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Abstract 

We identify a useful class of logic programs with negation, called stratified 

programs, that disallow certain combinations of recursion and negation. 

Programs in this class have a simple declarative and procedural meaning based, 

respectively, on model theory and a back-chaining interpreter. The standard 

model of a stratified program, which gives the program a declarative meaning 

1Work performed during the author's visiting year at IBM Research Center, Yorktown Heights, 
NY 10598 

2Work performed while the author was a consultant at IBM Research Center, Yorktown Heights, 
NY 10598 

89 



90 Apt, Blair, and Walker 

and is independent of the stratification, is characterized in two ways. One is 

based on a fixed point theory of nonmonotonic operators and the other on an 

abstract declarative characterization. The back-chaining interpreter also deter

mines the standard model. Finally, we prove the consistency of Clark's 

completion for stratified programs and attempt to clarify the sources of some 

previously reported difficulties with negation in logic programming. 

Introduction 

The aim of this paper is to provide a formal basis for separating declarative and 

procedural matters in an extension of logic programming allowing negation in 

the presence of certain recursions. This should be viewed as part of a larger 

research program with the aim of extending logic programming so that it is 

more useful for expert systems, both as a formal basis and as a source of prac

tical techniques. 

Expert Systems 

There is currently considerable interest in expert system shells that are based 

on logic programming. Logic programming certainly has several properties that 

should be seriously considered while searching for an appropriate formalism. 

Among other things, we expect that the knowledge in an expert system should 

be easy to examine and to change, and we expect the system to provide ex

planations of its results. At first sight, the knowledge in a logic program is 

easy to change, since it consists simply of facts and rules. From the declarative 

point of view, this is indeed the case. However, a common difficulty is that the 

addition of a rule with an intended declarative meaning has unintended 

procedural effects when the knowledge is interpreted by a particular inference 

engine. For example, the rule 

(X is married to Y) if (Y is married to X) 

has an obvious common sense declarative meaning, but it can cause control 

problems for several well-known inference mechanisms, including that of 
Prolog. 

Similar issues arise in systems that are not based on logic, but logic as a 

formalism for expert systems has an important advantage: We can specify the 

declarative meaning of a collection of rules and facts using the techniques of 

model theory. This tells us what the consequences of the knowledge should be, 

independent of particular mechanisms for interpreting the knowledge. We can 

also specify various procedural interpretations, such as SLD resolution, and 

we can study the extent to which the interpretations live up to our model 
theoretic standard. 
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The extent to which an interpreter (or inference engine) behaves according 

to the declarative reading of knowledge can be crucial to its use by non

programmers, who wish to add knowledge to an expert system. Real world 

tasks about which knowledge is to be acquired can be complicated. It helps to 

manage this complexity if the declarative and procedural concerns can be 

separated. For example, order does not matter for declarative knowledge, but 

procedurally we might have to find just one of the possible orderings of a set 

of rules to make certain inference engines behave the way we wish. 

At the higher, declarative level it should be sufficient to write down the 

knowledge correctly in the form of facts and rules. At the lower level, an in

ference engine should be available to handle the procedural and computational 

aspects, and to produce the intended declarative meaning. 

Logic Programming 

For any choice of formalism to succeed, it must be sufficiently expressive for 

the purposes at hand. Logic programming with definite clauses (see Kowalski 

[1978)) does not seem to be expressive enough for expert system shells. In par

ticular, we need to express negation. 

It is important to realize that use of negation indeed increases the expressive 

power of logic programming. This may sound paradoxical since, as is well 

known (see e.g., Tarnlund [1977]), logic programs without negation have the 

full power of recursion theory. But the point is that in many situations we com

pute over a finite domain, and this drastically changes the situation. 

The realization of this fact led to extensive studies, started by Clark [1978], 

of the extensions of logic programming incorporating the use of negation. Un

fortunately several difficulties have been revealed (see e.g., Shepherdson 

[1984, 1985, 1988)), and it seems fair to say that so far no satisfactory theory 

of negation has been proposed. In particular no positive result concerning the 

use of negation in the presence of recursion has been proved. 

A certain amount is known about interpreters that behave according to 

model theory. For the case of logic programs without negation, both the 

declarative reading-through the least Herbrand model, and the procedural 

reading-through SLD resolution, are available and by the results of Apt and 

van Emden [1982], they naturally correspond through a completeness result. 

Brough and Walker [1984] showed that, even for function-free ("database 

like'') programs without negation, a strong form of completeness cannot be 

achieved by any strictly top-down inference engine. Walker [1986b] described 

an implemented inference engine that uses a mixed top-down I bottom-up 

strategy that appears to overcome some of this difficulty, even with negation 

allowed. 

Consider the treatment of negation in Prolog. Prolog is normally augmented 

with a definition of negation that says that -, P is true if we cannot prove P. 

This allows programs containing negation in the premises of rules to be ex-
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ecuted. However, such programs must at present be written by programmers 
with an intimate knowledge of the Prolog interpreter's operation. We lack a 
declarative reading and have to rely on a highly intricate procedural interpreta

tion instead. 

One of the difficulties concerning the use of negation in logic programming 
is that this is an (almost classic) example of nonmonotonic reasoning. Indeed, 
suppose that by some means we infer from the logic program P a negative fact, 
say --, A. Naturally we do not expect that 1 A can then be inferred from P aug
mented by the fact A-otherwise a contradiction could be derived from P and 

A. Thus, the provability relation is no longer monotonic, and this makes it dif

ficult to study. 

Structure of the Paper 

In this paper we achieve our goal by restricting the use of negation. We allow 
both recursion and negation, but we disallow recursion "through negation" as 

in 

and we call the resulting programs stratified. They are formally defined in the 
section "Stratified Programs" below. These programs form a simple 
generalization of a class of programs introduced in the context of the deductive 
databases by Chandra and Harel [1985]. 

The declarative meaning of a stratified program is given in a semantic 
fashion-by certain of its minimal models. (A model is minimal if it has no 
proper subset that is also a model.) To see why we need minimality, consider 
the program p - p. This has models {p} and the empty set. {p} is not min
imal. We rule it out, since there is no way of proving p using the rule. The 
minimal models that we consider are those that are supported, in the sense that 
each item in such a model is either a fact in the program, or is the conclusion 
of a ground instance of a rule whose body is true in the model. To see why it 
is reasonable to require support, consider the program consisting of just the 

rule p - -, q. This program has minimal models { p} and { q}, but only { p} 
is supported. We rule { q} out, on the grounds that there is no way of proving 
q using the rule as it stands. 

To study models of logic programs we relate them in the section "From 
Models to Fixed Points" to fixed points of a natural operator originally intro
duced in van Emden and Kowalski [1976]. Unfortunately, in the presence of 
negation this operator is nonmonotonic and can have no fixed points. To 

resolve the difficulty we develop in the fifth section a fixed point theory of 
nonmonotonic operators, and in the section ''Model Theory of Stratified 
Programs" apply it to the study of models of stratified programs. We believe 
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that this theory can have other applications in the area of nonmonotonic reason

ing. 

The declarative meaning of a stratified program is given by exhibiting a par

ticular supported minimal model that can be defined in a simple way by using 

the T operator of van Emden and Kowalski [1976]. This provides a logical in

terpretation of negation that also works procedurally. 

The procedural reading of knowledge written in a form of a stratified 

program is provided by defining a top-down interpreter that makes rather 

simple use of bottom-up information. We define it in a recursive fashion and 

show in the two sections on the elementary interpreter and its existence that it 

admits a well-founded inductive definition when applied to stratified programs. 

Then we show that the interpreter computes the chosen model of a stratified 

program, and that in the absence of function symbols the computation is effec

tive and terminating. Finally, in the section "Other Views of Negation and 

Stratified Programs," we attempt to clarify the negation problem in logic pro

gramming and compare our treatment of negation with two other views 

proposed in the literature-those of Reiter [1978] and Clark (1978]. There we 

prove the consistency of Clark's completed database for stratified programs, 

again employing the fixed point techniques. We also explain why the un

restricted use of function symbols in general makes any interpreter nonter

minating. The paper concludes by discussing other related work in the final 

section. 

Preliminaries 

In this section we recall the basic definitions concerning logic programs. Our 

only departure from customary treatment of the subject is that we study these 

programs in the presence of negation. Nothing will be said here on the com

putation process-only syntax and semantics will be discussed. We start by 

defining the syntax. 

Syntax 

We consider here ajirst-order language whose formulas are denoted by S. Its 

variables are denoted by x, y, and z terms bys, t, and atomic formulas (usually 

called atoms) in turn by the letters A, B, and C. An atom is called ground if no 

variable occurs in it. A literal is an atom A or its negation •A and is denoted 

by the letter L. An atom is a positive literal, and the negation of an atom is a 

negative literal. A clause is a formula of the form 
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where A is an atom, LI' ... ,Lm are literals and m > 0. A is the head 
(conclusion) of the clause and L 1& ... &Lm its body (hypothesis). Thus, negation 
is allowed in the body of a clause but not in its head. If m = 0 then, the clause 
is simply A and is called afact. Otherwise it is called a rule. Finally a program 
is a finite set of clauses. A program whose clauses do not contain negation is 
called positive. In other words, in a positive program only positive literals oc

cur in the bodies of the clauses. Such clauses are usually called definite 
clauses. We define ground (P) to be the set of all variable-free instances of 
clauses in P. Note that ground (P) depends on the underlying first-order lan

guage. 

If a program P contains an atom r(t1, ••• ,tn), then r is a relation of P. We 
make the convention that no relation symbol occurs with different arities in P. 

A goal is a formula of the form - L1& ... &Lm where Lp···•Lm are literals 
and m > 0. 

A substitution 

is defined as usual: It replaces all free occurrences of the variables x I' ... ,x m by 
the terms tp···•tm, respectively. The replacement is performed simultaneously. 
se is the result of applying the substitution e to the formula s. se is called an 
instance of S. 

Semantics 

The language of a program P is the first-order language determined by all and 
only the logical symbols occurring in P. The Herbrand base UL of a first-order 
language L is defined as the set of all variable-free atoms of L. An 
interpretation for L is a subset of the Herbrand base of L. When L is the lan

guage of program P we may refer to UP• the Herbrand base of P, and to inter
pretations for P. This definition for Herbrand interpretations will be convenient 
in later sections. Also we discuss the interaction between operators on inter
pretations of distinct but closely related programs. 

The truth of a formula in an interpretation is defined as usual: Only those 
variable-free instances of atoms that are in I are considered to be true in/. A 
formula is closed if it contains no occurrence of a free variable. Formally, we 
proceed by induction. 

DEFINmON1 

Let I be an interpretation. 

1 . A formula S is, true in I iff each of its closed instances is true in I, that is , 
for each x occurring free in S, and each variable-free term t,S(t Ix) is true 
in J. 
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2. A closed atom A is true in I iff A E /. 

3. A closed formula-, Sis true in I iff S is not true in/. 

4. A closed formula 3x.S is true in I iff for some variable free term t the 

formulaS(tlx) is true in/. 

