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Abstract—This paper studies methods of quantitatively mea-
suring semantic information in communication. We review exist-
ing work on quantifying semantic information, then investigate
a model-theoretical approach for semantic data compression and
reliable semantic communication. We relate our approach to
the statistical measurement of information by Shannon, and
show that Shannon’s source and channel coding theorems have
semantic counterparts.

I. BACKGROUND

It has long been recognized that the broad subject of
communication goes beyond what Shannon’s theory [54] and
many of its extensions [57] cover. Weaver [60], just one year
after Shannon introduced his information theory, proposed that
communication involves problems at three levels as follows:

“LEVEL A. How accurately can the symbols of
communication be transmitted? (The technical prob-
lem.)
LEVEL B. How precisely do the transmitted sym-
bols convey the desired meaning? (The semantic
problem.)
LEVEL C. How effectively does the received mean-
ing affect conduct in the desired way? (The effec-
tiveness problem.)”

Shannon’s Classical Information Theory (CIT) is deliber-
ately focused on only Level A (technical level), thus, “se-
mantic aspects of communication are irrelevant to the en-
gineering problem” [54]. As a metaphor, Weaver said that
“an engineering communication theory is just like a very
proper and discreet girl accepting your telegram. She pays
no attention to the meaning, whether it be sad, or joyous,
or embarrassing”. On the other hand, Weaver argued that
Shannon’s information theory is general enough to be extended
to consider communication on levels B and C, for instance,

A shorter version of this report has been published in the 2011 IEEE First
International Workshop on Network Science.

by adding “semantic transmitter”, “semantic receiver” and
“semantic noise” to Shannon’s communication model. This
vision is illustrated in Figure 11.

The assumption that “semantics is not relevant” is no
longer true in many forms of modern communications, such
as in database queries, distributed systems, human-computer
interactions, and the Web (particularly the Semantic Web [7]).
There is now a strong need for an extension of the classical
communication model to characterize not only sequences of
bits, but also the meanings behinds these bits. For this goal,
various researchers have studied theories of “semantic infor-
mation” (details discussed in Section II). Notable examples
include the pioneering work of Carnap and Bar-Hillel [9],
Floridi [19, 20], Barwise and Seligman [4, 53], among others.

However, a generic model of semantic communication, as
suggested by Weaver, has still largely remained unexplored
after six decades. Existing works on semantic information
are limited in addressing some fundamental questions in
communication when the semantics of exchanged contents
is no longer negligible. Some of these problems include:
How can semantics help in data compression and reliable
communication? How are semantic coding/decoding related to
the engineering coding/decoding problems? What is semantic
noise? Are there achievable bounds in semantic coding, ana-
logues to the bounds established by Shannon in engineering
communication? What factors should we consider to improve
efficiency and reliability in semantic communication?

This paper summarizes some of our initial work in realizing
Weaver’s vision, by extending Shannon’s theory of (technical)
communication to a theory of Level B (semantic) communi-
cation. Our work is influenced by Carnap and Bar-Hillel [9],
with new contributions in the following areas:

• We show that the work of Carnap and Bar-Hillel is

1Local knowledge and shared knowledge in the diagram are not mentioned
by Weaver.
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Fig. 1. A 3-Level Communication Model

a special case of a model-theoretical characterization
of semantic information sources, and present a generic
model of semantic communication;

• We discuss the role of semantics in reducing source
redundancy, and establish theoretical bounds in lossless
semantic data compression;

• We define the notions of semantic noise and semantic
channel. By extending the Shannon’s channel coding
theorem, we obtain the semantic capacity of a channel.

The model developed in the paper is crude, and many
non-trivial simplifications are made. Most importantly, the
modeling of Level C (utility or effectiveness) communication
is beyond the scope of this paper. We also note that the logic-
based approaches we adopted may not be adequate to capture
semantics in human communications. However, we believe
that these simplifications are necessary for us to focus on the
“core” issues of semantic communication, and that even this
crude model readily yields some interesting results. We believe
this model, after some of the suggested extensions, may form
a foundation for a general theory of semantic communication.

II. RELATED WORK

We first briefly review existing theories of semantic infor-
mation.

