do not add up to zero) which

gives rise to the “correction term”, i.e. the second term on the r.h.s. of Eq (13).

Comparison of microscopic and mesoscopic simulations

We wondered how well the statistics of the population activities obtained from the integration

of the mesoscopic equations compare with the corresponding activities generated by a micro-

scopic simulation. As we deal with a finite-size system, not only to the first-order statistics

(mean activity) but also higher-order statistics needs to be considered. Because there are sev-

eral approximations involved (e.g. full connectivity, quasi-renewal approximation and effective

rate of fluctuations in the refractory density), we do not expect a perfect match. To compare

first- and second-order statistics, we will mainly use the power spectrum of the population

activities in the stationary state (see METHODS, Sec. “Power spectrum”).

Mesoscopic equations capture refractoriness. Our theory describes the interplay

between finite-size fluctuations and spike-history effects. The most prominent spike-history

effect is refractoriness, i.e. the strong effect of the last spike on the current probability to spike.

To study this effect, we first focus on a population of uncoupled neurons with a constant

threshold corresponding to leaky integrate-and-fire (LIF) models without adaptation (Fig 3).

The reset of the membrane potential after each spike introduces a period of relative refractori-

ness, where spiking is less likely due to a hyper-polarized membrane potential (Fig 3A).

Because of the reset to a fixed value, the spike trains of the LIF neurons are renewal processes.

In the stationary state, the fluctuation statistics as characterized by the power spectrum is

known analytically for the case of a population of independent renewal spike trains (Eq (134)

in METHODS).

A single realization of the population activity AN(t) fluctuates around the expected activity
�AðtÞ that exhibits a typical ringing in response to a step current stimulation [23, 93]. The time

course of the expected activity as well as the size of fluctuations are roughly similar for micro-

scopic simulation (Fig 3B, top) and the numerical integration of the population equations (Fig

3B, bottom). We also note that the expected activity �AðtÞ is not constant in the stationary

regime but shows weak fluctuations. This is because of the feedback of the actual realization of

AN(t
0) for t0 < t onto the dynamics of �AðtÞ, Eq (13).

A closer inspection confirms that the fluctuations generated by the mesoscopic population

dynamics in the stationary state exhibit the same power spectrum (Fig 3C) as the theoretically

predicted one, which is given by Eq (134). In particular, the mesoscopic equations capture the

fluctuation statistics even at high firing rates, where the power spectrum strongly deviates

from the white (flat) power spectrum of a Poisson process (Fig 3C bottom). The pronounced

dip at low-frequencies is a well-known signature of neuronal refractoriness [94].

Mesoscopic equations capture adaptation and burstiness. Further important spike-his-

tory effects can be realized by a dynamic threshold. For instance, spike-frequency adaptation,
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where a neuron adapts its firing rate in response to a step current after an initial strong

response (Fig 4A and 4B), can be modeled by an accumulating threshold that slowly decays

between spikes [47, 49]. In single realizations, the mean population rate as well as the size of

fluctuations appear to be similar for microscopic and mesoscopic case (Fig 4B, top and bottom,

respectively). For a more quantitative comparison we compared the ensemble statistics as

quantified by the power spectrum. This comparison reveals that the fluctuation statistics is

well captured by the mesoscopic model (Fig 4C). The main effect of adaptation is a marked

reduction in the power spectrum at low frequencies compared to the non-adaptive neurons of

Fig 3. The small discrepancies compared to the microscopic simulation originate from the

quasi-renewal approximation, which does not account for the individual spike history of a

neuron before the last spike but only uses the population averaged history. This approximation

is expected to work well if the threshold kernel changes slowly, effectively averaging the spike

history locally in time [63].

In the case of fast changes of the threshold kernel, we do not expect that the quasi-renewal

approximation holds. For example, a biphasic kernel [95] with a facilitating part at short inter-

spike intervals (ISI) and an adaptation part for large ISIs (Fig 4D-(i)) can realize bursty spike

patterns (Fig 4D-(ii)). The burstiness is reflected in the ISI density by a peak at small ISIs, cor-

responding to ISIs within a burst, and a tail that extends to large ISIs representing interburst

intervals (Fig 4D-(iii)). Remarkably, the mesoscopic equations with the quasi-renewal approxi-

mation qualitatively capture the burstiness, as can be seen by the strong low-frequency power

at about 1 Hz (Fig 4E). At the same time, the effect of adaptation manifests itself in a reduced

power at even lower frequencies. The systematic overestimation of the power across frequen-

cies implies a larger variance of the empirical population activity obtained from the

Fig 3. Population activity of uncoupled leaky integrate-and-fire neurons without adaptation. (A) Neurons were stimulated by a step
current Iext(t) such that μ = urest + RIext(t) increased from μ = 15 mV to μ = 30 mV (top). Voltage trace of one of 500 neurons (bottom).
Stationary firing statistics (rate and coefficient of variation (CV) of the interspike intervals) corresponding to the two stimuli are indicated
above the step current. (B) Realizations of the population activity AN(t) for the microscopic (top) and mesoscopic (bottom, blue line)

simulation. The magenta line shows the expected population rate �AðtÞ given the past actual realization AN(t
0) for t0 < t. (C) The power

spectrum of the stationary activity AN(t) obtained from renewal theory, Eq (134), (black solid line) and from the mesoscopic simulation (blue
circles). The top and bottom panel corresponds to weak (μ = 15 mV) and strong (μ = 30 mV) constant stimulation (transient removed).

https://doi.org/10.1371/journal.pcbi.1005507.g003
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Fig 4. Population dynamics captures adaptation and burstiness. (A) 500 adapting leaky integrate-and-fire neurons were stimulated by
a step current Iext that increased μ = urest +RIext(t) from μ = 12 mV to μ = 27 mV (top). Voltage trace of one neuron (bottom). Stationary firing
statistics (rate and coefficient of variation (CV)) corresponding to the two stimuli are indicated above the step current. (B) Realizations of the

population activity obtained frommicroscopic simulation (black) and mesoscopic population equation (blue) as well as �AðtÞ (magenta). (C)
Power spectra corresponding to the stationary activity (averaged over 1024 trials each of 20 s length) at low and high firing rates as in (A),
circles and lines depict microscopic and mesoscopic case, respectively. Parameters in (A)–(C): uth = 10 mV, ur = 25 mV, threshold kernel
yðtÞ ¼

P

‘¼1;2ðJy;‘=ty;‘Þe�t=ty;‘ for t� tref with Jθ,1 = 1.5 mV�s, τθ,1 = 0.01 s, Jθ,2 = 1.5 mV�s, τθ,2 = 1 s. (D) Bursty neuron model. (i) Biphasic

threshold kernel θ(t), where a combination of a negative part (facilitation) and a positive part (adaptation) yields a bursty spike pattern, (ii)
sample firing pattern of one neuron. (iii) The interspike interval distribution with values of rate and CV. (E) Power spectrum of the population
activity AN(t) shown in (D)-(iv). Parameters in (D) and (E): μ = 20, uth = 10 mV, ur = 0 mV, τm = 0.01 s, facilitation: Jθ,1 = −0.45 mV�s, τθ,1 =
0.05 s; adaptation: Jθ,2 = 2.5 mV�s, τθ,2 = 1 s.

https://doi.org/10.1371/journal.pcbi.1005507.g004
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mesoscopic simulation, which is indeed visible by looking at the single realizations (Fig 4D-

(iv)). As an aside, we note that facilitation which is strong compared to adaptation can lead to

unstable neuron dynamics even for isolated neurons [96].

Recurrent network of randomly connected neurons. So far, we have studied populations

of uncoupled neurons. This allowed us to demonstrate that the mesoscopic dynamics captures

effects of single neuron dynamics on the fluctuations of the population activity. Let us now

suppose that each neuron in a population α is randomly connected to presynaptic neurons in

population β with probability pαβ such that the in-degree is fixed to pαβ Nβ connections. In the

presence of synaptic coupling, the fluctuations at time t are propagated through the recurrent

connectivity and may significantly influence the population activity at time t0 > t. For instance,

in a fully-connected network (pαβ = p = 1 for all α and β) of excitatory and inhibitory neurons
(E-I network, Fig 5B and 5C), all neurons within a population receive identical inputs given by

the population activities Aa
NðtÞ (cf. Eq (29)). Finite-size fluctuations of Aa

NðtÞ generate common

input to all neurons and tend to synchronize neurons. This effect manifests itself in large fluc-

tuations of the population activity (Fig 5B). Since the mean-field approximation of the synaptic

input becomes exact in the limit p! 1, we expect a good match between the microscopic and

mesoscopic simulation in this case. Interestingly, the power spectra of the population activities

obtained from these simulations coincide well even for an extremely small E-I network con-

sisting of only one inhibitory and four excitatory neurons (Fig 5C). This extreme case of N = 5

neurons with strong synapses (here, wEE = wIE = 12 mV, wII = wEI = −60 mV) highlights the

non-perturbative character of our theory for fully-connected networks, which does not require

the inverse system size or the synaptic strength to be small. In general, the power spectra reveal

pronounced oscillations that are induced by finite size fluctuations [43]. The amplitude of

these stochastic oscillations decreases as the network size increases and vanishes in the large-N

limit.

If the network is not fully but randomly-connected (0< p< 1), neurons still share a part of

the finite-size fluctuations of the population activity. Earlier theoretical studies [58, 68, 97]

have pointed out that these common fluctuations inevitably yield correlated and partially syn-

chronized neural activity, as observed in simulations (Fig 5D and 5F). This genuine finite-size

effect decreases for larger networks approaching an asynchronous state [98] (Fig 5C and 5E).

As argued in previous studies [58–60], the fluctuations of the synaptic input can be decom-

posed into two components, a coherent and an incoherent one. The coherent fluctuations are

given by the fluctuations of the population activity and are thus common to all neurons of a

population. This component is exactly described by our mean-field approximation, ua
i ðtÞ �

uAðt; t̂ai Þ used in Eq (4) (cf. METHODS, Eq (31)). The incoherent fluctuations are caused by the

quenched randomness of the network (i.e. each neuron receives input from a different subpop-

ulation of the network) and have been described as independent Poisson input in earlier stud-

ies [58–60]. If we compare the membrane potential of a single neuron with the one expected

from the mean-field approximation (Fig 6A, 6C and 6E, top), we indeed observe a significant

difference in fluctuations. This difference originates from the incoherent component. Differ-

ences in membrane potential will lead to differences in the instantaneous spike emission prob-

ability for each individual neuron; cf. Eq (3). However, in order to calculate the population

activity we need to average the conditional firing rate of Eq (3) over all neurons in the popula-

tion (see Methods, Eq (28) for details). Despite the fact that each neuron is characterized by a

different last firing time t̂ , the differences in firing rate caused by voltage fluctuations will, for

sufficiently large N and not too small p, average out whereas common fluctuations caused by

past fluctuations in the population activity will survive (Fig 6A, 6C and 6E, bottom). In other

words, the coherent component is the one that dominates the finite-N activity whereas the
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incoherent one is washed out. Therefore, mesoscopic population activities can be well

described by our mean-field approximation even when the network is not fully connected

(Figs 5E, 5G and 6B, 6D, 6F). Remarkably, even for C = 200 synapses per neuron and p = 0.05,

the mesoscopic model agrees well with the microscopic model. However, if both N and p are

small, the mesoscopic theory breaks down as expected (Fig 5G, blue circles). Furthermore,

Fig 5. Mesoscopic dynamics of E-I network for varying network sizeN, connection probability p and number of synapses per
neuronC. (A) Left: Schematic of the network ofNE excitatory andNI =NE/4 inhibitory leaky integrate-and-fire (LIF) neurons, each receiving
CE = pNE (CI = pNI) connections from a random subset of excitatory (inhibitory) neurons. Total numbers areN =NE +NI andC =CE +CI. At
C = 200, the synaptic strength isw = 0.3 mV and −gw = −1.5 mV for excitatory and inhibitory connections, respectively. To preserve a
constant mean synaptic input, the synaptic strength is scaled such thatCw = const‥Right: Schematic of a corresponding mesoscopic model
of two interacting populations. (B) Trajectories of u(t) for five example neurons (top) and of the excitatory population activity AE

NðtÞ obtained
from the network simulation (middle) and the mesoscopic simulation (bottom, dark green) forC =N = 50; time resolution Δt = 0.2 ms. The

light green trajectory (bottom panel) depicts the expected population activity �AEðtÞ given the past activity. (C) Power spectra of AE
NðtÞ for

different network sizes while keeping p = 1 fixed (microscopic: symbols, mesoscopic: solid lines with corresponding dark colors). (D) Sample
trajectories corresponding to the green curve in (E) (N = 1000, p = 0.2). (E) Analogously to (C) but varying the connection probabilities while
keepingC = pN = 200 fixed. (F) Sample trajectories corresponding to the green curve in (G) (N = 200,C = 40). (G) Analogously to (C) but
varying the number of synapsesC while keepingN = 200 fixed. Note that the mesoscopic theory (black solid line) is independent ofC
because the productCw, which determines the interaction strength in the mesoscopic model (see, left panel of (A)), is kept constant.

Parameters: μE/I = 24 mV, DE=I
u ¼ 2:5mV and θE/I(t)� 0 (no adaptation).

https://doi.org/10.1371/journal.pcbi.1005507.g005
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strong synaptic weights imply strong incoherent noise, which is then passed through the expo-

nential nonlinearity of the hazard function. This may lead to deviations of the population-aver-

aged hazard rate from the corresponding mean-field approximation (Fig 6E, bottom), and,

consequently, to deviations between microscopic and mesoscopic population activities in net-

works with strong random connections (Fig 6F).

Finite-size induced switching in bistable networks. In large but finite E-I networks, the

main effect of weak finite-size fluctuations is to distort the deterministic population dynamics

of the infinitely large network (stable asynchronous state or limit cycle motion) leading to sto-

chastic oscillations and phase diffusion that can be understood analytically by linear response

theory [43, 55, 60, 69] and weakly nonlinear analysis [58]. This is qualitatively different in net-

works with multiple stable states. In such networks, finite-size fluctuations may have a drastic

effect because they enable large switch-like transitions between metastable states that cannot

be described by a linear or weakly nonlinear theory. We will show now that our mesoscopic

population equation accurately captures strongly nonlinear effects, such as large fluctuations

in multistable networks.

Multistability in spiking neural networks can emerge as a collective effect in balanced E-I

networks with clustered connectivity [99], and, generically, in networks with a winner-take-all

architecture, where excitatory populations compete through inhibitory interactions mediated

by a common inhibitory population (see, e.g. [14, 100–104] and Fig 7A). Jumps between

Fig 6. Mean-field approximation of synaptic input for randomly connected networks. The same E-I network as in Fig 5 with N = 500
neurons and connection probability p = 0.2 was simulated for increasing synaptic strengthwEE = wIE =w (wEI = wII = −5w) of excitatory
(inhibitory) connections: (A, B)w = 0.25 mV, (C, D)w = 0.5 mV (E, F)w = 1 mV. (A, C, E) Top: Membrane potential of one example neuron
shows fluctuations due to spike input fromC = 100 presynaptic neurons (black line), which represent a random subset of all 500 neurons.
The mean-field approximation of the membrane potential (dashed red line) assumes that the neuron had the same firing times but was

driven by all neurons, i.e. by the population activities AE
NðtÞ and AI

NðtÞ, with rescaled synaptic strength wE=I
MF

¼ pwE=I. Although individual

membrane potentials differ significantly from the mean-field approximation (top), the relevant population-averaged hazard rates �AE=I
micro

ðtÞ �
1

NE=I

PNE=I

i¼1
lðtĵt iÞ (bottom) are well predicted by the mean-field approximation. (B, D, F) Corresponding power spectra of the (excitatory)

population activity for microscopic (circles) and mesoscopic (blue solid line) simulation. Parameters as in Fig 5 except μE/I = 18 mV.

https://doi.org/10.1371/journal.pcbi.1005507.g006

Mesoscopic dynamics of interacting populations of spiking neurons

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005507 April 19, 2017 19 / 63

https://doi.org/10.1371/journal.pcbi.1005507.g006
https://doi.org/10.1371/journal.pcbi.1005507


metastable states have been used to model switchings in bistable perception [32–34]. To

understand such finite-size induced switching in spiking neural networks on a qualitative

level, phenomenological rate models have been usually employed [32, 104]. In these models,

stochastic switchings are enabled by noise added to the deterministic rate equations in an ad

hocmanner. Our mesoscopic mean-field equations keep the spirit of such rate equations, how-

ever with the important difference that the noisy dynamics is systematically derived from the

Fig 7. Finite-size induced switching in a bistable network. (A) Schematic of a winner-take-all network architecture: Two competing
excitatory populations (NE1 =NE2 = 400) interact with a common inhibitory population (NI = 200). (B)-(D) In the absence of adaptation (θE/I(t)
� 0), the excitatory populations switch between low and high activities in an irregular fashion (B). Activities in (B, E) are low-pass-filtered by a
moving average of 100 ms. Top: full network simulation. Inset: Magnified view of the activities for 1 s (without moving average) showing fast
large-amplitude oscillations. Bottom: mesoscopic simulation. (C) The power spectrum of the activity of the excitatory populations exhibits
large low-frequency power and a high-frequency peak corresponding to the slow stochastic switching between high- and low-activity states
and the fast oscillations, respectively. (D) The density of the dominance times (i.e. the residence time in the high-activity states) has an

exponential form. (E-G) Like (B-D) but excitatory neurons exhibit weak and slow adaptation (yEðtÞ ¼ ðJy=tyÞe�t=ty with Jθ = 0.1 mV�s, τθ = 1 s
for t� tref). Switching between high- and low-activity states is more regular than in the non-adapting case as revealed by a low-frequency
peak in the power spectrum (F) and a narrow, unimodal density of dominance times (G). In (C, D) and (F, G) microscopic and mesoscopic
simulation correspond to cyan symbols/bars and dark blue solid lines, respectively. Parameters: μE/I = 36 mV except for μE = 36.5 in (E-G) to
compensate adaptation. Time step Δt = 0.01 ms (microscopic), Δt = 0.2 ms (mesoscopic). Efficacies of excitatory and inhibitory connections:

wE = 0.0624 mV andwI = −0.2496mV (B-D), andwE = 0.096 mV andwI = −0.384mV (E-G), p = 1, DE=I
u ¼ 2:5mV.

https://doi.org/10.1371/journal.pcbi.1005507.g007
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underlying spiking neural network without any free parameter. Here, we show that the meso-

scopic mean-field equations quantitatively reproduce finite-size induced transitions between

metastable states of spiking neural networks. We emphasize that the switching statistics

depends sensitively on the properties of the noise that drive the transitions [105]. Therefore,

an accurate account of finite-size fluctuations is expected to be particularly important in this

case.