5. A closed formula V x.S is true in I iff (by (l)!) Sis true in/. 

6. A closed formula S 1 - S2 is true in I iff S2 is not true in I or S 1 is true in I. 

7. A closed formula S1& ... &Sm is true in I iff each of the Si is true in/. 

8. A closed formula S1 V ... V Sm is true in I iff one of the Si is true in/. 

9. A closed formula S1-S2 is true in I iff (S1 is true in I if and only if S2 

is true in l). 11 

An interpretation M is a model for r if each formula in f is true in M 

(denoted MF f). If r has a model, then r is consistent. The models here con

sidered are usually called Herbrand models. It should be pointed out that they 

are not the most general models. Consequently, the notion of consistency we 

use here is a priori stronger than the usual one since it refers to the existence of 

a Herbrand model only. It is an important aspect of Herbrand's theorem that 

the two notions of consistency coincide for clauses. 

If a model M of f is a subset of every other model of f, then we say that M 

is a least model of f. If M is a modei of f such that no model of f is its 

proper subset, then we say that M is a minimal model of r. Thus, a least 

model is a minimal model, but not necessarily conversely. 

Finally, we say that an interpretation I of a program P is supported if for 

each A EI there exists a clause A1 - L 1& ... &Lm in P and a substitution 6 such 

that/f= L16& ... &Lm6, A =A10, and each Li6 is ground. Thus, /is supported iff 

for each A E I there exists a clause in ground (P) with head A whose body is 

true in/. 

Stratified Programs 

We will now propose a treatment of negation in logic programming, which 

should be a solution to various difficulties exhibited in the literature. It is a

chieved through restricting its use and by proposing a new semantic interpreta

tion. In the section on the existence of the interpreter we justify this semantic 

definition by proof theoretic means. 

Our view of a safe use of negation is the following. When using negation 

we should refer to an already known relation. More specifically, first some 

relations should be defined (perhaps recursively) in terms of themselves 

without the use of negation. Next, some new relations can be defined in terms 
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of themselves without the use of negation and in terms of the previous ones, 

possibly with the use of negation. This process can be iterated. 

In such a way, from the semantic point of view we only negate relations 

whose meaning is fixed beforehand. It seems that most of the paradoxes con

cerning negation in logic programming violate this principle. 

More precisely, we introduce the following definitions. 

DEFINITION 2 

Let P be a program. 

1. We say that the relation p refers to the relation r if there is a clause in P 

with p on its left-hand side and r on its right-hand side. 

2. By a definition of a relation symbol r we mean the subset of P consisting 

of all clauses with a fonnula on the left side whose relation symbol is r. 

3. A relation symbol r occurs positively in a positive literal and negatively 

in a negative literal. • 

These definitions formalize intuitive notions frequently used informally. We 

now provide the central definition of this section. 

DEFINITION3 

A program P is called stratified if there is a partition 

such that the following two conditions hold for i = 1, ... ,n: 

1. if a relation symbol occurs positively in a clause in Pi' then its definition 

is contained within j~ Pj. 

2. if a relation symbol occurs negatively in a clause in P;, then its definition 

is contained within 

UP .. 
. . J 

J<.1 

P 1 can be empty. 

We say then that P is stratified by P 1 U ... U Pn and each P; is called a 

stratum of P. Thus, each stratum defines new relations in terms of itself only 

positively and in terms of the relations from the previous strata, possibly nega

tively. WeletP;denoteP1 U ... UP;. ThusPn=P. • 
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EXAMPLE1 

1. Let P be the following program: 

p(x)- ,q, 

r, 

Then P is stratified by 

P = { r} U { q - q& --, r} U { p(x) - -, q} . 

2. Let P be the following program: 

P- q, 

q-,p. 

Then P is not stratified. Because of the second clause, the definition of p 
has to appear in a lower stratum than the definition of q. But p refers to q, so 

condition (1) cannot be satisfied. 

The last example suggests the following simple test whether a program is 

stratified. 

DEFIN"10N4 

By the dependency graph of a program P we mean the directed graph 

representing the relation refers to between the relation symbols of P. Formally, 

p refers to q in P iff there is a clause C in P in which p is the relation symbol 

in the head of C and q is the relation symbol of a literal in the body of C. Note 

that it may be that p refers to q via several clauses in P. In particular, for any 

pair of relation symbols p, q there is at most one edge (p,q) in the dependency 

graph of P. An edge (p,q) is positive [negative] iff there is a clause C in P in 

which p is the relation symbol in the head of C, and q is the relation symbol of 

a positive [negative] literal in the body of C. Note that an edge may be both 

positive and negative. • 

LEMMA 1 

A program P is stratified iff in its dependency graph there are no cycles con

taining a negative edge. 

Proof: If the program is stratified, then the definition of each relation symbol 

is contained in some stratum. Assign to each relation the index of the stratum 

within which it is defined. If (p,q) is a positive edge in the dependency graph 

of P then the level assigned to q is smaller than or equal to that assigned top, 
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and if (p,q) is a negative edge, then the level assigned to q is strictly smaller 
than that assigned to p. Thus, there are no cycles in the dependency graph 

through a negative edge. 
For the converse, decompose the dependency graph into strongly connected 

components, each of maximum cardinality (i.e., such that any two nodes in a 
component are connected in a cycle). Then the relation "there is an edge from 
component G to component H" is well founded, since it is finite, and contains 
no cycles. Thus, for some n the numbers 1,. . .,n can be assigned to the com
ponents so that if there is an edge from G to H, then the number assigned to H 
is smaller than that assigned to G. Now let P; be the subset of the program P 
consisting of the definitions of all relations which lie within a component with 

the number i. 
We claim that 

is a stratification of P. Indeed, if q is defined within some P; and refers to r, 
then r lies in the same component or in a component with a smaller number. In 
other words, the definition of r is contained in Pj for some j < i. And if this 
reference is negative, then r lies in a component with a smaller number because 
by assumption there is no cycle through a negative edge. Thus, the definition 
of r is then contained in Pj for some j < i. • 

We will now study semantics of stratified programs. As explained in the in
troduction we are interested in models that are both minimal and supported. 
Our task is to prove that stratified programs indeed have such models. 

From Models to Fixed Points 

Van Emden and Kowalski [1976] proposed an elegant way of studying logic 
programs without negation. Their definitions still make perfect sense in the 
presence of negation. Their idea was to use a natural closure operator and 
equate the models of a program P with the pre-fixed points of the operator, 
which are simpler to analyze. This operator is usually called Tp. It maps inter
pretations of Pinto interpretations of P and is defined as follows: 

A E Tp(l) iff for some clause A1 - L1 & . .. &Lm in P and substitution 0, 

n= L1 0 & ... &Lm 0 and A =A16 

We shall drop the subscript P if it is clear from the context to which 
program P the operator refers. Intuitively, T p(/) is the set of immediate conclu
sions of/, i.e., those which can be obtained by applying a rule from P only 
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once. Note that A E Tp(l) iff there exists a clause in ground (P) with head A 
whose body is true in I. 

Below, we shall study T as an operator, so it is perhaps useful to recall 

some terminology and well-known results. Since no greater generality is 

needed, we consider only the case of operators on complete lattices. We use~ 

to denote the order relation on the lattice. 

We say that T is monotonic if / 1 ~1 2 implies T(/1) ~ T(/2). When T(/) ~I 

then we say that I is a pre-fzxed point of T and when T(l) = I then we say that I 

is a fixed point of T. The following classical result is at the heart of the van 

Emden and Kowalski [1976] approach. 

THEOREM (KNASTER·TARSKI [1955]) 

A monotonic operator T has a least fixed point that is also the least pre-fixed 

point ofT. • 

Now suppose that T is one of the operators Tp on Herbrand interpretations. 

The Knaster-Tarski theorem's importance derives from the fact that for a posi

tive program P the operator Tp is monotonic. Unfortunately, in the presence of 

negation, things change. In fact, in this paper we shall not make use of the 

Knaster-Tarski theorem. The following example explains the difficulties. 

EXAMPLE2 

Let P be a program without negation. Then (see van Emden and Kowalski 

[1976]), 

a. Tp is monotonic, 

b. the intersection of two models of P is a model of P, and 

c. P has a least model. 

On the other hand, if P is a program with negation we have 

d. Tp does not need to be monotonic, 

e. Intersection of two models of P does not need to be a model of P, and 

f. P may have no least model. 

To see this, consider the program P: A - -, B 

1. Take / 1 empty and / 2 = {B}. Then Tp(/1) = {A} whereas Tp(/2) is 

empty. Thus 1 1 ~1 2 but not Tp(/1) ~ Tp(/2). 

2. Take the above program P. Then {A} and {B} are models of P but their 

intersection is not. 
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3. p has two different minimal models: {A} and {B}. • 

Several results concerning positive programs depend critically on the properties 

(a), (b), and (c).Fortunately, a very important property remains true. 

LEMMA2 

Let P be a program. Then I is a model of P iff Tp(I) ~ I. 

Proof: Essentially the same as the proof for programs without negation; see 

Lloyd [1984]. • 

This simple fact saves the whole approach based on the analysis of the 

operator Tp! Further, the notion of a supported model can also be naturally ex

pressed in tenns of the operator Tp. We have the following simple result. 

LEMMA3 

Let P be a program. Then I is supported iff T p(l) ~I. 

Proof: Direct from the definition. • 

As explained in the introduction, we are interested here in studying minimal 

and supported models. In view of Lemmas 2 and 3 this simply means that we 

are looking for minimal fixed points of the operator Tr Thus, we are brought 

to study the fixed points of nonmonotonic operators. It is conceptually advan

tageous to carry out such an analysis in a completely general situation. 

Fixed Point Theory of Nonmonotonic Operators 

Powers 

Here we study operators over an arbitrary, but fixed, complete lattice. To keep 

in mind the subsequent applications to logic programs and their interpretations, 

we denote the least element by <I> and the elements of the lattice by I ,J ,M. The 

order relation on the lattice is denoted by \;. 

We start by defining powers of an operator T. We put 

TtO(l) =I 

rt (n + 1) (J) = T(T I n(J)) u TI n(I) . .. 
rtw(l) = U TI n(/) 

n=O 
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Tt n(I) should not be confused with Tn(l), which stands for the n fold applica

tion of T. If T is monotonic, then its ordinal powers can be (and usually are) 

defined in a slightly simplified way by putting 

Tt (n + 1) (/) = T(Tt n(l)) 

An obvious proof by induction shows that when T is monotonic both defini

tions lead to the same value of T t n( <!>) (but of Tt n(l) only when I ~ T(I)). 
Clearly the process of computing powers of T can be extended beyond w, 

see Blair [1982], but we shall not need this. 

Fixed Points 

We now introduce the following definition. 

DEFINITION 5 

T is finitary if for every infinite sequence 

"' "" 
T( u In)~ u T(In) 

n ==0 n =O 

"" 
holds. Thus if A E T( U Jn) then for some n, A E T(In), which explains the 

n=O 

name. The following lemma shows the importance of this notion. • 

LEMMA4 

If T is finitary then for all / 

T(Tt w(l)) ~ Tt w(l). 