Efforts to extend CIT to capture semantic aspects of com-
munication started shortly after Shannon published his paper.
Carnap and Bar-Hillel (1952) [9] were among the first to
introduce a “semantic information theory” (SIT). Their work
is henceforth referred to as Classical Semantic Information
Theory (CSIT).

They distinguish the concepts of information and the
amount of information, and measure the amount of information

in a sentence in a given language based on logical probabilities
(as opposed to the statistical probabilities used in CIT) ranging
over the contents. Intuitively, “A and B” has more information
than “A” because it is less likely to be true: whenever “A and
B” is true, “A” is true, but not vice versa. Similarly, “A” has
more information than “A or B”, and a tautology (which is
trivially true) provides no information.

The logical probability of a sentence, therefore, is measured
by the likelihood that the sentence is true in all possible
situations. For instance, suppose “A” and “B” are independent
of each other, and both are true or false as a result of the
flip of a fair coin. There are 4 possible situations with equal
possibilities (i.e., 0.25):

• A is false, B is false
• A is false, B is true
• A is true, B is false
• A is true, B is true

Therefore, “A and B” is true in only the last situation and
its logical probability is 0.25. Similarly, the logical probability
of “A or B” is 0.75. These can be denoted using a function
m as:

m(A ∧B) = 0.25,m(A ∨B) = 0.75

The amount of semantic information in a sentence A is
defined as the negative logarithmic value of m(A), i.e.,2

Hs(A) = − log2(m(A))

Thus, Hs(A ∧ B) = 2 and Hs(A ∨ B) = 0.415, while
Hs(A) = Hs(B) = 1, matching the intuitions given above.

2Carnap and Bar-Hillel used inf instead of Hs.
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It has been shown that logical inference does not provide
additional semantic information, that is:

A ⊢ B ⇒ Hs(A) ≥ Hs(B)

where ⊢ is the logical entailment relation. Therefore, equiva-
lent sentences contain the same amount of semantic informa-
tion:

A ≡ B ⇒ Hs(A) = Hs(B)

Essentially, CSIT can be regarded as a model-theoretical
approach to assign probabilistic values to logical sentences.
Since paper [9] is limited to propositional logic, Carnap and
Bar-Hillel use truth tables (with each row called a “state
description”), which can be seen as the universe of all possible
models of a propositional sentence, to find the chance that a
sentence is true. In CSIT, there is a close relationship between
the quantity of information in a sentence and the set of its
models. If a consistent sentence has fewer models, it is more
“surprising” and contains more information. This is similar to
the probabilistic logics of Nilsson [47] and Bacchus [2], which
can be extended to first-order languages.

In [19, 20], Floridi developed a Theory of Strongly Seman-
tic Information (TSSI). One of his major motivations is to
solve the so-called Bar-Hillel-Carnap Paradox (BCP) in CSIT,
which states that contradictions have an infinite amount of
information, i.e., m(⊥) = 0, thus Hs(⊥) = ∞, where ⊥
is shorthand for A ∧ ¬A for arbitrary A. The basic idea is
that the informativeness of a statement is measured by the
positive or negative degree of semantic distance or deviation
from “truth”. This is quite different from CSIT, which defines
informativeness as a function over all situations, not over a
particular situation that is chosen to be true.

However, it has been noted that TSSI is incomplete with
regard to quantifying all possible statements [15]. There exist
propositional sentences that cannot be evaluated using the
approach described in [19]. For these reasons, D’Alfonso
([15] section 4) proposed the “value aggregate” method that
captures both inaccuracy and vacuity, based on formal models
of truthlikeness. This method aggregates the differences of all
models of a sentence to those of the “true” state.

Both Floridi and D’Alfonso’s approaches measure the rel-
ative information or misinformation of a statement against
another reference statement assumed to be true. Thus, the
information value is always a value between 0 and 1. This
approach is rooted in the semantic information framework
using information flow and situation theory by Seligman and
Barwise [4, 53] and that of Devlin [17]. However, Floridi
and D’Alfonso’s approaches cannot determine the objective
amount of information when there is no reference state-
ment. Essentially, their work offered a semantic similarity
(or divergence) measurement between two sentences, not a
measurement of uncertainty as Shannon, Carnap and Bar-
Hillel proposed.