We consider a simple bistable network of two excitatory populations with activities AE1 and

AE2, respectively, that are reciprocally connected to a common inhibitory population with

activity AI (Fig 7A). We choose the mean input and the connection strength such that in the

large-N limit the population activities exhibited two stable equilibrium states, one correspond-

ing to a situation, where AE1 is high and AE2 is low, the other state corresponding to the inverse

situation, where AE1 is low and AE2 is high. We found that in smaller networks, finite-size fluc-

tuations are indeed sufficient to induce transitions between the two states leading to repeated

switches between high- and low-activity states (Fig 7B and 7E). The regularity of the switching

appears to depend crucially on the presence of adaptation, as has been suggested previously

[32, 34]. Remarkably, both in the presence and absence of adaptation, the switching dynamics

of the spiking neural network appears to be well reproduced by the mesoscopic mean-field

model.

For a more quantitative comparison, we use several statistical measures that characterize

the bistable activity. Let us first consider the case without adaptation. As before, we compare

the power spectra of the population activity for both microscopic and mesoscopic simulation

and find a good agreement (Fig 7C). The peak in the power spectrum at relatively high-fre-

quency reveals strong, rapid oscillations that are visible in the population activity after a switch

to the high-activity state (inset of Fig 7B with magnified view). In contrast, the large power at

low frequencies corresponds to the slow fluctuations caused by the switching of activity

between the two excitatory populations, as revealed by the low-pass filtered population activity

(Fig 7B). The Lorentzian shape of the power spectrum caused by the slow switching dynamics

is consistent with stochastically independent, exponentially distributed residence times in each

of the two activity states (i.e., a homogeneous Poisson process). The residence time distribu-

tion shows indeed a monotonic, exponential decay (Fig 7D) both in the microscopic and

mesoscopic model. Furthermore, we found that residence times do not exhibit significant

serial correlations. Together, this confirms the Poissonian nature of bistable switching in our

three-population model of neurons without adaptation.

In models for perceptual bistability, residence times in the high-activity state are often

called dominance times. The distribution of dominance times is usually not exponential but

has been described by a more narrow, gamma-like distribution (see, e.g. [106]). Such a more

narrow distribution emerges in a three-population network where excitatory neurons are

weakly adaptive. When the population enters a high-activity state, the initial strong increase of

the population activity is now followed by a slow adaptation to a somewhat smaller, stationary

activity (Fig 7E). Eventually, the population jumps back to the low-activity state. The switching

dynamics is much more regular with than without adaptation leading to slow stochastic oscil-

lations as highlighted by a second peak in the power spectrum at low frequencies (Fig 7F) and

a narrow distribution of dominance times (Fig 7G), in line with previous theoretical studies

[32–34]. We emphasize, however, that in contrast to these studies the underlying deterministic

dynamics for N!1 is in our case not oscillatory but bistable, because the adaptation level is

below the critical value necessary in the deterministic model to switch back to the low-activity

state.

The emergence of regular switching due to finite-size noise can be understood by interpret-

ing the residence time of a given population in the high-activity state as arising from two
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stages: (i) the initial transient of the activity to a decreased (but still large) stationary value due

to adaptation and (ii) the subsequent noise-induced escape from the stationary adapted state.

The first stage is deterministic and hence does not contribute to the variability of the residence

times. The variability results mainly from the second stage. The duration of the first stage is

determined by the adaptation time scale. If this time covers a considerable part of the total resi-

dence time, we expect that the coefficient of variation (CV), defined as the ratio of standard

deviation and mean residence time, is small. In the case without adaptation, a deterministic

relaxation stage can be neglected against the mean noise-induced escape time so that the CV is

larger.

Mesoscopic dynamics of cortical microcolumn. As a final example, we applied the meso-

scopic population equations to a biologically more detailed model of a local cortical microcir-

cuit. Specifically, we used the multi-laminar column model of V1 proposed by Potjans and

Diesmann [5] (see also [72, 107] for an analysis of this model). It consists of about 800000 non-
adapting integrate-and-fire neurons organized into four layers (L2/3, L4, L5 and L6), each

accommodating an excitatory and an inhibitory population (see schematic in Fig 1A). The

neurons are randomly connected within and across the eight populations. We slightly changed

this model to include spike-frequency adaptation of excitatory neurons, as observed in experi-

ments (see e.g. [26]). Furthermore, we replaced the Poissonian background noise in the origi-

nal model by an increase of mean current drive and escape noise (both in the microscopic and

mesoscopic model). The mean current drive was chosen such that the firing rates of the spon-

taneous activity were matched to the firing rates in the original model. We note that the fitting

of the mean current was made possible by the use of our population equations, which allow for

an efficient evaluation of the firing rates. The complete set of parameters is listed in METHODS,

Sec. “Modified Potjans-Diesmann model”.

Sample trajectories of the population activities have already served as an illustration of our

approach in Fig 1, where neurons in layer 4 and 6 are stimulated by a step current of 30 ms

duration, mimicking input from the thalamus as in the original study [5]. Individual realiza-

tions obtained from the microscopic and mesoscopic simulation differ due to the marked sto-

chasticity of the population activities (Fig 1B and 1D). However, trial-averaging reveals that

the mean time-dependent activities that can be estimated from a peri-stimulus-time histogram

(PSTH) obtained from microscopic and mesoscopic simulations indeed agree well, except for

a slight underestimation of the oscillatory peak during stimulus offset compared to the micro-

scopic simulation (Fig 8A). However, during the short moments where the mean time-depen-

dent activity (PSTH) of the mescoscopic and microscopic simulation do not match, the time-

dependent standard deviation across hundreds of trials (Fig 8B) is extremely high in both

mesoscopic and microscopic simulation, indicating that fluctuations of the activity between

one trial and the next are high after stimulus offset at 0.09s. The standard deviation as a func-

tion of time (Fig 8B) agrees overall nicely between microscopic and mesoscopic simulation,

suggesting a good match of second-order statistics. A closer look at the second-order statistics,

as provided by the power spectra of spontaneous activities (“ground state” of cortical activity),

also reveals a good agreement at all frequencies (Fig 9). This agreement is remarkable in view

of the low connection probabilities (p< 0.14, see table 5 in [5]) that violate the assumption of

dense random connectivity used in the derivation of the mesoscopic mean-field equations.

More generally, this example demonstrates that the range of validity of our mesoscopic theory

covers relevant cortical circuit models.

Finally, we mention that the numerical integration of the mesoscopic population equations

yields a significant speed-up compared to the microscopic simulation. While a systematic and

fair comparison of the efficiencies depends on many details and is thus beyond the scope of

this paper, we note that a simulation on a single core of 10s of biological time took 811.2s
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using the microscopic model, whereas that of the mesoscopic model only took 6.6s. This corre-

sponds to a speed-up factor of around 120 achieved by using the mesoscopic population

model. In the simulation, we employed the same integration time step of Δt = 0.5 ms for both

models for a first naive assessment of the performance. However, a more detailed comparison

of the performance should be based on simulation parameters that achieve a given accuracy.

In this case, we expect an even larger speed-up of the mesoscopic simulation because for the

same accuracy the temporally coarse-grained population equations allow for a significantly

larger time step than the microscopic simulation of spiking neurons.

Discussion

In the present study we have derived stochastic population equations that govern the evolution

of mesoscopic neural activity arising from a finite number of stochastic neurons. To our

knowledge, this is the first time that such a mesoscopic dynamics has been derived from an

underlying microscopic model of spiking neurons with pronounced spike-history effects. The

microscopic model consists of interacting homogeneous populations of generalized integrate-

and-fire (GIF) neuron models [14, 26–28], or alternatively, spike-response (SRM) [14] or gen-

eralized linear models (GLMs) [55, 108, 109]. These classes of neuron models account for vari-

ous spike-history effects like refractoriness and adaptation [14, 84]. Importantly, parameters of

these models can be efficiently extracted from single cell experiments [27] providing faithful

representations of real cortical cells under somatic current injection. The resulting population

equations on the mesoscopic level yield the expected activity of each population at the present

time as a functional of population activities in the past. Given the expected activities at the

present time, the actual mesoscopic activities can be obtained by drawing independent random

numbers. The derived mesoscopic dynamics captures nonlinear emergent dynamics as well as

finite-size effects, such as noisy oscillations and stochastic transitions in multistable networks.

Realizations generated by the mesoscopic model have the same statistics as the original

Fig 8. Time-dependent statistics of the population activities in a cortical columnmodel. (A) Trial-averaged population activities (peri-
stimulus-time histogram, PSTH) in the modified Potjans-Diesmannmodel as illustrated for a single trial in Fig 1. Circles and blue solid line
showmicroscopic simulation (250 trials, simulation time step Δt = 0.01 ms) and mesoscopic simulation (1000 trials, Δt = 0.5 ms),
respectively. A step current mimicking thalamic input is provided to neurons in layer 4 and 6 during a time window of 30 ms as indicated by
the gray bar. Rows correspond to the layers L2/3, L4, L5 and L6, respectively, as indicated. Columns correspond to excitatory and inhibitory
populations, respectively. (B) Corresponding, time-dependent standard deviation of AN(t) measured with temporal resolution Δt = 0.5 ms.

https://doi.org/10.1371/journal.pcbi.1005507.g008
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microscopic model to a high degree of accuracy (as quantified by power spectra and residence

time distributions). The equivalence of the population dynamics (mesoscopic model) and the

network of spiking neurons (microscopic model) holds for a wide range of population sizes

and coupling strengths, for time-dependent external stimulation, random connectivity within

and between populations, and even if the single neurons are bursty or have spike-frequency

adaptation.

Quantitative modeling of mesoscopic neural data: Applications and
experimental predictions

Our theory provides a general framework to replace spiking neural networks that are orga-

nized into homogeneous populations by a network of interacting mesoscopic populations. For

example, the excitatory and inhibitory neurons of a layer of a cortical column [5] may be rep-

resented by one population each, as in Fig 1. Weak heterogeneity in the neuronal parameters

are allowed in our theory because the mesoscopic equations describe the population-averaged

behavior. Further subdivisions of the populations are possible, however, such as a subdivision

Fig 9. Stationary statistics of population activities in a cortical columnmodel. Power spectra of the spontaneous population activities
AN(t) in the modified Potjans-Diesmannmodel in the absence of time-dependent thalamic input (corresponding to the activities shown in Fig
1B (microscopic) and Fig 1D (mesoscopic) outside of the stimulation window. Circles and blue solid lines represent microscopic and
mesoscopic simulation, respectively. Rows correspond to the layers L2/3, L4, L5 and L6, respectively, as indicated. Columns correspond to
excitatory and inhibitory populations, respectively.

https://doi.org/10.1371/journal.pcbi.1005507.g009
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of the inhibitory neurons into fast-spiking and non fast-spiking types [26]. Populations that

show initially a large degree of heterogeneity can be further subdivided into smaller popula-

tions. In this case, a correct description of finite-size fluctuations, as provided by our theory,

will be particularly important. However, as with any mean-field theory, we expect that our the-

ory breaks down if neural activity and information processing is driven by a few “outlier” neu-

rons such that a mean-field description becomes meaningless. Further limitations may result

from the mean-field and quasi-renewal approximation, Eq (4). Formally, the mean-field

approximation of the synaptic input requires dense connectivity and the heterogeneity in syn-

aptic efficacies and in synapse numbers to be weak. Moreover, the quasi-renewal approxima-

tion assumes slow threshold dynamics. However, as we have demonstrated here, our

mesoscopic population equations can provide in concrete applications excellent predictions

even for sparse connectivity (Figs 5D–5G, 8 and 9) and may qualitatively reproduce the meso-

scopic statistics in the presence of fast threshold dynamics (Fig 4D and 4E).

Using our mesoscopic population equations it is possible to make specific predictions

about the response properties of local cortical circuits. For instance, recent progress in genetic

methods now enables experimentalists to selectively label and record from genetically identi-

fied cell types, such as intratelencephalic (IT), pyramidal tract (PT) and corticothalamic (CT)

neurons among the excitatory neurons, and vasoactive intestinal peptide (VIP), somatostatin

(Sst) and parvalbumin (Pvalb) expressing neurons among the interneurons [4]. These cell

types have received much attention recently as it has been proposed that they may form a basic

functional module of cortex, the canonical circuit [4, 110]. The genetic classification of cells

defines subpopulations of the cortical network. A model of the canonical circuits of the cortex

in terms of interacting mesoscopic populations can be particularly useful if used to describe

experiments that use optogenetic stimulation of genetically-defined populations by light,

which in our framework can be represented as a transient external input current. To build a

mesoscopic population model based on our theory demands some assumptions about micro-

scopic parameters such as (i) typical neuron parameters for each subpopulation, (ii) structural

parameters as characterized by average synaptic efficacies and time scales of connections

between and within populations, and (iii) estimates of neuron numbers per subpopulation.

Parameters for a typical neuron of each population could be extracted by the efficient fitting

procedures presented in [26, 27]. Structural parameters and neuron numbers have been esti-

mated, for instance, for barrel columns in rodents somato-sensory cortex [3, 73] and other

studies (see e.g., [5]). Our population equations could then be used to make predictions about

circuit responses to light stimuli, e.g. by imaging the activity of a genetically-defined subpopu-

lation in one column in response to optogenetic stimulation of another cell class in another

column.

As a first step in this direction, we have demonstrated here that our population equations

correctly predict the mesoscopic activities (means and fluctuations) of a simulation of a

detailed, microscopic network model of a cortical microcircuit [5] under thalamic stimulation

of layer 4 and 6 neurons. Using a population density method, mean activities of this model

have also been predicted in a recent study to analyze its computational properties [107] with a

special focus on predictive coding. Our population density approach goes beyond that study

by also predicting finite-size fluctuations of the activities and their effects on the mesoscopic

network dynamics such as finite-size induced stochastic oscillations. Predicting activities in

real experiments is, however, complicated by the fact that the parameters of a microscopic net-

work model are typically underconstrained given the lack or uncertainty of measured or esti-

mated parameters [111]. Here, our population equations provide an efficient means to

constrain unknown microscopic parameters by requiring consistence with mesoscopic experi-

mental data.
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While the canonical circuit represents a model of interacting populations on the meso-

scopic level, recent interest in macroscopic models of entire brain areas or even of whole brains

has risen [6, 7]. Population dynamics can be used in this context as a means to reduce large

parts of the macroscopic neuronal network to a system of interacting populations that is

numerically manageable, and requires less detailed knowledge of synaptic connectivity (mean

synaptic coupling of populations as opposed to individual synapses). However, even this infor-

mation about mesoscopic network structure might not be available given that it corresponds

to anM ×Mmatrix of mean synaptic efficacies, where the numberM of populations, or

respectively cell types, might be large. In this case, our population equations can be utilized to

efficiently constrain unknown structural parameters, such as synaptic weights, such that the

resulting mesoscopic activities are consistent with experimental data. This leads in turn to

experimentally testable predictions for synaptic connectivities. Such an approach [111] has

been recently applied to a network model of primate visual cortex demonstrating the useful-

ness of mean-field theories for predicting structural properties of large-scale cortical networks.

An interesting complementary route for further studies is a multiscale model, in which a

large-scale model is simulated in terms of reduced, mesoscopic populations but with one or

several areas in focus that are simulated in full microscopic detail. As knowledge of anatomy

and computational capacity increases, more and more mesoscopic populations can be replaced

by a microscopic simulation, while at any time in this process the full system is represented in

the model. We therefore expect our population dynamics model to be a useful tool to continu-

ously integrate experimental data into multiscale models of whole mammalian brains.

Simplified whole brain models of interacting neuronal areas have recently been proposed

[112, 113]. Furthermore, large-scale neuro imaging data are routinely modeled by phenome-

nological population models such as neural mass, Wilson-Cowan, or neural field models [9,

22]. Our new population dynamics theory could be used in such approaches as an accurate

representation of the fluctuations of neural activity in the reduced areas. For example, in mac-

roscopic data such as resting state fMRI, EEG or MEG, the endogenously generated fluctua-

tions of brain activity are of major interest [113]. A fortiori the same applies to mesoscopic

data such as local field potentials (LFP) or voltage-sensitive dye (VSD), in which finite-size

fluctuation are expected to be large. Our theory paves the way for relating macroscale fluctua-

tions to the underlying networks of spiking neurons and their activity, and so to the neuronal

circuits that underlie the computations of the brain.

Another interesting application of our population model is to predict the activity of neural

networks grown in cultures. This model system is much more accessible and controllable (e.g.,

by optogenetic stimulations) than cortical networks in-vivo but may still provide valuable

insights into the complex network activity of excitatory and inhibitory neurons as proposed in

a recent study [114]. In particular, in that study the authors propose a critical role for short-

term plasticity [115]. Although we have here used static synapses, an extension of our meso-

scopic mean-field theory to synaptic short-term plasticity is feasible. Furthermore, finite-size

fluctuations appear to be particularly important in cell cultures as suggested by a previous the-

oretical study [62]. Our mesoscopic population theory thus represents a framework to predict

spontaneous as well as evoked activity in neuronal cell cultures.