Proof: We have 

T(Ttw(/)) 

"" 
~ U T(Tt n(l)) since T is finitary 

n=O 

~ Tt w(/) since T(Tt n(l)) ~ Tt (n + 1)(/). • 

Thus, finitary operators have pre-fixed points which can be computed in a 

natural way. In general finitary operators do not have fixed points, but under 
some assumptions they do. 
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DEFINITION 6 

T is growing if for all /, J, M 

implies 

T(J) k T(M). • 

The following lemma holds. 

LEMMAS 

If T is growing then for all / 

rt ro(J) k I U T(Tt w(J)) 

Proof: We have 

A E rtro(/) ~A EI or for some n > 1, A E Ttn(I) 

~A EI or for some n > 0, A E T(Tt n(J)) 

(by assumption) ~A E/ or A E T(Ttw(l)). • 

COROLLARY1 

If T is finitary and growing then 

rtw(<J>) = rcrtw(<J>)) .• 

Thus for finitary and growing T, Ttw(<!>) is a fixed point. 

Iterations 

Next, we study finite families of operators. Let T1, ••• ,Tn be operators. We put 

N0 =I, 

N1 = T1 t w(N0), 

Clearly N0 k N1 k ... C Nn. Of course all Ni depend on I and it will be always 

clear from the context from which one. To concentrate attention on the fact 

that Nn is computed using Ti in an iterative fashion, we sometimes denote it by 

iter(T1, ... ,Tn,(I). 
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Our first task is to determine under which conditions iter(Ti' .. .,Tn,(I) is a 
n n n 

fixed point of U Ti, where ( U T)OO = U (Tp()). For this purpose we intro-
i = 1 i=l i= 1 

duce the following concept. 

DEFIN"10N7 

A sequence of operators TJ>··· ,Tn is local if for all /,J and i = l, ... ,n 

Ir;;,Jr;;,Nn 

implies 

Informally, locality means that each Ti is determined by its values on the sub

sets of N;. 
As an example of a non-local sequence of operators, consider Tp, Tp 

I 2 

whereP1 = {q - --,p} andP2 = {p - 1 p}. Then/=<j>,N1 = {q}, and 
N2 = {p,q}. ChooseJ= {p}. ThenTp(J)=<l>butTp(JnN1)= {q}. • 

I I 

We have the following two lemmas. 

LEMMA6 

Suppose that the sequence Tw··•Tn is local and that all T; are finitary. Then 

n 

(LJ T;)(iter(T1 , ••• ,Tn, /)) r;;, iter(Ti' . .. ,Tn,/). 
i= I 

Proof: We have 

n 

U T;(iter(T" ... ,Tn, /)) 
i= 1 

n 

(by locality)= lj T;(N;) 
•=I 

n 

(by Lemma 4)r;;, UN; 
i= I 

= iter(Tp···•Tn, /). • 

LEMMA7 

Suppose that the sequence T" ... ,Tn is local and each Ti is growing. Then 

n 

iter(T" . .. ,Tn,I) r;;, I U ( U T)(iter(Tp··· ,Tn,/)). 
i==l 
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Proof: We prove it by induction on n. If n = 1, the lemma reduces to Lemma 

5. For n > 1, assume the lemma holds for all m < n. Then 

Nn 

(by Lemma5) ~N n-1 U Tn(Nn) 
•-I 

(by ind. hypothesis) ~ (/ U { LJ Ti)(Nn _ !)) U Tn(Nn) 
i= I 

n 

(by locality) =I U ( U Ti)(Nn). • 
i= I 

COROLLARY2 
Suppose that sequence T1,. .. ,Tn is local and all Ti are finitary and growing. 

Then 

n 

iter(Tp ... ,T , I) =I U ( U T)(iter(T1,. •• ,T., /)). • 
n i= I 

Thus for a local sequence Ti' .. '.,T. of finitary and growing operators 
n 

iter(Tp ... ,Tn, <f>) is a fixed point of;~ Ti' 

We now prove that under some assumptions iter(Tl' ... ,Tn, I) is a minimal 
n 

pre-fixed point of U Ti containing/. More precisely, we prove 
i=I 

THEOREM1 

Suppose that the sequence T1, .. .,Tn is local and that all Ti are growing. If 

I<;;, J <;;, iter(T1,. • .,Tn, I) 

and 

• 
(U T)(J)<;;, J 
i=l 

then 

Proof: We prove by induction on j = 0,. .. ,n that 

(I) 

For j = 0 it is part of the assumptions. Assume that the claim holds for some 

j < n. We now prove by induction on k that 

(2) 
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Fork= 0 this is just (1), So assume (2) holds for some k > 0. We have 

(by (2) and since Ti+ 1 is growing) 

(by locality) 

(by the assumptions) 

~ 1)+ iCJ nNi+ 1) U J 

= 1)+ 1<J) u J 

~J. 

Thus by induction for all k (2) holds, so Ni+ 1 ~ J. This proves (1) for all 

j = o, ... ,n and concludes the proof .• 

Iteration Versus Simultaneity 

n 

Next, we relate iter(Tp ... ,Tn,/) with CU ntw(/). We need the following no-

tion. i=I 

DEFIN"10N8 

A sequence of operators T1, ••• ,Tn is raising if for all I,J,M and i = l, ... ,n 

implies 

We have the following lemma. 

LEMMAS 

Suppose that the sequence T1, ••• ,Tn is local and raising and that all Ti are 

finitary. Then 

n 

( U T;)t w(/) ~ iter(Tp ... ,Tn,/). 
1= I 

Proof: We prove by induction on k that 

<u T;)tk<I> ~ iter(Tl' ... ,rn,1> (3) 
i= I 

It clearly holds for k = 0. So assume (3) holds for some k > 0. To make the 
n 

derivation more readable, denote ( U T1)tk(/) by J. We have 
i= I 
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n n 

( U Tit (k + 1 )(/) = ( U Ti)(J) U J 
i=I i= 1 

n 

(by locality and (3) = (U T.)(J nN.) U J 
i=I I I 

n 

(since TI> ... ,Tn is raising) k(U T;)(N;) U J 
t=l 

(by Lemma4) 

(by(3)) 

Thus, by induction (3) holds for all k, which completes the proof. • 

This leads us to the following theorem. 

THEOREM2 
Suppose that the sequence Tp ... ,Tn is local and raising. Suppose also that all T; 

are finitary and growing. Then 

n 

iter(Ti' ... ,Tn, /) = (U Ti)tw(/). 
i=l 

Proof: This time it suffices to combine previously proved results. First, ob-

" serve that since all Ti are finitary, U Ti is finitary, as well. Thus by Lemma 4 
i= 1 

n n n 

(U T;)((U T)tw(I)) 1k( U Ti)tw(/). 
i=l i=I i=I 

Now, in view of Lemma 8 all assumptions of Theorem 1 are satisfied and the 

conclusion follows. • 

Independence 

Finally, we study a condition under which the order of application of two 

operators is irrelevant. For this purpose we introduce the following notion. 

DEFINITION 9 

T1 and T2 are independent if for all/, J and M 

1. if/kJkT2 tw(/)thenT1(/ UM)=T1(J UM), 

2. if I k J k T1 t w(l) then T2(1 UM) = T2(J UM). • 

Intuitively, in (1 ), T1 makes no use ofJ - I. Consider I k J k T 2 t w(I) and 

M = <j>. Then T1(I) = T1(J). 

We have the following technical lemma. 
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LEMMA9 

Suppose that T1 and T2 are independent. Then for all k > 1 

1. if le;;, J r;;;;, T2 tw(/) then T1 tk(J) = T1 tk(I) U J, 

2. if I r;;;;, J r;;;;, T1 tw(/) then T2 tk(J) = T2 t k(/) U J. 

Proof: Suppose that/ r;;;;, J r;;;;, T2 t w(/). Note that 

TI t l(J) = T1 t1(/) U J. 

Suppose now the claim holds for some k > 1. We then have (1) by an obvious 

induction. By symmetry (2) holds as well, which proves the lemma. • 

The lemma implies the following theorem. 

THEOREM3 

Suppose that T1 and T2 are independent. Then for all I 

Proof: We have 

00 

T1 tw(T2 tw(J))= U T1tk(T2 tw(/)) 
k=I 

(by Lemma 9) 

(by symmetry) 

00 

= LJ (T1 t k(l) U T2 t w(/)) 
k=l 

= T1 t w(/) U T2 t w(/) 

= T2 t w(Td w(/)). • 

It is time to relate the above results to logic programs. 

Model Theory of Stratified Programs 

Consider a program P stratified by 

We now define a standard interpretation of P by putting 
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LetMp=Mn. 
In what sense is Mp standard? We prove in this and the next sections several 

results which support the claim that M p is natural. Obviously our first task is to 

prove that M P is a model of P. 
This turns out to be an easy consequence of the results proved in the pre

vious section. 

Minimality and Supportedness of M P 

We first prove certain facts about the operators associated with logic programs. 

THEOREM4 

For all programs P, Tp is finitary. 

Proof: Straightforward and left to the reader. • 

Next let us introduce the following useful notation. 

Negp = {A : -,A is a variable-free instance of a negative literal in a 
clause in P} 

Defp = {A : A is a variable-free instance of a head of a clause in P} 

EXAMPLE3 

Let P be the following program: 

p(a), 

r(x) - --, q(a), 

p(x) - --, r(y). 

Then 

Negp = { q(a), r(a)} 

and 

Defp = {p(a), r(a)}. • 



Chapter 2: Towards a Theory of Declarative Knowledge 109 

We have the following simple lemma. 

LEMMA 10 

Let P be a subprogram of P'. Then 

IC.JC. Ur and In Negp =Jn Negp 

implies 

Informally, the lemma says that each Tp is monotonic as long as its ar

guments do not differ on the elements of Negp. The reference to P' and UP' al

lows us to consider Tp on a larger space. 

Proof: Suppose that A E Tp(/). Then there is a variable-free instance of a 

clause from P of the form 

where 

If L; is positive, then L; E /, so also L; E J and consequently J f= L;. If L; is 

negative, then it is of the form-, B; where B; fj. I. Also B; E Negp. Thus B; f/=. l 
n Negp and by the assumption B; tf. J n Negp. Hence B; t/. J and consequently 

J f= L;. Thus for all i, J f= L; which implies A E Tp(f). 11 

Next we introduce the following definition. 

DEFIN"10N10 

A program is called semi-positive if none of its negated relation symbols occurs 

in a head of a clause. More formally, P is semi-positive if Negp n Defp = 
<j>. • 

The following is a consequence of the previous lemma. 

THEOREM5 

If P is semi-positive, then Tp is growing. 

Proof: First observe that if 

then, since Tp t (!)(/)C. I U Defp. we have 
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Mn Negp ~(I U Defp) n Negp =In Negp ~ J n Negp. 

so 

J nNegp=M nNegp. 

Therefore by Lemma 10 

Informally, for semi-positive programs all arguments of T P lying between I 
and Tp t w(/) do not differ on the elements from Negp. 

Now, consider a sequence of programs PI' ... ,P n· 

DEFINITION 11 

A sequence Pp ... ,Pn defines new relations if the following holds: 

whenever a relation symbol occurs in a clause P;, then its definition within 

P1 U ... U Pn is contained in P1 for somej <i. (Note that if the definition of a 

given relation symbol is empty, then that definition is contained within, in par

ticular, P1 .) 