Several authors have investigated other approaches of mod-
eling semantic information, e.g., algebraic information theories
[35, 37], universal semantic communication [33, 34] and

semantic coding [61]. Some recent work has been collected in
two proceedings [44, 56]. However, these works do not offer
a quantitative measure of semantic information in inference-
capable sources, nor the study of the role of semantics in
coding, which are our main foci.

III. SEMANTIC COMMUNICATION: A GENERAL MODEL

Before we can investigate the measurement of semantic in-
formation, we need to clearly define semantic information and
semantic communication. The concept of semantic information
is certainly not new. Here we will restrict ourselves to the
engineering description of this notion. For more information
about the philosophical account of semantic information, see
the excellent survey in [20].

A. Goal of Semantic Communication

Note that there is a fundamental difference between the
goal of engineering communication and that of semantic
communication. Shannon stated in his paper [54] that

The fundamental problem of communication is that
of reproducing at one point either exactly or approx-
imately a message selected at another point.

Weaver [60] stated that
The semantic problems are concerned with the inter-
pretation of meaning by the receiver, as compared
with the intended meaning of the sender.

Comparing the two statements, we can state that the goal
of semantic communication is not to reproduce, exactly or
approximately, the messages transmitted, but their interpreta-
tions. For example, consider the conversation:

Alice: “Are you free this weekend?”
Bob: “No, I’m busy on both Saturday and Sunday.”

Alice is a semantic source (sender) and Bob is a semantic
destination (receiver). Bob is able to interpret the meanings
of the received message and relates it to the meanings of
the vocabulary he already knows. He knows that “free” is an
antonym of “busy” and that “weekend” means “Saturday” or
“Sunday”. He is able to infer that “free this weekend” is the
same as “not busy on both Saturday and Sunday”, even if the
two statements are syntactically different.

For a classical information source, a message is a sequence
of symbols. In a semantic information source, a message,
which may still be syntactically viewed as a sequence of
symbols, is in fact an expression composed using the symbols
in the language of the source. What we want to achieve is
the faithful transmission of meanings of these expressions,
not their syntactic representations, which is the concern of
engineering communication.

Now consider a conversation between three persons:
Alice: “Bob, is Charlie free this weekend?”
Bob: “Charlie, Alice asks if you are available this
weekend?”
Charlie: “No, I’m not available on both Saturday and
Sunday.”
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Here Bob serves as a semantic channel between Alice
and Charlie. Bob does not faithfully convey the original
message from Alice, however, he is still able to preserve
the original meaning of the message of the sender. There
may be an engineering failure if we measure the success of
communication “literally”, but there is no semantic failure.

Even if there is no engineering communication failure, there
may still be semantic communication failure. Considering a
conversation about a “Lecturer” in universities, a US person
who is not familiar with UK academic ranks may interpret it
to be similar to a non-tenure-track position in US, whereas
“Lecturer” in the UK is roughly equivalent to “Assistant
Professor” in the US system.

B. Semantic Sources

A real world semantic source may be a complicated system
which can make statements with subtle semantic distinctions.
In this paper, we will not try to model every form of semantic
source, but a very basic type that can make factual statements
in propositional logic. This simplification will help us focus on
the key modeling problem, and we will discuss its extensions
later.

For a hypothetical example, suppose a child asks her father
what is “Tweety”. The father, as an information source, may
do the following:

• (Observing World) He searches the Web and finds a
webpage about Tweety. There are many such pages. Most
of them are about Tweety the bird, but a few are about a
Twitter client, or a basketball player.

• (Inferring) Depending on which page the father visits and
trusts, the father may use his knowledge to come up
with an appropriate answer for his child. For instance,
the webpage may tell him that “Tweety is a canary”, but
since the child may not understand “canary” yet, and the
father knows that canaries are birds, he may infer that
“Tweety is a bird”.

• (Transmitting) The father most likely answers his child in
English that “Tweety is a bird”, but there is some positive
probability that he instead answers “Tweety is software”
or “Tweety is a man”.

