
Chapter

2

Towards a Theory of Declarative
Knowledge

Krzysztof R. Apt1

C.W.I.,
Amsterdam, The Netherlands

Howard A. Blair2

CIS,

Syracuse University,
Syracuse, NY

Adrian Walker
IBM Thomas J. Watson Research Center,
Yorktown Heights, NY

Abstract

We identify a useful class of logic programs with negation, called stratified

programs, that disallow certain combinations of recursion and negation.

Programs in this class have a simple declarative and procedural meaning based,

respectively, on model theory and a back-chaining interpreter. The standard

model of a stratified program, which gives the program a declarative meaning

1Work performed during the author's visiting year at IBM Research Center, Yorktown Heights,
NY 10598

2Work performed while the author was a consultant at IBM Research Center, Yorktown Heights,
NY 10598

89

90 Apt, Blair, and Walker

and is independent of the stratification, is characterized in two ways. One is

based on a fixed point theory of nonmonotonic operators and the other on an

abstract declarative characterization. The back-chaining interpreter also deter

mines the standard model. Finally, we prove the consistency of Clark's

completion for stratified programs and attempt to clarify the sources of some

previously reported difficulties with negation in logic programming.

Introduction

The aim of this paper is to provide a formal basis for separating declarative and

procedural matters in an extension of logic programming allowing negation in

the presence of certain recursions. This should be viewed as part of a larger

research program with the aim of extending logic programming so that it is

more useful for expert systems, both as a formal basis and as a source of prac

tical techniques.

Expert Systems

There is currently considerable interest in expert system shells that are based

on logic programming. Logic programming certainly has several properties that

should be seriously considered while searching for an appropriate formalism.

Among other things, we expect that the knowledge in an expert system should

be easy to examine and to change, and we expect the system to provide ex

planations of its results. At first sight, the knowledge in a logic program is

easy to change, since it consists simply of facts and rules. From the declarative

point of view, this is indeed the case. However, a common difficulty is that the

addition of a rule with an intended declarative meaning has unintended

procedural effects when the knowledge is interpreted by a particular inference

engine. For example, the rule

(X is married to Y) if (Y is married to X)

has an obvious common sense declarative meaning, but it can cause control

problems for several well-known inference mechanisms, including that of
Prolog.

Similar issues arise in systems that are not based on logic, but logic as a

formalism for expert systems has an important advantage: We can specify the

declarative meaning of a collection of rules and facts using the techniques of

model theory. This tells us what the consequences of the knowledge should be,

independent of particular mechanisms for interpreting the knowledge. We can

also specify various procedural interpretations, such as SLD resolution, and

we can study the extent to which the interpretations live up to our model
theoretic standard.

Chapter 2: Towards a Theory of Declarative Knowledge 91

The extent to which an interpreter (or inference engine) behaves according

to the declarative reading of knowledge can be crucial to its use by non

programmers, who wish to add knowledge to an expert system. Real world

tasks about which knowledge is to be acquired can be complicated. It helps to

manage this complexity if the declarative and procedural concerns can be

separated. For example, order does not matter for declarative knowledge, but

procedurally we might have to find just one of the possible orderings of a set

of rules to make certain inference engines behave the way we wish.

At the higher, declarative level it should be sufficient to write down the

knowledge correctly in the form of facts and rules. At the lower level, an in

ference engine should be available to handle the procedural and computational

aspects, and to produce the intended declarative meaning.

Logic Programming

For any choice of formalism to succeed, it must be sufficiently expressive for

the purposes at hand. Logic programming with definite clauses (see Kowalski

[1978)) does not seem to be expressive enough for expert system shells. In par

ticular, we need to express negation.

It is important to realize that use of negation indeed increases the expressive

power of logic programming. This may sound paradoxical since, as is well

known (see e.g., Tarnlund [1977]), logic programs without negation have the

full power of recursion theory. But the point is that in many situations we com

pute over a finite domain, and this drastically changes the situation.

The realization of this fact led to extensive studies, started by Clark [1978],

of the extensions of logic programming incorporating the use of negation. Un

fortunately several difficulties have been revealed (see e.g., Shepherdson

[1984, 1985, 1988)), and it seems fair to say that so far no satisfactory theory

of negation has been proposed. In particular no positive result concerning the

use of negation in the presence of recursion has been proved.

A certain amount is known about interpreters that behave according to

model theory. For the case of logic programs without negation, both the

declarative reading-through the least Herbrand model, and the procedural

reading-through SLD resolution, are available and by the results of Apt and

van Emden [1982], they naturally correspond through a completeness result.

Brough and Walker [1984] showed that, even for function-free ("database

like'') programs without negation, a strong form of completeness cannot be

achieved by any strictly top-down inference engine. Walker [1986b] described

an implemented inference engine that uses a mixed top-down I bottom-up

strategy that appears to overcome some of this difficulty, even with negation

allowed.

Consider the treatment of negation in Prolog. Prolog is normally augmented

with a definition of negation that says that -, P is true if we cannot prove P.

This allows programs containing negation in the premises of rules to be ex-

92 Apt, Blair, and Walker

ecuted. However, such programs must at present be written by programmers
with an intimate knowledge of the Prolog interpreter's operation. We lack a
declarative reading and have to rely on a highly intricate procedural interpreta

tion instead.

One of the difficulties concerning the use of negation in logic programming
is that this is an (almost classic) example of nonmonotonic reasoning. Indeed,
suppose that by some means we infer from the logic program P a negative fact,
say --, A. Naturally we do not expect that 1 A can then be inferred from P aug
mented by the fact A-otherwise a contradiction could be derived from P and

A. Thus, the provability relation is no longer monotonic, and this makes it dif

ficult to study.

Structure of the Paper

In this paper we achieve our goal by restricting the use of negation. We allow
both recursion and negation, but we disallow recursion "through negation" as

in

and we call the resulting programs stratified. They are formally defined in the
section "Stratified Programs" below. These programs form a simple
generalization of a class of programs introduced in the context of the deductive
databases by Chandra and Harel [1985].

The declarative meaning of a stratified program is given in a semantic
fashion-by certain of its minimal models. (A model is minimal if it has no
proper subset that is also a model.) To see why we need minimality, consider
the program p - p. This has models {p} and the empty set. {p} is not min
imal. We rule it out, since there is no way of proving p using the rule. The
minimal models that we consider are those that are supported, in the sense that
each item in such a model is either a fact in the program, or is the conclusion
of a ground instance of a rule whose body is true in the model. To see why it
is reasonable to require support, consider the program consisting of just the

rule p - -, q. This program has minimal models { p} and { q}, but only { p}
is supported. We rule { q} out, on the grounds that there is no way of proving
q using the rule as it stands.

To study models of logic programs we relate them in the section "From
Models to Fixed Points" to fixed points of a natural operator originally intro
duced in van Emden and Kowalski [1976]. Unfortunately, in the presence of
negation this operator is nonmonotonic and can have no fixed points. To

resolve the difficulty we develop in the fifth section a fixed point theory of
nonmonotonic operators, and in the section ''Model Theory of Stratified
Programs" apply it to the study of models of stratified programs. We believe

Chapter 2: Towards a Theory of Declarative Knowledge 93

that this theory can have other applications in the area of nonmonotonic reason

ing.

The declarative meaning of a stratified program is given by exhibiting a par

ticular supported minimal model that can be defined in a simple way by using

the T operator of van Emden and Kowalski [1976]. This provides a logical in

terpretation of negation that also works procedurally.

The procedural reading of knowledge written in a form of a stratified

program is provided by defining a top-down interpreter that makes rather

simple use of bottom-up information. We define it in a recursive fashion and

show in the two sections on the elementary interpreter and its existence that it

admits a well-founded inductive definition when applied to stratified programs.

Then we show that the interpreter computes the chosen model of a stratified

program, and that in the absence of function symbols the computation is effec

tive and terminating. Finally, in the section "Other Views of Negation and

Stratified Programs," we attempt to clarify the negation problem in logic pro

gramming and compare our treatment of negation with two other views

proposed in the literature-those of Reiter [1978] and Clark (1978]. There we

prove the consistency of Clark's completed database for stratified programs,

again employing the fixed point techniques. We also explain why the un

restricted use of function symbols in general makes any interpreter nonter

minating. The paper concludes by discussing other related work in the final

section.

Preliminaries

In this section we recall the basic definitions concerning logic programs. Our

only departure from customary treatment of the subject is that we study these

programs in the presence of negation. Nothing will be said here on the com

putation process-only syntax and semantics will be discussed. We start by

defining the syntax.

Syntax

We consider here ajirst-order language whose formulas are denoted by S. Its

variables are denoted by x, y, and z terms bys, t, and atomic formulas (usually

called atoms) in turn by the letters A, B, and C. An atom is called ground if no

variable occurs in it. A literal is an atom A or its negation •A and is denoted

by the letter L. An atom is a positive literal, and the negation of an atom is a

negative literal. A clause is a formula of the form

94 Apt, Blair, and Walker

where A is an atom, LI' ... ,Lm are literals and m > 0. A is the head
(conclusion) of the clause and L 1& ... &Lm its body (hypothesis). Thus, negation
is allowed in the body of a clause but not in its head. If m = 0 then, the clause
is simply A and is called afact. Otherwise it is called a rule. Finally a program
is a finite set of clauses. A program whose clauses do not contain negation is
called positive. In other words, in a positive program only positive literals oc

cur in the bodies of the clauses. Such clauses are usually called definite
clauses. We define ground (P) to be the set of all variable-free instances of
clauses in P. Note that ground (P) depends on the underlying first-order lan

guage.

If a program P contains an atom r(t1, ••• ,tn), then r is a relation of P. We
make the convention that no relation symbol occurs with different arities in P.

A goal is a formula of the form - L1& ... &Lm where Lp···•Lm are literals
and m > 0.

A substitution

is defined as usual: It replaces all free occurrences of the variables x I' ... ,x m by
the terms tp···•tm, respectively. The replacement is performed simultaneously.
se is the result of applying the substitution e to the formula s. se is called an
instance of S.

Semantics

The language of a program P is the first-order language determined by all and
only the logical symbols occurring in P. The Herbrand base UL of a first-order
language L is defined as the set of all variable-free atoms of L. An
interpretation for L is a subset of the Herbrand base of L. When L is the lan

guage of program P we may refer to UP• the Herbrand base of P, and to inter
pretations for P. This definition for Herbrand interpretations will be convenient
in later sections. Also we discuss the interaction between operators on inter
pretations of distinct but closely related programs.

The truth of a formula in an interpretation is defined as usual: Only those
variable-free instances of atoms that are in I are considered to be true in/. A
formula is closed if it contains no occurrence of a free variable. Formally, we
proceed by induction.

DEFINmON1

Let I be an interpretation.

1 . A formula S is, true in I iff each of its closed instances is true in I, that is ,
for each x occurring free in S, and each variable-free term t,S(t Ix) is true
in J.

Chapter 2: Towards a Theory of Declarative Knowledge 95

2. A closed atom A is true in I iff A E /.

3. A closed formula-, Sis true in I iff S is not true in/.

4. A closed formula 3x.S is true in I iff for some variable free term t the

formulaS(tlx) is true in/.

5. A closed formula V x.S is true in I iff (by (l)!) Sis true in/.

6. A closed formula S 1 - S2 is true in I iff S2 is not true in I or S 1 is true in I.

7. A closed formula S1& ... &Sm is true in I iff each of the Si is true in/.

8. A closed formula S1 V ... V Sm is true in I iff one of the Si is true in/.

9. A closed formula S1-S2 is true in I iff (S1 is true in I if and only if S2

is true in l). 11

An interpretation M is a model for r if each formula in f is true in M

(denoted MF f). If r has a model, then r is consistent. The models here con

sidered are usually called Herbrand models. It should be pointed out that they

are not the most general models. Consequently, the notion of consistency we

use here is a priori stronger than the usual one since it refers to the existence of

a Herbrand model only. It is an important aspect of Herbrand's theorem that

the two notions of consistency coincide for clauses.