More formally, a sequence Pp .... Pn defines new relations if for all i = 
, ... ,n - 1 

Defp n Up u u P = <J>. • 
1+1 I ... i 

That is, none of the relation symbols defined in P; + 1 is mentioned in 

Pp ... ,P;. 
We have the following theorem. 

THEOREM6 

If the sequence P1,. • .,Pn defines new relations, then the sequence of the 

operators Tp
1
, •• .,TP. considered on the space UP, u ... u P. is local. 

Proof: As in the previous section we denote iter(Tp1,. .. ,Tp;· /) by N; and let 

N0 be/. We have for i = O,. .. n - 1 

N; + 1 - N; ~ Defp . 
i+ I 

Thus for i = 1,. . .,n 

N nu n P1 U ... UP; 

~(N; UDefp;+1 u ... UDefp) n UP, u ... uP, 

(since P1, .. .,Pn defines new relations) ~ N; n UP, u ... uP; 

cN nu 
- n P,u ... UP;· 
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Hence 

N.nup p=N nu 
I I U ... U I n P1 U ... UP1 

Suppose now that 

Then for i = l, ... ,n 

Jnu =JnN nu pi u ... u P, n pi u ... UP, 

=Jn N; n Upl u ... uP,· 

But by the definition of T P 

Tp,(J) = Tp.{J n Up1 u ... uP.} 

=Tp.(J n N; n Up1 u ... uP,) 

=Tp (J nN.) 
I I 

as desired. • 

Let us now relate the above theorems to stratfied programs. Suppose that P 

is stratified by 

Then by definition each P; is semi-positive and the sequence Pp ... ,Pn defines 

new relations. By Theorems 4 and 5 all operators T P. for i = 1, . .. n are finitary 

and growing. By Theorem 6 the sequence Tp , ... Tp 1is local. We are now in a 
I n 

position to apply Corollary 2. It implies 

This in tum, in view of Lemmas 2 and 3, implies the following theorem. 

THEOREM7 

1. Mp is a model of P. 

2. Mp is supported. • 

Also, by Theorem 1 and Lemma 2 we have 
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THEOREMS 

M P is a minimal model of P. • 

Note that in view of Lemmas 6 and 2 and Theorems 4 and 6, M p is a model 

of P whenever the sequence Pp···•pn defines new relations. But to prove that 

M P is supported we also need Lemma 7, which requires that all T P; are grow-

ing. This condition is satisfied (see Theorem 5) if each P; is semi-positive. 

Now it is easy to see that if the sequence P 1, .•• ,P n defines new relations and 

each P; is semi-positive, then P is stratified by P = P1 U ... U Pn. In other 

words, our general results on norunonotonic operators do not allow us to con

clude existence of supported models for other than stratified programs. 

Independence of Mp from the Stratification 

The definition of the model M P for a stratified program P is somewhat unsatis

factory as it explicitly refers to the way P is stratified. We now prove that Mp 
does not depend on the stratification of P. This will support our claim that Mp 

is a natural model for P. 

Again this easily follows from the results of the previous section. This time 

we use results of the second part of the section. We first introduce the follow

ing natural concept. 

DEFINITION 12 

Let P be a program. 

1. depends on is the reflexive transitive closure of the relation refers to be
tween the relation symbols of P. 

2. By a cluster we mean a non-empty subset of P that is the union of a 

maximal collection of definitions that define relations that depend on one 

another. • 

The following example should clarify the definition. 

EXAMPLE4 

LetP be 

P- q, 

r -q&q1, 

q-r, 
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Then q and r depend on each other. Thus { p - q}, { r - q&q1, q - r} 

and {q1} are the clusters of P. II 

Note that P' is a cluster if it is non-empty and for each clause in P' with p 

on its left hand side and r on its right hand side. P' contains the definition of p 

and, if r depends on p, the definition of r. 

We have the following simple lemma. 

LEMMA 11 

Let P be a program. 

1. The clusters of P form a partition of P. 

2. If P is stratified by P1 U ... U Pn, then each stratum P; is a union of 

clusters. 

Proof: Consider the following relation between definitions from P: 

R1 > R2 iff the relation defined by R1 depends on the relation defined by R2• 

Let 

Then = is an equivalence relation between the definitions from P. 

To prove (1) it is now sufficient to observe that a cluster is just a union of 

definitions forming an equivalence class of =. 
To prove (2) note that each definition from P is contained in a stratum. Let 

index(R) for a definition R be the index of the stratum it is contained in. (We 

shall also say that the index of a literal is the index of the definition of its rela

tion symbol.) Then by the definition of stratification 

Thus 

so in view of the above characterization of clusters, each cluster is contained in 

a stratum. The claim now follows by (1). II 

Consider now the relation > defined in the last proof but now as a relation 

between clusters. In other words, given two clusters Q1 and Q2 we put 
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Q > Q iff for some definitions R1 ~QI 
l - 2 

andR2 ~Q 2 we have R1 > R2• 

Then, since ,.,. is an equivalence relation, > is a partial ordering between 

clusters. 

Given now a program stratified by P = P 1 U .. . U P n, let index(Q), for a 
cluster Q, be the index of a stratum it is contained in. Then for two clusters Q 1 

and Q2 

Q1 .2: Q2 :::? index(Q1) .2: index(Q2). 

We now introduce the following definition. 

DEFIN"10N13 
We say that two clusters Qp Q2 are unrelated if neither Q1 > Q2 nor Q2 > Q 1 

holds. 
Note that if Q1 and Q2 are unrelated, then DeflQ2) n U Q

1 
= <!> and Def(Q 1 ) n 

UQ =<f>. but not necessarily conversely. For example, if P = {p ...,__ q 7 

q !.-- r, rf then the clusters Q1 = {p - q} and Q2 = {r} are not unrelated 
but satisfy the above property. • 

The following is an immediate consequence of the above remarks. 

LEMMA 12 

Let P be a stratified program. Suppose that P = P1 U ... l.Jpk and P = P' 1 U ... 
UP'i are two different stratifications of P. If Q1, Q2 are two clusters such that 
for some ip i2, jl' j 2 

and 

then Q1 and Q2 are unrelated. 

Proof: The conditions of the lemma simply state that the order of indexes of 
Q1 and Q2 in two stratifications of P is different. Thus neither Q 1 > Q1 nor Q 2 
.2: Q1 holds. • 

We now link the notions of this and the previous sections. 
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THEOREM9 

Let QI> Q2 be two clusters of a program P. Suppose that Q1 and Q2 are unre

lated. Then T Q and T Q are independent. 
I 2 

Proof: Suppose that for some/, J 

Then 

so since Q1 and Q2 are unrelated. 

(J - I) n u Q = <f>. 
1 

Thus for any M 

that is 

By symmetry the other half of the independence definition holds as well. Ill 

THEOREM 10 

Let P be a program stratified by P = P1 U ... t.Jpk and suppose that Qi' .. .,Qn 
are the clusters of P; for some i, 1 < i < n. Then the sequence of operators 

TQ ,. . .,TQ considered on the space Up is raising. 
I n 1 

Proof: Since P; is a stratum, it is a semi-positive program. 

Suppose that 

I~ J ~Mr;;;,. iter(TQ ,. .. ,TQ, I) 
I n 

Then for any j = 1, .. .,n 

Jn NegQ r;;;,.(Defp U I) nNegQ 
J I j 

(since P; is semi-positive and NegQ r;;;,. Negp) =I n NegQ: 
J ' J 
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Similarly 

M n NegQi r;;;,_ In NegQ/ 

It follows that 

I n Neg = J n NegQ = M n NegQ. Qi } J 

Now, by Lemma 10 

TQ/J)r;;;,_ TQ/M). • 

Finally we prove the following theorem. 

THEOREM 11 
Let p be a stratified program. Then M P is independent of the stratification of 
P. 

Proof: We use the previous two theorems. 
Given two stratifications P l'""pn and P' 1'" .,P' k of P, we say that they are 

equivalent if they yield the same model Mp, that is if 

iter(Tp ,. . .,Tp, <f>) = iter(Tp, , .. .,TP', <f>). 
I n 1 k 

We now prove that any two stratifications of P are equivalent. So let P 1' ... ,P n 

be a stratification of P. By Lemma 11 (2) each stratum is a union of clusters. 
Consider a stratum, say P;, and a sequence of its clusters, say Ql' ... ,Qh. This 
sequence can be rearranged so that for every j,m, 1 < j,m < h 

Now P" ... ,P;_ 1, Q" .. .,Qh, P;+ 1,. .. ,Pn is also a stratification of P. 
Moreover, by Theorems 6, 10, and 2 applied to TQ, ... ,TQ and Tp, it is a 

I h I 
stratification equivalent to the previous one. Iterating this procedure for other 
strata we arrive at a stratification of P consisting of clusters which is equivalent 
to the original one. • 

It now suffices to prove that any two stratifications of P consisting of 
clusters are equivalent. To this purpose we need the following simple lemma. 

LEMMA 13 

Let al, ... ,an and bl' ... ,bn be two permutations of n elements. Then ap ... ,an 
can be transformed into b1,. .. ,bn by repeatedly exchanging two adjacent ele
ments whose relative order in bp .. .,bn is different. 
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Proof: Straightforward-use the bubble sort. • 

We now complete the proof of Theorem 11. Let Ql' ... ,Qn and Q'p····Q'n 

be two stratifications of P consisting of clusters. If the relative order of two 

clusters Q; and Qj in these two sequences differs, then by Lemma 12 Q1 and Qi 

are unrelated. Then by Theorem 4, T Q and T Q are independent. This together 

with the previous lemma concludes the 1proof. ii 

An Alternative Characterization of Mp 

The definition of the model M P is somewhat operational in the sense that it is 

defined in terms of the iterations of the operators Tp. We now offer another, 

equivalent definition, which while being less direct h~s the virtue of not refer

ring to any computation mechanism. 

Suppose that P is stratified by 

Recall that P; denotes P 1 U ... UP1• Put 

M(P1) = n{M: Mis a supported model of P1 } 

M(P2) = n {M : Mn Up = M(P1) and M is a supported model of P2 } 
I 

M(Pn) = n {M : Mn Up = M(Pn_1) and M is a supported model of 
n-1 

We now prove the following theorem. 

THEOREM12 

Mp = M(Pn). 

Proof: As expected we proceed by induction and prove that for all i = l, ... ,n 

M1 =M(P). 
For i = 1 it is the consequence of the fact that for a monotonic operator T, 

Ttk(<j>) = T\cj>) for all k, and a result of van Emden and Kowalski [1976] 

characterizing, for a positive program P, 
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U T}(0) as n{M: Tp(M) =M}. 
k=l 

Suppose now that the claim holds for some i < n. We then have by Theorem 7 

applied to Pi+ 1 that Mi+ 1 is a supported model of Pi+ 1 and, since the se

quence Pp ... ,Pi+ 1 defines new relations, 

Mi+I n U-p=Mi 
I 

(1) 

(by the induction hypothesis)= M(Pi). 

Thus, from the definition of M(P; + 1), 

To prove that equality actually holds, it is enough to show that M(P; + 1) is a 

model of Pi+ 1 and apply Theorem 8, which states that Mi+ 1 is a minimal 

model of Pi+ 1• 

For this purpose we prove 

(2) 

and use Lemma 2. 