For the message “Tweety is a bird”, the unit of symbols is
English words. Thus, from a non-semantic (syntactic) point of
view, the message is a sequence of 4 symbols. Its classic in-
formation can be approximately determined by the frequencies
of English words.

Now, we regard this message as a semantic message, e.g.,
a human friendly coding of the proposition birdTweety. The
source states it because the source believes that it is “true”
w.r.t. its observations about the world3. On the other hand,
whether a message is true or not is irrelevant in classical
information theory.

Informally, we say a semantic source is an entity that can
emit messages using a given syntax, such that these messages

3It’s possible that a source intentionally sends out wrong messages to
deceive the destination. However, we believe that such situations should be
studied as Level C communication, not as Level B (semantic).

are “true” in the source, according to its state and inference
capabilities.

C. A Semantic Communication Model

What, then, is semantic communication? When a semantic
information source (e.g., the father in the example above)
sends a message, the source expects the destination (e.g.,
the child) to “understand” the message to some degree. The
destination, thus, rather than mechanically decoding the syntax
of the message, will be able to draw conclusions from the
received message, as well as from its current local knowledge.
In the above example, the child, after learning that “Tweety is
a bird”, may infer that “Tweety is an animal”, if her knowledge
base tells her that “birds are animals”.

Figure 2 characterizes a model of semantic communication
we will use in this paper. Formally, a semantic information
source is a tuple (Ws,Ks, Is,Ms), where

• Ws is the model of worlds potentially observable by the
source;

• Ks is the background knowledge base of the source;
• Is is the inference procedure used by the source;
• Ms is the message generator used by the source to encode

a message.
In this model, the source builds its own world model by

observing the outside world. In the “Tweety” example, the
world is observable using a search engine. In this generic
model, we do not specify how the world is represented, and
the kind of semantic relations between the world model and
the messages. There are several different ways this may be
done, e.g., by using model-theoretic semantics, operational
semantics, lexical semantics, or by many forms of cognitive
models of semantics [14].

The message generator (or semantic encoder) generates
messages according to defined strategies. Since usually there
are many different but semantically valid ways to describe one
situation, the message generator has great freedom in picking
a “good” code. For instance, the generator may send messages
that are most accurate, or that are easy to generate (according
to some cost function), or that the destination is most interested
in. Also, similar to the engineering transmitter, the message
generator may deal with both how to reduce redundancy in
messages (source coding), and how to improve the reliability
of the transmission (channel coding).

Possible outputs of the message generator can be seen as
an interface language for the source. For instance, regarding a
graph, one interface language may be the reachability between
nodes; another may be minimal distances between nodes.

The generated message will be transmitted over a conven-
tional (i.e., non-semantic) channel, in which a conventional
transmitter and a conventional receiver will take care of the
engineering coding/decoding tasks.

Analogous to the source, a semantic information destination
(receiver) is a tuple (Wr,Kr, Ir,Mr), where

• Wr is the world model of the receiver;
• Kr is the background knowledge base of the receiver;
• Ir is the inference procedure used by the receiver;

4



Fig. 2. Semantic Information Source and Destination

• Mr is the message interpreter (semantic decoder).
A semantic communication error occurs if the message to

be sent is “true” at the source (w.r.t. Ws, Ks and Is), but the
received message is “false” at the destination (w.r.t. Wr, Kr

and Ir). The error may be due to losses in source coding, noise
in the channel, losses in decoding, or their combinations.

Note that background knowledge and inference procedures
may be fully or partially shared by the source and the desti-
nation in semantic communication. It is possible for them to
use different background knowledge or inference rules, which
may lead to different truth evaluations and, hence, semantic
mismatches. There may also be feedback channels from the
destination to the source. The source, channel and destination
all may have memories (e.g., a Markov source), or may be
continuous. To simplify discussion, we leave these extensions
for future work.

IV. MEASURING SEMANTIC INFORMATION AND
SEMANTIC DATA COMPRESSION

Now we discuss the general principles of measuring the
amount of semantic information of sources, and the role of
semantics in data compression (source coding). A model-
theoretic semantics is studied in this and the next section, but
we note that this is not the only possible approach in realizing
our generic semantic communication model.