If a model M of f is a subset of every other model of f, then we say that M

is a least model of f. If M is a modei of f such that no model of f is its

proper subset, then we say that M is a minimal model of r. Thus, a least

model is a minimal model, but not necessarily conversely.

Finally, we say that an interpretation I of a program P is supported if for

each A EI there exists a clause A1 - L 1& ... &Lm in P and a substitution 6 such

that/f= L16& ... &Lm6, A =A10, and each Li6 is ground. Thus, /is supported iff

for each A E I there exists a clause in ground (P) with head A whose body is

true in/.

Stratified Programs

We will now propose a treatment of negation in logic programming, which

should be a solution to various difficulties exhibited in the literature. It is a

chieved through restricting its use and by proposing a new semantic interpreta

tion. In the section on the existence of the interpreter we justify this semantic

definition by proof theoretic means.

Our view of a safe use of negation is the following. When using negation

we should refer to an already known relation. More specifically, first some

relations should be defined (perhaps recursively) in terms of themselves

without the use of negation. Next, some new relations can be defined in terms

96 Apt, Blair, and Walker

of themselves without the use of negation and in terms of the previous ones,

possibly with the use of negation. This process can be iterated.

In such a way, from the semantic point of view we only negate relations

whose meaning is fixed beforehand. It seems that most of the paradoxes con

cerning negation in logic programming violate this principle.

More precisely, we introduce the following definitions.

DEFINITION 2

Let P be a program.

1. We say that the relation p refers to the relation r if there is a clause in P

with p on its left-hand side and r on its right-hand side.

2. By a definition of a relation symbol r we mean the subset of P consisting

of all clauses with a fonnula on the left side whose relation symbol is r.

3. A relation symbol r occurs positively in a positive literal and negatively

in a negative literal. •

These definitions formalize intuitive notions frequently used informally. We

now provide the central definition of this section.

DEFINITION3

A program P is called stratified if there is a partition

such that the following two conditions hold for i = 1, ... ,n:

1. if a relation symbol occurs positively in a clause in Pi' then its definition

is contained within j~ Pj.

2. if a relation symbol occurs negatively in a clause in P;, then its definition

is contained within

UP ..
. . J

J<.1

P 1 can be empty.

We say then that P is stratified by P 1 U ... U Pn and each P; is called a

stratum of P. Thus, each stratum defines new relations in terms of itself only

positively and in terms of the relations from the previous strata, possibly nega

tively. WeletP;denoteP1 U ... UP;. ThusPn=P. •

Chapter 2: Towards a Theory of Declarative Knowledge 97

EXAMPLE1

1. Let P be the following program:

p(x)- ,q,

r,

Then P is stratified by

P = { r} U { q - q& --, r} U { p(x) - -, q} .

2. Let P be the following program:

P- q,

q-,p.

Then P is not stratified. Because of the second clause, the definition of p
has to appear in a lower stratum than the definition of q. But p refers to q, so

condition (1) cannot be satisfied.

The last example suggests the following simple test whether a program is

stratified.

DEFIN"10N4

By the dependency graph of a program P we mean the directed graph

representing the relation refers to between the relation symbols of P. Formally,

p refers to q in P iff there is a clause C in P in which p is the relation symbol

in the head of C and q is the relation symbol of a literal in the body of C. Note

that it may be that p refers to q via several clauses in P. In particular, for any

pair of relation symbols p, q there is at most one edge (p,q) in the dependency

graph of P. An edge (p,q) is positive [negative] iff there is a clause C in P in

which p is the relation symbol in the head of C, and q is the relation symbol of

a positive [negative] literal in the body of C. Note that an edge may be both

positive and negative. •

LEMMA 1

A program P is stratified iff in its dependency graph there are no cycles con

taining a negative edge.

Proof: If the program is stratified, then the definition of each relation symbol

is contained in some stratum. Assign to each relation the index of the stratum

within which it is defined. If (p,q) is a positive edge in the dependency graph

of P then the level assigned to q is smaller than or equal to that assigned top,

98 Apt, Blair, and Walker

and if (p,q) is a negative edge, then the level assigned to q is strictly smaller
than that assigned to p. Thus, there are no cycles in the dependency graph

through a negative edge.
For the converse, decompose the dependency graph into strongly connected

components, each of maximum cardinality (i.e., such that any two nodes in a
component are connected in a cycle). Then the relation "there is an edge from
component G to component H" is well founded, since it is finite, and contains
no cycles. Thus, for some n the numbers 1,. . .,n can be assigned to the com
ponents so that if there is an edge from G to H, then the number assigned to H
is smaller than that assigned to G. Now let P; be the subset of the program P
consisting of the definitions of all relations which lie within a component with

the number i.
We claim that

is a stratification of P. Indeed, if q is defined within some P; and refers to r,
then r lies in the same component or in a component with a smaller number. In
other words, the definition of r is contained in Pj for some j < i. And if this
reference is negative, then r lies in a component with a smaller number because
by assumption there is no cycle through a negative edge. Thus, the definition
of r is then contained in Pj for some j < i. •

We will now study semantics of stratified programs. As explained in the in
troduction we are interested in models that are both minimal and supported.
Our task is to prove that stratified programs indeed have such models.

From Models to Fixed Points

Van Emden and Kowalski [1976] proposed an elegant way of studying logic
programs without negation. Their definitions still make perfect sense in the
presence of negation. Their idea was to use a natural closure operator and
equate the models of a program P with the pre-fixed points of the operator,
which are simpler to analyze. This operator is usually called Tp. It maps inter
pretations of Pinto interpretations of P and is defined as follows:

A E Tp(l) iff for some clause A1 - L1 & . .. &Lm in P and substitution 0,

n= L1 0 & ... &Lm 0 and A =A16

We shall drop the subscript P if it is clear from the context to which
program P the operator refers. Intuitively, T p(/) is the set of immediate conclu
sions of/, i.e., those which can be obtained by applying a rule from P only

Chapter 2: Towards a Theory of Declarative Knowledge 99

once. Note that A E Tp(l) iff there exists a clause in ground (P) with head A
whose body is true in I.

Below, we shall study T as an operator, so it is perhaps useful to recall

some terminology and well-known results. Since no greater generality is

needed, we consider only the case of operators on complete lattices. We use~

to denote the order relation on the lattice.

We say that T is monotonic if / 1 ~1 2 implies T(/1) ~ T(/2). When T(/) ~I

then we say that I is a pre-fzxed point of T and when T(l) = I then we say that I

is a fixed point of T. The following classical result is at the heart of the van

Emden and Kowalski [1976] approach.

THEOREM (KNASTER·TARSKI [1955])

A monotonic operator T has a least fixed point that is also the least pre-fixed

point ofT. •

Now suppose that T is one of the operators Tp on Herbrand interpretations.

The Knaster-Tarski theorem's importance derives from the fact that for a posi

tive program P the operator Tp is monotonic. Unfortunately, in the presence of

negation, things change. In fact, in this paper we shall not make use of the

Knaster-Tarski theorem. The following example explains the difficulties.

EXAMPLE2

Let P be a program without negation. Then (see van Emden and Kowalski

[1976]),

a. Tp is monotonic,

b. the intersection of two models of P is a model of P, and

c. P has a least model.

On the other hand, if P is a program with negation we have

d. Tp does not need to be monotonic,

e. Intersection of two models of P does not need to be a model of P, and

f. P may have no least model.

To see this, consider the program P: A - -, B

1. Take / 1 empty and / 2 = {B}. Then Tp(/1) = {A} whereas Tp(/2) is

empty. Thus 1 1 ~1 2 but not Tp(/1) ~ Tp(/2).

2. Take the above program P. Then {A} and {B} are models of P but their

intersection is not.

100 Apt, Blair, and Walker

3. p has two different minimal models: {A} and {B}. •

Several results concerning positive programs depend critically on the properties

(a), (b), and (c).Fortunately, a very important property remains true.

LEMMA2

Let P be a program. Then I is a model of P iff Tp(I) ~ I.

Proof: Essentially the same as the proof for programs without negation; see

Lloyd [1984]. •

This simple fact saves the whole approach based on the analysis of the

operator Tp! Further, the notion of a supported model can also be naturally ex

pressed in tenns of the operator Tp. We have the following simple result.

LEMMA3

Let P be a program. Then I is supported iff T p(l) ~I.

Proof: Direct from the definition. •

As explained in the introduction, we are interested here in studying minimal

and supported models. In view of Lemmas 2 and 3 this simply means that we

are looking for minimal fixed points of the operator Tr Thus, we are brought

to study the fixed points of nonmonotonic operators. It is conceptually advan

tageous to carry out such an analysis in a completely general situation.

Fixed Point Theory of Nonmonotonic Operators

Powers

Here we study operators over an arbitrary, but fixed, complete lattice. To keep

in mind the subsequent applications to logic programs and their interpretations,

we denote the least element by <I> and the elements of the lattice by I ,J ,M. The

order relation on the lattice is denoted by \;.

We start by defining powers of an operator T. We put

TtO(l) =I

rt (n + 1) (J) = T(T I n(J)) u TI n(I) . ..
rtw(l) = U TI n(/)

n=O

Chapter 2: Towards a Theory of Declarative Knowledge 101

Tt n(I) should not be confused with Tn(l), which stands for the n fold applica

tion of T. If T is monotonic, then its ordinal powers can be (and usually are)

defined in a slightly simplified way by putting

Tt (n + 1) (/) = T(Tt n(l))

An obvious proof by induction shows that when T is monotonic both defini

tions lead to the same value of T t n(<!>) (but of Tt n(l) only when I ~ T(I)).
Clearly the process of computing powers of T can be extended beyond w,

see Blair [1982], but we shall not need this.

Fixed Points

We now introduce the following definition.

DEFINITION 5

T is finitary if for every infinite sequence

"' ""
T(u In)~ u T(In)

n ==0 n =O

""
holds. Thus if A E T(U Jn) then for some n, A E T(In), which explains the

n=O

name. The following lemma shows the importance of this notion. •

LEMMA4

If T is finitary then for all /

T(Tt w(l)) ~ Tt w(l).

Proof: We have

T(Ttw(/))

""
~ U T(Tt n(l)) since T is finitary

n=O

~ Tt w(/) since T(Tt n(l)) ~ Tt (n + 1)(/). •

Thus, finitary operators have pre-fixed points which can be computed in a

natural way. In general finitary operators do not have fixed points, but under
some assumptions they do.

102 Apt, Blair, and Walker

DEFINITION 6

T is growing if for all /, J, M

implies

T(J) k T(M). •

The following lemma holds.

LEMMAS

If T is growing then for all /

rt ro(J) k I U T(Tt w(J))

Proof: We have

A E rtro(/) ~A EI or for some n > 1, A E Ttn(I)

~A EI or for some n > 0, A E T(Tt n(J))

(by assumption) ~A E/ or A E T(Ttw(l)). •

COROLLARY1

If T is finitary and growing then

rtw(<J>) = rcrtw(<J>)) .•

Thus for finitary and growing T, Ttw(<!>) is a fixed point.

Iterations

Next, we study finite families of operators. Let T1, ••• ,Tn be operators. We put

N0 =I,

N1 = T1 t w(N0),

Clearly N0 k N1 k ... C Nn. Of course all Ni depend on I and it will be always

clear from the context from which one. To concentrate attention on the fact

that Nn is computed using Ti in an iterative fashion, we sometimes denote it by

iter(T1, ... ,Tn,(I).

Chapter 2: Towards a Theory of Declarative Knowledge 103

Our first task is to determine under which conditions iter(Ti' .. .,Tn,(I) is a
n n n

fixed point of U Ti, where (U T)OO = U (Tp()). For this purpose we intro-
i = 1 i=l i= 1

duce the following concept.