First note that by (1) and the definition of M(Pi + 1) we have 

M(Pi+ 1) n Up_= M(Pi). 
I 

(3) 

Now take M such that MI= Pi+ 1, M is a supported model of P; + 1 and 

M n U-p = M(Pt>· 
I 

(4) 

Then, by definition, M(Pi + 1) ~Mand moreover by (4) M n Negp ~ U-p as 
l+l ; 

M is a supported model of Pi + 1. Thus 

M(Pi + ,) n Negp_ + I = M n Up n Negp 
! l i+t 

=M nNeg-p . 
I+ I 
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Now by Lemma 10 

T-p (M(Pi + 1)) ~ T-p. (M) 
i+ I 1+ I 

(by (4)) 

(by ind. hyp., Lemma 2, Th. 7) 

(by Lemma 2) 

(by (4)). 

= T-p,(M) u Tpi+I (M) 

= T-p
1
(M n U-p

1
) u Tp,. 

1 
(M) 

= Tp
1
(M(P;)) U Tp;+i (M) 

~ M(P;) u Tft (M) 
i+ I 

~ M(P) UM 

=M. 

Since M was arbitrary, by the definition of M(Pi + 1) this proves (2), which con

cludes the proof. • 

Note that the theorem does not hold when the assumption that M is sup

ported in the definition of M(P;) is dropped. Indeed, let P be p - 1 q. Then 

P1 is empty, so U-p = 0 and M(P1) = M1 = 0. On the other hand M2 = {p} 
I 

whereas 

An Elementary Interpreter 

Our purpose in this and the next section is to study the foundations of a proof 

theory for logic programs with negation. The study begins with three 

deliberately naive intuitions about inference using the clauses of a program: 

1. to prove a ground atom A find a ground instance A - L1 & ... & Ln of a 

clause in the program and prove each of L1, ••• ,Ln; 

2. to prove -, A show there is no proof of A from the clauses of the 

program; 

3. if there is a proof of A, then there is also a proof of A which does not, it

self, depend (recursively) on a proof of A. 
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A little reflection should suggest that, while (3) is correct, for programs with 

negation (1) leads to incompleteness and (2) is unsound. 

Apart from the problematic aspects of (1) and (2) regarding completeness 

and soundness there are other more serious and surprising difficulties. Below, 

we introduce an interpreter which formalizes (1), (2), and (3) in a straightfor

ward way. For certain programs we will see that there are multiple interpreta

tions of the formal definition of the interpreter; in this sense the interpreter is 

ambiguous. The same difficulties arise with other definitions of provability in 

the case of logic programs with negation. In particular we find that the defini

tion of SLDNF-resolution given in Lloyd (1984, p. 76] suffers from the same 

kind of ambiguity. Moreover, it is not at all clear that (I), (2), and (3) are even 

consistent in the case of some programs. 

In this section, we show that the ambiguity in the definition of the inter

preter vanishes when we restrict to stratified programs, and in the next section 

we show that the definition is, formally, consistent under this restriction. Thus 

for a stratified program P the defmition of the interpreter uniquely specifies 

which ground atoms are provable from P. We also show that this need not be 

the case when P is not stratified. Moreover, when P is stratified, the set of 

ground atoms provable from P is M p· Since the interpreter uniquely determines 

the class of ground atoms provable from P independently of how P is 

stratified, this result gives yet another proof that M P is independent of the 

stratification. 

Typically, there are ground atoms that are true in M P but are not logical 

consequences of P. Thus, from the point of view of first-order logic our proof 

procedure given by the interpreter is unsound. However, soundness and com

pleteness notions depend on what concept of logical consequence is being con

sidered. For example, there are true sentences in number theory that are not 

(first-order) logical consequences of Peano's axioms. An enriched proof proce

dure that, starting from Peano's axioms, would allow us to prove some of these 

sentences must necessarily be unsound from the point of view of ordinary first

order logic, but should certainly not be dismissed because of this. The point is 

that notions of logical consequence can be based on intended models rather 

than on all models. 

This is the attitude we take here: A stratified program P has a unique in

tended model, namely Mp, and we reduce the notion of logical consequence 

from P to that of truth in M p· 

The interpreter uses ground instantiations of the clauses of the program. We 

do not claim such an interpreter is adequate for real programming, but it does 

have two important properties. First, it is an analytical tool for investigating 

the foundations of a proof theory for logic programs with negation. Second, it 

is easy to see how to implement it as an executable Prolog program that gives 

us an immediate extension from ground instances of clauses. 

We give a (for the moment informal) example that illustrates what should 
be taken as a proof based on (1), (2), and (3). 



Chapter 2: Towards a Theory of Declarative Knowledge 121 

EXAMPLES 

Consider a program P: 

P- q &--, r, 

q-p, 

q- s, 

r- t, 

s 

and the tree T: 

p 

/\ 
q ---ir 

I 
s 

(Note that we are using T to stand for an operator, and T to stand for a tree. It 

will also be clear from context which is meant.) Our intention is to regard T as 

proving p from P in the following way: s is a fact in P, so P immediately 

proves s, hence q. Now, there is no proof tree fort, hence no proof tree for r. 

This establishes -, r, and consequently p. The interpreter must also "trap" 

loops. In this example it would be useless to try to prove q by proving p. 11 

We now formalize these notions. We first define the class of objects that 

will be used by the interpreter to construct proof trees. 

DEFINrrlON 14 

Let U be the Herbrand base of a language L. An implication tree over U is in

ductively defined by the following rules. 

1 . For each A E U, A and -, A are implication trees over U. 

2. If Tp ... ,Tn are (not necessarily distinct) implication trees, and A EU, 

then 

is an implication tree over U. We may also denote this tree by 
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When the context is clear we may sometimes omit the phfase "over U." 
An implication tree is identifiable with a (graphical) tree in the obvious way 

where we assume multiple copies of the same literal are distinguishable. 

We will now introduce a sequence of restrictions on implication trees that 

will bring us to those trees that our interpreter can return as proof trees. Infor

mally, it should be evident that along any path on a proof tree, the same 

ground literal need not occur more than once. Accordingly, we have the fol

lowing definition. 

DEFIN"10N 15 

An implication tree T is loop-free iff T contains no path with two distinct oc

currences of a node labelled A, for any A EU. • 

Note that negative literals can only occur as leaves. 

EXAMPLE& 

The implication tree given below is loop-free, and, we will see, proves q from 

q- -iq. 

q 

I 
-iq 

The class of implication trees over U of course ignores the structure of logic 

programs whose Herbrand bases are contained in U. Because we want to use 

implication trees to prove the consequences of logic programs, we must select 

those implication trees that can serve as proofs. We shall use the term 

"compatible" to link implication trees with programs in this way. Proposition 

1 makes precise what it is that compatible implication trees do prove. • 

DEFIN"10N16 

Let T be an implication tree, and Pa logic program. 

1. If T is -.A, and A is ground, then T is compatible with P. 

2. If T is A, and A is ground, then T is compatible with P. 

3. If T is A(T1, •• .,Tn), T; is compatible with P (i = 1, .. . ,n), B" .. .,Bn are 

the roots of T" ... , T n respectively, and 
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is in ground (P), then T is compatible with P. Here ground (P) stands for the 

set of all closed instances of clauses from P. • 

The next definition allows the statement of Proposition 1 to be more suc

cinct. Here and elsewhere, the symbol F is used to mean "first-order" logical 

provability. 

DEFIN"10N17 

Let T be an implication tree compatible with P. A negative leaf --, A is 

loop-trapped if A occurs on the path from the root of T to --, A. • 

PROPOS"10N1 

Let T be a loop-free implication tree compatible with P, and let A be the root 

of T. Suppose --, B 1, ••• ,--, Bk are all and only the negative leaves of T that are 

not loop-trapped. Then 

Proof: Straightforward by induction on the height of T. • 

COROLLARY3 

Let T be a loop-free implication tree compatible with P in which every nega

tive leaf is loop-trapped. Then 

P F root(T) • 

In general, Proposition 1 and its corollary (fortunately!) do not have natural 

converses. That is, for a program that uses negation in a nontrivial way, a 

compatible implication tree may prove its root although not every negative leaf 

is loop-trapped. Consider the following example. (With the exception of 

Proposition 1, we are still being informal about "proof.") 

EXAMPLE? 

P1: p- q&r, 

q-p, 

q- -,s, 

s-p, 

r. 

P2: p- -,q, 
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First, in the case of program P 2 

p 

I 
-, q 

should indeed prove p since there is no proof of q. It is instructive to explicitly 

see the considerations in building an implication tree to prove p using P 1. 

Step 1: 

p 

I\ 
q r 

is an initial segment of an implication tree. r is a positive leaf that is also a fact 

in P 1• Thus, r is proved. 

Step 2: There are two possibilities for extending the initial segment of Step 1. 

q 

I 
p 

(a) 

p 

/\ 
r q 

I 

(b) 

p 

I\ 
r 

Alternative (a) is not an initial segment of any loop-free implication tree. 
Hence, there is no need to bother trying to prove p using alternative (a). Now, 

to use (b) we need to show that there is no proof of s. If there were, then we 

would have a proof of p and at the same time know that the alternative (b) fails 

to yield a proof. But (a) or (b) are, intuitively, the only ways of proving p. 
Thus, there is no proof of s, so (b) serves to prove p. We stress here that we 

are only giving evidence for what should be regarded as a proof, and are not 

trying to be rigorous. • 

We now define our interpreter. Let fJ = U U -, U, where -, U = {-, A I A 
EU}. 

DEFINITION 18 

Let P be a logic program with Herbrand base U, and let IT be the set of im

plication trees over U. Then IP k fJ x IT x 2u is defined by 
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1. lp(A,A,S) g A is in ground (P), and At$ S. 

2. lp(A,A - T1& ... &Tn,S) 8 At$ S, and for some A - B1& ... &Bn it: 
ground (P) lp(B1, TI' {A} US) and ... and lp(Bn, Tn, {A} US) 

3. Ip(--, A, -, A, S) 8 there does not exist a T such that I p(A, T, S). 

4. Not lp(L,T,S) whenever lp(L,T,S) is not in any of the forms given in (1), 

(2), (3). • 

The reader should verify that the interpreter constructs the proof tree for p 

using P 1 as outlined in the previous example. The third argument of IP carries 

information for the loop trap. 

DEFINITION 19 

Tisa proof tree (w.r.t.P) iff3A[lp(A, T, 4>)]. IfT is a proof tree with root A, 

we say that T proves A. • 

The definition given for Ip is both ambiguous and computationally ineffec

tive if P is left unconstrained. We shall see that the ambiguity vanishes if P is 

stratified. The noncomputability vanishes under additional constraints. In par

ticular, if P is stratified, then any constraint on P that yields a decidable stan

dard interpretation will result in Ip itself being a decidable relation. 

The ambiguity in the definition of IP lies in the fact that, in general, there is 

more than one relation on [; x IT x 2° that satisfies the definition. We shall 

demonstrate this difficulty with an example, then prove that the ambiguity es

sentially vanishes if P is stratified. In the following section we shall show that 

an unambiguous "bottom-up" inductive definition can be given that defines a 

unique relation on [; x IT x 2° that satisfies the definition of Ip. 