Theoretical aspects

From a theoretical point of view, our study represents a generalization of deterministic, macro-

scopic population equations for an infinite number of spiking neurons with refractoriness [14,

23, 63] to stochastic, mesoscopic population equations for a finite number of neurons. The

resulting dynamics can be directly used to generate single stochastic realizations of mesoscopic

Mesoscopic dynamics of interacting populations of spiking neurons

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005507 April 19, 2017 26 / 63

https://doi.org/10.1371/journal.pcbi.1005507


activities, in analogy to a Langevin dynamics. Our work is thus conceptually different from

earlier studies of finite-size effects [66–68], who also considered finite networks of spiking neu-

rons and refractoriness but derived deterministic evolution equations for moment and cross-

correlation functions and hence characterized the ensemble dynamics. Furthermore, in con-

trast to these studies, our theory is not based on a perturbation expansion around the N!1
limit, and thus captures large and non-Gaussian fluctuations in strongly nonlinear population

dynamics such as bistable networks.

Outside the low-rate Poisson firing regime, spiking neurons exhibit history dependencies

in their spike trains, the most prominent of which is neuronal refractoriness, i.e. the strongly

reduced firing probability depending on the time since the last spike. On the population level

this means that a positive (negative) fluctuation of the population rate affects the underlying

refractory state of the population because more (less) neurons than expected become refrac-

tory. This altered refractory state in turn tends to decrease (increase) the mean and variance of

the population activity shortly after the fluctuation. More generally, fluctuations of the popula-

tion activity influence the population density of state variables, which in turn influences fluctu-

ations. In this study, we have worked out how to incorporate this interplay between

fluctuations of the population activity and fluctuations of the refractory density into a meso-

scopic population dynamics. The key insight to achieve this was (i) to exploit the normaliza-

tion condition for the density of microscopic states (in our case, the density of last spike times)

and (ii) to associate density fluctuations with a time-dependent but state-independent average

rate that emphasizes the microscopic rates of those states that exhibit the largest finite-size fluc-

tuations (in our case, the weighted average rate with respect to the variance vðt; t̂Þ).
Our work is thus in marked contrast to previous stochastic rate models for finite-size sys-

tems in the form of stochastic Wilson-Cowan equations [62, 104], or stochastic neural field

equations [39, 116]. In these models, finite-size fluctuations of the rate may feed back through

the recurrent connections but the strong negative self-feedback due to refractoriness is

neglected. This is the case even if the stationary or dynamic transfer function employed in the

rate dynamics corresponds to a spiking neuron model [62, 72]. Furthermore, fluctuations of

the population rate have often been implemented ad hoc by a phenomenological white-noise

source, which was added to the macroscopic (i.e. deterministic) rate dynamics [32, 102, 112].

The intensity of the noise is a free parameter in these cases. Our mesoscopic equations are also

driven by a noise source, but two differences to these studies are noteworthy: First, it is derived

from a microscopic model and does not contain any free parameter; and second, the noise is

white given the predicted mean activity but since the activity predicted in one time step

depends on fluctuations in all earlier time steps, the effective noise leads to a colored noise

spectrum—even if coupling is removed (see Fig 3). This observation is consistent with previ-

ous studies [55, 58, 60, 69], in which the power spectrum of the fluctuations about a steady-

state has been calculated analytically.

On the population level, refractoriness can be taken into account by population density

equations such as the Fokker-Planck equation for the membrane potential density (see e.g.

[36, 58, 59], or [107, 117, 118] for related master equations), or the population integral equa-

tion for the refractory density [14, 23, 88, 89]. These studies were mainly concerned with mac-

roscopic populations, which formally correspond to the limit N!1. For the refractory

density formalism, we have shown here how to extend the population integral equation to the

case of finite population size. To this end, we corrected for the missing normalization of the

mesoscopic density (e.g. Qðt; t̂Þ ¼ SðtĵtÞANðt̂Þ in Eq (13) or qðt; t̂Þ in Eq (80)), and thereby

accounted for the interplay between fluctuations and refractoriness. Finite-size fluctuations of

the population rate have also been used in the Fokker-Planck formalism [58–60] but the
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immediate effect of these fluctuations on the membrane potential density at threshold, and

hence the refractoriness, has been neglected: in fact, a positive (negative) fluctuation of the

population rate increases (decreases) the number of neurons at the reset potential while the

number of neurons close to the threshold has to decrease (increase) such that the microscopic

density remains normalized. The finite-Nmembrane potential density used by Mattia and Del

Giudice [60] does not account for this normalization effect. Whereas the numerical integration

of their equation may still give a satisfying solution in the low-rate, Poissonian-firing regime,

where refractory effects can be neglected, it becomes unstable at higher rates unless the density

is renormalized manually at every time step [119]. How to correct for the missing normaliza-

tion in the Fokker-Planck approach is still an unsolved theoretical question. In this respect,

using analogies to and insights from our approach might be promising.

The quasi-renewal approximation [55, 63] allowed us to develop a finite-size theory for an

effectively one-dimensional population density equation even in the presence of adaptation.

Here, the only microscopic state variable is the last spike time t̂ , or equivalently the age of the

neuron t ¼ t � t̂ . Longer lasting spike history effects such as adaptation are captured by the

dependence of the conditional intensity on the population activity AN, which as a mesoscopic

mean-field variable does not need to be treated as a state variable. Furthermore, Chizhov and

Graham have shown that the one-dimensional population density method in terms of the age

τ can also capture multiple gating variables in conductance-based neuron models with adapta-

tion [88]. Such one-dimensional descriptions have great advantages compared to population

density equations that include adaptation by additional state variables and which thus require

a multi-dimensional state-space [37, 120–122]: Firstly, the numerical solution of the density

equations grows exponentially with the number of dimensions and becomes quickly infeasible

if multiple adaptation variables are needed as e.g. in the case of multi-timescale adaptation [28]

or if an adiabatic approximation of slow variables [64, 120, 123] is not possible. Secondly, it is

unclear how to treat finite-size fluctuations in the multi-dimensional case.

Our theory is based on an effective fully-connected network, in which neurons are coupled

by the actual realization of the stochastic population activity (the “mean field”), both in the

microscopic and mesoscopic model. Thus, in the limit of a fully-connected network, the prob-

lem of self-consistently matching the input and output statistics, which arises in mean-field

theories, is automatically satisfied to any order by our finite-size theory. This is in marked con-

trast to the opposite limit of a sparsely-connected network [59]. In that case, the mean-field

variables correspond to the statistics of the spike trains (e.g. rate and auto-correlation function)

rather than to the actual realization of the population activity. These statistics must be matched

self-consistently for input and output, which is a hard theoretical problem [56, 57, 124, 125].

Between these two limit cases, where the network is randomly connected with some finite con-

nection probability 0< p< 1, our examples (Figs 5, 8 and 9) indicate that the approximation

by an effective fully-connected network can still yield reasonable results even for relatively

sparse networks with p = 5%. We emphasize that in our microscopic network model we used a

fixed in-degree in order to avoid additional variability due to the quenched randomness in the

number of synapses. This allowed us to focus on dynamic finite-size noise in homogeneous

populations and its interactions with refractoriness. In contrast, the heterogeneity caused by

the quenched randomness is a further finite-size effect [58] that needs to be examined in a

future study.

As an integral equation, the mesoscopic population model is formally infinitely dimen-

sional and represents a non-Markovian dynamics for the population activity AN. Such com-

plexity is expected given that the derived population equations are general and not limited to a

specific dynamical regime. Loosely speaking, the equations must be rich enough, and hence
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sufficiently complex, in order to reproduce the rich repertoire of dynamical regimes that fully

connected networks of spiking neurons are able to exhibit (e.g. limit cycles, multi-stability,

cluster states [23]). For a mathematical analysis, however, it is often desirable to have a low-

dimensional representation of the population dynamics in terms of a few differential equa-

tions, at least for a certain parameter range. Apart from the dynamics in the neighborhood of

an equilibrium point (see e.g. [126]) or in the limit of slow synapses [127], such “firing rate

models” are difficult to link to the microscopic model already in the deterministic (macro-

scopic) case (for notable exceptions see [128, 129]), let alone the stochastic, finite-size case.

Here, our mesoscopic population rate equations can serve as a suitable starting point for deriv-

ing low-dimensional dynamics that links microscopic models to mesoscopic rate equations

with realistic finite-size noise.

Extensions of the model

There are several ways to extend our mesoscopic population model towards more biological

realism. We already mentioned the possibility to include short-term synaptic plasticity in our

mean-field framework. Furthermore, the hazard function could be generalized to capture

Gaussian current noise as arising from background spiking activity [5, 57–60, 98]. Approxi-

mate mappings of white and colored current noise to an effective hazard function in the escape

noise formalism are available [88, 89] and might be combined with our mesoscopic population

model. Yet another extension concerns the synaptic input model. Here we only looked at cur-

rent input but, as shown by Chizhov and Graham [88], it is straightforward to extend popula-

tion theories of the renewal type to the case of conductance inputs. In the simplest case, the

synaptic current of neuron i embedded in population α and driven by populations β can be

modelled by a linear voltage-dependence:

Iasyn;iðtÞ ¼ �
X

M

b¼1

ua
i ðtÞ � Eab

� �

X

j2Gb

i

gab � sbj
� �

ðtÞ ð18Þ

(cf. corresponding expression Eq (22) in METHODS for current-based synapses). Here, Eαβ is the

reversal potential of a synapse from population β, and gαβ(t) is the conductance response (in

nS) elicited by a spike of a presynaptic neuron in population β. The same mean-field argu-

ments as for the current-based model carry over to the case of conductance-based synapses.

For example, the membrane potential ua
Aðt; t̂Þ of a current-based leaky integrate-and-fire neu-

ron with a last spike time at time t̂ follows the equation

tam
@ua

A

@t
¼ �ua

A þ maðtÞ þ tam

X

M

b¼1

pabNbwabð�ab � Ab
NÞðtÞ; ð19Þ

where at t ¼ t̂ and during an absolute refractory period uAðt; t̂Þ ¼ ur is at the reset potential

(see METHODS, Eq (30) for details). In the case of conductance-based input, Eq (18), we only

need to replace Eq (19) by

tam
@ua

A

@t
¼ �ua

A þ maðtÞ � Ra
X

M

b¼1

pabNb ua
A � Eab

� �

ðgab � Ab
NÞðtÞ: ð20Þ

where Rα is the membrane resistance. How to model nonlinear voltage-dependence of synaptic

currents such as N-methyl-D-aspartate (NMDA) currents within a mean-field approximation

is less obvious but approximations also exist for this case [20]. It will be an interesting question

for the future how well these approaches work with the finite-N theory developed in the
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present study. Alternatively, effective current models [130, 131] with activity-dependent, effec-

tive time constant τm(t) and effective resting potential urest(t) could be another solution to

treat conductance inputs.

Here, we have used a discrete set of populations. In large-scale models of the brain, one

often regards the spatial continuum limit, resulting in so-called stochastic neural field equa-

tions [116]. These equations represent a compact description of neural activity and do not

depend on a specific discretization of space. Just as discrete firing rate models, these field equa-

tions must be considered phenomenological because the link to neuronal parameters is not

clear (note however that such equations have been derived from non-spiking, two-state neu-

ron models for N<1 [39], and from spiking models for N!1 [132, 133]). By taking the

spatial continuum limit, our mesoscopic population equations can be formulated as a stochas-

tic neural field equation that is directly derived from a finite-size, spiking neural network. It

would be interesting to employ this continuous extension of our mesoscopic equations to

study the effect of spike-history effects on the stochastic behavior of bumps and waves in neu-

ral fields.

A first simple comparison of the computational performance in RESULTS, “MESOSCOPIC

DYNAMICS OF CORTICAL MICROCOLUMN”, demonstrated already that the mesoscopic population

dynamics outperformed the microscopic simulation by a speed-up factor of around 120. In

this example, the numerical integration of the population dynamics has not been particularly

optimized with respect to time step Δt and history length T. A systematic comparison under

the condition of some given accuracy, has the potential for an even larger speed-up because

the population equations can be integrated with a larger time step than the spiking neural net-

work. In addition to that, we have also compared the mesoscopic model to the full microscopic

simulation of the refractory density (cf. RESULTS, “FINITE-SIZE MEAN-FIELD THEORY”) and found a

moderate enhancement in performance for sufficiently large networks (N≳ 100). These

computational aspects will be investigated in a separate study.

Methods

Model

Network setup. We consider a network ofM populations each consisting of Nα intercon-

nected neurons of the same type (the superscript α = 1, . . .,M labels the populations). Neuron

i in population α receives pαβNβ connections (synapses) from a random subset Gb

i of presynap-

tic neurons in population β. Here, pαβ denotes the probability for a connection from a neuron

in population β to a neuron in population α. That is, the connections between any two popula-

tions are random with fixed in-degree.

Let the spike train of neuron i in population α be denoted by

sai ðtÞ ¼
X

k

dðt � tai;kÞ; ð21Þ

where tai;k is its k-th spike time and δ denotes the Dirac δ-function. The neuron receives spike

train input from its presynaptic partners in population β with a transmission delay Δαβ and

synaptic weight wαβ. More precisely, the synaptic input current Iasyn;iðtÞ is modeled as a sum of

post-synaptic currents caused by each spike of presynaptic neurons:

RaIasyn;iðtÞ ¼ tam

X

M

b¼1

wab
X

j2Gb

i

�ab � sbj
� �

ðtÞ; ð22Þ

where Rα and tam are the membrane resistance and membrane time constant of a neuron in
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population α, respectively, and wαβ sets the synaptic weights in units of mV. The synaptic ker-

nel �αβ(t) is defined as the postsynaptic current (PSC) normalized by its charge that is induced

by one input spike from a neuron of population β. More precisely, �αβ is the PSC divided by its

integral, and therefore it has units of 1/sec. In Eq (22), the first sum runs over all populations

β, whereas the second sum runs over the set Gb

i of all neurons in population β that project onto

neuron i in population α.
In general, the filtered total synaptic input from population β,

P

j2Gb

i
ð�ab � sbj ÞðtÞ, may be

modeled by a set of differential equations for a finite number of synaptic variables yabi;‘ , ℓ = 1,

. . ., L. In simulations, we model the synaptic kernel by a single exponential with constant delay

Δαβ = Δ, �abðtÞ ¼ Yðt � DÞe�ðt�DÞ=tbs =tbs , where Θ(t) denotes the Heaviside step function. The

synaptic time constants are tEs ¼ 3ms and tIs ¼ 6ms for excitatory and inhibitory synapses,

respectively. This kernel can be realized by a single synaptic variable yabi ðtÞ, which obeys the

first-order kinetics tbs _y
ab
i ¼ �yabi þP

j2Gb

i
sbj ðt � DÞ with β 2 {E, I}.

Generalized integrate-and-fire model. Neurons are modeled by a leaky integrate-and-

fire model with a dynamic threshold [14, 47, 49, 80] and an escape noise mechanism [14, 26–

28]. Following [27], we refer to this model as the generalized integrate-and-fire (GIF) model.

The crucial variables of this model are the membrane potential ua
i ðtÞ and the dynamic thresh-

old W
a

i ðtÞ. The membrane potential obeys the subthreshold dynamics

tam
dua

i

dt
¼ �ua

i þ maðtÞ þ RaIasyn;iðtÞ; ð23Þ

where tam is the membrane time constant and maðtÞ ¼ urest þ RaIaextðtÞ is the drive in the absence

of synaptic input consisting of a constant resting potential urest and an external stimulus IaextðtÞ.
The synaptic current Iasyn;iðtÞ has been defined in Eq (22).

After each spike the voltage is reset to the potential ur, where it is clamped for an absolute

refractory period tref = 4 ms. Furthermore, each spike tai;k adds a contribution y
aðt � tai;kÞ to the

dynamic threshold:

W
a

i ðtÞ ¼ ua
th þ

X

ta
i;j
<t

y
a t � tai;k

� �

;

¼ ua
th þ

Z t

�1
y
aðt � t0Þsai ðt0Þ dt0

ð24Þ

where ua
th is a baseline threshold and θα(t) is called the spike-triggered kernel [26, 27]. Since the

increases in spike threshold accumulate over several spikes, the spike-triggered kernel causes

spike-frequency adaptation. We set θα(t) =1 for t 2 (0, tref) so as to ensure absolute refractori-

ness. For the sake of simplicity, we assumed here that all spike-triggered accumulation effects

can be lumped into the threshold variable (cf. Sec. “Mapping onto a generalized linear model”

below). However, if realistic membrane potentials are needed (e.g., for fitting membrane

potential data [27] or in a conductance-based extension of the model (see DISCUSSION) and

[88]), adaptation mechanisms affecting the voltage should be kept in the voltage dynamics.

Spikes are elicited stochastically by a conditional intensity (also called hazard rate, escape

rate or conditional rate)

l
a

i ðtÞ ¼ f a ua
i ðtÞ � W

a

i ðtÞ
� �

; ð25Þ

which depends on the momentary distance between the membrane potential and the threshold

via the exponential link function f aðxÞ ¼ caexpðx=Da

uÞ. The parameter cα is the escape rate at
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threshold and the parameter Da

u > 0 characterizes the softness of the threshold (Fig 1A, inset).

Intuitively, a neuron fires immediately if its membrane potential is 2 � Da

u millivolts above the

threshold and is unlikely to fire if its membrane potential is 2 � Da

u millivolts below the thresh-

old [14]. In the limit Da

u ! 0, the model turns into a deterministic (but adaptive) leaky inte-

grate-and-fire model with a hard threshold. We emphasize that our standard choice of Da

u � 2

mV is consistent with the intrinsic stochasticity of neurons in cortical slices [26, 85]. Alterna-

tively, the softness of the threshold D
a

u may also be regarded as a phenomenological parameter

that accounts for all incoherent noise sources that are individual to each neuron. This includes,

e.g., any intrinsic noise but also fluctuations of external background input from other neural

populations that are not modeled explicitly. For instance, to account for the external Poisson

input used in the original cortical column model by Potjans an Diesmann [5], we increase in

Figs 1, 8 and 9 the softness to Da

u ¼ 5mV.We note that for more detailed comparisons with

the original model, more elaborate approximations of the escape rate for the case of colored

noise exist [89], which in principle could be used to approximate external Poisson noise with-

out a free parameter. However, because such a mapping is not the focus of the current study,

we stick here for the sake of simplicity to the phenomenological escape rate, Eq (25), of the

exponential form.