DEFIN"10N7

A sequence of operators TJ>··· ,Tn is local if for all /,J and i = l, ... ,n

Ir;;,Jr;;,Nn

implies

Informally, locality means that each Ti is determined by its values on the sub

sets of N;.
As an example of a non-local sequence of operators, consider Tp, Tp

I 2

whereP1 = {q - --,p} andP2 = {p - 1 p}. Then/=<j>,N1 = {q}, and
N2 = {p,q}. ChooseJ= {p}. ThenTp(J)=<l>butTp(JnN1)= {q}. •

I I

We have the following two lemmas.

LEMMA6

Suppose that the sequence Tw··•Tn is local and that all T; are finitary. Then

n

(LJ T;)(iter(T1 , ••• ,Tn, /)) r;;, iter(Ti' . .. ,Tn,/).
i= I

Proof: We have

n

U T;(iter(T" ... ,Tn, /))
i= 1

n

(by locality)= lj T;(N;)
•=I

n

(by Lemma 4)r;;, UN;
i= I

= iter(Tp···•Tn, /). •

LEMMA7

Suppose that the sequence T" ... ,Tn is local and each Ti is growing. Then

n

iter(T" . .. ,Tn,I) r;;, I U (U T)(iter(Tp··· ,Tn,/)).
i==l

104 Apt, Blair, and Walker

Proof: We prove it by induction on n. If n = 1, the lemma reduces to Lemma

5. For n > 1, assume the lemma holds for all m < n. Then

Nn

(by Lemma5) ~N n-1 U Tn(Nn)
•-I

(by ind. hypothesis) ~ (/ U { LJ Ti)(Nn _ !)) U Tn(Nn)
i= I

n

(by locality) =I U (U Ti)(Nn). •
i= I

COROLLARY2
Suppose that sequence T1,. .. ,Tn is local and all Ti are finitary and growing.

Then

n

iter(Tp ... ,T , I) =I U (U T)(iter(T1,. •• ,T., /)). •
n i= I

Thus for a local sequence Ti' .. '.,T. of finitary and growing operators
n

iter(Tp ... ,Tn, <f>) is a fixed point of;~ Ti'

We now prove that under some assumptions iter(Tl' ... ,Tn, I) is a minimal
n

pre-fixed point of U Ti containing/. More precisely, we prove
i=I

THEOREM1

Suppose that the sequence T1, .. .,Tn is local and that all Ti are growing. If

I<;;, J <;;, iter(T1,. • .,Tn, I)

and

•
(U T)(J)<;;, J
i=l

then

Proof: We prove by induction on j = 0,. .. ,n that

(I)

For j = 0 it is part of the assumptions. Assume that the claim holds for some

j < n. We now prove by induction on k that

(2)

Chapter 2: Towards a Theory of Declarative Knowledge 105

Fork= 0 this is just (1), So assume (2) holds for some k > 0. We have

(by (2) and since Ti+ 1 is growing)

(by locality)

(by the assumptions)

~ 1)+ iCJ nNi+ 1) U J

= 1)+ 1<J) u J

~J.

Thus by induction for all k (2) holds, so Ni+ 1 ~ J. This proves (1) for all

j = o, ... ,n and concludes the proof .•

Iteration Versus Simultaneity

n

Next, we relate iter(Tp ... ,Tn,/) with CU ntw(/). We need the following no-

tion. i=I

DEFIN"10N8

A sequence of operators T1, ••• ,Tn is raising if for all I,J,M and i = l, ... ,n

implies

We have the following lemma.

LEMMAS

Suppose that the sequence T1, ••• ,Tn is local and raising and that all Ti are

finitary. Then

n

(U T;)t w(/) ~ iter(Tp ... ,Tn,/).
1= I

Proof: We prove by induction on k that

<u T;)tk<I> ~ iter(Tl' ... ,rn,1> (3)
i= I

It clearly holds for k = 0. So assume (3) holds for some k > 0. To make the
n

derivation more readable, denote (U T1)tk(/) by J. We have
i= I

106 Apt, Blair, and Walker

n n

(U Tit (k + 1)(/) = (U Ti)(J) U J
i=I i= 1

n

(by locality and (3) = (U T.)(J nN.) U J
i=I I I

n

(since TI> ... ,Tn is raising) k(U T;)(N;) U J
t=l

(by Lemma4)

(by(3))

Thus, by induction (3) holds for all k, which completes the proof. •

This leads us to the following theorem.

THEOREM2
Suppose that the sequence Tp ... ,Tn is local and raising. Suppose also that all T;

are finitary and growing. Then

n

iter(Ti' ... ,Tn, /) = (U Ti)tw(/).
i=l

Proof: This time it suffices to combine previously proved results. First, ob-

" serve that since all Ti are finitary, U Ti is finitary, as well. Thus by Lemma 4
i= 1

n n n

(U T;)((U T)tw(I)) 1k(U Ti)tw(/).
i=l i=I i=I

Now, in view of Lemma 8 all assumptions of Theorem 1 are satisfied and the

conclusion follows. •

Independence

Finally, we study a condition under which the order of application of two

operators is irrelevant. For this purpose we introduce the following notion.

DEFINITION 9

T1 and T2 are independent if for all/, J and M

1. if/kJkT2 tw(/)thenT1(/ UM)=T1(J UM),

2. if I k J k T1 t w(l) then T2(1 UM) = T2(J UM). •

Intuitively, in (1), T1 makes no use ofJ - I. Consider I k J k T 2 t w(I) and

M = <j>. Then T1(I) = T1(J).

We have the following technical lemma.

Chapter 2: Towards a Theory of Declarative Knowledge 107

LEMMA9

Suppose that T1 and T2 are independent. Then for all k > 1

1. if le;;, J r;;;;, T2 tw(/) then T1 tk(J) = T1 tk(I) U J,

2. if I r;;;;, J r;;;;, T1 tw(/) then T2 tk(J) = T2 t k(/) U J.

Proof: Suppose that/ r;;;;, J r;;;;, T2 t w(/). Note that

TI t l(J) = T1 t1(/) U J.

Suppose now the claim holds for some k > 1. We then have (1) by an obvious

induction. By symmetry (2) holds as well, which proves the lemma. •

The lemma implies the following theorem.

THEOREM3

Suppose that T1 and T2 are independent. Then for all I

Proof: We have

00

T1 tw(T2 tw(J))= U T1tk(T2 tw(/))
k=I

(by Lemma 9)

(by symmetry)

00

= LJ (T1 t k(l) U T2 t w(/))
k=l

= T1 t w(/) U T2 t w(/)

= T2 t w(Td w(/)). •

It is time to relate the above results to logic programs.

Model Theory of Stratified Programs

Consider a program P stratified by

We now define a standard interpretation of P by putting

108 Apt, Blair, and Walker

LetMp=Mn.
In what sense is Mp standard? We prove in this and the next sections several

results which support the claim that M p is natural. Obviously our first task is to

prove that M P is a model of P.
This turns out to be an easy consequence of the results proved in the pre

vious section.

Minimality and Supportedness of M P

We first prove certain facts about the operators associated with logic programs.

THEOREM4

For all programs P, Tp is finitary.

Proof: Straightforward and left to the reader. •

Next let us introduce the following useful notation.

Negp = {A : -,A is a variable-free instance of a negative literal in a
clause in P}

Defp = {A : A is a variable-free instance of a head of a clause in P}

EXAMPLE3

Let P be the following program:

p(a),

r(x) - --, q(a),

p(x) - --, r(y).

Then

Negp = { q(a), r(a)}

and

Defp = {p(a), r(a)}. •

Chapter 2: Towards a Theory of Declarative Knowledge 109

We have the following simple lemma.

LEMMA 10

Let P be a subprogram of P'. Then

IC.JC. Ur and In Negp =Jn Negp

implies

Informally, the lemma says that each Tp is monotonic as long as its ar

guments do not differ on the elements of Negp. The reference to P' and UP' al

lows us to consider Tp on a larger space.

Proof: Suppose that A E Tp(/). Then there is a variable-free instance of a

clause from P of the form

where

If L; is positive, then L; E /, so also L; E J and consequently J f= L;. If L; is

negative, then it is of the form-, B; where B; fj. I. Also B; E Negp. Thus B; f/=. l
n Negp and by the assumption B; tf. J n Negp. Hence B; t/. J and consequently

J f= L;. Thus for all i, J f= L; which implies A E Tp(f). 11

Next we introduce the following definition.

DEFIN"10N10

A program is called semi-positive if none of its negated relation symbols occurs

in a head of a clause. More formally, P is semi-positive if Negp n Defp =
<j>. •

The following is a consequence of the previous lemma.

THEOREM5

If P is semi-positive, then Tp is growing.

Proof: First observe that if

then, since Tp t (!)(/)C. I U Defp. we have

110 Apt, Blair, and Walker

Mn Negp ~(I U Defp) n Negp =In Negp ~ J n Negp.

so

J nNegp=M nNegp.

Therefore by Lemma 10

Informally, for semi-positive programs all arguments of T P lying between I
and Tp t w(/) do not differ on the elements from Negp.

Now, consider a sequence of programs PI' ... ,P n·

DEFINITION 11

A sequence Pp ... ,Pn defines new relations if the following holds:

whenever a relation symbol occurs in a clause P;, then its definition within

P1 U ... U Pn is contained in P1 for somej <i. (Note that if the definition of a

given relation symbol is empty, then that definition is contained within, in par

ticular, P1 .)

More formally, a sequence Pp Pn defines new relations if for all i =
, ... ,n - 1

Defp n Up u u P = <J>. •
1+1 I ... i

That is, none of the relation symbols defined in P; + 1 is mentioned in

Pp ... ,P;.
We have the following theorem.

THEOREM6

If the sequence P1,. • .,Pn defines new relations, then the sequence of the

operators Tp
1
, •• .,TP. considered on the space UP, u ... u P. is local.

Proof: As in the previous section we denote iter(Tp1,. .. ,Tp;· /) by N; and let

N0 be/. We have for i = O,. .. n - 1

N; + 1 - N; ~ Defp .
i+ I

Thus for i = 1,. . .,n

N nu n P1 U ... UP;

~(N; UDefp;+1 u ... UDefp) n UP, u ... uP,

(since P1, .. .,Pn defines new relations) ~ N; n UP, u ... uP;

cN nu
- n P,u ... UP;·

Chapter 2: Towards a Theory of Declarative Knowledge 111

Hence

N.nup p=N nu
I I U ... U I n P1 U ... UP1

Suppose now that

Then for i = l, ... ,n

Jnu =JnN nu pi u ... u P, n pi u ... UP,

=Jn N; n Upl u ... uP,·

But by the definition of T P

Tp,(J) = Tp.{J n Up1 u ... uP.}

=Tp.(J n N; n Up1 u ... uP,)

=Tp (J nN.)
I I

as desired. •

Let us now relate the above theorems to stratfied programs. Suppose that P

is stratified by

Then by definition each P; is semi-positive and the sequence Pp ... ,Pn defines

new relations. By Theorems 4 and 5 all operators T P. for i = 1, . .. n are finitary

and growing. By Theorem 6 the sequence Tp , ... Tp 1is local. We are now in a
I n

position to apply Corollary 2. It implies

This in tum, in view of Lemmas 2 and 3, implies the following theorem.

THEOREM7

1. Mp is a model of P.

2. Mp is supported. •

Also, by Theorem 1 and Lemma 2 we have

112 Apt, Blair, and Walker

THEOREMS

M P is a minimal model of P. •

Note that in view of Lemmas 6 and 2 and Theorems 4 and 6, M p is a model

of P whenever the sequence Pp···•pn defines new relations. But to prove that

M P is supported we also need Lemma 7, which requires that all T P; are grow-

ing. This condition is satisfied (see Theorem 5) if each P; is semi-positive.

Now it is easy to see that if the sequence P 1, .•• ,P n defines new relations and

each P; is semi-positive, then P is stratified by P = P1 U ... U Pn. In other

words, our general results on norunonotonic operators do not allow us to con

clude existence of supported models for other than stratified programs.