EXAMPLES 

Consider the following program P that is not stratified. 

q(O), 

p(x) --, p(s(x)). 

To simplify the notation, let n abbreviate 

s(s( ... s(O) .. . )) --
n times 

Applying the interpreter to p(O) we have 
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Ip(p(O),p(O), <!>) iff /p(--,p(l), --,p(l), {p(O)} ). 

I 
-,p(l) 

iff not 3T[/p(p(l),T, {p(O)} )] 

We therefore have: 

p(O) 

\ proves p(O) iff 

1p(l) 

p(l) 

I is not a proof tree 

-.p(2) 

p(2) 

iff / proves p (2) 

-,p(3) 

p(3) 

iff I is not a proof tree 
-,p(4) 

iff .... 

Since this chain of equivalences is not terminating, we may suppose that every 
assertion in the chain is true, or that every assertion in the chain is false. In ei
ther case we satisfy the definition of I r • 

EXAMPLE9 
The interpreter that we have given is, in general, meaningful as a terminating 
procedure only in very controlled circumstances; for instance, for function 
symbol free programs. To see nonterminating behavior on a program with 
function symbols, consider the stratified program P with the following clauses: 

p(x)- p(s(x)), 

q--,p(O). 

In seeking to prove q, IP costructs 

r 
1p(O) 
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In seeking to show that there is no proof tree for p(O), Ip constructs the se

quence of proof trees 

p(O) p(O) p(O) .... 

I I I 
p(s(O)) p(s(O)) p(s(O)) 

I I 
p(s(s(O))) p(s(s(O))) 

I 
p(s(s(s(O)))) 

However, the unique relation on Up x IT P x zu p that satisfies the definition 

of Ip is 

q 

{<q, j ,S>ISE2u- {ql}. • 

--,p(O) 

Next we show that the ambiguity in the definition of Ip essentially vanishes 

when P is stratified. By "essentially," we mean that when P is stratified, and 

if R is defined by 

R(A,S) ~ 3T [/p(A,T,S)] 

then R is uniquely determined. Now, as a matter of fact when P is stratified, 

the definition of IP does uniquely determine IP on U x IT x 2u, but it is con

venient to defer the proof of this fact until after introducing a "bottom-up" 

definition for an interpretation of IP in the next section. 

Next we prove a technical lemma about loop-trapping in our interpreter. 

Note that the interpreter will not apply any rule to a goal A if A is in S. Nor

mally, S is the set of proper ancestors of A. Now suppose that A is defined in 

stratum k of a program P. Intuitively, our lemma says that we can add to Sall 

ground literals defined in the strata above k, without changing the behavior of 

the interpreter. 

LEMMA 14 

Let P be stratified by P 1 U ... (Jpn· Let Vi= DefQ. where Qi= Pi U ... U Pn U 
J 

= l,. .. ,n), and let Vn + 1 = <j>. For j = 2, ... ,n + 1, S ~ \.j and T compatible with 
P 1 U . . . U Pi _ 1 the following holds: 
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/p(root(T),T,<j>) ~ /p(root(T),T, S) (1) 

Proof: Proceed by induction onj (2 < j < n). 

j = 2: P1 is a positive program. Since T is compatible with P1 and S ~ V2, 

no node in T occurs in S. The equivalence (1) follows immediately by a 

straightforward induction using clauses (1) and (2) in the definition of Ip. 

j ~ j + 1: For each implication tree T and node N in T let ST be the set 
N 

of nodes occurring on the path in T from the root to the parent of N. (In par-

ticular, ST.root(T) = <j>.) Recall Proposition 1. We proceed by strong induction. 

Let T be compatible with P 1 CJ • • • U Pr Then: 

I p(root(T), T ,cj>) 

iff (by clauses (l) and (2) in the definition of Ip) 

iff (by clause (3) in Definition 18) 

not lp(B ,T' ,sT,•B) 

for every negative leaf 

-.BofT. 

for every negative leaf 

18 of T, and implication tree T' 

iff (since not lp(root(T'), T' ,)()when T' is not 

compatible with P) 

for every negative leaf 

-.B of T, and implication tree 

T' compatible with P 1 U ... U Pk 

where Pk is the stratum 

in which the relation symbol of 

B is defined. 

(Note that k < j.) 

iff (by induction hypothesis, since sT,-,B ~ Vk+ ,) 

notlp(B,T' ,<!>) for every B and T' as in 

the previous step 

iff (again, by induction hypothesis) 

not lp(B,T',S U ST,-,o) for every B, and T' as in the 
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iff (by clause (3) of Definition 18) 

Ip( -iB, -iB,S U Sr,-,8 ) 

iff (by rules (1) and (2) of 18) 

I p(root(T), T ,S). 

previous step 

for every negative leaf 

-,B of T 

(2) • 

We now give the theorem that, in effect, says the interpreter unambiguously 

"computes" the standard model Mp of P, when P is stratified. The statement 

of the theorem may at first seem a bit arcane, but recall that the definition of IP 

does not in general uniquely determine a relation on [j x IT x 2u. We are 

about to show, under the assumption that P is stratified, that if the definition of 

IP is satisfied on fj x IT x 2u, then IP does indeed prove precisely those A that 

are true in the standard model of P. Proving that IP can be satisfied at all is 

somewhat harder. This is in part the point of the following section. 

THEOREM13 

Let P be stratified. Suppose there is an interpretation of IP on U x IT x 2u that 

satisfies the definition of Ip· Under such an interpretation we have the follow

ing equivalences for all A in V p: 

1. 3T[/p(A,T,<j>)] iff A EMp. 

2. lp(-.A, -iA,<j>) iff A E;l Mp. 

Proof: P is stratified by P 1 U P 2 U . .. U P n, for some P 1' ... ,P n. For each A in 

U, let rA be the relation symbol occurring in A. If rA is a relation symbol in the 

language in which P is a set of formulas (recall that the language with which P 
is associated may be larger than the language generated by symbols occurring 

in P), but rA does not occur in P, then, by definiton, we shall say rA is defined 

in P 1• Otherwise, rA is defined in one of the P;. 

We proceed by induction on the index j of the stratum in which rA is 

defined. 

j = 1. A E Mp iff A E M 1 . The following equivalence holds: 

A E Tp1 tn(c:f>) iff 

there is a loop-free implication tree T compatible with P 

such that height (T) < n and lp(A,T,<j>). 
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.. 
This equivalence follows by an easy induction on n. M1 = U Tp tn(<J>). 

n=O 1 

Thus, (1) follows. (2) follows from (1), clause (3) of (18), and that all clauses 

about rA are in P 1. 

j ~ j - 1. The induction assumption we take is the following assertion. 

For every A such that rA is defined in some stratum indexed by j' < j: 

3T[/p(A,T,<J>)] iff A EM/, 

and Ip(--,A,,A,<f>) iff A fF. M/. 
(3) 

To compiete the proof it suffices to show that 

For every A such that r A is defined in Pi + 1: 

3 T[Ip(A,T,<f>)] iff A EMi+ 1 

(4) 
and Ip(-, A,-,A,<f>) iff A fF. Mi=1• 

Let A E U such that r A is defined in Pi + 1• If T is an implication tree that 

is not compatible with Pi+ 1' or A =# root(T), then not lp(A,T ,X) for any X ~ 

2u, since it is easy to see that Ip(A,T ,X) is false if T is not compatible with P. 
Let T be compatible with Pi+ 1, and let A = root(T). Then: 

Ip(A,T,<f>) 

iff (by clause (1) and (2) of Definition 18) 

Ip( -,B, •B,ST,-,B) for every negative leaf -.B of T 

iff (by clause (3) of Definition 18) 

not Ip(B,T' ,sT.-.s> 

iff (by Lemma 14) 

not lp(B,T' ,<f>) 

iff (by clause (3) of Definition 18) 

Ip( -.B, -.B,<f>) 

iff (by the induction hypothesis) 

B$M.' 
} 

for every negative leaf -, B 

of T, and implication tree T' 

for every negative leaf 

B of T and implication tree T' 

for every negative leaf B of T 

for every negative leaf B of T, 

where j' is the index 

of the relation symbol of B 
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So we have 

/p(A,T,cj>) iff 
(5) 

B f}. Mj + 1 for every negative leaf B of T 

Now, suppose, lp(A,T,<J>). By Proposition 1, 

(6) 

where -,B ;· .. , 18 k are all and only the negative leaves of T. 

B; $. Mj+ I (i = l, ... ,k) by (5), 

Mi+ 1 FA V B1 V ... V Bk by Theorem 7 and (6). 

Therefore A E Mi+ 1• 

Conversely, suppose 4 E Mi+ 1• Then A E Tp f m(M1), for some finite m. 

A routine induction argument shows that there 1 i~ an implication tree T (of 

height < m) that is compatible with Pi+ 1, has A as its root, and has the 

property that B It Mj for every negative leaf B. Thus, lp(A,T,<!>). This com

pletes the proof of the theorem. • 

Existence of the Interpreter 

In this section we prove that an interpreter satisfying Definition 18 exists when 

P is a stratified program. 

Theorem 13 shows that if the definition if IP is satisfiable over Up x IT x 
2uP, then the set of triples, 

{<A,T,0>} 

in the satisfying relation is uniquely determined. It remains to show that the 

definition of Ip is, indeed, satisfiable over Up x IT x 2uP. The proof of 

Theorem 13 is almost sufficient for this purpose. What is lacking is a definition 

D of a relation R over Up x IT x 2up for which Dis manifestly uniquely satis

fiable and for which R satisfies the definition of Ip· For this purpose it suffices 

to give D as a "bottom-up" inductive definition. 

Suppose that D has been given for R so that 

3T[R(A,T,0)] :? A EMp. 
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R itself then serves an an interpreter for stratified programs, and the difficulties 

concerning the ambiguity inherent in the definition of IP vanish. Therefore, the 

objection may be raised that the definition of IP may be bypassed in the 

development of our analysis of stratified programs. That is, why should we 

present two interpreters that are extensionally the same? The objection can be 

dispelled on two grounds. First, Ip is a "top-down," recursive, backward

chaining interpreter, and it will be seen that R is "bottom-up," inductive, and 

forward-chaining. Both points of view are independe:qtly interesting. Secondly, 

once we know that IP presents no logical difficulties in the context of stratified 

programs, the definition of Ip is concise and simple. We now tum to the con

struction of R and prove that R satisfies the definition of IP. 

EXAMPLE 10 

Let P be 

q, 

Now, 

follows from the definition of IP• yet p tf:. Mp. • 

Example 10 illustrates that we can prove undesired consequences when 

starting from nonempty loop traps. The following construction circumvents this 

difficulty. 

DEFINITION 20 

If Q is obtained from P by the following construction, we say that Q is the 

result of filtering P through S. 

Let l be a first-order language. U the Herbrand base of L, and let P be a 

stratified program in the language l with stratification given by 

Let 

P' =P'1 U ... UP'n 

be the collection of ground instances of clauses in P. 
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Suppose S ~ U. Obtain 

from P' by removing all clauses with heads in S. • 

DEFIN"10N21 

Let L be a first-order language with Herbrand base U. Let P be a stratified 

program in the language L with stratification given by 

P=P1 U ... UPn 

Let S ~ U, and let 

er= Qf u ... uQ! 
be the result of filtering P through S. 