The parameters of the model used in simulations (unless specified differently) are summa-

rized in Table 1.

Mapping onto a generalized linear model. We also considered a slightly different variant

of the model, called spike-response model [14] or generalized linear model (GLM) [55, 66, 84,

108, 109]. This model does not reqire the reset rule of the integrate-and-fire model but instead

relies on spike-triggered kernels to implement refractoriness and other spike-history effects.

Specifically, the membrane potential is given by

ua
i ðtÞ ¼ hai ðtÞ þ

X

t̂a
i;j
<t

Zaðt � t̂ai;jÞ; ð26Þ

where hai ðtÞ is the free membrane potential given by

hai ðtÞ ¼ ka � ma þ RaIasyn;i

� �

ðtÞ
h i

: ð27Þ

For a membrane filter kernel kaðtÞ ¼ YðtÞet=tam=tam, where Θ(t) denotes the Heaviside step

function, the dynamics of hai is equivalent to the dynamics of ua
i (Eq (23)), except that h

a
i is not

reset upon spiking. Spike-history effects on the level of the membrane potential are captured

by the second term in Eq (26). This term represents the convolution ðZa � sai ÞðtÞ of the output
spike train with a spike-triggered kernel η(t) and generates a spike-after-potential that

Table 1. Default values of parameters used in simulations unless stated otherwise.

τm 20 ms membrane time constant

tref 4 ms absolute refractory period

uth 15 mV threshold (non-adapting part)

ur 0 mV reset potential

c 10 Hz escape rate at threshold

Δu 2 mV noise level

Δ 1 ms transmission delay

tE
s

3 ms decay time constant of excitatory synapses

tI
s

6 ms decay time constant of inhibitory synapses

https://doi.org/10.1371/journal.pcbi.1005507.t001
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accumulates over spikes. As before, the threshold W
a

i ðtÞ obeys Eq (24). Given the membrane

potential ua
i ðtÞ and the dynamic threshold W

a

i ðtÞ, spikes are generated by the same hazard rate

l
a

i ðtÞ given by Eq (25).

At low firing rates, the spike-triggered kernel η can be used to approximate the integrate-

and-fire dynamics by choosing ZðtÞ ¼ ður � uthÞe�ðt�ta
ref

Þ=tamYðtÞ. However, this is not an exact

mapping because the value of the membrane potential is not reset to a fixed value ur after spik-

ing, in contrast to the GIF model. This is due to the accumulation of the threshold and the var-

iability in the voltage at the moment of firing.

We also mention that the kernel η can be transformed into the kernel θ of the threshold

dynamics [14]. This is possible because we are only interested in the spike emissions of the

neurons and not the membrane potentials. In fact, the conditional firing rate, Eq (25), is

invariant under the transformation θ! θ − η, η ! 0.

Mean-field approximation

An important variable that characterizes the internal state of a neuron is the time of its last

spike, or, equivalently, the time elapsed since the last spike (“age” of the neuron) [88]. The

time since the last spike is a good predictor of the refractory state of a neuron at time t. Our

approach is to use a population density description for this refractory state [23, 68, 88, 89], in

which the coupling of neurons as well as the adaptation of single neurons are mediated by the

mesoscopic population activities Aa
NðtÞ defined by Eq (1). To this end, we replace the condi-

tional firing rate la

i ðtÞ of a neuron i in population α by an effective rate la

Aðtĵtai Þ that only
depends on its last spike time t̂ai and the history of the population activity fAa

Nðt0Þgt0<t [63].
Here and in the following, the subscript A indicates the dependence on the history of Aa

NðtÞ.
We note that the expected total activity �AaðtÞ of population α at time t is the average of all the

conditional firing rates summed over all neurons in this population: �AaðtÞ ¼ ð1=NaÞPil
a

i ðtÞ.
The effective rate la

Aðtĵtai Þ is determined such that it approximates the conditional intensity on

average:

1

Na

X

Na

i¼1

l
a

i ðtÞ �
1

Na

X

Na

i¼1

l
a

Aðtĵtai Þ: ð28Þ

To find such an approximation, we proceed in two steps [55]: first, the membrane potential

ua
i ðtÞ is approximated by a function ua

Aðt; t̂ai Þ using a mean-field approximation of the synaptic

input. For fully connected populations, this first approximation turns into an exact statement.

Second, the dynamic threshold W
a

i ðtÞ is approximated by a function W
a

Aðt; t̂ai Þ using the quasi-
renewal approximation [63]. For renewal neurons, the second approximation becomes exact.

Once we have found an expression for the mean-field approximation Eq (28), we are in a posi-

tion to use a population density description with respect to the last spike times t̂ai . In the fol-

lowing two paragraphs we explain the above two steps in detail.

Mean-field approximation of synaptic input. In the special case of a fully connected net-

work (pαβ = 1), the membrane potential can be completely inferred from the last spike time t̂ ai
and the mean field Aa

N . In this case, the synaptic input Eq (22) can be rewritten as

RaIasyn;iðtÞ ¼ tam

X

M

b¼1

pabNbwabð�ab � Ab
NÞðtÞ: ð29Þ

Thus, in a fully connected network all neurons in population α “see” the same synaptic input

RaIasyn given by the “mean field” AN(t). From Eq (23) follows that GIF neurons with the same
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last spike time t̂ all have the same membrane potential ua
Aðt; t̂Þ that obeys the differential equa-

tion

tam
@ua

A

@t
¼ �ua

A þ maðtÞ þ tam

X

M

b¼1

Jabð�ab � Ab
NÞðtÞ: ð30Þ

with Jαβ = pαβ Nβ wαβ. The initial condition is ua
Aðt̂ ; t̂Þ ¼ ur corresponding to the reset of the

membrane potential after the last spike. If we use this insight for the conditional intensity

f aðua
i ðtÞ � W

a

i ðtÞÞ we see that the explicit dependence upon ua
i ðtÞ can be dropped as long as we

keep track of the last spike time t̂ai , cf. Eq (28); hence u
a
i ðtÞ ¼ ua

Aðt; t̂ai Þ.
In a randomly connected network (pαβ < 1), the synaptic input is different for each neuron.

On the population level, however, this heterogeneity is averaged allowing us to still use the

mean-field approximation, Eq (30). To see this, we note that in our network with fixed in-

degree, each neuron i in population α has pαβNβ presynaptic neurons in population β (β = α is

possible). This means that in Eq (22) we can approximate the sum
P

j2Gb

i
sbj ðtÞ over the pαβ Nβ

presynapic neurons by

pabNb
1

pabNb

X

j2Gb

i

sbj ðtÞ

0

@

1

A � pabNbAb
NðtÞ ð31Þ

(cf. definition of Ab
NðtÞ in Eq (1)). The mean-field approximation, Eq (31), only depends on

the population activity and is thus identical for all neurons. Therefore, fluctuations of the pop-

ulation activity can be regarded as common input fluctuations that are coherent across neu-

rons. On the other hand, the deviation from the mean-field approximation (i.e. the difference

between the left- and right-hand side of Eq (31)) is different for each neuron and can be

regarded as incoherent noise. For low connection probabilities, this incoherent part of the fluc-

tuations may lead to a significant deviation of the membrane potential ua
i ðtÞ from the mean-

field approximation ua
Aðt; t̂ai Þ (Fig 6A, 6C and 6E, top). On the mesoscopic scale, however, the

total number of spikes in a small time step Δt is determined by the population-averaged condi-

tional firing rate, Eq (28), (cf. Eq (46) below). Hence, for sufficiently large Nα, incoherent noise

average out, whereas common finite-size fluctuations survive (Fig 6A, 6C and 6E, bottom).

Note, however, that incoherent noise may cause a small bias because we average a nonlinear

function of the noisy membrane potential on the l.h.s. of Eq (28). Effectively, the incoherent

noise softens the threshold of the escape noise mechanism.

Quasi-renewal approximation. So far we have reduced the conditional intensity to

l
a

i ðtÞ � f ðuAðt; t̂ai Þ � W
a

i ðtÞÞ. This expression still involves the individual threshold W
a

i ðtÞ of
neuron i in population α, which depends on the full spike history of that neuron. This means

that the spike-train is generally not a time-dependent renewal process. Here, we employ the

quasi-renewal approximation [63] and average over the spikes before the last spike time

assuming that they occurred according to an inhomogeneous Poisson process with rate Aa
Nðt0Þ,

t0 < t̂ai . Averaging the conditional intensity, Eq (25), in this way, conditioned on a given last

spike time t̂ai and a given history Aa
Nðt0Þ, t0 < t̂ai , yields [63, 134, 135]

l
a

i ðtÞ � f a ua
Aðt; t̂ai Þ � W

a

Aðt; t̂ai Þ
� �

� l
a

Aðtĵtai Þ; ð32Þ

where Wa

Aðt; t̂ai Þ is an effective dynamic threshold given by

W
a

Aðt; t̂Þ ¼ uth þ y
aðt � t̂Þ þ

Z t̂

�1

~yaðt � t0ÞAa
Nðt0Þdt0: ð33Þ
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Here, ~yaðtÞ ¼ D
a

u½1� e�yaðtÞ=Da
u � is the so-called quasi-renewal kernel [63], while yaðt � t̂Þ

describes the increase of the threshold induced by the last spike. Note that as a result of the two

approximations, the conditional firing rate no longer depends on the precise spiking history of

a given neuron and its presynaptic neurons, but only on its last firing time, cf. Eqs (25) and

(32). This ends our explanation of Eq (28).

Discretized population density equations

Using the mean-field approximation Eq (32), we have reduced the model to a population of

time-dependent renewal processes [23, 68], where the conditional intensity of neuron i is

l
a

Aðtĵtai Þ. Neurons are effectively coupled through the dependence of la

Aðtĵtai Þ upon the mem-

brane potential ua
Aðtĵt iÞ, which in turn depends on the activities Ab

N of all populations β that are

connected to population α. This is the only place where population labels different from α
appear. For the sake of notational simplicity, we will omit the population label α and the sub-

script A in this section, keeping in mind that all quantities refer to population α and that the

coupling with other populations is implicitly contained in ua
Aðtĵt iÞ.

Microscopic dynamics of the refractory density. Because the firing probability of a neu-

ron only depends on its last spike time and the mesoscopic population activity in the past, we

can use a population density description of all last spike times t̂ i in the population. To derive

such representation it is useful to discretize time by introducing the discrete time points

tk = t0 + kΔt, k 2 Z, and the corresponding intervals I k ¼ ½tk; tk þ DtÞ. Time is measured rela-

tive to a reference time t0, which, however, is irrelevant for the following arguments. We

require that the size of the intervals Δt is sufficiently small so that each neuron fires at most

once during any interval. Specifically, we require that Δt� tref. We also require that the sum of

axonal and synaptic delays is not smaller than Δt. Furthermore, we identify the discrete time

point tl as the current time, whereas indices k with k< l correspond to the past. In the popula-

tion density approach, we do not keep track of the last spike time of each individual neuron

but for each past time interval I k we only track the number of those neurons that have

their last spike time in this interval. This number is denoted bym(tl, tk). The collection

fmðtl; tkÞgk2Z;k<l of these numbers for all intervals I k, k< l, represents the current distribution

of last spike times t̂ i in the population at time tl (Fig 10A). Because each neuron has exactly

one last spike time, the distributionm(tl, tk) is normalized to the total number of neurons:

X

l�1

k¼�1
mðtl; tkÞ ¼ N: ð34Þ

Since the last spike time determines the refractory state of a neuron, the distributionm(tl, tk)

will be also called refractory distribution and the function QN(tl, tk)�m(tl, tk)/(NΔt) can be

regarded as the corresponding refractory density. The refractory distribution fully character-

izes the microscopic state of the population.

We now introduce the number of neurons that fired a spike in the interval I k (not necessar-

ily the last spike). This number is denoted by Δn(tk) (Fig 10A) and is related to the population

activity by AN(tk) = Δn(tk)/(NΔt). Therefore, Δn(tk) will be often referred to as simply the

“activity” at time tk. Knowing the past activities Δn(tk0) for k0 < l and the last spike time tk fully

determines the membrane potentials u(tl, tk) and thresholds ϑ(tl, tk), and hence the escape rate

λ(tl|tk) = f(u(tl, tk) − ϑ(tl, tk)) associated with the interval I k. Thus, the knowledge of the past

activities and the distribution of last spike times at time tl is sufficient to statistically determine

these quantities at time tl+1. In other words, the evolution of the system can be described by a

Markov process if we define the microscopic state XðtlÞ of the population at time tl by the
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sequence of pairs

XðtlÞ ¼ DnðtkÞ;mðtl; tkÞð Þf gk2Z;k<l : ð35Þ

In the following, the main task will be to derive the statistics of the number of spikes Δn(tl) in
the next time interval [tl, tl + Δt) and the distributionm(tl + Δt, tk) of last spike times at time

tl+1 given the state XðtlÞ at time tl. We mention that what we have lost in this population den-

sity description is only the information about the identity of the neurons, which, however, is

irrelevant for the mesoscopic description of homogeneous populations.

There is a second interpretation ofm(tl, tk): let us consider the group of neurons that have

fired in the interval I k, k< l. The number of neurons from this group that have “survived” (i.e.

that have not fired again) until time tl is exactly given bym(tl, tk). We will therefore also call it

number of survived neurons or survival number for the refractory state k. Correspondingly,

the ratio SN(tl|tk) =m(tl, tk)/Δn(tk) is the fraction of survived neurons. As time tl evolves, the

number of survived neurons diminishes whenever there is a spike in that group (Fig 10B).

Thus, if the group fires Xlk spikes in the time step [tl, tl + Δt), thenm(tl, tk) decreases by Xlk. For

l> k, this gives rise to the evolution equation

mðtl þ Dt; tkÞ ¼ mðtl; tkÞ � Xlk: ð36Þ

The initial condition is given bym(tk + Δt, tk) = Δn(tk), which follows from the absolute refrac-

toriness during the first time step after a spike. Absolute refractoriness also entails that each

neuron can fire only one spike per time step (Δt� tref) with a firing probability

P
l
ðtljtkÞ ¼ 1� exp �

Z tlþDt

tl

lðsjtkÞ ds
� �

� 1� e�
�lðtl jtkÞDt: ð37Þ

In the last step, we introduced the average hazard rate �lðtljtkÞ ¼ ½lðtljtkÞ þ lðtlþ1jtkÞ�=2.
Because the past activities Δn(tk), k< l, completely determine the probability to fire Pλ(tl|tk),

each neuron decides independently from the others whether it fires in the next time step. Fur-

thermore, there is a total number ofm(tl, tk) neurons from the considered group that could

potentially fire in the interval [tl, tl + Δt). Therefore, the number of spikes Xlk is the result of

m(tl, tk) independent Bernoulli trials with success probability Pλ(tl|tk). This implies that Xlk

Fig 10. Different interpretations of the function mðt; t̂Þ (red line). (A) As a function of t̂ (or as a function of k in discrete time),m(tl, tk)

represents the distribution of last spike times t̂ i across the population at time t = tl. (B) As a function of time t (or as a function of the index l in
discrete time),m(tl, tk) represents the survival number, i.e. the number of neurons which fired in the interval [tk, tk + Δt) which survived (did
not fire) until time t = tl. The activity Δn(tk), i.e. the number of neurons that fired in the k-th time bin, is depicted by a blue line. The population
size isN = 1000.

https://doi.org/10.1371/journal.pcbi.1005507.g010
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follows a binomial distribution:

Xlk � B mðtl; tkÞ; Pl
ðtljtkÞð Þ: ð38Þ

Moreover, the random numbers Xlk associated with different past time intervals I k are condi-

tionally independent given the current state of the system XðtlÞ (cf. Eq (35)).
The total number of spikes emitted in the current interval [tl, tl + Δt) is equal to the total

reduction of survivals in that interval, hence

DnðtlÞ ¼
X

l�1

k¼�1
Xlk: ð39Þ

Eqs (36)–(39) define the microscopic kinetics in discrete time. In a simulation, for each past

time interval I k one independent Poisson random number Xlk needs to be drawn per time

step and population. These random numbers determine the current spike count via Eq (39)

and the update of the distribution of last spike timesm(tl, tk), via Eq (36). We call this descrip-

tion microscopic because for small time steps, there will be many (order of N) intervals I k that

contain survived neurons, i.e. for whichm(tl, tk)> 0 and for each of which one needs to draw

a random number Xlk in a simulation. In the limit Δt! 0, such a simulation would be as com-

plex as the original microscopic simulation of N neurons.

The microscopic population density description can be summarized in a particularly com-

pact form by performing the continuum limit Δt! 0 and by assuming large N. For large N,

the statistics of X(tl, tk) becomes Gaussian with mean and variance Pλ(tl|tk)m(tl, tk). Thus, the

dynamics ofmðt; t̂Þ, Eq (36), can be rewritten as

mðtl þ Dt; tkÞ �mðtl; tkÞ ¼ �P
l
ðtljtkÞmðtl; tkÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P
l
ðtljtkÞ½mðtl; tkÞ�þ

p

N ðtl; tkÞ; ð40Þ

where fN ðtl; tkÞgk;l2Z are independent, standard normal random numbers and the ramp func-

tion [x]+ = xΘ(x) ensures non-negativity ofm. Using the density of last spike times QN(tl, tk)�
SN(tl|tk)AN(tk)�m(tl, tk)/(NΔt), setting tl = t and tk ¼ t̂ , and expanding P

l
ðtĵtÞ � lðtĵtÞDt for

small Δtwe arrive at the following dynamics in the limit Δt! 0:

@QNðt; t̂Þ
@t

¼ �lðtĵtÞQNðt; t̂Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðtĵtÞ½QNðt; t̂Þ�þ
N

s

xðt; t̂Þ: ð41Þ

Here, xðt; t̂Þ � lim
Dt!0N ðt; t̂Þ=Dt is a Gaussian random field with zero mean and correlation

function hxðt; t̂Þxðt0; t̂ 0Þi ¼ dðt � t0Þdðt̂ � t̂ 0Þ. For a given last spike time t̂ , Eq (41) has the

form of a Langevin equation. Its initial condition is QNðt̂ ; t̂Þ ¼ ANðt̂Þ. The population activity

results from Eq (39) as the integral of changes of the refractory density QNðt; t̂Þ over all refrac-
tory states, i.e. ANðtÞ ¼ �

R t

�1 @tQNðt; t̂Þ dt̂ , or using Eq (41):

ANðtÞ ¼
Z t

�1
lðtĵtÞQNðt; t̂Þ dt̂ �

Z t

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðtĵtÞ½QNðt; t̂Þ�þ
N

s

xðt; t̂Þ dt̂ : ð42Þ

Eqs (41) and (42) represent the microscopic population density equations in continuous time

under the Gaussian and quasi-renewal approximations.