Independence of Mp from the Stratification

The definition of the model M P for a stratified program P is somewhat unsatis

factory as it explicitly refers to the way P is stratified. We now prove that Mp
does not depend on the stratification of P. This will support our claim that Mp

is a natural model for P.

Again this easily follows from the results of the previous section. This time

we use results of the second part of the section. We first introduce the follow

ing natural concept.

DEFINITION 12

Let P be a program.

1. depends on is the reflexive transitive closure of the relation refers to be
tween the relation symbols of P.

2. By a cluster we mean a non-empty subset of P that is the union of a

maximal collection of definitions that define relations that depend on one

another. •

The following example should clarify the definition.

EXAMPLE4

LetP be

P- q,

r -q&q1,

q-r,

Chapter 2: Towards a Theory of Declarative Knowledge 113

Then q and r depend on each other. Thus { p - q}, { r - q&q1, q - r}

and {q1} are the clusters of P. II

Note that P' is a cluster if it is non-empty and for each clause in P' with p

on its left hand side and r on its right hand side. P' contains the definition of p

and, if r depends on p, the definition of r.

We have the following simple lemma.

LEMMA 11

Let P be a program.

1. The clusters of P form a partition of P.

2. If P is stratified by P1 U ... U Pn, then each stratum P; is a union of

clusters.

Proof: Consider the following relation between definitions from P:

R1 > R2 iff the relation defined by R1 depends on the relation defined by R2•

Let

Then = is an equivalence relation between the definitions from P.

To prove (1) it is now sufficient to observe that a cluster is just a union of

definitions forming an equivalence class of =.
To prove (2) note that each definition from P is contained in a stratum. Let

index(R) for a definition R be the index of the stratum it is contained in. (We

shall also say that the index of a literal is the index of the definition of its rela

tion symbol.) Then by the definition of stratification

Thus

so in view of the above characterization of clusters, each cluster is contained in

a stratum. The claim now follows by (1). II

Consider now the relation > defined in the last proof but now as a relation

between clusters. In other words, given two clusters Q1 and Q2 we put

114 Apt, Blair, and Walker

Q > Q iff for some definitions R1 ~QI
l - 2

andR2 ~Q 2 we have R1 > R2•

Then, since ,.,. is an equivalence relation, > is a partial ordering between

clusters.

Given now a program stratified by P = P 1 U .. . U P n, let index(Q), for a
cluster Q, be the index of a stratum it is contained in. Then for two clusters Q 1

and Q2

Q1 .2: Q2 :::? index(Q1) .2: index(Q2).

We now introduce the following definition.

DEFIN"10N13
We say that two clusters Qp Q2 are unrelated if neither Q1 > Q2 nor Q2 > Q 1

holds.
Note that if Q1 and Q2 are unrelated, then DeflQ2) n U Q

1
= <!> and Def(Q 1) n

UQ =<f>. but not necessarily conversely. For example, if P = {p ...,__ q 7

q !.-- r, rf then the clusters Q1 = {p - q} and Q2 = {r} are not unrelated
but satisfy the above property. •

The following is an immediate consequence of the above remarks.

LEMMA 12

Let P be a stratified program. Suppose that P = P1 U ... l.Jpk and P = P' 1 U ...
UP'i are two different stratifications of P. If Q1, Q2 are two clusters such that
for some ip i2, jl' j 2

and

then Q1 and Q2 are unrelated.

Proof: The conditions of the lemma simply state that the order of indexes of
Q1 and Q2 in two stratifications of P is different. Thus neither Q 1 > Q1 nor Q 2
.2: Q1 holds. •

We now link the notions of this and the previous sections.

Chapter 2: Towards a Theory of Declarative Knowledge 115

THEOREM9

Let QI> Q2 be two clusters of a program P. Suppose that Q1 and Q2 are unre

lated. Then T Q and T Q are independent.
I 2

Proof: Suppose that for some/, J

Then

so since Q1 and Q2 are unrelated.

(J - I) n u Q = <f>.
1

Thus for any M

that is

By symmetry the other half of the independence definition holds as well. Ill

THEOREM 10

Let P be a program stratified by P = P1 U ... t.Jpk and suppose that Qi' .. .,Qn
are the clusters of P; for some i, 1 < i < n. Then the sequence of operators

TQ ,. . .,TQ considered on the space Up is raising.
I n 1

Proof: Since P; is a stratum, it is a semi-positive program.

Suppose that

I~ J ~Mr;;;,. iter(TQ ,. .. ,TQ, I)
I n

Then for any j = 1, .. .,n

Jn NegQ r;;;,.(Defp U I) nNegQ
J I j

(since P; is semi-positive and NegQ r;;;,. Negp) =I n NegQ:
J ' J

116 Apt, Blair, and Walker

Similarly

M n NegQi r;;;,_ In NegQ/

It follows that

I n Neg = J n NegQ = M n NegQ. Qi } J

Now, by Lemma 10

TQ/J)r;;;,_ TQ/M). •

Finally we prove the following theorem.

THEOREM 11
Let p be a stratified program. Then M P is independent of the stratification of
P.

Proof: We use the previous two theorems.
Given two stratifications P l'""pn and P' 1'" .,P' k of P, we say that they are

equivalent if they yield the same model Mp, that is if

iter(Tp ,. . .,Tp, <f>) = iter(Tp, , .. .,TP', <f>).
I n 1 k

We now prove that any two stratifications of P are equivalent. So let P 1' ... ,P n

be a stratification of P. By Lemma 11 (2) each stratum is a union of clusters.
Consider a stratum, say P;, and a sequence of its clusters, say Ql' ... ,Qh. This
sequence can be rearranged so that for every j,m, 1 < j,m < h

Now P" ... ,P;_ 1, Q" .. .,Qh, P;+ 1,. .. ,Pn is also a stratification of P.
Moreover, by Theorems 6, 10, and 2 applied to TQ, ... ,TQ and Tp, it is a

I h I
stratification equivalent to the previous one. Iterating this procedure for other
strata we arrive at a stratification of P consisting of clusters which is equivalent
to the original one. •

It now suffices to prove that any two stratifications of P consisting of
clusters are equivalent. To this purpose we need the following simple lemma.

LEMMA 13

Let al, ... ,an and bl' ... ,bn be two permutations of n elements. Then ap ... ,an
can be transformed into b1,. .. ,bn by repeatedly exchanging two adjacent ele
ments whose relative order in bp .. .,bn is different.

Chapter 2: Towards a Theory of Declarative Knowledge 117

Proof: Straightforward-use the bubble sort. •

We now complete the proof of Theorem 11. Let Ql' ... ,Qn and Q'p····Q'n

be two stratifications of P consisting of clusters. If the relative order of two

clusters Q; and Qj in these two sequences differs, then by Lemma 12 Q1 and Qi

are unrelated. Then by Theorem 4, T Q and T Q are independent. This together

with the previous lemma concludes the 1proof. ii

An Alternative Characterization of Mp

The definition of the model M P is somewhat operational in the sense that it is

defined in terms of the iterations of the operators Tp. We now offer another,

equivalent definition, which while being less direct h~s the virtue of not refer

ring to any computation mechanism.

Suppose that P is stratified by

Recall that P; denotes P 1 U ... UP1• Put

M(P1) = n{M: Mis a supported model of P1 }

M(P2) = n {M : Mn Up = M(P1) and M is a supported model of P2 }
I

M(Pn) = n {M : Mn Up = M(Pn_1) and M is a supported model of
n-1

We now prove the following theorem.

THEOREM12

Mp = M(Pn).

Proof: As expected we proceed by induction and prove that for all i = l, ... ,n

M1 =M(P).
For i = 1 it is the consequence of the fact that for a monotonic operator T,

Ttk(<j>) = T\cj>) for all k, and a result of van Emden and Kowalski [1976]

characterizing, for a positive program P,

118 Apt, Blair, and Walker

U T}(0) as n{M: Tp(M) =M}.
k=l

Suppose now that the claim holds for some i < n. We then have by Theorem 7

applied to Pi+ 1 that Mi+ 1 is a supported model of Pi+ 1 and, since the se

quence Pp ... ,Pi+ 1 defines new relations,

Mi+I n U-p=Mi
I

(1)

(by the induction hypothesis)= M(Pi).

Thus, from the definition of M(P; + 1),

To prove that equality actually holds, it is enough to show that M(P; + 1) is a

model of Pi+ 1 and apply Theorem 8, which states that Mi+ 1 is a minimal

model of Pi+ 1•

For this purpose we prove

(2)

and use Lemma 2.

First note that by (1) and the definition of M(Pi + 1) we have

M(Pi+ 1) n Up_= M(Pi).
I

(3)

Now take M such that MI= Pi+ 1, M is a supported model of P; + 1 and

M n U-p = M(Pt>·
I

(4)

Then, by definition, M(Pi + 1) ~Mand moreover by (4) M n Negp ~ U-p as
l+l ;

M is a supported model of Pi + 1. Thus

M(Pi + ,) n Negp_ + I = M n Up n Negp
! l i+t

=M nNeg-p .
I+ I

Chapter 2: Towards a Theory of Declarative Knowledge 119

Now by Lemma 10

T-p (M(Pi + 1)) ~ T-p. (M)
i+ I 1+ I

(by (4))

(by ind. hyp., Lemma 2, Th. 7)

(by Lemma 2)

(by (4)).

= T-p,(M) u Tpi+I (M)

= T-p
1
(M n U-p

1
) u Tp,.

1
(M)

= Tp
1
(M(P;)) U Tp;+i (M)

~ M(P;) u Tft (M)
i+ I

~ M(P) UM

=M.

Since M was arbitrary, by the definition of M(Pi + 1) this proves (2), which con

cludes the proof. •

Note that the theorem does not hold when the assumption that M is sup

ported in the definition of M(P;) is dropped. Indeed, let P be p - 1 q. Then

P1 is empty, so U-p = 0 and M(P1) = M1 = 0. On the other hand M2 = {p}
I

whereas

An Elementary Interpreter

Our purpose in this and the next section is to study the foundations of a proof

theory for logic programs with negation. The study begins with three

deliberately naive intuitions about inference using the clauses of a program:

1. to prove a ground atom A find a ground instance A - L1 & ... & Ln of a

clause in the program and prove each of L1, ••• ,Ln;

2. to prove -, A show there is no proof of A from the clauses of the

program;

3. if there is a proof of A, then there is also a proof of A which does not, it

self, depend (recursively) on a proof of A.

120 Apt, Blair, and Walker

A little reflection should suggest that, while (3) is correct, for programs with

negation (1) leads to incompleteness and (2) is unsound.

Apart from the problematic aspects of (1) and (2) regarding completeness

and soundness there are other more serious and surprising difficulties. Below,

we introduce an interpreter which formalizes (1), (2), and (3) in a straightfor

ward way. For certain programs we will see that there are multiple interpreta

tions of the formal definition of the interpreter; in this sense the interpreter is

ambiguous. The same difficulties arise with other definitions of provability in

the case of logic programs with negation. In particular we find that the defini

tion of SLDNF-resolution given in Lloyd (1984, p. 76] suffers from the same

kind of ambiguity. Moreover, it is not at all clear that (I), (2), and (3) are even

consistent in the case of some programs.

In this section, we show that the ambiguity in the definition of the inter

preter vanishes when we restrict to stratified programs, and in the next section

we show that the definition is, formally, consistent under this restriction. Thus

for a stratified program P the defmition of the interpreter uniquely specifies

which ground atoms are provable from P. We also show that this need not be

the case when P is not stratified. Moreover, when P is stratified, the set of

ground atoms provable from P is M p· Since the interpreter uniquely determines

the class of ground atoms provable from P independently of how P is

stratified, this result gives yet another proof that M P is independent of the

stratification.

Typically, there are ground atoms that are true in M P but are not logical

consequences of P. Thus, from the point of view of first-order logic our proof

procedure given by the interpreter is unsound. However, soundness and com

pleteness notions depend on what concept of logical consequence is being con

sidered. For example, there are true sentences in number theory that are not

(first-order) logical consequences of Peano's axioms. An enriched proof proce

dure that, starting from Peano's axioms, would allow us to prove some of these

sentences must necessarily be unsound from the point of view of ordinary first

order logic, but should certainly not be dismissed because of this. The point is

that notions of logical consequence can be based on intended models rather

than on all models.