A. Entropy of Semantic Messages

In CIT, the entropy of a message is determined by the
statistical probability of the symbols appearing it. In CSIT, the
entropy of a statement is determined by its logical probability,
i.e., the likelihood of observing a possible world (model)
in which this statement is true. To see the difference, for
instance, the message “Rex is not a tyrannosaurus” (M1) is
less “surprising” than “Rex is not a dog” (M2), not because

the word “tyrannosaurus” is more common than “dog”, but
because the individuals represented by “tyrannosaurus” (now
considered extinct) are less common than the individuals
represented by “dog”. Thus, M1 has less semantic information
than M2, even if it may have more Shannon information based
on the statistical distribution of English words.

As another example of a semantic information source in a
broader sense, information carried by DNA is encoded using
a four-letter alphabet (bases A, G, C, U). DNA’s syntactical
entropy can be obtained using statistical studies of bases or
sequences of bases, with estimation ranging from 1.6 to 1.9
bits per base [3, 41, 51]. However, the “semantics” of DNA is
only expressed after a complex process, producing functional
gene products such as RNAs or proteins. The process is not
yet fully understood, but it has been observed that variations of
DNA do not necessarily result in different gene products [59],
nor will DNA be expressed in exactly the same way under
different conditions [45, 46]. If we measure the amount of
information carried in a DNA molecule based on its functional
gene products, our conjecture is that it might be different from
the DNA’s syntactical entropy.

Below, we define semantic entropy, following and extending
the CSIT approach. For simplicity, as in [9], we restrict our
discussion to propositional logic.

We assume that the source has the following properties:
• The world model Ws is a set of interpretations with

a probability distribution µ. For propositional logic, an
interpretation is a set of positive propositions.

• The inference procedure Is is a satisfiability reasoner for
propositional logic.

• The message generator Ms generates messages by some
fixed coding strategy, such that if the observed value of
the world model is w and it generates a message x, it
must be the case that w � x (verified by Is), where � is
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the usual propositional satisfaction relation.
We will omit the subscript s when there is no confusion.

Let H(W ) be the Shannon entropy of W , i.e.,

H(W ) = −
∑
w∈W

µ(w) log2 µ(w)

If the source is a classical source with W as the symbol set,
H(W ) will be precisely the entropy of the source. We call
H(W ) the model entropy of the semantic source.

For a message (sentence) x, let Wx be the set of its models,
i.e., worlds in which x is “true”, Wx = {w ∈ W |w � x}.
Note that, unlike CSIT, which relies on counting models of
a sentence, when interpretations have different probabilities,
what matters is the total probability of models of the sentence,
not the cardinality of the set of models. Then, the logical
probability of a message (sentence) x is

m(x) =
µ(Wx)

µ(W )
=

∑
w∈W,w�x

µ(w)∑
w∈W

µ(w)

Since µ is a probability measure, when W is not constrained
by the background knowledge,

∑
w∈W

µ(w) = 1.

As in CSIT, we define the semantic entropy of x as

Hs(x) = − log2(m(x))

Carnap and Bar-Hillel [9] gave some justifications for using
logarithm in their definition. The measurement satisfies some
common-sense requirements for measuring semantics. For
propositional logic, we observe:

• Hs(A ∧B) ≥ Hs(A)
• Hs(A ∨B) ≤ Hs(A)
• Hs(A ⊢ B) ⇒ Hs(A) ≥ Hs(B)
• Hs(A ∨ ¬A) = 0

B. Conditional Entropy and Background KB
CSIT is concerned with inferring logical probability (thus,

semantic information) of a propositional expression when
• There is no background knowledge
• These propositions are independent of each other
In this subsection, we relax these two assumptions. When

there is a background knowledge base K, the set of possible
worlds will be restricted to the set compatible with K. The
semantic entropy of a sentence is represented as a conditional
logical probability:

m(x|K) =

∑
w∈W,w�K,x

µ(w)∑
w∈W,w�K

µ(w)

and
Hs(x|K) = log2 m(x|K)

For a simple example, suppose4p(A) = p(B) = 0.5, A,B
independent and we have the background knowledge K =
{A → B}. The truth table is

4We always use p to represent statistical probabilities, and m for logical
probabilities.