Mesoscopic description. At the mesoscopic level, we want to describe the state of the pop-

ulation at time tl only by the mesoscopic variables Δn(tk), k< l, that have been observed so far.

Therefore, we define the history of n at time tl by

HðtlÞ ¼ DnðtkÞf gk2Z;k<l; ð43Þ
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which completely determines the mesoscopic state. In contrast to the microscopic state XðtlÞ
defined in Eq (35), the mesoscopic state does not require the knowledge of the detailed distri-

bution of last spike timesm(tl, tk). We call a variable mesoscopic if it only depends on the his-

toryHðtlÞ. Likewise, an equation is called mesoscopic if it only involves mesoscopic variables.

In the following sections, all averages at a given time tl have to be understood as conditional

averages given the historyHðtlÞ. We will therefore often omit an explicit notation of this

condition.

To derive a mesoscopic equation, we want to find an approximate dynamics with only one

effective, mesoscopic noise term that summarizes the effect of all microscopic random vari-

ables Xlk. In a simulation, this would imply to draw only one random number per time step

and per population. Towards that end, we assume that Δt can be chosen sufficiently small such

that Pλ(tl|tk)� 1, which is always possible if neurons are stochastic und hence do not perfectly

synchronize. Under this assumption, the binomially-distributed random numbers Xlk are

approximately Poisson-distributed, i.e.

Xlk � Pois E Xlkjmðtl; tkÞ½ �ð Þ; ð44Þ

where

E XlkjmðtljtkÞ½ � ¼ P
l
ðtljtkÞmðtl; tkÞ: ð45Þ

is the conditional mean of Xlk given the current survival numberm(tl|tk). Given the conditional

independence of Xlk for different k, the Poisson property implies that the global activity Δn(tl)
in Eq (39) is also Poisson-distributed given the current refractory distribution {m(tl, tk)}k<l, i.e.

DnðtlÞ � Pois D�nðtlÞð Þ; ð46Þ

with mean

D�nðtlÞ � E DnðtlÞjfmðtl; tkÞgk<l;HðtlÞ
� �

¼
X

1

k¼1

P
l
ðtljtkÞmðtl; tkÞ: ð47Þ

Because of the definition of refractory densities and Pλ � 1, we find that D�nðtlÞ � N is auto-

matically satisfied at any moment in time. However, for the numerical implementation with

finite Δt later on we need to keep in mind that the Poisson number Δn(t) could become larger

than N, if D�nðtlÞ is close to N. In this case, using a binomial statistics will be more appropriate,

as explained in Sec. “Numerical implementation”.

Eqs (46) and (47) suggest the possibility to generate Δn(tl) by a single Poisson-distributed
random number. However, Eq (47) is not a mesoscopic equation yet because it still depends

on the dynamics ofm(tl, tk), Eq (36), which contains the microscopic random variables Xlk.

There is another, more subtle problem if we want to use Eqs (46) and (47) as a mesoscopic

dynamics that generates the activities Δn(tl). If we regard Δn(tl) as an independent random vari-

able, the conservation of neurons, Eq (39), imposes a constraint on the microscopic random

numbers {Xlk}k<l, which will therefore not be independent anymore. Conversely, if we con-

sider both {Xlk}k<l and Δn(tl) as independent variables, we almost certainly violate the conser-

vation of neurons, Eq (39), or equivalently, the normalization condition Eq (34). This problem

does not occur in the microscopic dynamics, where Δn(tl) is a dependent variable generated
from the independent random variables {Xlk}k<l via Eq (39), and hence the correct normaliza-

tion is guaranteed at any time. Nevertheless, the “non-normalized” or “unconstrained” pro-

cess, in which {Xlk}k<l and Δn(tl) are drawn independently, will be useful for deriving

mesoscopic equations because it allows us to calculate the moments of the survival numbers

m(tl, tk). Our main strategy is to use these moments in conjunction with the normalization
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condition to express the expected spike count D�nðtlÞ, Eq (47), as a deterministic functional of

the past activities. In this way, D�nðtlÞ will not depend anymore on the actual microscopic reali-

zations of the constrained noise fXl0 ;kgk;l02Z;k<l0<l (constrained by a given history {Δn(tk)}k<l via
Eq (39)) and can thus be used to generate Δn(tl) as a Poisson random number from the knowl-

edge of the past activities.

Moment equations. To achieve such deterministic relationship, we first derive meso-

scopic equations for the mean and variance ofm(tl, tk) given the historyHðtlÞ in the so-called

non-normalized ensemble or unconstrained ensemble. This means that the history determines

the initial conditions of the dynamics ofm(tl, tk), Eq (36), as well as the conditional intensities

λ(tl|tk), but it does not impose the constraint Eq (39) on the random numbers {Xl0, k}l0�l.

Although this unconstrained noise leads to a non-normalized distribution m̂ðtl; tkÞ, it still
yields a very good approximation of its mean and variance in the actual constrained ensemble.

Taking the average of Eq (36), and using Eq (44) yields the evolution of the mean:

hm̂ lþ1;ki ¼ ½1� P
l
ðtljtkÞ�hm̂ l;ki ð48Þ

with initial condition hm̂kþ1;ki ¼ DnðtkÞ. Here and in the following, m̂ l;k is short-hand for

m̂ðtl; tkÞ to simplify the notation, and h�i denotes the ensemble average of the unconstrained

process for a given historyHðtlÞ. Actually, the condition for the average h�i can be extended to

the historyHðtlþ1Þ (and to any future activities) because in the unconstrained ensemble neither

m̂l;k nor m̂ lþ1;k depend on the most recent activity Δn(tl) (clearly, this also holds for any future
activity). Importantly, Eq (48) is a mesoscopic equation because it is fully determined by the

past activities.

As a next step we derive an equation for the variance of m̂. To this end, let

Dm̂ l;k ¼ m̂l;k � hm̂ l;ki ð49Þ

denote the deviation from the mean. Using the law of total variance, we find for the variance

in the next time step

hDm̂2
lþ1;ki ¼ Var E mlþ1;kjml;k;Hl

� �� �

þ Var mlþ1;kjml;k;Hl

� �
 �

: ð50Þ

The conditional mean ofml+1,k given the current valueml,k, denoted by E[ml+1,k|ml,k], follows

from the evolution Eqs (36) and (45) as [1 − Pλ(tl|tk)]ml,k. Therefore, its variance is

½1� P
l
ðtljtkÞ�

2hDm2
l;ki. For the second term in Eq (50), we note that the conditional variance

Var[ml+1,k|ml,k] is equal to the variance Var[Xlk|ml,k] of the decrement Xlk. Because Xlk is a

Poisson variable, this variance is equal to the mean given by Eq (45). Taken together, we find

the following update rule for the total variance

hDm̂2
lþ1;ki ¼ 1� P

l
ðtljtkÞ½ �2hDm̂2

l;ki þ P
l
ðtljtkÞhm̂ l;ki ð51Þ

with initial condition hDm̂2
kþ1;ki ¼ 0. As a function of tl (Fig 2C bottom), the variance

hDm̂2ðtl; tkÞi is initially zero because all neurons have still survived immediately after firing at

time tk. On the other hand, at long times tl� tk, the variance also vanishes because according

to Eq (48), the mean number of survived neurons hm(tl, tk)i appearing in Eq (51) goes to zero.

As a consequence, the variance obtains a maximum at an intermediate time. Similarly, the

dependence of the variance at time tl for different last spike times t̂ ¼ tk shows the same limit-

ing behavior which implies a maximum at an intermediate last spike time t̂ (Fig 2B bottom).

However, the rugged shape of this function with many local maxima reflects the discontinuity

of the driving force hm(tl, tk)i as a function of tk that arises from the stochastic initial condition

hm(tk+1, tk)i = Δn(tk).
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Mesoscopic population equations. Let us return to Eq (47) for the expected activity

D�nðtlÞ, which is used to draw the activity Δn(tl) as a Poisson random number (cf. Eq (46)).

Because we condition on the history {Δn(tl0)}l0<l, the processesml,k in this equation belong to

the “constrained” ensemble, in which the normalization condition, Eq (34), is obeyed. We

note that these constrained processes could in principle be generated microscopically by Eq

(36) if at each time tl0 in the past, the microscopic noise Xl0k was sampled from a joint distribu-

tion that ensures the conservation of neurons, Eq (39), i.e. ∑k Xl0k = Δn(tl0). However, as we will

show in the following, such a construction is not needed because the dependence of the

expected activity D�nðtlÞ on a specific realization ofml,k can be eliminated by exploiting the

normalization condition, Eq (34). To this end, we take advantage of the fact that the mean

hm̂ l;ki of the unconstrained process is a mesoscopic variable. This suggests to split the con-

strained processesml,k into the mean of the unconstrained process and a fluctuation part:

ml;k ¼ hm̂ l;ki þ dml;k: ð52Þ

The first contribution is deterministic given the past activities Δn(tk) while the second contri-

bution represents the microscopic fluctuations. We note that the fluctuation δml,k is not equiv-

alent to the deviation Dm̂ l;k of the unconstrained process because hm̂ l;ki þ Dm̂ l;k does not obey

the normalization condition, Eq (34), whereas hm̂l;ki þ dml;k does.

To remove the microscopic fluctuations δml,k, we require that both Eqs (34) and (47) are

simultaneously satisfied. Substituting Eq (52) into these equations leads to

N ¼
X

l�1

k¼�1
hm̂l;ki þ

X

l�1

k¼�1
dml;k; ð53Þ

D�nðtlÞ ¼
X

l�1

k¼�1
P
l
ðtljtkÞhm̂ l;ki þ

X

l�1

k¼�1
P
l
ðtljtkÞdml;k: ð54Þ

The microscopic fluctuations δml,k enter the dynamics only in the form of two sums. First, the

normalization condition Eq (53) imposes a strict relation between the summed deviation

∑k δml,k and the means of the unconstrained processes, hm̂ l;ki, irrespective of the specific, under-
lying microscopic dynamics ofml,k. In particular, we can solve for

P

k dml;k ¼ N �Pkhm̂ l;ki
with terms on the r.h.s. that are completely determined given the past activities. Second, the

total effect of the deviations on the expected activity D�nðtlÞ is given by the weighted sum

∑k Pλ(tl|tk)δml,k in Eq (54) with Pλ(tl|tk)� 1 for all k<l. The weighted sum ∑k Pλ(tl|tk)δml,k is

therefore tightly constrained by the value of the summed fluctuation ∑k δml,k. These consider-

ations suggest to make the following decoupling approximation:

X

l�1

k¼�1
P
l
ðtljtkÞdml;k � P

L
ðtlÞ
X

l�1

k¼�1
dml;k ð55Þ

with a still unknown factor PΛ(tl), that we call effective firing probability. To determine the

effective firing probability, we require that in the unconstrained ensemble the corresponding

approximation

X

l�1

k¼�1
P
l
ðtljtkÞDm̂ l;k ¼ P

L
ðtlÞ
X

l�1

k¼�1
Dm̂ l;k þ εl ð56Þ

minimizes the mean squared error EðP
L
Þ ¼ hε2

l i, where PΛ is short-hand for PΛ(tl). We use

the unconstrained deviations Dm̂ lk here because we are only interested in the typical error.

Mesoscopic dynamics of interacting populations of spiking neurons

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005507 April 19, 2017 40 / 63

https://doi.org/10.1371/journal.pcbi.1005507


Note that if εl is Gaussian distributed, minimizing the mean squared error yields the optimal

estimation of PΛ in the sense that it maximizes the log-likelihood of
P

k Pl
ðtljtkÞDm̂ l;k given

P

k Dm̂l;k under the linear approximation Eq (56). The error can be rewritten as

εl = ∑k[Pλ(tl|tk) − PΛ(tl)]Δml,k, which for N� 1 is a sum of many independent variables that

can indeed be considered to be Gaussian. The derivative of E with respect to PΛ is

dE

dP
L

¼ 2P
L

X

k;k0<l

hDm̂l;kDm̂l;k0i � 2
X

k;k0<l

P
l
ðtljtkÞhDm̂l;kDm̂ l;k0i; ð57Þ

where we have exploited that Pλ(tl|tk) is deterministic given the past activities Δn(tk), k<l.
Furthermore, under this condition, the fluctuations Dm̂ l;k and Dm̂ l;k0 with k 6¼ k0 are condi-

tionally independent. Using this property and setting dE=dP
L
¼ 0 we find that the optimal

effective firing probability is

P
L
ðtlÞ ¼

Pl�1

k¼�1 Pl
ðtljtkÞhDm̂2

l;ki
Pl�1

k¼�1hDm̂2
l;ki

: ð58Þ

The variance hDm̂2
l;ki in this formula obeys the mesoscopic dynamics derived above in Eq

(51). Hence, the effective firing probability is itself mesoscopic.

Using Eqs (53) and (55), ∑k δml,k can be eliminated in Eq (54) resulting in

D�nðtlÞ ¼
X

l�1

k¼�1
P
l
ðtljtkÞhml;ki þ P

L
ðtlÞ N �

X

l�1

k¼�1
hm̂l;ki

 !

: ð59Þ

Thus, we obtain an equation that yields the mean spike count D�nðtlÞ at the present time as a

function of the past spike counts {Δn(tk)}k<l. Eq (59) is the desired mesoscopic equation in dis-

crete time. For sufficiently small time steps Δt, the present spike count Δn(tl) can be generated

by drawing a Poisson random number with mean D�nðtlÞ according to Eq (46).

Mesoscopic population density equations in continuous time

In continuous time, we consider the rescaled variables

ANðtlÞ ¼
DnðtlÞ
NDt

; �AðtlÞ ¼
D�nðtlÞ
NDt

: ð60Þ

Here, �AðtÞ can be interpreted as the expected population activity given the past activity AN(t
0),

t0 < t. For Δt small but positive, the spike count Δn(t) is an independent Poisson number with

mean D�nðtÞ ¼ N �AðtÞDt. Thus, on a coarse-grained time scale, the continuum limit of the pop-

ulation activity may be written in the following suggestive way

ANðtÞ ¼
dnðtÞ
Ndt

; dnðtÞ � PoisðN �AðtÞdtÞ; ð61Þ

where dt denotes an infinitesimal (but temporally coarse-grained) time step and dn(t) is an

independent Poisson-distributed random number with mean N �AðtÞdt. In the limit dt! 0,

the spike count in an infinitesimal time step is a Bernoulli random number, where dn(t) = 1

with probability N �AðtÞdt and n(t) = 0 with probability 1� N �AðtÞdt. Therefore, in this limit

the population activity AN(t) converges to a sequence of Dirac δ-functions occurring at ran-
dom times tpop,k with rate N �AðtÞ. Thus, AN(t) can be written more formally as a population

Mesoscopic dynamics of interacting populations of spiking neurons

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005507 April 19, 2017 41 / 63

https://doi.org/10.1371/journal.pcbi.1005507


spike train or “shot-noise”

ANðtÞ ¼
1

N

X

k

dðt � tpop;kÞ; ð62Þ

where ðtpop;kÞk2Z is a point process with conditional intensity lpopðtjHtÞ ¼ N �AðtÞ. Here, the

conditionHt denotes the history of the population activity {AN(t
0)}t0<t, or equivalently, the his-

tory of spike times {tpop,k}tpop,k<t, up to (but not including) time t.