This is the attitude we take here: A stratified program P has a unique in

tended model, namely Mp, and we reduce the notion of logical consequence

from P to that of truth in M p·

The interpreter uses ground instantiations of the clauses of the program. We

do not claim such an interpreter is adequate for real programming, but it does

have two important properties. First, it is an analytical tool for investigating

the foundations of a proof theory for logic programs with negation. Second, it

is easy to see how to implement it as an executable Prolog program that gives

us an immediate extension from ground instances of clauses.

We give a (for the moment informal) example that illustrates what should
be taken as a proof based on (1), (2), and (3).

Chapter 2: Towards a Theory of Declarative Knowledge 121

EXAMPLES

Consider a program P:

P- q &--, r,

q-p,

q- s,

r- t,

s

and the tree T:

p

/\
q ---ir

I
s

(Note that we are using T to stand for an operator, and T to stand for a tree. It

will also be clear from context which is meant.) Our intention is to regard T as

proving p from P in the following way: s is a fact in P, so P immediately

proves s, hence q. Now, there is no proof tree fort, hence no proof tree for r.

This establishes -, r, and consequently p. The interpreter must also "trap"

loops. In this example it would be useless to try to prove q by proving p. 11

We now formalize these notions. We first define the class of objects that

will be used by the interpreter to construct proof trees.

DEFINrrlON 14

Let U be the Herbrand base of a language L. An implication tree over U is in

ductively defined by the following rules.

1 . For each A E U, A and -, A are implication trees over U.

2. If Tp ... ,Tn are (not necessarily distinct) implication trees, and A EU,

then

is an implication tree over U. We may also denote this tree by

122 Apt, Blair, and Walker

When the context is clear we may sometimes omit the phfase "over U."
An implication tree is identifiable with a (graphical) tree in the obvious way

where we assume multiple copies of the same literal are distinguishable.

We will now introduce a sequence of restrictions on implication trees that

will bring us to those trees that our interpreter can return as proof trees. Infor

mally, it should be evident that along any path on a proof tree, the same

ground literal need not occur more than once. Accordingly, we have the fol

lowing definition.

DEFIN"10N 15

An implication tree T is loop-free iff T contains no path with two distinct oc

currences of a node labelled A, for any A EU. •

Note that negative literals can only occur as leaves.

EXAMPLE&

The implication tree given below is loop-free, and, we will see, proves q from

q- -iq.

q

I
-iq

The class of implication trees over U of course ignores the structure of logic

programs whose Herbrand bases are contained in U. Because we want to use

implication trees to prove the consequences of logic programs, we must select

those implication trees that can serve as proofs. We shall use the term

"compatible" to link implication trees with programs in this way. Proposition

1 makes precise what it is that compatible implication trees do prove. •

DEFIN"10N16

Let T be an implication tree, and Pa logic program.

1. If T is -.A, and A is ground, then T is compatible with P.

2. If T is A, and A is ground, then T is compatible with P.

3. If T is A(T1, •• .,Tn), T; is compatible with P (i = 1, .. . ,n), B" .. .,Bn are

the roots of T" ... , T n respectively, and

Chapter 2: Towards a Theory of Declarative Knowledge 123

is in ground (P), then T is compatible with P. Here ground (P) stands for the

set of all closed instances of clauses from P. •

The next definition allows the statement of Proposition 1 to be more suc

cinct. Here and elsewhere, the symbol F is used to mean "first-order" logical

provability.

DEFIN"10N17

Let T be an implication tree compatible with P. A negative leaf --, A is

loop-trapped if A occurs on the path from the root of T to --, A. •

PROPOS"10N1

Let T be a loop-free implication tree compatible with P, and let A be the root

of T. Suppose --, B 1, ••• ,--, Bk are all and only the negative leaves of T that are

not loop-trapped. Then

Proof: Straightforward by induction on the height of T. •

COROLLARY3

Let T be a loop-free implication tree compatible with P in which every nega

tive leaf is loop-trapped. Then

P F root(T) •

In general, Proposition 1 and its corollary (fortunately!) do not have natural

converses. That is, for a program that uses negation in a nontrivial way, a

compatible implication tree may prove its root although not every negative leaf

is loop-trapped. Consider the following example. (With the exception of

Proposition 1, we are still being informal about "proof.")

EXAMPLE?

P1: p- q&r,

q-p,

q- -,s,

s-p,

r.

P2: p- -,q,

124 Apt, Blair, and Walker

First, in the case of program P 2

p

I
-, q

should indeed prove p since there is no proof of q. It is instructive to explicitly

see the considerations in building an implication tree to prove p using P 1.

Step 1:

p

I\
q r

is an initial segment of an implication tree. r is a positive leaf that is also a fact

in P 1• Thus, r is proved.

Step 2: There are two possibilities for extending the initial segment of Step 1.

q

I
p

(a)

p

/\
r q

I

(b)

p

I\
r

Alternative (a) is not an initial segment of any loop-free implication tree.
Hence, there is no need to bother trying to prove p using alternative (a). Now,

to use (b) we need to show that there is no proof of s. If there were, then we

would have a proof of p and at the same time know that the alternative (b) fails

to yield a proof. But (a) or (b) are, intuitively, the only ways of proving p.
Thus, there is no proof of s, so (b) serves to prove p. We stress here that we

are only giving evidence for what should be regarded as a proof, and are not

trying to be rigorous. •

We now define our interpreter. Let fJ = U U -, U, where -, U = {-, A I A
EU}.

DEFINITION 18

Let P be a logic program with Herbrand base U, and let IT be the set of im

plication trees over U. Then IP k fJ x IT x 2u is defined by

Chapter 2: Towards a Theory of Declarative Knowledge 125

1. lp(A,A,S) g A is in ground (P), and At$ S.

2. lp(A,A - T1& ... &Tn,S) 8 At$ S, and for some A - B1& ... &Bn it:
ground (P) lp(B1, TI' {A} US) and ... and lp(Bn, Tn, {A} US)

3. Ip(--, A, -, A, S) 8 there does not exist a T such that I p(A, T, S).

4. Not lp(L,T,S) whenever lp(L,T,S) is not in any of the forms given in (1),

(2), (3). •

The reader should verify that the interpreter constructs the proof tree for p

using P 1 as outlined in the previous example. The third argument of IP carries

information for the loop trap.

DEFINITION 19

Tisa proof tree (w.r.t.P) iff3A[lp(A, T, 4>)]. IfT is a proof tree with root A,

we say that T proves A. •

The definition given for Ip is both ambiguous and computationally ineffec

tive if P is left unconstrained. We shall see that the ambiguity vanishes if P is

stratified. The noncomputability vanishes under additional constraints. In par

ticular, if P is stratified, then any constraint on P that yields a decidable stan

dard interpretation will result in Ip itself being a decidable relation.

The ambiguity in the definition of IP lies in the fact that, in general, there is

more than one relation on [; x IT x 2° that satisfies the definition. We shall

demonstrate this difficulty with an example, then prove that the ambiguity es

sentially vanishes if P is stratified. In the following section we shall show that

an unambiguous "bottom-up" inductive definition can be given that defines a

unique relation on [; x IT x 2° that satisfies the definition of Ip.

EXAMPLES

Consider the following program P that is not stratified.

q(O),

p(x) --, p(s(x)).

To simplify the notation, let n abbreviate

s(s(... s(O) .. .)) --
n times

Applying the interpreter to p(O) we have

126 Apt, Blair, and Walker

Ip(p(O),p(O), <!>) iff /p(--,p(l), --,p(l), {p(O)}).

I
-,p(l)

iff not 3T[/p(p(l),T, {p(O)})]

We therefore have:

p(O)

\ proves p(O) iff

1p(l)

p(l)

I is not a proof tree

-.p(2)

p(2)

iff / proves p (2)

-,p(3)

p(3)

iff I is not a proof tree
-,p(4)

iff

Since this chain of equivalences is not terminating, we may suppose that every
assertion in the chain is true, or that every assertion in the chain is false. In ei
ther case we satisfy the definition of I r •

EXAMPLE9
The interpreter that we have given is, in general, meaningful as a terminating
procedure only in very controlled circumstances; for instance, for function
symbol free programs. To see nonterminating behavior on a program with
function symbols, consider the stratified program P with the following clauses:

p(x)- p(s(x)),

q--,p(O).

In seeking to prove q, IP costructs

r
1p(O)

Chapter 2: Towards a Theory of Declarative Knowledge 127

In seeking to show that there is no proof tree for p(O), Ip constructs the se

quence of proof trees

p(O) p(O) p(O)

I I I
p(s(O)) p(s(O)) p(s(O))

I I
p(s(s(O))) p(s(s(O)))

I
p(s(s(s(O))))

However, the unique relation on Up x IT P x zu p that satisfies the definition

of Ip is

q

{<q, j ,S>ISE2u- {ql}. •

--,p(O)

Next we show that the ambiguity in the definition of Ip essentially vanishes

when P is stratified. By "essentially," we mean that when P is stratified, and

if R is defined by

R(A,S) ~ 3T [/p(A,T,S)]

then R is uniquely determined. Now, as a matter of fact when P is stratified,

the definition of IP does uniquely determine IP on U x IT x 2u, but it is con

venient to defer the proof of this fact until after introducing a "bottom-up"

definition for an interpretation of IP in the next section.

Next we prove a technical lemma about loop-trapping in our interpreter.

Note that the interpreter will not apply any rule to a goal A if A is in S. Nor

mally, S is the set of proper ancestors of A. Now suppose that A is defined in

stratum k of a program P. Intuitively, our lemma says that we can add to Sall

ground literals defined in the strata above k, without changing the behavior of

the interpreter.

LEMMA 14

Let P be stratified by P 1 U ... (Jpn· Let Vi= DefQ. where Qi= Pi U ... U Pn U
J

= l,. .. ,n), and let Vn + 1 = <j>. For j = 2, ... ,n + 1, S ~ \.j and T compatible with
P 1 U . . . U Pi _ 1 the following holds:

128 Apt, Blair, and Walker

/p(root(T),T,<j>) ~ /p(root(T),T, S) (1)

Proof: Proceed by induction onj (2 < j < n).

j = 2: P1 is a positive program. Since T is compatible with P1 and S ~ V2,

no node in T occurs in S. The equivalence (1) follows immediately by a

straightforward induction using clauses (1) and (2) in the definition of Ip.

j ~ j + 1: For each implication tree T and node N in T let ST be the set
N

of nodes occurring on the path in T from the root to the parent of N. (In par-

ticular, ST.root(T) = <j>.) Recall Proposition 1. We proceed by strong induction.

Let T be compatible with P 1 CJ • • • U Pr Then:

I p(root(T), T ,cj>)

iff (by clauses (l) and (2) in the definition of Ip)

iff (by clause (3) in Definition 18)

not lp(B ,T' ,sT,•B)

for every negative leaf

-.BofT.

for every negative leaf

18 of T, and implication tree T'

iff (since not lp(root(T'), T' ,)()when T' is not

compatible with P)

for every negative leaf

-.B of T, and implication tree

T' compatible with P 1 U ... U Pk

where Pk is the stratum

in which the relation symbol of

B is defined.