Let A E U. Define 

1, if the relation symbol of A is not defined in any stratum of OS, 
index (A)= 

k, if the relation symbol of A is defined in stratum~ 

(Note that er is in general a stratified program consisting of infinitely 

many ground clauses.) Let M1, ••• ,M11 be the models of Qf , ... ,~respectively 
where Mi is obtained from iter (TQ;•·· .,TQ;• <!>), (thus Mcf = M11 .) Let 

T be proof tree with respect to S and P iff 

T is a loop-free implication tree compatible with OS, has positive root, 

and for every negative leaf 1 B ofT, B f#Mindex(B)· 

Finally, let R be the relation of ii x IT x 2u defined by 

R(A, T ,S) ~ root (T) = A and T is a proof tree with respect to S and 
p 

and 

R(-iA, --,A,S) ~ notR(A,T,S) for every implication tree T. • 

COMMENT 

It was claimed above that R would be given as a forward chaining interpreter. 

Note that R depends on Definition 20 which, in tum, depends on the Qi' ... ,Qn. 
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In effect, we could use Definition 20 to construct proof trees in a "bottom-up" 

inductive way using T Q , .•• ,T Q • 
I n 

THEOREM 14 

R satisfies the definition of Ip· 

Proof: The proof is not deep, but for the sake of exposition of what is at stake 

we nonetheless give it. 
Suppose that P, L, U, and Sare as in Definition 21. Let A E U, and let T 

be an implication tree with respect to U. To show that R satisfies the definition 

of IP• we must show 

R(A,T,S) (l) 

T = A and A is in ground(P) and A f$. S (2) 

or 

T =A- T 1& ... &Tk and A g: Sand for some (3) 

(A - B 1& ... &Bk) E ground(P): 

R(BpTp {A} US) and ... and R(Bk,Tk, {A} US) 

and 

R (--,A, --, A ,S) {:::::;> not 3T E IT such that R(A, T ,S). (4) 

Now, ( 4) is just a restatement of the second part of the definition of R. 
From Definition 21, to show equivalence (1) it suffices to show 

(2) or (3) iff Tisa proof tree with respect to Sand P, and root (T) =A (5) 

Let Q be the result of filtering P through S. Suppose A is a head of a clause in 
Q. Let Q' be the result of filtering P through {A } U S. Q' does not differ from 
Q in strata below that stratum in which A occurs. Moreover, if A does not oc
cur in T, then T is compatible with Q iff T is compatible with Q'. 

Let T be an implication tree with positive root over U. There are two cases. 

Case 1: T =A. Then Tisa proof-tree with respect to Sand P iff (2). 

Case 2: T =A - T1& ... &Tk. Without loss of generality we may suppose A E 
Sand that A - root(T1)& ... & root(Tk) E ground(P), else both sides of (5) are 
false. 
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Tisa proof tree w.r.t. S and P 

iff (by Definition 21) 

T is a loop-free implication tree compatible with Q and for every 
negative leaf -, B of T, B tf: M index(B), where M 1' .. . Mn are the standard 

interpretations of Q1' ... ,!2z respectively, where~ denotes Q1 U ... U 
Q; 

iff (since B E Mindex(B)' iff there is a proof tree w.r.t. S and Q with 
root B, see below) (6) 

for each T;, i E { l, ... ,k}, if root(T;) is positive, then T; is a loop-free 
implication tree compatible with Q, and for every negative leaf-, B of 

T;,B ft. Mindex(B)' 

and 

if root(T;)is negative, say -, C,>, then there is no proof tree with 
respect to S and Q with root C 1 

iff (since Q and Q' do not differ in strata below that in which A is 
defined) 

iff 

for each T;, i E { 1, ... ,k} if root (T;) is positive, then T;, is a loop-free 
implication tree compatible with Q', and for every negative leaf -, B 
of T;, B fi. M'index(B)• (where M'i is the standard interpretation of Q'i,j 
= l, .. .,k) 

and 

if root (T;) is negative, say -, C;. then there is no proof tree w.r.t. 
{A} U S and Q' with root C;, where Q' is the result of filtering P 
through {A} US 

(3) where B; = root(T;), i ti: { l, .. .,k}. 

Equivalence (6) was justified by 

B E Mindex(B) iff there is a proof tree w .r. t. S and Q with root B. 

Proof trees with respect to S and Q are loop-free implication trees com
patible with S and Q because Q contains no clause head in S. Thus the "if 
direction'' of (6) follows from Proposition 1. 

Suppose B E Mindex(BJ· It is easy to show by an inductive construction that 
there is a loop free implication tree T compatible with Q for which every nega
tive leaf 1 Chas the property that C tE. Mindex(CJ· Once again, since no clause 
head in Q occurs in S, Tisa proof tree w.r.t. Sand Q. • 
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COROLLARY4 

If P is a stratified program, then M P• the standard model of P, is independent 

of the stratification of P. 

Proof: The corollary follows directly from the statement of Theorem 13 since 

we have proved that the definition of IP is satisfiable over fJ x IT x zu. • 

We conclude this section with a remark on the computational complexity of 

Ip. We showed in the previous section that in general Ip by itself does not yield 

a computation procedure capable of verifying that A E M P even when M P and 

all the lower stage standard interpretations are uniformly decidable. Neverthe

less one of our principal areas of application is that of stratified programs with

out function symbols. For such programs Ip does indeed determine a useful 

computation procedure, since the Herbrand base of P is finite. From the point 

of view of worst case complexity, Ip is no worse than ordinary depth first, 

SLD-resolution-based interpreters for purely positive programs. 

EXAMPLE11 

Let P 3 consist of 

c3(0,Q,Q), 

C3(X,Y,l)- C3(X,Y,O), 

C3(X,l,O)- C3(X,0,1), 

C3(l,O,O)- C3(0,l,l). 

The goal (- c3(1,l,l)) produces a successful SLD path consisting of eight 

nodes. Similarly, Ip constructs a proof tree, with c3(1,l,1) as root of height 
3 

eight. P3 causes Ip as well as SLD-resolution to, in effect, run through a 
3 

count-down of a 3-bit binary counter. It should be clear how to construct P 
n 

from example P 3. • 

Now, let P be a positive program in which no function symbols other than 

constants occur. Suppose P contains r relation symbols, each with arity < a, 
and c constants. Let U be the Herbrand base of P. Then 

size( U) < re°, 

Letting II Tp II =leastnsuchthatTpt(n- l)(<!>)=Tptn(<!>),wehave 

11 Tp 11 < size(U). 
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For the programs P n of example 

11 Tp 11 = size(U) = 2n 
n 

and both Ip as well as SLD-resolution are forced to, in effect, enumerate all of 

U when starting with ( - cn(l, .. ., 1)) as goal. Now, size(P n) = O(n). It follows 

that Ip as well as SLD-resolution require, in the worst case,· 0(2size(P0 steps to 

succeed. Lastly, note that in our interpreter the loop check need only add a 

linear time complexity component, because we can represent S as an ordered 

tree; each path in the tree represents a literal A. Lookup and insertion time of A 

is O(length(A)). 

Other Views of Neg(ftion and Stratified Programs 

Our way of interpreting qeg!ltion in the case of stratified programs is through 

choosing Mp as the set of true facts about P. It is helpful to relate this inter

pretation of negation with two other ones proposed in the literature. 

Closed World Assumption (CWA) 

Reiter [1978] proposed the closed world assumption (CW A) as a way of adding 

negative information to logic programs. According to this view any (atomic) 

fact which does not follow from a given program is assumed to be false. Thus 

by definition 

CWA =PU {-,A: A is a ground atom and not P !=A}. 

where " I='? stands for provability in first order logic. (Reiter disallowed func

tion symbols but the problems discussed here do not depend on this 

assumption.) 

This view is certainly a natural one when the program is just a collection of 

facts-if manager(Jones) is not in our database, then we usually conclude that 

Jones is not a manager. Moreover, Reiter (1978] proved that in the case of 

positive programs, CWA is consistent. But while trying to extend this view to 

arbitrary programs somehow our intuitions get lost and, we encounter dif

ficulties (of which Reiter was perfectly aware). Restriction to stratified 

programs is no help. Consider, for example, the stratified program P: p -

--, q. Then P is semantically equivalent top V q, which implies neither p nor 

q. Thus, CWA = P U { 1 p, 1 q} and is inconsistent. The closed world as

sumption leads to difficulties here. Negation seems to be too strong when inter

preted through CW A: Any uncertainty is resolved in a negative way. 
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Completions of Programs 

Another way of adding negative information to the program is that proposed by 

Clark [1978] and called the completion of a program. His idea was to rein

terpret the implications within the program as equivalences. In this way one 

adds to the program the "only if" part which allows us to infer negative con

sequences. 

More formally the completion is defined as follows. (We slightly depart 

here from the original definition as we omit the equality axioms which are 

automatically satisified in Herbrand models when ''='' is interpreted as 

identity.) 

Let x1, ... ,xk, be some variables not appearing in the program. First, trans

form each clause 

of Pinto 

where y 1' ... ,y; are the variables of the original clause. 

Next, change each set of the transformed clauses of the form 

where n > l , into 

Then we denote by comp(P), the completion of P, the formula consisting of the 

conjunction of these equivalences and of formulas 

for each relation q which appears in the program but not in a head of a clause. 

We wish to interpret "=" as identity. Therefore, we add the following 

clause to the definition of semantics: For two variable-free terms s.t. s = t is 

true in I iff s and t are identical. It is well known (see e.g., Shepherdson 

[ 1984]) that for positive programs comp(P) is consistent. We now prove that for 

stratified programs comp(P) is consistent as well. 
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In Apt and van Emden [1982] models of comp(P) for a positive program P 
were characterized as fixed points of T P. Fortunate! y, this characterization 

remains true in the presence of negation. We have 

THEOREM 15 

Let P be a program. Then I is a model of comp(P) iff Tp(I) =I. 

Proof: The definition of comp(P) we use is slightly different than those given 

in Apt and van Emden [1982] (called there the IFF definition) or Lloyd [1984]. 

Nevertheless, all steps of the (straightforward) proof remain the same. A 

doubting reader is encouraged to check the proof sketched in Lloyd [1984). Ill 

This immediately implies the following theorem. 

THEOREM 16 
Let P be a stratified program. Then comp(P) is consistent. 

Proof: We exhibited in the section on model theory a fixed point of 

T P-which is the standard model M p· Thus, M P is a model of comp(P) which 

proves the consistency of comp( P). • 

It is important to note that the views of negation represented by comp(P) 

and Mp do not coincide. Indeed, consider the stratified program P consisting of 

p-p, q--,p. 

Then comp(P) is 

(p-p) & (q-,p) 

which is equivalent to q -- 1 p. We thus have that it is not the case 

that comp(P) f= -, p whereas Mp = { q} . Hence Mp f= - 1 p. 

A Discussion 

It is useful to have a closer look at the consequences of the fact that we inter

pret negation by model theoretic means. This implies that each atomic fact 

about a stratified program P is considered either true (when it belongs to the 

model Mp) or false (when it does not belong to the model Mp). 