To obtain the dynamics for �AðtÞ, we also introduce the rescaled variables

SðtljtkÞ ¼
hm̂l;ki
DnðtkÞ

; vðtl; tkÞ ¼
hDm̂2

l;ki
NDt

: ð63Þ

The function SðtĵtÞ can be interpreted as the survival probability of neurons that have

fired their last spike at time t̂ . Furthermore, for small Δt the firing probability is given by

Pλ(tl|tk) = λ(tl|tk)Δt + O(Δt
2). Thus, the continuum limit of Eq (59) reads

�AðtÞ ¼ lim
Dt!0

(

X

t
Dt
�1

k¼�1
lðtjkDtÞSðtjkDtÞDnðkDtÞ

N

þ
X t

Dt
�1

k¼�1
lðtjkDtÞvðt; kDtÞDt

X t
Dt
�1

k¼�1
vðt; kDtÞDt

1�
X

t
Dt
�1

k¼�1
SðtjkDtÞDnðkDtÞ

N

0

@

1

A

9

=

;

:

ð64Þ

The sums in this equation can be regarded as the definition of stochastic integrals, which

allows us to rewrite Eq (64) as

�AðtÞ ¼
Z t

�1
lðtĵtÞSðtĵtÞANðt̂Þ dt̂ þ LðtÞ 1�

Z t

�1
SðtĵtÞANðt̂Þ dt̂

� �

: ð65Þ

Here,

LðtÞ ¼

Z t

�1
lðtĵtÞvðt; t̂Þ dt̂
Z t

�1
vðt; t̂Þ dt̂

ð66Þ

is an effective rate corresponding to the effective firing probability PΛ(t). Note that according

to Eq (64), the stochastic integrals in Eq (65) extend only over last spike times t̂ < t not includ-

ing time t̂ ¼ t. Taking the continuum limit of Eq (48) we find that the survival probability sat-

isfies the differential equation

@SðtĵtÞ
@t

¼ �lðtĵtÞSðtĵtÞ; Sð̂t ĵtÞ ¼ 1: ð67Þ

This equation has the simple solution

SðtĵtÞ ¼ exp �
Z t

t̂

lðt0 ĵtÞ dt0
� �

: ð68Þ

Similarly, we find from Eq (51) that the rescaled variance obeys the differential equation

@v

@t
¼ �2lðtĵtÞv þ lðtĵtÞSðtĵtÞANðt̂Þ; vðt̂ ĵtÞ ¼ 0: ð69Þ
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The set of coupled Eqs (62)–(69) defines the mesoscopic population dynamics. We emphasize

that not only AN(t) depends on �AðtÞ (cf. Eq (62)) but that there is also a feedback of AN(t) onto
the dynamics of �AðtÞ, cf. Eq (65). In fact, �AðtÞ can be regarded as a deterministic functional of

the past activities up to but not including time t. In particular, AN(t) is not an inhomogeneous

Poisson spike train because the specific realization of the spike history of AN(t) determines the

conditional intensity function for the point process (tpop,k) via Eq (65). Furthermore, we note

that, in the case of synaptic coupling or adaptation, also the variables S and v depend on the

history of the population activity through the dependence of lðtĵtÞ on the membrane potential

uðt; t̂Þ and the threshold Wðt; t̂Þ (cf. Eqs (30) and (33)).
For large N, the population activity can be approximated by a Gaussian process. To this

end, we note that in the discrete time description the spike counts Δn(tl) are conditionally
independent random numbers with mean and variance N �AðtlÞDt. Therefore, in the large-N

limit, the variable

DWðtlÞ ¼
DnðtlÞ � N �AðtlÞDt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N �AðtlÞ
p ð70Þ

is normally distributed with mean zero and variance Δt, and hence corresponds to the incre-
ment of a Wiener process. Using Eq (60) for the population activity and taking the continuum

limit Δt! 0, we obtain

ANðtÞ ¼ �AðtÞ þ
ffiffiffiffiffiffiffiffiffi

�AðtÞ
N

r

xðtÞ; ð71Þ

where ξ(t) = limΔt!0 ΔW(t)/Δt is a Gaussian white noise with correlation function hξ(t)ξ(t0)i =
δ(t − t0). This Gaussian approximation has the advantage that the multiplicative character of the

noise in Eq (71) becomes explicit because ξ(t) is independent of the state of the system. It also

explicitly reveals that the finite-size fluctuations scale like 1=
ffiffiffiffi

N
p

. We stress again that AN(t) is

not a white-noise process with time-dependent mean, as Eq (71) might suggest at first glance,

but it is a sum of two mutually correlated processes, (i) a white-noise term proportional to ξ(t)

that reflects the fact that the population activity is a δ-spike train and (ii) a colored “noise” �AðtÞ
that arises from the filtering of ξ(t) through the dynamics in Eq (65). As a result, the auto-corre-

lation function of AN(t) contains a δ-peak and a continuous part, consistent with previous theo-
retical findings [55]. In particular, at short lags the auto-correlation function may be negative as

a result of refractoriness: in this case, ξ and �A are anti-correlated in line with the intuitive pic-

ture discussed in the RESULTS section, Fig 2, that a positive fluctuation ξ(t) is associated with the

creation of a “hole” in the distribution of last spike times leading to a reduced activity after time

t. In the frequency domain, refractoriness corresponds to a trough in the power spectrum at

low frequencies [94] as visible, for instance, in Fig 3. These considerations clearly highlight the

non-white character of the finite-size fluctuations in our theory.

Several populations

It is straightforward to generalize the population equations to several populations by adding a

population label α = 1, . . .,M. For the sake of completeness, we explicitly state the full set of

equations. The activity of population α is given by

Aa
NðtÞ ¼

1

Na

X

k

dðt � tapop;kÞ; ð72Þ

where ðtapop;kÞk2Z is a point process with conditional intensity l
a

popðtjHtÞ ¼ Na �AaðtÞ. Here, the
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expected activity �AðtÞ depends explicitly on the historyHt ¼ fAb
Nðt0Þgt0<t;b¼1;...;M by the follow-

ing set of equations

�AaðtÞ ¼
Z t

�1
l
aðtĵtÞSaðtĵtÞAa

Nðt̂Þ dt̂ þ L
aðtÞ 1�

Z t

�1
SaðtĵtÞAa

Nðt̂Þ dt̂
� �

ð73Þ

l
aðtĵtÞ ¼ ca exp

uaðt; t̂Þ � W
aðt; t̂Þ

D
a

u

� �

; L
aðtÞ ¼

Z t

�1
l
aðtĵtÞvaðt; t̂Þ dt̂

Z t

�1
vaðt; t̂Þ dt̂

; ð74Þ

@Sa

@t
¼ �l

aðtĵtÞSa; Saðt̂ ĵtÞ ¼ 1; ð75Þ

@va

@t
¼ �2l

aðtĵtÞva þ l
aðtĵtÞSaðtĵtÞAa

Nðt̂Þ; vaðt̂ ; t̂Þ ¼ 0; ð76Þ

@ua

@t
¼ � ua � maðtÞ

tam
þ
X

M

b¼1

wabpabNbð�ab � Ab
NÞðtÞ; uaðt̂ ; t̂Þ ¼ ur ð77Þ

W
aðt; t̂Þ ¼ uth þ y

aðt � t̂Þ þ
Z t̂

�1

~yaðt � t0ÞAa
Nðt0Þdt0: ð78Þ

For each population, the system of Eqs (73)–(78) contains a family of ordinary differential

equations for the variables S, u and v parametrized by the continuous parameter t̂ with

�1 < t̂ < t, and five integrals over this parameter. In the next section, we show that the fam-

ily of ordinary differential equations is equivalent to three first-order partial differential equa-

tions. Furthermore, in Sec. “Population equations for a finite history”, we reduce the infinite

integrals to integrals over a finite range, which will be useful for the numerical implementation

of the population equations.

Refractory density representation

There is an equivalent formulation of the population equation in terms of first-order partial

differential equations for the density of ages t ¼ t � t̂ [23, 68, 88, 89]. The representation in

terms of age τ as a state variable is useful because it parallels the Fokker-Planck formalism for

the membrane potential density [14, 36, 58–60] or related density equations [117, 118], in

which the state variable is the membrane potential of a neuron. To keep the notation simple

we consider in the following population α but drop the index α wherever confusion is not pos-

sible. Thus, we write e.g. S for Sα and AN for A
a
N but we keep the index β as well as double indi-

ces αβ occurring in Eq (77).

The density of ages at time t is defined as q(t, τ) = S(t|t − τ)AN(t − τ). We recall that because

of finite-size fluctuations, q is not a normalized probability density. Furthermore, we regard

the functions λ, u and v as functions of t and τ. With these definitions the population equation,

Eq (65), can be rewritten as

�AðtÞ ¼
Z 1

0

lðt; tÞqðt; tÞ dtþ LðtÞ 1�
Z 1

0

qðt; tÞ dt
� �

: ð79Þ

The stochastic activity AN(t) then follows from Eqs (14) or (15). Eq (79) yields the expected
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population rate at time t for a given density of ages. In the Fokker-Planck formalism, this

would correspond to the calculation of the rate from the membrane potential density as the

probability flux across the threshold.

Noting that @tSðtĵtÞANðt̂Þ ¼ ð@t þ @tÞqðt; tÞ, we find from Eq (67) the following first-order

partial differential equation for the density of ages q(t, τ):

ð@t þ @tÞq ¼ �lðt; tÞq; qðt; 0Þ ¼ ANðtÞ: ð80Þ

Similarly, u and v obey from Eqs (77) and (76), respectively,

ð@t þ @tÞu ¼ � u� m

tm
þ
X

M

b¼1

wabpabNbð�ab � Ab
NÞðtÞ; ð81Þ

ð@t þ @tÞv ¼ �lðt; tÞ½2v � q� ð82Þ

with boundary conditions u(t, 0) = ur and v(t, 0) = 0. These functions, together with the thresh-

old dynamics

Wðt; tÞ ¼ uth þ yðtÞ þ
Z 1

t

~yðt0ÞANðt � t0Þ dt0; ð83Þ

determine λ(t, τ) and Λ(t) via Eq (74), i.e.

lðt; tÞ ¼ c exp
uðt; tÞ � Wðt; tÞ

Du

� �

; LðtÞ ¼

Z 1

0

lðt; tÞvðt; tÞ dt
Z 1

0

vðt; tÞ dt
: ð84Þ

The Eqs (75)–(77) of the previous section can be regarded as the characteristic equations corre-

sponding to the partial differential Eqs (80)–(82) (“method of characteristics”).

Population equations for a finite history

To simulate the population activity forward in time, the integrals in Eq (65) over the past need

to be evaluated, starting at t̂ ¼ �1. For biological systems, however, it is sufficient to limit the

integrals to a finite history of length T. This history corresponds to the range t � T � t̂ < t,

where we have to explicitly account for the dependence of the conditional firing rate lðtĵtÞ on
the last spike time t̂ . We will call neurons with last spike time in this range “refractory” because

they still experience some degree of (relative) refractoriness caused by the last spike. The

remaining part of the integral corresponding to the range�1 < t̂ < t � T receives a sepa-

rate, compact evaluation. We will refer to neurons with their last spike time in this range as

“free” because their conditional intensity is free of the influence of the last spike.

How should we choose the length of the explicit history T? First of all, this length can be dif-

ferent for different populations and is mainly determined by the time scale of refractoriness,

i.e. the time it needs to forget the individual effect of a single spike in the past. Furthermore, it

depends on the properties of the spike-triggered kernel, i.e. the dynamic threshold that is

responsible for adaptation. More precisely, we determine the length of the history by the fol-

lowing conditions: first, the conditional intensity is insensitive to the precise timing of the last

spike at t̂ < t � T if

T � max ½tref ; trel�: ð85Þ

Here, tref is the absolute refractory period and τrel is the time scale of the relative refractory
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period. For the GIF model τrel = τm. Second, we demand that T is chosen such that for t> T,

the quasi-renewal kernel ~yðtÞ ¼ Du½1� e�yðtÞ=Du � can be well approximated by the original

spike-triggered kernel θ(t). Taylor expansion of the exponential yields the condition

yðtÞ � Du; 8t > T: ð86Þ

The length of the history T needs to be chosen such that both conditions, Eqs (85) and (86) are

fulfilled. It is important to note that condition Eq (86) does not require the time window T to

be larger than the largest time scale of the spike-triggered kernel. For instance, consider the

kernel yðtÞ ¼ Jy
ty
e�t=ty , where Jθ and τθ are adaptation strength and time scale, respectively. In

particular, the adaptation strength Jθ sets the reduction in firing rate compared to a non-adapt-

ing neuron in the limit of strong drive irrespective of the time scale τθ (see e.g. [80, 82]). Condi-

tion Eq (86) can be fulfilled for a given T if either τθ is small enough such that the exponential

e�t=ty is small, or, for a fixed adaptation strength Jθ, by increasing the adaptation time scale τθ
such that Jθ/τθ� Δu.

Dynamic threshold of refractory and free neurons. For free neurons, i.e. for

�1 < t̂ < t � T, we use the average threshold under the assumption that spikes occurred in

the range�1 < t̂ < t � T according to an inhomogeneous Poisson process with rate ANðt̂Þ.
This average is given by [63, 134]

WfreeðtÞ ¼ uth þ
Z t�T

�1

~yðt � t0ÞANðt0Þdt0;

� uth þ
Z t�T

�1
yðt � t0ÞANðt0Þdt0;

ð87Þ

where in the last step we used Eq (86). We assume that for t> T the spike-triggered kernel can

be sufficiently well approximated by a sum of exponentials

yðtÞ ¼ YðtÞ
X

Ny

‘¼1

Jy;‘
ty;‘

e�t=ty;‘ :

This allows us to express the threshold for free neurons as

WfreeðtÞ ¼ uth þ
X

Ny

‘¼1

Jy;‘e
�T=ty;‘g‘ðtÞ; ð88Þ

where the variables gℓ(t) satisfy the differential equations

ty;‘
dg‘
dt

¼ �g‘ þ ANðt � TÞ: ð89Þ

For refractory neurons, i.e. if t � T � t̂ < t, we need to evaluate in the effective threshold, Eq

(33), an integral over the exact quasi-renewal kernel ~yðtÞ. Splitting this integral into the free
and refractory part yields the threshold of refractory neurons:

Wðt; t̂Þ ¼ WfreeðtÞ þ yðt � t̂Þ þ
Z t̂

t�T

~yðt � t0ÞANðt0Þdt0: ð90Þ

We can use the threshold for free and refractory neurons, Eqs (88), (89) and (90), respectively,

to obtain the respective conditional intensities:

lfreeðtÞ ¼ f hðtÞ � WfreeðtÞð Þ; lðt; t̂Þ ¼ f uðt; t̂Þ � yðt; t̂Þ
� �

; ð91Þ
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where h(t) is the free membrane potential given by Eq (27). Let us remind the reader that h(t)

obeys the dynamics Eq (23) but without resetting of the membrane potential after a spike.

Population equations. We now apply the split of the history to the integrals that appear

in the population equations, specifically Eqs (65) and (66). By definition, the conditional inten-

sity of free neurons does not depend explicitly on the last spike time t̂ . That is, lðtĵtÞ ¼ lfreeðtÞ
for�1 < t̂ < t � T, where the free hazard rate λfree(t) is given by Eq (91). In the free part of

the integrals in Eqs (65) and (66), the free hazard rate can be pulled out of the integral, which

yields

�AðtÞ ¼
Z t

t�T
lðtĵtÞSðtĵtÞANðt̂Þ dt̂ þ lfreeðtÞ

xðtÞ
N

þ LðtÞ 1�
Z t

t�T
SðtĵtÞANðt̂Þ dt̂ �

xðtÞ
N

� �

;

ð92Þ

LðtÞ ¼

Z t

t�T
lðtĵtÞvðt; t̂Þ dt̂ þ lfreeðtÞzðtÞ=N
Z t

t�T
vðt; t̂Þ dt̂ þ zðtÞ=N

: ð93Þ

Here we have introduced the expected number of free neurons xðtÞ ¼ N
R t�T
�1 SðtĵtÞANðt̂Þ dt̂

and the partial integral over the variance function zðtÞ ¼ N
R t�T
�1 vðt; t̂Þ dt̂ . Differentiating

these new variables and employing Eqs (63) and (69), we find that they obey the differential

equations

dx

dt
¼ �lfreeðtÞx þ NSðtjt � TÞANðt � TÞ; ð94Þ

dz

dt
¼ �2lfreeðtÞz þ lfreeðtÞx þ Nvðt; t � TÞ: ð95Þ

Thus, the integrals no longer run from −1 to t but are now limited to the range [t − T, t). The

long tails over the past have been reduced to differential equations.

Numerical implementation

Discretization of time. We discretize the time axis into a grid with step size Δt and grid
points

tk ¼ kDt; k 2 Z: ð96Þ

Because we keep track of a finite history with the oldest last spike time t̂ ¼ t � T, the history

consists of a finite number K of bins such that T = KΔt. If the index k = l corresponds to the
current time, the oldest last spike time of the explicit history corresponds to an index k = l − K

and the most recent one corresponds to the index k = l − 1. Note that the numerical implemen-

tation requires the absolute refractory period tref to be at least as large as the integration time

step Δt (see below).
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To facilitate the notation of the update rules, it is convenient to introduce the following

notations:

�mkðtlÞ � hml;ki ¼ NDtSðtijtkÞANðtkÞ; ð97Þ

vkðtlÞ � hDm2
l;ki ¼ NDtvðtl; tkÞ; ð98Þ

ukðtlÞ � uðtljtkÞ; ð99Þ

lkðtlÞ � lðtljtkÞ: ð100Þ

In particular, �mk and vk correspond to the mean and variance of the unconstrained survival

numbers, respectively. We also recall that the population index α is dropped wherever confu-

sion is not possible, while the index β as well as double indices αβ will be kept.

Choice of Δt. A crucial assumption of the derivation of the population equations in dis-

crete time was that the time step Δt is small enough such that each neuron fires at most one

spike per time step. This can be achieved by the condition

Dt � tref ð101Þ

(cf. Sec. “Discretized population density equations”). Clearly, this condition implies that the

total number of spikes per time step must be bounded by the number of neurons, i.e. the popu-

lation activity must obey Δn(tl)� N. The equality sign corresponds to the case that all neurons

fire in the same time step. In addition to condition Eq (101), we also had to require that Δt is
not larger than the transmission delay Δ, i.e.

Dt � D: ð102Þ

In order to justify the use of the Poisson statistics in the derivation of the population equations,

we further assumed that Δt is sufficiently small such that the expected number of spikes per

time step, D�nðtÞ, is much smaller than N, or equivalently �AðtÞDt � 1. While this does not

pose a problem for the theory, which ultimately concerns with the continuum limit Δt! 0, an

efficient numerical integration of the population equations benefits from a time step that is as

large as possible and should thus not be limited by such a condition. In particular, we should

allow a large fraction of neurons to fire during one time step, either as a result of an external

synchronization of many neurons (e.g. by a strong, sudden stimulus) or because of synchro-

nous oscillations emerging from the network dynamics. In this case, a Poisson-distributed

spike count Δn(t) may exceed the number of neurons N. This problem can be remedied by

drawing Δn(t) from a binomial distribution with mean D�nðtÞ and maximal value N. For

D�nðtÞ � N, this binomial distribution agrees with the Poisson distribution used in our theory,

whereas at large D�nðtÞ it ensures that the spike count is bounded by the total number of neu-

rons N. Although the binomial distribution does not follow strictly from our theory, it is

expected to yield a very good approximation even at large D�nðtÞ. The reason is as follows: A

statement analogous to our argument that the sum of Poisson numbers [Eq (39)] yields again a

Poisson number [Eq (46)] is, in general, not valid for binomial random numbers if the random

numbers (i.e. the firing probabilities Pλ(tl|tk) in our model) are very different. However, if neu-

rons are strongly synchronized, and hence D�nðtÞ � N, they fire with a similar probability,

which implies indeed a binomial distribution of the spike count Δn(t).
Besides Eqs (101) and (102), a third condition concerns the approximation of the integral

R tþDt

t
lðt0Þdt0 in Eq (37) by �lðtÞDt (trapezoidal rule). This approximation is valid if the mem-

brane potential u and threshold ϑ do not vary too strongly during a time step. More precisely,
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the absolute error of the trapezoidal rule is known to be Δt3|λ0 0|/12, which we require to be

much smaller than λΔt. Thus, the relative error is of order Δt2. Using the definition of λ, Eq
(25), this leads to the condition

@u

@t
� @W

@t

� �2

þ Du

@2u

@t2
� @2

W

@t2

� �

�

�

�

�

�

�

�

�

�

�

Dt2 � 12D
2

u: ð103Þ

In summary, Δt should be chosen such that all three conditions, Eqs (101)–(103) are satisfied

for all populations.