(Note that k < j.)

iff (by induction hypothesis, since sT,-,B ~ Vk+ ,)

notlp(B,T' ,<!>) for every B and T' as in

the previous step

iff (again, by induction hypothesis)

not lp(B,T',S U ST,-,o) for every B, and T' as in the

Chapter 2: Towards a Theory of Declarative Knowledge 129

iff (by clause (3) of Definition 18)

Ip(-iB, -iB,S U Sr,-,8)

iff (by rules (1) and (2) of 18)

I p(root(T), T ,S).

previous step

for every negative leaf

-,B of T

(2) •

We now give the theorem that, in effect, says the interpreter unambiguously

"computes" the standard model Mp of P, when P is stratified. The statement

of the theorem may at first seem a bit arcane, but recall that the definition of IP

does not in general uniquely determine a relation on [j x IT x 2u. We are

about to show, under the assumption that P is stratified, that if the definition of

IP is satisfied on fj x IT x 2u, then IP does indeed prove precisely those A that

are true in the standard model of P. Proving that IP can be satisfied at all is

somewhat harder. This is in part the point of the following section.

THEOREM13

Let P be stratified. Suppose there is an interpretation of IP on U x IT x 2u that

satisfies the definition of Ip· Under such an interpretation we have the follow

ing equivalences for all A in V p:

1. 3T[/p(A,T,<j>)] iff A EMp.

2. lp(-.A, -iA,<j>) iff A E;l Mp.

Proof: P is stratified by P 1 U P 2 U . .. U P n, for some P 1' ... ,P n. For each A in

U, let rA be the relation symbol occurring in A. If rA is a relation symbol in the

language in which P is a set of formulas (recall that the language with which P
is associated may be larger than the language generated by symbols occurring

in P), but rA does not occur in P, then, by definiton, we shall say rA is defined

in P 1• Otherwise, rA is defined in one of the P;.

We proceed by induction on the index j of the stratum in which rA is

defined.

j = 1. A E Mp iff A E M 1 . The following equivalence holds:

A E Tp1 tn(c:f>) iff

there is a loop-free implication tree T compatible with P

such that height (T) < n and lp(A,T,<j>).

130 Apt, Blair, and Walker

..
This equivalence follows by an easy induction on n. M1 = U Tp tn(<J>).

n=O 1

Thus, (1) follows. (2) follows from (1), clause (3) of (18), and that all clauses

about rA are in P 1.

j ~ j - 1. The induction assumption we take is the following assertion.

For every A such that rA is defined in some stratum indexed by j' < j:

3T[/p(A,T,<J>)] iff A EM/,

and Ip(--,A,,A,<f>) iff A fF. M/.
(3)

To compiete the proof it suffices to show that

For every A such that r A is defined in Pi + 1:

3 T[Ip(A,T,<f>)] iff A EMi+ 1

(4)
and Ip(-, A,-,A,<f>) iff A fF. Mi=1•

Let A E U such that r A is defined in Pi + 1• If T is an implication tree that

is not compatible with Pi+ 1' or A =# root(T), then not lp(A,T ,X) for any X ~

2u, since it is easy to see that Ip(A,T ,X) is false if T is not compatible with P.
Let T be compatible with Pi+ 1, and let A = root(T). Then:

Ip(A,T,<f>)

iff (by clause (1) and (2) of Definition 18)

Ip(-,B, •B,ST,-,B) for every negative leaf -.B of T

iff (by clause (3) of Definition 18)

not Ip(B,T' ,sT.-.s>

iff (by Lemma 14)

not lp(B,T' ,<f>)

iff (by clause (3) of Definition 18)

Ip(-.B, -.B,<f>)

iff (by the induction hypothesis)

B$M.'
}

for every negative leaf -, B

of T, and implication tree T'

for every negative leaf

B of T and implication tree T'

for every negative leaf B of T

for every negative leaf B of T,

where j' is the index

of the relation symbol of B

Chapter 2: Towards a Theory of Declarative Knowledge 131

So we have

/p(A,T,cj>) iff
(5)

B f}. Mj + 1 for every negative leaf B of T

Now, suppose, lp(A,T,<J>). By Proposition 1,

(6)

where -,B ;· .. , 18 k are all and only the negative leaves of T.

B; $. Mj+ I (i = l, ... ,k) by (5),

Mi+ 1 FA V B1 V ... V Bk by Theorem 7 and (6).

Therefore A E Mi+ 1•

Conversely, suppose 4 E Mi+ 1• Then A E Tp f m(M1), for some finite m.

A routine induction argument shows that there 1 i~ an implication tree T (of

height < m) that is compatible with Pi+ 1, has A as its root, and has the

property that B It Mj for every negative leaf B. Thus, lp(A,T,<!>). This com

pletes the proof of the theorem. •

Existence of the Interpreter

In this section we prove that an interpreter satisfying Definition 18 exists when

P is a stratified program.

Theorem 13 shows that if the definition if IP is satisfiable over Up x IT x
2uP, then the set of triples,

{<A,T,0>}

in the satisfying relation is uniquely determined. It remains to show that the

definition of Ip is, indeed, satisfiable over Up x IT x 2uP. The proof of

Theorem 13 is almost sufficient for this purpose. What is lacking is a definition

D of a relation R over Up x IT x 2up for which Dis manifestly uniquely satis

fiable and for which R satisfies the definition of Ip· For this purpose it suffices

to give D as a "bottom-up" inductive definition.

Suppose that D has been given for R so that

3T[R(A,T,0)] :? A EMp.

132 Apt, Blair, and Walker

R itself then serves an an interpreter for stratified programs, and the difficulties

concerning the ambiguity inherent in the definition of IP vanish. Therefore, the

objection may be raised that the definition of IP may be bypassed in the

development of our analysis of stratified programs. That is, why should we

present two interpreters that are extensionally the same? The objection can be

dispelled on two grounds. First, Ip is a "top-down," recursive, backward

chaining interpreter, and it will be seen that R is "bottom-up," inductive, and

forward-chaining. Both points of view are independe:qtly interesting. Secondly,

once we know that IP presents no logical difficulties in the context of stratified

programs, the definition of Ip is concise and simple. We now tum to the con

struction of R and prove that R satisfies the definition of IP.

EXAMPLE 10

Let P be

q,

Now,

follows from the definition of IP• yet p tf:. Mp. •

Example 10 illustrates that we can prove undesired consequences when

starting from nonempty loop traps. The following construction circumvents this

difficulty.

DEFINITION 20

If Q is obtained from P by the following construction, we say that Q is the

result of filtering P through S.

Let l be a first-order language. U the Herbrand base of L, and let P be a

stratified program in the language l with stratification given by

Let

P' =P'1 U ... UP'n

be the collection of ground instances of clauses in P.

Chapter 2: Towards a Theory of Declarative Knowledge 133

Suppose S ~ U. Obtain

from P' by removing all clauses with heads in S. •

DEFIN"10N21

Let L be a first-order language with Herbrand base U. Let P be a stratified

program in the language L with stratification given by

P=P1 U ... UPn

Let S ~ U, and let

er= Qf u ... uQ!
be the result of filtering P through S.

Let A E U. Define

1, if the relation symbol of A is not defined in any stratum of OS,
index (A)=

k, if the relation symbol of A is defined in stratum~

(Note that er is in general a stratified program consisting of infinitely

many ground clauses.) Let M1, ••• ,M11 be the models of Qf , ... ,~respectively
where Mi is obtained from iter (TQ;•·· .,TQ;• <!>), (thus Mcf = M11 .) Let

T be proof tree with respect to S and P iff

T is a loop-free implication tree compatible with OS, has positive root,

and for every negative leaf 1 B ofT, B f#Mindex(B)·

Finally, let R be the relation of ii x IT x 2u defined by

R(A, T ,S) ~ root (T) = A and T is a proof tree with respect to S and
p

and

R(-iA, --,A,S) ~ notR(A,T,S) for every implication tree T. •

COMMENT

It was claimed above that R would be given as a forward chaining interpreter.

Note that R depends on Definition 20 which, in tum, depends on the Qi' ... ,Qn.

134 Apt, Blair, and Walker

In effect, we could use Definition 20 to construct proof trees in a "bottom-up"

inductive way using T Q , .•• ,T Q •
I n

THEOREM 14

R satisfies the definition of Ip·

Proof: The proof is not deep, but for the sake of exposition of what is at stake

we nonetheless give it.
Suppose that P, L, U, and Sare as in Definition 21. Let A E U, and let T

be an implication tree with respect to U. To show that R satisfies the definition

of IP• we must show

R(A,T,S) (l)

T = A and A is in ground(P) and A f$. S (2)

or

T =A- T 1& ... &Tk and A g: Sand for some (3)

(A - B 1& ... &Bk) E ground(P):

R(BpTp {A} US) and ... and R(Bk,Tk, {A} US)

and

R (--,A, --, A ,S) {:::::;> not 3T E IT such that R(A, T ,S). (4)

Now, (4) is just a restatement of the second part of the definition of R.
From Definition 21, to show equivalence (1) it suffices to show

(2) or (3) iff Tisa proof tree with respect to Sand P, and root (T) =A (5)

Let Q be the result of filtering P through S. Suppose A is a head of a clause in
Q. Let Q' be the result of filtering P through {A } U S. Q' does not differ from
Q in strata below that stratum in which A occurs. Moreover, if A does not oc
cur in T, then T is compatible with Q iff T is compatible with Q'.

Let T be an implication tree with positive root over U. There are two cases.

Case 1: T =A. Then Tisa proof-tree with respect to Sand P iff (2).

Case 2: T =A - T1& ... &Tk. Without loss of generality we may suppose A E
Sand that A - root(T1)& ... & root(Tk) E ground(P), else both sides of (5) are
false.

Chapter 2: Towards a Theory of Declarative Knowledge 135

Tisa proof tree w.r.t. S and P

iff (by Definition 21)

T is a loop-free implication tree compatible with Q and for every
negative leaf -, B of T, B tf: M index(B), where M 1' .. . Mn are the standard

interpretations of Q1' ... ,!2z respectively, where~ denotes Q1 U ... U
Q;

iff (since B E Mindex(B)' iff there is a proof tree w.r.t. S and Q with
root B, see below) (6)

for each T;, i E { l, ... ,k}, if root(T;) is positive, then T; is a loop-free
implication tree compatible with Q, and for every negative leaf-, B of

T;,B ft. Mindex(B)'

and

if root(T;)is negative, say -, C,>, then there is no proof tree with
respect to S and Q with root C 1

iff (since Q and Q' do not differ in strata below that in which A is
defined)

iff

for each T;, i E { 1, ... ,k} if root (T;) is positive, then T;, is a loop-free
implication tree compatible with Q', and for every negative leaf -, B
of T;, B fi. M'index(B)• (where M'i is the standard interpretation of Q'i,j
= l, .. .,k)

and

if root (T;) is negative, say -, C;. then there is no proof tree w.r.t.
{A} U S and Q' with root C;, where Q' is the result of filtering P
through {A} US

(3) where B; = root(T;), i ti: { l, .. .,k}.

Equivalence (6) was justified by

B E Mindex(B) iff there is a proof tree w .r. t. S and Q with root B.

Proof trees with respect to S and Q are loop-free implication trees com
patible with S and Q because Q contains no clause head in S. Thus the "if
direction'' of (6) follows from Proposition 1.

Suppose B E Mindex(BJ· It is easy to show by an inductive construction that
there is a loop free implication tree T compatible with Q for which every nega
tive leaf 1 Chas the property that C tE. Mindex(CJ· Once again, since no clause
head in Q occurs in S, Tisa proof tree w.r.t. Sand Q. •

136 Apt, Blair, and Walker

COROLLARY4

If P is a stratified program, then M P• the standard model of P, is independent

of the stratification of P.

Proof: The corollary follows directly from the statement of Theorem 13 since

we have proved that the definition of IP is satisfiable over fJ x IT x zu. •

We conclude this section with a remark on the computational complexity of

Ip. We showed in the previous section that in general Ip by itself does not yield

a computation procedure capable of verifying that A E M P even when M P and

all the lower stage standard interpretations are uniformly decidable. Neverthe

less one of our principal areas of application is that of stratified programs with

out function symbols. For such programs Ip does indeed determine a useful

computation procedure, since the Herbrand base of P is finite. From the point

of view of worst case complexity, Ip is no worse than ordinary depth first,

SLD-resolution-based interpreters for purely positive programs.