This duality does not need to take place when negation is interpreted 

through proof theoretic means. A common feature of the Clark [1978] and 

Reiter [1978] approaches to negation is to extend a given program P to a 

theory, say NP• in which no new atomic facts can be proved and interpret nega

tion by means of that theory. That is to say, for an atomic fact A 
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A is true iff Np I= A 

A is false iff Np != -, A 

Now, if NP is not a complete theory, there is an atomic fact A which is nei

ther true nor false. (We call here a theory T complete if for each atomic fact A 

either n=A or TI= -iA but not both.) When Np is not complete, it is possible 

to establish a result of the form 

A is true in all models of Np iff A can be computed from P, 

A is false in all models of Np iff 1 A can be computed from P. 

In fact, when Np is comp(P) this is the essence of the "completeness of the 

negation as failure'' result proved in Jaffar, Lassez, and Lloyd [1983]. 

There, P is a positive program, Np is comp(P), and the computation 

mechanism is SLD resolution with negation as failure. More precisely, we 

have for all atoms A 

comp(P) I= A iff -A can be refuted from P, 

comp(P) f= --, A iff - 1 A can be refuted from P. 

(The first line in effect states the completeness of the SLD-resolution originally 

proved by Hill [1974].) The case when neither comp(P) f= A nor comp(P) f= 
--, A is simply not handled: The refutation process then leads neither to success 

nor to a finite failure, hence it always diverges. Thus, for such A not truth 

value of A w.r.t. comp(P) is not defined. In such cases, of course, there will 

be models M 1, M2 of comp(P) such that M 1 f= A, and M2 f= -,A. 

The situation changes when NP is a complete theory. Then without any 

restrictions on the syntax we cannot obtain a completeness result even in the 

case of positive programs. Indeed, suppose otherwise. Let W be a recursively 

enumerable, non-recursive set of natural numbers. By the result of Tamlund 

[1977] there exists a positive program P such that for some relation p for all n 

P F= p(n) iff n E W. 

Since Np is complete, we have for all n 

Np f= p(n) iff n E W, 

Np F= -,p(n) iff n $ W. 

Indeed, if n $. W, then P F= p(n) so Np f= p(n) since Np extends P. And if n r:j;. 

W, then not P f= p(n) so not Np f= p(n), since in Np no new positive facts can 
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be proved. This proves the first line and the second follows by the complete
ness of Np. 

This has two consequences. First is that the provability in NP is not recur

sively enumerable (by the second equivalence) so NP cannot be recursively 

axiomatized (see Rogers [1967]). Second, no completeness result for effective 

computation mechanisms is possible. Indeed, in case of completeness we have 
for all n 

n fj. W iff Np f= --,p(n) 

iff p(n) is false 

iff 1 p(n) can be computed from P 

so the relation "A can be computed from P" is not recursively enumerable, 

that is, the computation mechanism is not effective. 

An example of an interpretation of negation through a complete theory NP is 

Reiter's closed world assumption for positive programs. Indeed, as mentioned 
in the subsection on the CWA, it is consistent for positive programs, and if not 

(P + CWA) I= A, then not P I= A and consequently (P + CWA) I= -1A. By 
the above remarks CW A cannot be recursively axiomatized and no complete

ness result for an effective computation mechanism is possible. 

The same negative results hold for our interpretation of negation through the 

model Mp which acts as a complete theory. Thus, we define 

A is true iff Mp I= A 

A is false iff not M P I= A 

In general, while it is beyond the scope of this paper to prove it, it can be 

seen that for a stratified program P containing function symbols and having n 
strata, Mp can be non-recursively enumerable (in fact l~-complete). The proof 
of this result is based on recursion-theoretic considerations similar to that of 

Blair [1982]. Thus, no effective procedure for computing Mp in general is pos
sible. 

The above discussion does not exclude a completeness result for stratified 
programs and the negation interpreted through Clark's completed database. 

We established the first, necessary, step by showing that for a stratified 

program P, comp(P) is consistent but we did not explore the issue any further. 

A warning should be issued to those wishing to investigate this problem. The 
following examples show that no completeness result w.r.t. comp(P) for SLD

resolution with negation as failure (called the SLDNF-resolution) or for our in

terpreter is possible. 
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EXAMPLE12 

Let P be the following program: 

p-p, 

q-p, 

q- --,p. 

Then P is stratified and comp(P) is equivalent to (q--p V 1 p), so comp(P) 
f= q. On the other hand, there is no refutation of - q using SLDNF

resolution. 

EXAMPLE13 
Let P be the following stratified program: 

p-p, 

q - --,p. 

Then comp(P) is equivalent to q-- 1 p so not comp(P) f= q. However, our 
interpreter computes q. II 

Thus, some other computation mechanisms have to be considered. On the 
other hand, we have the following conjecture. 

DEFINITION 22 

Let P be a program and p ,q two relation symbols of P. 

1. We say that p depends positively on q if p depends on q and in the 
dependency graph of P there is at least one path from p to q which con
tains exactly an even number (possibly 0) of negative edges. 

2. We say the p depends negatively on q if p depends on q and in the 
dependency graph of P there is at least one path from p to q which con
tains exactly an odd number of negative edges. 

3. We say that P is strict if for no relation symbols p and q of P, p depends 
both positively and negatively on q. II 

DEFINITION 23 

Let P be a program. Given a clause of P let 

X stand for the set of the variables occurring on its left hand side. 

Y for the set of the variables occurring in a positive literal of the body 
and 
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Z for the set of the variables occurring in a negative literal of the body. 

We say that P satisfies the strong covering axiom if for each of its clauses 

X~Y 

and 

holds. 11 

The first implication is called in Shepherdson [1984] the covering axiom. 

The strong covering axiom ensures that in the SLDNF-resolution only ground 

negative literals need be evaluated. We can now formulate our conjecture. 

CONJECTURE 1 

Let P be a strict stratified program which satisfies the strong covering axiom. 

Then for every ground literal L. 

comp(P) f= L iff -j L can be refuted from P by SLDNF-resolution. II 

(Note: Conjecture 1 was recently proved by Cavedon and Lloyd. Sub

sequently Kunen showed that the result holds even for non-stratified 

programs.) 

Related Work 

Syntax 

As already mentioned in the introduction, stratified programs form a simple 

generalization of the class of formulas C given in section 5 of Chandra and 

Hare! [1985], in which negation is handled in a similar, stratified way. The dif

ference lies in the way the strata are related-for technical reasons, in their 

paper this is accomplished by additional relations which take care of the calls 

involving negative literals. Also, our class of semi-positive programs coincides 

with their class Hj but they are concerned with different issues than we are and 

concentrate on the subject of definability of database queries. In particular, 

they do not allow function symbols. 

Stratified programs were also introduced and studied independently in a 

recent paper of Van Gelder [1988] and, in the context of databases, in Naqvi 

[1986]. A form of stratification for logic programming without negation was 

first introduced by Sebelik and Stepanek [1982). Our definition of stratified 
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programs is a generalization of the concept of the hierarchical constraint of 

Clark [1978] according to which program relations can be assigned to levels so 

that each relation is defined only in terms of relations from the lower levels. 

The hierarchical constraint, in contrast to the stratificiation condition, rules out 

recursive definitions. In fact if we remove negation from the language, then 

programs reduce to positive programs. If we remove recursion from the lan

guage, then they reduce to programs with the hierarchical constraint. The no

tion of stratified programs has been further generalized to locally stratified 
programs in Przymusinski [1988]. 

Lloyd and Topor (1985] give a theoretical basis for deductive databases 

using PROLOG as the query evaluator. They show in particular that SLDNF

resolution does not flounder (does not reach a goal that contains only non

ground negative literals) with general programs and goals provided the program 

and goal is allowed. The concept of being allowed as applied to clauses is 

equivalent to our strong covering axiom. 

Semantics 

The semantics of logic programs with negation based on fixed points is a 

generalization of the approach originating with van Emden and Kowalski 
(1976] and further explored in Apt and van Emden [1982]. Chandra and Harel 

(1985] provide in an informal way a semantics for their class C of programs 

which corresponds to our model M P where the partition of P is into ap
propriately ordered clusters. 

An early approach to provide meaning to logic programs with negation was 

given by Minker [1982] in the context of deductive databases. For this pur
pose, he introduced the concept of a generalized closed world assumption 

(GCWA). Its semantic characterization employs minimal models. 

The notion of minimality arises in many other studies of nonmonotonic 

reasoning as well-see e.g., the notion of circumscription due to McCarthy 

[1980]. In fact, recent work of Lifschitz [1988] provides an alternative defini

tion of the model Mp in terms of a circumscription. His approach leads to a 
simpler proof of Theorem 11. 

The notion of a supported model has also been introduced independently in 
Bidoit and Hull [1986] and called there a causal model. Przymusinski [1988] 

introduced the concept of a perfect model of a database and related it to cir

cumscription and semantics of stratified databases. Stratified databases were 
recently studied in Apt and Pugin (1987], Lloyd, Sonenberg, and Topor 

[1986], and Topor and Sonenberg (1988]. 

Completeness Results in the Presence of Negation 

In Clark (1978], a completeness result for programs with the hierarchical con

straint is sketched. It relates completed programs with SLD-resolution with 
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negation as failure. A rigorous proof is given in Shepherdson [1984]. Another 

completeness result is that of Jaffar, Lassez and Lloyd [1983] mentioned in the 

previous section but only for positive programs. See also Aquilano et al. 

[1986] for a completeness result in the presence of negation and absence of 

divergence ensured by syntactic criteria. A recent paper of Shepherdson [1988] 

provides an extensive overview of the use of negation in logic programming. 

Nonmonotonlc Reasoning· 

An entire issue of the journal Artificial Intelligence [1980] has been published 

on the subject and a conference organized (Proceedings [1984]). Gabbay 

[1985] provides a useful discussion of the problem of when a reasoning method 

can be viewed as a nonmonotonic logic. Our approach based on search for 

fixed points of nonmonotonic operators is very similar in nature to the one 

recently proposed by Sandewall [1985]. 

Interpreters and Other Computation Mechanisms 

Our treatment of a computation mechanism in the form of an interpreter relates 

to the approach taken by Brough and Walker [1984], who studied interpreters 

with various stopping criteria for positive database-like programs. 

Barbuti and Martelli [1986] prove the completeness of SLDNF-resolution 

for a sizeable class of naturally occurring logic programs called structured 
programs. Structured programs form a set of stratified programs. 

Recently, fitting [1985] and Gallier and Raatz [1987] proposed alternative 

computation mechanisms for logic programming based on, respectively, a 

tableau method and an interpreter using graph reduction. 

Use of Logic Programming for Expert Systems 

Walker [1986a] described an implemented expert system shell in Walker 

[1986a], called Syllog, which is based on logic programming. Syllog contains 

an inference engine that computes with database-like programs with negation 

allowed. 

One of the important aspects of expert systems is the ability to reason in 

terms of uncertainty. Recently van Emden [ 1986] extended the results of Apt 

and van Emden [1982] to the case when the facts and rules have some certainty 

factor associated with them. His work can be viewed as orthogonal to ours. 
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