Update of the membrane potential. To compute the firing probabilities, we need to

update both the membrane potential and the threshold. In the presence of an exponential syn-

aptic filter �abðsÞ ¼ Yðs� DÞe�ðs�DÞ=tbs =tbs , the membrane potential of free neurons u(t) = h(t)

in population α obeys the differential equation

tm
dh

dt
¼ �hþ urest þ RIextðtÞ þ tm

X

M

b¼1

pabNbwabyab; ð104Þ

tbs
dyab

dt
¼ �yab þ Aab

N ðt � DÞ; b ¼ 1; . . . ;M: ð105Þ

Assuming that the external stimulus Iext(t) and the population activity AN(t) are constant dur-

ing one time step, the solution over one time step is given by

hðtlþ1Þ ¼ urest þ hðtlÞ � urestð Þe�Dt=tm þ htot; ð106Þ

yabðtlþ1Þ ¼ Ab
Nðtl � DÞ þ yabðtlÞ � Ab

Nðtl � DÞ
� �

e�Dt=t
b
s ; b ¼ 1; . . . ;M ð107Þ

where htot is the total input of population α given by

htot ¼ RIextðtlÞ 1� e�
Dt
tm

� �

þ tm

X

M

b¼1

pabNbwab Ab
Nðtl � DÞ þ

8

<

:

þtbs e
�Dt

t
b
s yabðtlÞ � Ab

Nðtl � DÞ
� �

� e�
Dt
tm tbs y

abðtlÞ � tmA
b
Nðtl � DÞ

� �

tbs � tm

9

=

;

ð108Þ

For refractory neurons, we obtain the membran potential in the GLMmodel by the simple for-

mula uk(tl+1) = h(tl+1) + η(tl+1 − tk). For the GIF model, the same update rule as for h(t), Eq

(106), can be applied for k = l − K, . . ., l − kref:

ukðtlþ1Þ ¼ urest þ ukðtlÞ � urestð Þe�Dt=tm þ htot: ð109Þ

For the absolute refractory period, l − kref < k<l, the membrane potential remains at

uk(tl+1) = ur. Note that the total integrated input htot needs to be computed only once per time

step.

Update of the threshold. Let us first discuss, how to compute the threshold at time tl
given the values of gℓ(tl) and Δn(tk) for k = l − K, . . ., l − 1. For free neurons, the threshold

ϑfree(tl) is given by Eq (88) evaluated at time t = tl. For refractory neurons, we find from Eq (90)
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that the threshold can be written in the discretized form

WkðtlÞ ¼ WfreeðtlÞ þ yðtl � tkÞ þ
1

N

X

k�1

k0¼l�K

~yðtl � tk0ÞDnðtk0Þ; ð110Þ

k = l − K, . . ., l − kref. Eq (110) can be rewritten as

WkðtlÞ ¼ ŴkðtlÞ þ y tl � tkð Þ; ð111Þ

where the variables ŴkðtÞ can be calculated iteratively starting at k = l − K:

Ŵkþ1ðtlÞ ¼ ŴkðtlÞ þ N�1~y tl � tkð ÞDnðtkÞ; k ¼ l � K; . . . ; l � 1� kref ð112Þ

with initial condition Ŵ l�KðtlÞ ¼ WfreeðtlÞ. Thus, at each time step tl, the threshold can be rapidly

evaluated in one sweep via Eqs (88), (111) and (112).

For the computation of the firing probabilities below, it is necessary to compute the thresh-

old one time step ahead, i.e. at time tl+1. To this end, we first update the variables gℓ according

to Eq (89):

g‘ðtlþ1Þ ¼ g‘ðtlÞe�Dt=ty;‘ þ Dnðtl�KÞ
NDt

1� e�Dt=ty;‘
� �

: ð113Þ

This yields the threshold ϑfree(tl+1) of free neurons via the formula Eq (88). For refractory neu-

rons we find from Eqs (111) and (112)

Wkðtlþ1Þ ¼ Ŵkðtlþ1Þ þ y tlþ1 � tk
� �

; ð114Þ

where Ŵkðtlþ1Þ can be iterated by

Ŵkþ1ðtlþ1Þ ¼ Ŵkðtlþ1Þ þ N�1~y tlþ1 � tk
� �

DnðtkÞ; k ¼ l � K; . . . ; l � kref � 1: ð115Þ

with initial condition

Ŵ l�Kðtlþ1Þ ¼ Wfreeðtlþ1Þ � N�1~y tlþ1 � tl�K
� �

Dnðtl�KÞ: ð116Þ

Firing probabilities. The firing probabilities for free and refractory neurons are given by

PfreeðtlÞ ¼ 1� e�
�l freeðtlÞDt; P

l
ðtljtkÞ ¼ 1� e�

�lðtl jtkÞDt; ð117Þ

respectively. Here,

�lfreeðtlÞ ¼ ½lfreeðtlÞ þ lfreeðtlþ1Þ�=2; ð118Þ

�lðtljtkÞ ¼ ½lkðtlÞ þ lkðtlþ1Þ�=2; ð119Þ

are the arithmetic mean of the respective intensities at the beginning and end of the time inter-

val (cf. Eq (37)). The free intensity λfree(t) is given by Eq (91). For refractory neurons, the con-

ditional intensities are given by

lkðtÞ ¼
f ukðtÞ � WkðtÞð Þ; tk < t � krefDt

0; t � krefDt � tk < t;

(

ð120Þ

where the last case corresponds to the absolute refractory period.
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Population dynamics. We can directly use the discretized form of the population equa-

tions given by Eqs (58) and (59). As in Eq (92) the infinite sums in Eq (59) can be split into an

explicit, finite history of length K and a remaining part corresponding to k<l − K. This results

in

D�nðtlÞ ¼
X

l�1

k¼l�K
P
l
ðtljtkÞ �mkðtlÞ þ PfreeðtlÞxðtiÞþ

þP
L
ðtlÞ N �

X

l�1

k¼l�K
�mkðtlÞ � xðtlÞ

 !

;

ð121Þ

where

P
L
ðtlÞ ¼

X

l�1

k¼l�K
P
l
ðtljtkÞvkðtlÞ þ PfreeðtlÞzðtlÞ

X

l�1

k¼l�K
vkðtlÞ þ zðtlÞ

: ð122Þ

is the firing probability of “neurons” belonging to the “holes and overshoots” δml,k (cf. RESULTS,

Sec. “Mesoscopic population equations”). The variables x and z have the discrete time defini-

tion

xðtlÞ ¼
X

l�K�1

k¼�1
�mkðtlÞ; zðtlÞ ¼

X

l�K�1

k¼�1
vkðtlÞ; ð123Þ

corresponding to a discretization of their integral definition above. Having calculated the

expected spike count D�nðtlÞ, the actual spike count Δn(tl) is obtained by drawing a binomially

distributed random number

DnðtlÞ � B N; pB ¼ D�nðtlÞ=Nð Þ ð124Þ

as discussed above. In Eq (124), B(N, pB) denotes the binomial distribution corresponding to

N Bernoulli trials with success probability pB.

The discrete evolution equations for �mkðtlÞ and vk(tl) are given by Eqs (48) and (51), respec-

tively, which we repeat here for convenience:

�mkðtlþ1Þ ¼ ½1� P
l
ðtljtkÞ� �mkðtlÞ ð125Þ

vkðtlþ1Þ ¼ ½1� P
l
ðtljtkÞ�

2
vkðtlÞ þ P

l
ðtljtkÞ �mkðtlÞ: ð126Þ

To find the update rule for x, we use the definition Eq (123) and the update rule for �mkðtlÞ, Eq
(125):

xðtlþ1Þ ¼
X

l�K

k¼�1
�mkðtlþ1Þ ¼

X

l�K

k¼�1
½1� P

l
ðtljtkÞ� �mkðtlÞ

¼ ½1� PfreeðtlÞ�
X

l�K�1

k¼�1
�mkðtlÞ þ ½1� P

l
ðtljtl�KÞ� �m l�KðtlÞ:

ð127Þ

Here, we have exploited that Pλ(tl|tk) = Pfree(tl) for k<l − K. Using again Eq (125) we find

xðtlþ1Þ ¼ ½1� PfreeðtlÞ�xðtlÞ þ �m l�Kðtlþ1Þ: ð128Þ
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This equation is the discrete analog of the continuous-time Eq (94). Note that �ml�Kðtlþ1Þ is
given by Eq (125).

An update rule for z can be found from the definition Eq (123) and the update rule for

hDm2
l;ki, Eq (126). A similar calculation that led to Eq (128) results in

zðtlþ1Þ ¼ ½1� PfreeðtlÞ�
2
zðtlÞ þ PfreeðtlÞxðtlÞ þ vl�Kðtlþ1Þ: ð129Þ

This equation is the discrete analog of the continuous-time Eq (95). Note that vl−K(tl+1) is

given by Eq (126).

Finally, the initial conditions can be accounted for by setting

�m lðtlþ1Þ ¼ DnðtlÞ; vlðtlþ1Þ ¼ 0; ulðtlþ1Þ ¼ ur: ð130Þ

The last update step corresponding to the reset of the membrane potential only needs to be

performed for the GIF model.

Initialization and storage of history. One simple way to initialize the system is to fully

synchronize the network at time −Δt such that at time t0 = 0 all neurons are refractory. This

gives rise to the sharp initial condition DnðtkÞ ¼ �mkð0Þ ¼ Ndk;�1 and vk(0) = uk(0) = 0 for

the refractory epoch (k = −K, . . ., −1). Here, δk,l denotes the Kronecker delta, which is unity

for k = l and zero otherwise. After synchronization there are no free neurons, hence x(t0) =

z(t0) = 0 and, if there were no further spikes in the past, gℓ(t0) = 0 for ℓ = 1, . . ., Nθ. The ini-

tialization of gℓ corresponds to a zero adaptation level at the beginning of the simulation.

For the representation of the variables �mkðtlÞ, vk(tl), uk(tl) and λk(tl), k = l − K, . . ., l − 1, in

memory, it is convenient to employ circular buffers. That is, the “running” range of the explicit

history k = l − K, . . ., l − 1 is mapped to a static range k̂ ¼ 0; . . . ;K � 1 in memory by applying

the modulo operation

k̂ ¼ ðk mod KÞ ð131Þ

to all temporal indices.

Summary of the update step and pseudocode. Let us summarize the steps needed to

evolve the population equation from time tl to time tl+1:

1. Calculate the total integrated input htot using Eq (108) and then update the synaptic vari-

ables yαβ(tl+1) according to Eq (107).

2. Update the free membrane potential h(tl+1) and threshold variable gℓ(tl+1) for free neurons

using Eqs (106) and (113) and use these values to compute the threshold ϑfree(tl+1) and con-

ditional intensity λfree(tl+1) of free neurons by means of Eqs (88) and (91). This yields the

firing probability of free neurons Pfree(tl) via Eqs (117) and (118).

3. For all refractory states k = l − K, . . ., l − kref, compute the membrane potential uk(tl+1) from

Eq (109), the threshold ϑk(tl+1) from Eq (115) and the conditional intensity λk(tl+1) from Eq

(120). The firing probabilities Pλ(tl|tk) are then given by Eqs (117) and (119).

4. Calculate the effective firing probability PΛ(tl) from Eq (122).

5. Calculate the expected activity D�nðtlÞ by Eq (121). The empirical population activity Δn(tl)
can be obtained by drawing a binomially distributed random number according to Eq

(124).

6. Update the mean and variance of the survival numbers �mkðtlþ1Þ, vk(tl+1), x(tl+1) and z(tl+1)
using Eqs (125), (126), (128) and (129).
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7. Realize the boundary conditions at t̂ ¼ t according to Eq (130).

These steps have to be performed for all populations α = 1, . . .,M. A detailed implementa-

tion of the algorithm is provided by the pseudocode shown in Figs 11 and 12.

Whereas the complexity of the microscopic simulation is of order O(NΔt−1), the integration
of the population equation is of order O(Δt−2) because in each time step one has to update a

history of length K = T/Δt (step 3, 4 and 6). Hence, at low neuron numbers (e.g. N< 100), the

direct simulation of the microscopic system may become more efficient. We emphasize, how-

ever, that to achieve a comparable accuracy, the integration of the mesoscopic population

equation can be performed on a coarser, millisecond time scale (e.g., Δt = 1 ms), whereas the

microscopic simulation requires precise spike times and hence a sub-millisecond simulation

(e.g., Δt = 0.1 ms). If we take advantage of this fact, the mesoscopic population model performs

well even at low neuron numbers.

Power spectrum

We characterize the fluctuations of the stationary population activityby the power spectrum

defined as

~Cðf Þ ¼ lim
T!1

hj~Aðf ;TÞj2i
T

; ð132Þ

where

~Aðf ;TÞ ¼
Z T

0

ANðtÞe2pift dt ð133Þ

is the Fourier transform of the population activity on a time window of length T.

For a population of renewal neurons the power spectrum is known analytically. It is given

by [134]

~Cðf Þ ¼ r

N

1� j~P ISIðf Þj
2

j1� ~P ISIðf Þj
2
; ð134Þ

where ~P ISIðf Þ is the Fourier transform of the interspike interval density

PISIðtÞ ¼ lðtj0Þexp �
Z t

0

lðsj0Þ ds
� �

ð135Þ

and r is the stationary firing rate given by

r ¼
Z 1

0

exp �
Z t

0

lðsj0Þ ds
� �

dt

� ��1

: ð136Þ

Note that the power of the fluctuations in Eq (134) scales like 1/N, vanishing in the macro-

scopic limit N!1. For the LIF model with escape noise, the hazard rate λ(t|0) is given by

lðtj0Þ ¼ f uðt; 0Þ � uthð Þ; uðt; 0Þ ¼ mþ ður � mÞexp � t � tref
tm

� �

ð137Þ

for t> tref and λ(t|0) = 0 for t� tref.

Mesoscopic dynamics of interacting populations of spiking neurons

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005507 April 19, 2017 53 / 63

https://doi.org/10.1371/journal.pcbi.1005507


Modified Potjans-Diesmann model

To model the cortical column of [5] in our framework, we used the parameters of the original

publication and modified the model in two ways: First, the background Poisson input was

replaced by a constant drive and an increased escape noise such that the populations exhibited

Fig 11. Pseudocode for the integration of themesoscopic population equation.Note that procedure UpdatePopulation in line 12 is
shown in Fig 12.

https://doi.org/10.1371/journal.pcbi.1005507.g011
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roughly the same stationary firing rates. Specifically, we set ur = 0 mV, uth = 15 mV andΔu = 5

mV; and, using the mesoscopic dynamics, fitted the resting potentials of the GIF model (here

denoted by m̂a) without adaptation Jθ = 0 to obtain firing rates r̂ that roughly match the target

firing rates. Second, we introduced adaptation on excitatory cells with strength Jθ and time

scale τθ, and re-adjusted the resting potential as follows urest ¼ m̂ þ Jyr̂ . This yielded correct

stationary firing rates in the presence of adaptation. The resulting parameters of the modified

model are summarized in Table 2.