EXAMPLE11

Let P 3 consist of

c3(0,Q,Q),

C3(X,Y,l)- C3(X,Y,O),

C3(X,l,O)- C3(X,0,1),

C3(l,O,O)- C3(0,l,l).

The goal (- c3(1,l,l)) produces a successful SLD path consisting of eight

nodes. Similarly, Ip constructs a proof tree, with c3(1,l,1) as root of height
3

eight. P3 causes Ip as well as SLD-resolution to, in effect, run through a
3

count-down of a 3-bit binary counter. It should be clear how to construct P
n

from example P 3. •

Now, let P be a positive program in which no function symbols other than

constants occur. Suppose P contains r relation symbols, each with arity < a,
and c constants. Let U be the Herbrand base of P. Then

size(U) < re°,

Letting II Tp II =leastnsuchthatTpt(n- l)(<!>)=Tptn(<!>),wehave

11 Tp 11 < size(U).

Chapter 2: Towards a Theory of Declarative Knowledge 137

For the programs P n of example

11 Tp 11 = size(U) = 2n
n

and both Ip as well as SLD-resolution are forced to, in effect, enumerate all of

U when starting with (- cn(l, .. ., 1)) as goal. Now, size(P n) = O(n). It follows

that Ip as well as SLD-resolution require, in the worst case,· 0(2size(P0 steps to

succeed. Lastly, note that in our interpreter the loop check need only add a

linear time complexity component, because we can represent S as an ordered

tree; each path in the tree represents a literal A. Lookup and insertion time of A

is O(length(A)).

Other Views of Neg(ftion and Stratified Programs

Our way of interpreting qeg!ltion in the case of stratified programs is through

choosing Mp as the set of true facts about P. It is helpful to relate this inter

pretation of negation with two other ones proposed in the literature.

Closed World Assumption (CWA)

Reiter [1978] proposed the closed world assumption (CW A) as a way of adding

negative information to logic programs. According to this view any (atomic)

fact which does not follow from a given program is assumed to be false. Thus

by definition

CWA =PU {-,A: A is a ground atom and not P !=A}.

where " I='? stands for provability in first order logic. (Reiter disallowed func

tion symbols but the problems discussed here do not depend on this

assumption.)

This view is certainly a natural one when the program is just a collection of

facts-if manager(Jones) is not in our database, then we usually conclude that

Jones is not a manager. Moreover, Reiter (1978] proved that in the case of

positive programs, CWA is consistent. But while trying to extend this view to

arbitrary programs somehow our intuitions get lost and, we encounter dif

ficulties (of which Reiter was perfectly aware). Restriction to stratified

programs is no help. Consider, for example, the stratified program P: p -

--, q. Then P is semantically equivalent top V q, which implies neither p nor

q. Thus, CWA = P U { 1 p, 1 q} and is inconsistent. The closed world as

sumption leads to difficulties here. Negation seems to be too strong when inter

preted through CW A: Any uncertainty is resolved in a negative way.

138 Apt, Blair, and Walker

Completions of Programs

Another way of adding negative information to the program is that proposed by

Clark [1978] and called the completion of a program. His idea was to rein

terpret the implications within the program as equivalences. In this way one

adds to the program the "only if" part which allows us to infer negative con

sequences.

More formally the completion is defined as follows. (We slightly depart

here from the original definition as we omit the equality axioms which are

automatically satisified in Herbrand models when ''='' is interpreted as

identity.)

Let x1, ... ,xk, be some variables not appearing in the program. First, trans

form each clause

of Pinto

where y 1' ... ,y; are the variables of the original clause.

Next, change each set of the transformed clauses of the form

where n > l , into

Then we denote by comp(P), the completion of P, the formula consisting of the

conjunction of these equivalences and of formulas

for each relation q which appears in the program but not in a head of a clause.

We wish to interpret "=" as identity. Therefore, we add the following

clause to the definition of semantics: For two variable-free terms s.t. s = t is

true in I iff s and t are identical. It is well known (see e.g., Shepherdson

[1984]) that for positive programs comp(P) is consistent. We now prove that for

stratified programs comp(P) is consistent as well.

Chapter 2: Towards a Theory of Declarative Knowledge 139

In Apt and van Emden [1982] models of comp(P) for a positive program P
were characterized as fixed points of T P. Fortunate! y, this characterization

remains true in the presence of negation. We have

THEOREM 15

Let P be a program. Then I is a model of comp(P) iff Tp(I) =I.

Proof: The definition of comp(P) we use is slightly different than those given

in Apt and van Emden [1982] (called there the IFF definition) or Lloyd [1984].

Nevertheless, all steps of the (straightforward) proof remain the same. A

doubting reader is encouraged to check the proof sketched in Lloyd [1984). Ill

This immediately implies the following theorem.

THEOREM 16
Let P be a stratified program. Then comp(P) is consistent.

Proof: We exhibited in the section on model theory a fixed point of

T P-which is the standard model M p· Thus, M P is a model of comp(P) which

proves the consistency of comp(P). •

It is important to note that the views of negation represented by comp(P)

and Mp do not coincide. Indeed, consider the stratified program P consisting of

p-p, q--,p.

Then comp(P) is

(p-p) & (q-,p)

which is equivalent to q -- 1 p. We thus have that it is not the case

that comp(P) f= -, p whereas Mp = { q} . Hence Mp f= - 1 p.

A Discussion

It is useful to have a closer look at the consequences of the fact that we inter

pret negation by model theoretic means. This implies that each atomic fact

about a stratified program P is considered either true (when it belongs to the

model Mp) or false (when it does not belong to the model Mp).

This duality does not need to take place when negation is interpreted

through proof theoretic means. A common feature of the Clark [1978] and

Reiter [1978] approaches to negation is to extend a given program P to a

theory, say NP• in which no new atomic facts can be proved and interpret nega

tion by means of that theory. That is to say, for an atomic fact A

140 Apt, Blair, and Walker

A is true iff Np I= A

A is false iff Np != -, A

Now, if NP is not a complete theory, there is an atomic fact A which is nei

ther true nor false. (We call here a theory T complete if for each atomic fact A

either n=A or TI= -iA but not both.) When Np is not complete, it is possible

to establish a result of the form

A is true in all models of Np iff A can be computed from P,

A is false in all models of Np iff 1 A can be computed from P.

In fact, when Np is comp(P) this is the essence of the "completeness of the

negation as failure'' result proved in Jaffar, Lassez, and Lloyd [1983].

There, P is a positive program, Np is comp(P), and the computation

mechanism is SLD resolution with negation as failure. More precisely, we

have for all atoms A

comp(P) I= A iff -A can be refuted from P,

comp(P) f= --, A iff - 1 A can be refuted from P.

(The first line in effect states the completeness of the SLD-resolution originally

proved by Hill [1974].) The case when neither comp(P) f= A nor comp(P) f=
--, A is simply not handled: The refutation process then leads neither to success

nor to a finite failure, hence it always diverges. Thus, for such A not truth

value of A w.r.t. comp(P) is not defined. In such cases, of course, there will

be models M 1, M2 of comp(P) such that M 1 f= A, and M2 f= -,A.

The situation changes when NP is a complete theory. Then without any

restrictions on the syntax we cannot obtain a completeness result even in the

case of positive programs. Indeed, suppose otherwise. Let W be a recursively

enumerable, non-recursive set of natural numbers. By the result of Tamlund

[1977] there exists a positive program P such that for some relation p for all n

P F= p(n) iff n E W.

Since Np is complete, we have for all n

Np f= p(n) iff n E W,

Np F= -,p(n) iff n $ W.

Indeed, if n $. W, then P F= p(n) so Np f= p(n) since Np extends P. And if n r:j;.

W, then not P f= p(n) so not Np f= p(n), since in Np no new positive facts can

Chapter 2: Towards a Theory of Declarative Knowledge 141

be proved. This proves the first line and the second follows by the complete
ness of Np.

This has two consequences. First is that the provability in NP is not recur

sively enumerable (by the second equivalence) so NP cannot be recursively

axiomatized (see Rogers [1967]). Second, no completeness result for effective

computation mechanisms is possible. Indeed, in case of completeness we have
for all n

n fj. W iff Np f= --,p(n)

iff p(n) is false

iff 1 p(n) can be computed from P

so the relation "A can be computed from P" is not recursively enumerable,

that is, the computation mechanism is not effective.

An example of an interpretation of negation through a complete theory NP is

Reiter's closed world assumption for positive programs. Indeed, as mentioned
in the subsection on the CWA, it is consistent for positive programs, and if not

(P + CWA) I= A, then not P I= A and consequently (P + CWA) I= -1A. By
the above remarks CW A cannot be recursively axiomatized and no complete

ness result for an effective computation mechanism is possible.

The same negative results hold for our interpretation of negation through the

model Mp which acts as a complete theory. Thus, we define

A is true iff Mp I= A

A is false iff not M P I= A

In general, while it is beyond the scope of this paper to prove it, it can be

seen that for a stratified program P containing function symbols and having n
strata, Mp can be non-recursively enumerable (in fact l~-complete). The proof
of this result is based on recursion-theoretic considerations similar to that of

Blair [1982]. Thus, no effective procedure for computing Mp in general is pos
sible.

The above discussion does not exclude a completeness result for stratified
programs and the negation interpreted through Clark's completed database.

We established the first, necessary, step by showing that for a stratified

program P, comp(P) is consistent but we did not explore the issue any further.

A warning should be issued to those wishing to investigate this problem. The
following examples show that no completeness result w.r.t. comp(P) for SLD

resolution with negation as failure (called the SLDNF-resolution) or for our in

terpreter is possible.

142 Apt, Blair, and Walker

EXAMPLE12

Let P be the following program:

p-p,

q-p,

q- --,p.

Then P is stratified and comp(P) is equivalent to (q--p V 1 p), so comp(P)
f= q. On the other hand, there is no refutation of - q using SLDNF

resolution.

EXAMPLE13
Let P be the following stratified program:

p-p,

q - --,p.

Then comp(P) is equivalent to q-- 1 p so not comp(P) f= q. However, our
interpreter computes q. II

Thus, some other computation mechanisms have to be considered. On the
other hand, we have the following conjecture.

DEFINITION 22

Let P be a program and p ,q two relation symbols of P.

1. We say that p depends positively on q if p depends on q and in the
dependency graph of P there is at least one path from p to q which con
tains exactly an even number (possibly 0) of negative edges.

2. We say the p depends negatively on q if p depends on q and in the
dependency graph of P there is at least one path from p to q which con
tains exactly an odd number of negative edges.

3. We say that P is strict if for no relation symbols p and q of P, p depends
both positively and negatively on q. II

DEFINITION 23

Let P be a program. Given a clause of P let

X stand for the set of the variables occurring on its left hand side.

Y for the set of the variables occurring in a positive literal of the body
and

Chapter 2: Towards a Theory of Declarative Knowledge 143

Z for the set of the variables occurring in a negative literal of the body.

We say that P satisfies the strong covering axiom if for each of its clauses

X~Y

and

holds. 11

The first implication is called in Shepherdson [1984] the covering axiom.

The strong covering axiom ensures that in the SLDNF-resolution only ground

negative literals need be evaluated. We can now formulate our conjecture.

CONJECTURE 1

Let P be a strict stratified program which satisfies the strong covering axiom.

Then for every ground literal L.

comp(P) f= L iff -j L can be refuted from P by SLDNF-resolution. II

(Note: Conjecture 1 was recently proved by Cavedon and Lloyd. Sub

sequently Kunen showed that the result holds even for non-stratified

programs.)

Related Work

Syntax

As already mentioned in the introduction, stratified programs form a simple

generalization of the class of formulas C given in section 5 of Chandra and

Hare! [1985], in which negation is handled in a similar, stratified way. The dif

ference lies in the way the strata are related-for technical reasons, in their

paper this is accomplished by additional relations which take care of the calls

involving negative literals. Also, our class of semi-positive programs coincides

with their class Hj but they are concerned with different issues than we are and

concentrate on the subject of definability of database queries. In particular,

they do not allow function symbols.

Stratified programs were also introduced and studied independently in a

recent paper of Van Gelder [1988] and, in the context of databases, in Naqvi

[1986]. A form of stratification for logic programming without negation was

first introduced by Sebelik and Stepanek [1982). Our definition of stratified

144 Apt, Blair, and Walker

programs is a generalization of the concept of the hierarchical constraint of

Clark [1978] according to which program relations can be assigned to levels so

that each relation is defined only in terms of relations from the lower levels.

The hierarchical constraint, in contrast to the stratificiation condition, rules out

recursive definitions. In fact if we remove negation from the language, then

programs reduce to positive programs. If we remove recursion from the lan

guage, then they reduce to programs with the hierarchical constraint. The no

tion of stratified programs has been further generalized to locally stratified
programs in Przymusinski [1988].

Lloyd and Topor (1985] give a theoretical basis for deductive databases

using PROLOG as the query evaluator. They show in particular that SLDNF

resolution does not flounder (does not reach a goal that contains only non

ground negative literals) with general programs and goals provided the program

and goal is allowed. The concept of being allowed as applied to clauses is

equivalent to our strong covering axiom.

Semantics

The semantics of logic programs with negation based on fixed points is a

generalization of the approach originating with van Emden and Kowalski
(1976] and further explored in Apt and van Emden [1982]. Chandra and Harel

(1985] provide in an informal way a semantics for their class C of programs

which corresponds to our model M P where the partition of P is into ap
propriately ordered clusters.

An early approach to provide meaning to logic programs with negation was

given by Minker [1982] in the context of deductive databases. For this pur
pose, he introduced the concept of a generalized closed world assumption

(GCWA). Its semantic characterization employs minimal models.

The notion of minimality arises in many other studies of nonmonotonic

reasoning as well-see e.g., the notion of circumscription due to McCarthy

[1980]. In fact, recent work of Lifschitz [1988] provides an alternative defini

tion of the model Mp in terms of a circumscription. His approach leads to a
simpler proof of Theorem 11.

The notion of a supported model has also been introduced independently in
Bidoit and Hull [1986] and called there a causal model. Przymusinski [1988]

introduced the concept of a perfect model of a database and related it to cir

cumscription and semantics of stratified databases. Stratified databases were
recently studied in Apt and Pugin (1987], Lloyd, Sonenberg, and Topor

[1986], and Topor and Sonenberg (1988].

Completeness Results in the Presence of Negation

In Clark (1978], a completeness result for programs with the hierarchical con

straint is sketched. It relates completed programs with SLD-resolution with

Chapter 2: Towards a Theory of Declarative Knowledge 145

negation as failure. A rigorous proof is given in Shepherdson [1984]. Another

completeness result is that of Jaffar, Lassez and Lloyd [1983] mentioned in the

previous section but only for positive programs. See also Aquilano et al.

[1986] for a completeness result in the presence of negation and absence of

divergence ensured by syntactic criteria. A recent paper of Shepherdson [1988]

provides an extensive overview of the use of negation in logic programming.

Nonmonotonlc Reasoning·

An entire issue of the journal Artificial Intelligence [1980] has been published

on the subject and a conference organized (Proceedings [1984]). Gabbay

[1985] provides a useful discussion of the problem of when a reasoning method

can be viewed as a nonmonotonic logic. Our approach based on search for

fixed points of nonmonotonic operators is very similar in nature to the one

recently proposed by Sandewall [1985].

Interpreters and Other Computation Mechanisms

Our treatment of a computation mechanism in the form of an interpreter relates

to the approach taken by Brough and Walker [1984], who studied interpreters

with various stopping criteria for positive database-like programs.

Barbuti and Martelli [1986] prove the completeness of SLDNF-resolution

for a sizeable class of naturally occurring logic programs called structured
programs. Structured programs form a set of stratified programs.

Recently, fitting [1985] and Gallier and Raatz [1987] proposed alternative

computation mechanisms for logic programming based on, respectively, a

tableau method and an interpreter using graph reduction.

Use of Logic Programming for Expert Systems

Walker [1986a] described an implemented expert system shell in Walker

[1986a], called Syllog, which is based on logic programming. Syllog contains

an inference engine that computes with database-like programs with negation

allowed.

One of the important aspects of expert systems is the ability to reason in

terms of uncertainty. Recently van Emden [1986] extended the results of Apt

and van Emden [1982] to the case when the facts and rules have some certainty

factor associated with them. His work can be viewed as orthogonal to ours.

Acknowledgment

We thank Ashok Chandra for helpful comments on the subject of this paper.

146 Apt, Blair, and Walker

References

1. Aquilano, C., Barbuti, R., Bocchetti, P., and Martelli, M. (1986] Negation as

Failure: Completeness of the Query Evaluation Process for Horn Clause Programs

with Recursive Definitions, Journal of Automated Reasoning 2, 155-170.

2. Artificial Intelligence [1980j 13(1).

3. Apt, K. R. and Emden, M. H. van [1982] Contributions to the Theory of Logic

Programming, JACM 29(3):841-862.

4. Apt, K. R. and Pugin, J. M. [1987] Maintenance of Stratified Databases Viewed

as a Belief Revision System, in Proc. of the 6th ACM Symposium on Principles of

Database Systems, San Diego, CA, 136-145.

5. Blair, H. A. [1982] Recursion Theoretic Complexity of the Semantics of Predicate

Logic as a Programming Language, Information and Control 54, 25-46.

6. Bidoit, N. and Hull, R. (1986] Positivism Versus Minimalism in Deductive

Databases, Proc. of the 5th ACM S/GACT-SIGMOD Symposium on Principles of

Database Systems, Cambridge, MA, 123-132.

7. Barbuti, R. and Martelli, M. (1986] Completeness of the SLDNF-Resolution for a

Class of Logic Programs, Proc. of the 3rd International Conference on Logic

Programming, Lecture Notes in Computer Science, No. 227, Springer-Verlag,

Berlin, 600-613.

8. Brough, D. and Walker, A. (1984] Some Practical Properties of Logic Program

ming Interpreters, Proc. of the Japan FGCS84 Conference, 149-156.

9. Cavedon, L. and Lloyd, J. W. [1987] Completeness Results for SLDNF

Resolution, Tech. Rep. 87/9, Dept. of Computer Science, Melbourne University.

10. Clark, K. L. [1978] Negation as Failure, in Logic and Databases (H. Gallaire and

J. Mink:er, Eds.), Plenum Press, New York, 293-322.

11. Chandra, A. and Harel, D. [1985] Horn Clause Queries and Generalizations, The
Journal of Logic Programming 2(1):1-5.

12. Emden, M. H. van [1986] Quantitative Deduction and Its Fixpoint Theory, Journal
of Logic Programming 3(1):37-54.

13. Emden, M. H. van and Kowalski, R. A. [1976] The Semantics of Predicate Logic

as a Programming Language, JACM 23(4):733-742.

14. Fitting, M. (1985] Logic Programming Based on Logic, manuscript, Dept. of

Math. and Computer Science, Lehman College, Bronx, NY.

15. Gabbay, D. [1985] Theoretical Foundations for Non-monotonic Reasoning in Ex

pert Systems, in Logics and Models of Concurrent Systems (K. R. Apt, Ed.),
Springer-Verlag, 439-458.

16. Gallier, J. and Raatz, S. [1988] A Graph-based Interpreter for General Hom

Clauses, Journal of Logic Programming.

Chapter 2: Towards a Theory of Declarative Knowledge 147

17. Hill, R. [1974] LUSH-Resolution and Its Completeness, DCl Memo 78, Depart

ment of Artificial Intelligence, University of Edinburgh.

18. Jaffar, J., Lassez, J.-L., and Lloyd, J. W. [1983] Completeness of the Negation as
a Failure Rule, IJCAJ-83, 500-506.

19. Kowalski, R. A. [1974] Predicate Logic as a Programming Language, /PIP 74,
569-574.

20. Kunen, K. [1987] Signed Data Dependencies in Logic Programs, Computer

Sciences Technical Report 719, University of Wisconsin.

21. Lifschitz, V. [1988] On the Declarative Semantics of Logic Programs with Nega

tion, in Foundations of Deductive Databases and logic Programming (J. Minker,

Ed.), Morgan Kaufmann, Publishers, Los Altos, CA, 177-192.

22. Lloyd, J. W. [1984] Foundations of logic Programming, Springer-Verlag.

23. Lloyd, J. W., Sonenberg, E. A., and Topor, R. W. [1986] Integrity Constraint

Checking in Stratified Databases, Technical Report 8615, Dept. of Computer

Science, University of Melbourne.

24. Lloyd, J. W. and Topor, R. W. [1985] A Basis for Deductive Database Systems

II, Journal of Logic Programming, 3(1):55-67.

25. McCarthy, J. (1980] Circumscription-A Form of Nonmonotonic Reasoning,

Artificial Intelligence 13(1):295-323.

26. Minker, J. [1982] On Indefinite Databases and the Closed World Assumption,

Proc. of the 6th Conference on Automated Deduction (D. W. Loveland, Ed.), Lec

ture Notes in Computer Science 138, Springer-Verlag, Berlin, 292-308.

27. Naqvi, S. A. [1986] A Logic for Negation in Database Systems, in Proc. of the

Workshop on Foundations of Deductive Databases and logic Programming,
Washington, DC, 378-387

28. Proc. of the AAAl Workshop on Non-monotonic Reasoning (1984].

29. Przymusinski, T. [1988) On the Semantics of Stratified Deductive Databases, in

Foundations of Deductive Databases and Logic Programming (J. Minker, Ed.),

Morgan Kaufmann Publishers, Los Altos, CA, 193-216.

30. Reiter, R. (1978] On Closed World Data Bases, in Logic and Databases (H. Gal

laire and J. Minker, Eds.), Plenum Press, New York, 55-76.

31. Rogers, H. Jr. (1967] Theory of Recursive Functions and Effective Computability,

McGraw-Hill.

32. Sandewall, E. [1985] A Functional Approach to Non-monotonic Logic, IJCAl-85,
100-106.

33. Sebelik, J. and Stepanek, P. [1982] Hom Clause Programs for Recursive Func

tions, in logic Programming (K. Clark and S.-A. Tiirnlund, Eds.), Academic

Press, 325-340.

148 Apt, Blair, and Walker

34. Shepherdson, J. C. [1984] Negation as Failure: A Comparison of Clark's Com
pleted Data Base and Reiter's Closed World Assumption, Journal of Logic
Programming 1(1):51-81.

35. Shepherdson, J. C. [1985] Negation as Failure II, Journal of Logic Programming
2(2): 185 - 202.

36. Shepherdson, J. C. [1988] Negation in Logic Programming, in Foundations of
Deductive Databases and Logic Programming (J. Minker, Ed.), Morgan Kaufmann
Publishers, Los Altos, CA, 19-88.

37. Tiirnlund, S. A. (1977] Hom Clause Compatibility, BIT 11, 215-226.

38. Tarski, A. [1955] A Lattice-theoretical Fixpoint Theorem and Its Applications,
Pacific J. Math. S, 285-309.

39. Topor, R. and Sonenberg, E. A. [1988] On Domain Independent Databases, in
Foundations of Deductive Databases and Logic Programming (J. Minker, Ed.),
Morgan Kaufmann Publishers, Los Altos, CA, 217-240.

40. Van Gelder, A. [1988] Negation as Failure Using Tight Derivations for General
Logic Programs, in Foundations of Deductive Databases and Logic Programming
(J. Minker, Ed.), Morgan Kaufmann Publishers, Los Altos, CA, 149-176.

41. Walker, A. [1986a] Syllog: An Approach to Prolog for Non-programmers, in
Logic Programming and Its Applications (M. VanCaneghem and D.H.D. Warren,
Eds.), Ablex, 32-49.

42. Walker, A. [1986b] A Knowledge Systems: Principles and Practice, IBM Journal
Res. Develop 30(1):2-13.