Fig 12. Pseudocode for the update of the variables of a given population. Note that the adaptation kernel θk0 � θ((K − k0)Δt), the quasi-

renewal kernel ~yk0 � ~yððK � k0ÞDtÞ=N, Eq (33), as well as the exponentials e�Dt
tm and Jy;‘e

�KDt=ty;‘ can be precomputed.

https://doi.org/10.1371/journal.pcbi.1005507.g012
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Table 2. Parameters of the modified Potjans-Diesmannmodel.

population L2/3e L2/3i L4e L4i L5e L5i L6e L6i

τm [s] 0.01

τs [s] 0.0005

Δ [s] 0.0015

tref [s] 0.002

Δu [mV] 5.0

m̂ [mV] 19.149 20.362 30.805 28.069 29.437 29.33 34.932 32.081

r̂ [Hz] 0.974 2.861 4.673 5.65 8.141 9.013 0.988 7.53

adaptation: yðtÞ ¼ ðJy=tyÞe�t=ty for t > tref

Jθ [mV s] 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

τθ [s] 1.0 - 1.0 - 1.0 - 1.0 -

u
rest

¼ m̂ þ Jy r̂ [mV] 20.123 20.362 35.478 28.069 37.578 29.33 35.92 32.081

step stimulus (“thalamic input”)

RIext [mV] 0. 0. 19. 11.964 0. 0. 9.896 3.788

μ(t) [mV] urest + RIext for t 2 [0.06s, 0.09s], else urest

network parameters

N 20683 5834 21915 5479 4850 1065 14395 2948

connection prob. pαβ from population β
α = L2/3e 0.1009 0.1689 0.0437 0.0818 0.0323 0.0 0.0076 0.0

α = L2/3i 0.1346 0.1371 0.0316 0.0515 0.0755 0.0 0.0042 0.0

α = L4e 0.0077 0.0059 0.0497 0.135 0.0067 0.0003 0.0453 0.0

α = L4i 0.0691 0.0029 0.0794 0.1597 0.0033 0.0 0.1057 0.0

α = L5e 0.1004 0.0622 0.0505 0.0057 0.0831 0.3726 0.0204 0.0

α = L5i 0.0548 0.0269 0.0257 0.0022 0.06 0.3158 0.0086 0.0

α = L6e 0.0156 0.0066 0.0211 0.0166 0.0572 0.0197 0.0396 0.2252

α = L6i 0.0364 0.001 0.0034 0.0005 0.0277 0.008 0.0658 0.1443

wαβ [mV], α = L4e 0.176 -0.702 0.351 -0.702 0.176 -0.702 0.176 -0.702

wαβ [mV], α6¼ L4e 0.176 -0.702 0.176 -0.702 0.176 -0.702 0.176 -0.702

https://doi.org/10.1371/journal.pcbi.1005507.t002
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34. Theodoni P, Kovács G, Greenlee MW, Deco G. Neuronal adaptation effects in decision making. J
Neurosci. 2011; 31(1):234–246. https://doi.org/10.1523/JNEUROSCI.2757-10.2011 PMID: 21209209

35. EW, Lu J. Multiscale modeling. Scholarpedia. 2011; 6(10):11527. https://doi.org/10.4249/
scholarpedia.11527

36. Nykamp DQ, Tranchina D. A population density approach that facilitates large-scale modeling of neu-
ral networks: Analysis and an application to orientation tuning. J Comput Neurosci. 2000; 8(1):19–50.
https://doi.org/10.1023/A:1008912914816 PMID: 10798498

37. Muller E, Buesing L, Schemmel J, Meier K. Spike-Frequency Adapting Neural Ensembles: Beyond
Mean Adaptation and Renewal Theories. Neural Comp. 2007; 19(11):2958–3110. https://doi.org/10.
1162/neco.2007.19.11.2958

38. Baladron J, Fasoli D, Faugeras O, Touboul J. Mean-field description and propagation of chaos in net-
works of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J Math Neurosci. 2012; 2(1):1–50. https://
doi.org/10.1186/2190-8567-2-10

39. Bressloff PC. Stochastic neural field theory and the system-size expansion. SIAM J Appl Math. 2009;
70(5):1488–1521. https://doi.org/10.1137/090756971

40. Buice MA, Cowan JD. Field-theoretic approach to fluctuation effects in neural networks. Phys Rev E.
2007; 75(5):051919. https://doi.org/10.1103/PhysRevE.75.051919

41. Buice MA, Cowan JD, Chow CC. Systematic fluctuation expansion for neural network activity equa-
tions. Neural Comput. 2010; 22(2):377–426. https://doi.org/10.1162/neco.2009.02-09-960 PMID:
19852585

42. Bressloff PC. Metastable states and quasicycles in a stochasticWilson-Cowanmodel of neuronal pop-
ulation dynamics. Phys Rev E. 2010; 82(5):051903. https://doi.org/10.1103/PhysRevE.82.051903

43. Wallace E, BenayounM, Van DrongelenW, Cowan JD. Emergent oscillations in networks of stochas-
tic spiking neurons. Plos one. 2011; 6(5):e14804. https://doi.org/10.1371/journal.pone.0014804
PMID: 21573105

Mesoscopic dynamics of interacting populations of spiking neurons

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005507 April 19, 2017 58 / 63

https://doi.org/10.1371/journal.pcbi.1000092
https://doi.org/10.1371/journal.pcbi.1000092
http://www.ncbi.nlm.nih.gov/pubmed/18769680
https://doi.org/10.1162/089976600300015899
http://www.ncbi.nlm.nih.gov/pubmed/10636933
https://doi.org/10.1038/nrn3599
https://doi.org/10.1038/nrn3599
http://www.ncbi.nlm.nih.gov/pubmed/24135696
http://www.ncbi.nlm.nih.gov/pubmed/19833951
https://doi.org/10.1152/jn.00408.2011
http://www.ncbi.nlm.nih.gov/pubmed/22157113
https://doi.org/10.1371/journal.pcbi.1004275
http://www.ncbi.nlm.nih.gov/pubmed/26083597
https://doi.org/10.1038/nn.3431
http://www.ncbi.nlm.nih.gov/pubmed/23749146
https://doi.org/10.1038/nn1525
http://www.ncbi.nlm.nih.gov/pubmed/16116447
https://doi.org/10.1038/nmeth.f.324
http://www.ncbi.nlm.nih.gov/pubmed/21191368
https://doi.org/10.1038/nature11028
https://doi.org/10.1038/nature11028
http://www.ncbi.nlm.nih.gov/pubmed/22441246
https://doi.org/10.1152/jn.00116.2007
http://www.ncbi.nlm.nih.gov/pubmed/17615138
https://doi.org/10.1007/s10827-008-0125-3
https://doi.org/10.1007/s10827-008-0125-3
http://www.ncbi.nlm.nih.gov/pubmed/19125318
https://doi.org/10.1523/JNEUROSCI.2757-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21209209
https://doi.org/10.4249/scholarpedia.11527
https://doi.org/10.4249/scholarpedia.11527
https://doi.org/10.1023/A:1008912914816
http://www.ncbi.nlm.nih.gov/pubmed/10798498
https://doi.org/10.1162/neco.2007.19.11.2958
https://doi.org/10.1162/neco.2007.19.11.2958
https://doi.org/10.1186/2190-8567-2-10
https://doi.org/10.1186/2190-8567-2-10
https://doi.org/10.1137/090756971
https://doi.org/10.1103/PhysRevE.75.051919
https://doi.org/10.1162/neco.2009.02-09-960
http://www.ncbi.nlm.nih.gov/pubmed/19852585
https://doi.org/10.1103/PhysRevE.82.051903
https://doi.org/10.1371/journal.pone.0014804
http://www.ncbi.nlm.nih.gov/pubmed/21573105
https://doi.org/10.1371/journal.pcbi.1005507


44. Touboul JD, Ermentrout GB. Finite-size and correlation-induced effects in mean-field dynamics. J
Comput Neurosci. 2011; 31(3):453–484. https://doi.org/10.1007/s10827-011-0320-5 PMID:
21384156

45. Goychuk I, Goychuk A. StochasticWilson–Cowan models of neuronal network dynamics with memory
and delay. New J Phys. 2015; 17(4):045029. https://doi.org/10.1088/1367-2630/17/4/045029

46. Berry MJ, Meister M. Refractoriness and neural precision. J Neurosci. 1998; 18(6):2200–2211. PMID:
9482804

47. Geisler C, Goldberg JM. A Stochastic Model of the Repetitive Activity of Neurons. Biophys J. 1966; 6
(1):53–69. https://doi.org/10.1016/S0006-3495(66)86639-0 PMID: 19431343

48. RatnamR, Nelson ME. Nonrenewal Statistics of Electrosensory Afferent Spike Trains: Implications for
the Detection of Weak Sensory Signals. J Neurosci. 2000; 20:6672. PMID: 10964972

49. Chacron MJ, Longtin A, St-Hilaire M, Maler L. Suprathreshold stochastic firing dynamics with memory
in P-type electroreceptors. Phys Rev Lett. 2000; 85:1576. https://doi.org/10.1103/PhysRevLett.85.
1576 PMID: 10970558

50. Nawrot MP, Boucsein C, Rodriguez-Molina V, Aertsen A, Grun S, Rotter S. Serial interval statistics of
spontaneous activity in cortical neurons in vivo and in vitro. Neurocomp. 2007; 70:1717. https://doi.
org/10.1016/j.neucom.2006.10.101

51. Fisch K, Schwalger T, Lindner B, Herz AVM, Benda J. Channel noise from both slow adaptation cur-
rents and fast currents is required to explain spike-response variability in a sensory neuron. J Neu-
rosci. 2012; 32(48):17332–17344. https://doi.org/10.1523/JNEUROSCI.6231-11.2012 PMID:
23197724

52. Lindner B. Superposition of many independent spike trains is generally not a Poisson process. Phys
Rev E. 2006; 73:022901. https://doi.org/10.1103/PhysRevE.73.022901

53. Câteau H, Reyes AD. Relation between Single Neuron and Population Spiking Statistics and Effects
on Network Activity. Phys Rev Lett. 2006; 96:058101. https://doi.org/10.1103/PhysRevLett.96.058101
PMID: 16486995

54. Deger M, Helias M, Boucsein C, Rotter S. Statistical properties of superimposed stationary spike
trains. J Comput Neurosci. 2012; 32:443–463. https://doi.org/10.1007/s10827-011-0362-8 PMID:
21964584

55. Deger M, Schwalger T, Naud R, Gerstner W. Fluctuations and information filtering in coupled popula-
tions of spiking neurons with adaptation. Phys Rev E. 2014 Dec; 90(6–1):062704. https://doi.org/10.
1103/PhysRevE.90.062704

56. Wieland S, Bernardi D, Schwalger T, Lindner B. Slow fluctuations in recurrent networks of spiking neu-
rons. Phys Rev E. 2015; 92(4):040901. https://doi.org/10.1103/PhysRevE.92.040901

57. Schwalger T, Droste F, Lindner B. Statistical structure of neural spiking under non-Poissonian or other
non-white stimulation. J Comput Neurosci. 2015; 39: 29. http://dx.doi.org/10.1007/s10827-015-0560-x

58. Brunel N, Hakim V. Fast global oscillations in networks of integrate-and-fire neurons with low firing
rates. Neural Comput. 1999; 11:1621. https://doi.org/10.1162/089976699300016179 PMID:
10490941

59. Brunel N. Sparsely Connected Networks of Spiking Neurons. J Comput Neurosci. 2000; 8:183.

60. Mattia M, Del Giudice P. Population dynamics of interacting spiking neurons. Phys Rev E. 2002;
66:051917. https://doi.org/10.1103/PhysRevE.66.051917

61. Lagzi F, Rotter S. A Markov model for the temporal dynamics of balanced random networks of finite
size. Front Comput Neurosci. 2014; 8:142. https://doi.org/10.3389/fncom.2014.00142 PMID:
25520644

62. Gigante G, Deco G, Marom S, Del Giudice P. Network events on multiple space and time scales in cul-
tured neural networks and in a stochastic rate model. PLoS Comput Biol. 2015; 11(11):e1004547.
https://doi.org/10.1371/journal.pcbi.1004547 PMID: 26558616

63. Naud R, GerstnerW. Coding and decoding with adapting neurons: a population approach to the peri-
stimulus time histogram. PLoS Comput Biol. 2012; 8(10). https://doi.org/10.1371/journal.pcbi.
1002711 PMID: 23055914

64. Gigante G, Mattia M, Del Giudice P. Diverse Population-Bursting Modes of Adapting Spiking Neurons.
Phys Rev Lett. 2007; 98(14):148101. https://doi.org/10.1103/PhysRevLett.98.148101 PMID:
17501315

65. Ocker GK, Josić K, Shea-Brown E, Buice MA. Linking structure and activity in nonlinear spiking net-
works. ArXiv e-prints. 2016;.

Mesoscopic dynamics of interacting populations of spiking neurons

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005507 April 19, 2017 59 / 63

https://doi.org/10.1007/s10827-011-0320-5
http://www.ncbi.nlm.nih.gov/pubmed/21384156
https://doi.org/10.1088/1367-2630/17/4/045029
http://www.ncbi.nlm.nih.gov/pubmed/9482804
https://doi.org/10.1016/S0006-3495(66)86639-0
http://www.ncbi.nlm.nih.gov/pubmed/19431343
http://www.ncbi.nlm.nih.gov/pubmed/10964972
https://doi.org/10.1103/PhysRevLett.85.1576
https://doi.org/10.1103/PhysRevLett.85.1576
http://www.ncbi.nlm.nih.gov/pubmed/10970558
https://doi.org/10.1016/j.neucom.2006.10.101
https://doi.org/10.1016/j.neucom.2006.10.101
https://doi.org/10.1523/JNEUROSCI.6231-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/23197724
https://doi.org/10.1103/PhysRevE.73.022901
https://doi.org/10.1103/PhysRevLett.96.058101
http://www.ncbi.nlm.nih.gov/pubmed/16486995
https://doi.org/10.1007/s10827-011-0362-8
http://www.ncbi.nlm.nih.gov/pubmed/21964584
https://doi.org/10.1103/PhysRevE.90.062704
https://doi.org/10.1103/PhysRevE.90.062704
https://doi.org/10.1103/PhysRevE.92.040901
http://dx.doi.org/10.1007/s10827-015-0560-x
https://doi.org/10.1162/089976699300016179
http://www.ncbi.nlm.nih.gov/pubmed/10490941
https://doi.org/10.1103/PhysRevE.66.051917
https://doi.org/10.3389/fncom.2014.00142
http://www.ncbi.nlm.nih.gov/pubmed/25520644
https://doi.org/10.1371/journal.pcbi.1004547
http://www.ncbi.nlm.nih.gov/pubmed/26558616
https://doi.org/10.1371/journal.pcbi.1002711
https://doi.org/10.1371/journal.pcbi.1002711
http://www.ncbi.nlm.nih.gov/pubmed/23055914
https://doi.org/10.1103/PhysRevLett.98.148101
http://www.ncbi.nlm.nih.gov/pubmed/17501315
https://doi.org/10.1371/journal.pcbi.1005507


66. Toyoizumi T, Rad KR, Paninski L. Mean-field approximations for coupled populations of generalized
linear model spiking neurons with Markov refractoriness. Neural Comput. 2009; 21(5):1203–1243.
https://doi.org/10.1162/neco.2008.04-08-757 PMID: 19718814

67. Buice MA, Chow CC. Dynamic finite size effects in spiking neural networks. PLoS Comput Biol. 2013;
9(1):e1002872. https://doi.org/10.1371/journal.pcbi.1002872 PMID: 23359258

68. Meyer C, van Vreeswijk C. Temporal correlations in stochastic networks of spiking neurons. Neural
Comput. 2002; 14(2):369–404. https://doi.org/10.1162/08997660252741167 PMID: 11802917

69. Lindner B, Doiron B, Longtin A. Theory of oscillatory firing induced by spatially correlated noise and
delayed inhibitory feedback. Phys Rev E. 2005; 72(6):061919–14. https://doi.org/10.1103/PhysRevE.
72.061919

70. Trousdale J, Hu Y, Shea-Brown E, Josić K. Impact of network structure and cellular response on spike
time correlations. PLoS Comput Biol. 2012; 8(3). https://doi.org/10.1371/journal.pcbi.1002408 PMID:
22457608

71. Barbieri F, Mazzoni A, Logothetis NK, Panzeri S, Brunel N. Stimulus dependence of local field poten-
tial spectra: experiment versus theory. J Neurosci. 2014; 34(44):14589–14605. https://doi.org/10.
1523/JNEUROSCI.5365-13.2014 PMID: 25355213

72. Bos H, DiesmannM, Helias M. Identifying Anatomical Origins of Coexisting Oscillations in the Cortical
Microcircuit. PLoS Comput Biol. 2016; 12(10):e1005132. https://doi.org/10.1371/journal.pcbi.
1005132 PMID: 27736873

73. Avermann M, TommC, Mateo C, Gerstner W, Petersen CCH. Microcircuits of excitatory and inhibitory
neurons in layer 2/3 of mouse barrel cortex. J Neurophysiol. 2012; 107(11):3116–3134. https://doi.
org/10.1152/jn.00917.2011 PMID: 22402650

74. Gentet LJ, Kremer Y, Taniguchi H, Huang ZJ, Staiger JF, Petersen CCH. Unique functional properties
of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat Neurosci. 2012; 15
(4):607–612. https://doi.org/10.1038/nn.3051 PMID: 22366760

75. Cruikshank SJ, Lewis TJ, Connors BW. Synaptic basis for intense thalamocortical activation of feed-
forward inhibitory cells in neocortex. Nat Neurosci. 2007; 10(4):462–468. PMID: 17334362

76. Packer AM, Yuste R. Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons:
a canonical microcircuit for inhibition? J Neurosci. 2011; 31(37):13260–13271. https://doi.org/10.
1523/JNEUROSCI.3131-11.2011 PMID: 21917809

77. Pfeffer CK, Xue M, HeM, Huang ZJ, Scanziani M. Inhibition of inhibition in visual cortex: the logic of
connections betweenmolecularly distinct interneurons. Nat Neurosci. 2013; 16(8):1068–1076. https://
doi.org/10.1038/nn.3446 PMID: 23817549

78. Li L, Ji X, Liang F, Li Y, Xiao Z, Tao HW, et al. A feedforward inhibitory circuit mediates lateral refine-
ment of sensory representation in upper layer 2/3 of mouse primary auditory cortex. J Neurosci. 2014;
34(41):13670–13683. https://doi.org/10.1523/JNEUROSCI.1516-14.2014 PMID: 25297094

79. Karnani MM, Jackson J, Ayzenshtat I, Tucciarone J, Manoocheri K, Snider WG, et al. Cooperative
subnetworks of molecularly similar interneurons in mouse neocortex. Neuron. 2016; 90(1):86–100.
https://doi.org/10.1016/j.neuron.2016.02.037 PMID: 27021171

80. Liu YH, Wang XJ. Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron.
J Comp Neurosci. 2001; 10:25. https://doi.org/10.1023/A:1008916026143

81. Bibikov NG, Ivanitskii GA. Modelling spontaneous pulsation and short-term adaptation in the fibres of
the auditory nerve. Biophysics. 1985; 30:152–156.

82. Schwalger T, Fisch K, Benda J, Lindner B. How Noisy Adaptation of Neurons Shapes Interspike Inter-
val Histograms and Correlations. PLoS Comput Biol. 2010; 6(12):e1001026. https://doi.org/10.1371/
journal.pcbi.1001026 PMID: 21187900

83. Schwalger T, Lindner B. Patterns of interval correlations in neural oscillators with adaptation. Front
Comput Neurosci. 2013; 7(164):164. https://doi.org/10.3389/fncom.2013.00164 PMID: 24348372

84. Weber AI, Pillow JW. Capturing the dynamical repertoire of single neurons with generalized linear
models. ArXiv e-prints. 2016 Feb;.
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