# A B A → B probability
1 0 0 1 0.25
2 0 1 1 0.25
3 1 0 0 0.25
4 1 1 1 0.25

Then the universe of possible worlds “shrinks” to the set of
truth assignments in which A → B is true, i.e., cases 1, 2 and
4. Therefore, we now have conditional logical probabilities

m(A|K) = 1/3

m(B|K) = 2/3

m(A ∧B|K) = 1/3

Logical probabilities are different from a priori statistical
probabilities due to the presence of background knowledge.
In the new distribution, A and B are no longer logically
independent (as m(A|K)m(B|K) ̸= m(A ∧B|K)).

Let µ′ be the new distribution of the set of models when K
is present, that is,

µ′(w) =
µ(w)∑

v∈W,v�K µ(v)

H(W |K) = −
∑

w∈W,w�K
µ′(w) log2(µ

′(w))

The model entropies of the source in the example without
and with the background knowledge are

H(W ) = −4 ∗ 0.25 log2(0.25) = 2

H(W |K) = −3 ∗ 1/3 log2(1/3) = 1.585

It seems that the presence of background knowledge reduces
the informativeness of the source. This is true when the source
does not share background knowledge with the destination.
However, if the background knowledge is shared, the reduction
in semantic entropy means that we can compress the source
without losing information. In general, with the help of shared
background knowledge, we will be able to communicate with
shorter messages to achieve the maximal informativeness of
the source. In the example above, this means that state descrip-
tions (the most informative messages) need only 1.585 rather
than 2 bits to describe. The 21% saving is the contribution of
the shared background knowledge in compressing the source.

C. Semantic Source Coding

For a propositional logic with finite n propositions, the
size of all possible interpretations (worlds) is finite (2n).
The number of all possible messages (syntactically valid
propositional expressions), however, may be infinite if the
length of messages is not restricted. Since an interpretation
in general cannot uniquely determine messages, a semantic
coding strategy is necessary.

For an information source of engineering interest, the num-
ber of all possible messages is in general only finite, or
is restricted in other ways. The interface language of the
source thus only allows a subset of all possible messages. For
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example, a Twitter post is limited to 140 characters, and a G-
rated movie cannot contain scenes unsuitable for children. For
a given interface language, a semantic coding strategy needs
to achieve two potentially conflicting goals:

• Maximizing expected faithfulness in representing ob-
served worlds;

• Minimizing expected coding length.
Let X be a finite set of allowed messages. A seman-

tic coding strategy is a conditional probabilistic distribution
P (X|W ). A deterministic coding is a special case of coding,
where each w ∈ W has at most one possible coded message.
Given µ(W ) and P (X|W ), the distribution of expressed
messages P (X) can be determined using

P (x) =
∑
w

µ(w)P (x|w)

Let us define H(X) as the Shannon entropy of messages
X with the distribution P (X), i.e.,

H(X) = −
∑
x∈X

P (x) log2 P (x)

The following theorem establishes the relation between the
model (semantic) entropy and the message (syntactic) entropy
of a source:

Theorem 1: H(X) = H(W ) +H(X|W )−H(W |X).
Proof sketch: By definitions of entropy and conditional

entropy.
Intuitively, H(X|W ) measures semantic redundancy of the

coding, and H(W |X) measures semantic ambiguity of the
coding. The theorem states that message entropy can be
larger or smaller than model entropy, depending on whether
redundancy or ambiguity is larger.

When H(X) < H(W ), there is an information loss
(H(W ) − H(X)). Sometimes, the loss in coding is an in-
tentional and desired compression of the source. For instance,
textual description of an image gives only a semantic abstract
of the image. A temperature report about a city usually
gives only an average value, hiding detailed reports from
participating temperature monitoring stations.

We can also view the model entropy of a semantic infor-
mation source as the maximal expected (message) entropy
per message without redundancy. Let Hmax be the maximal
message entropy of a source, then

Hmax = sup
{X}

{∑
σ∈X

p(σ) log2 m(σ)

}
When there is no redundancy, every pair of messages have

no shared models. Also since for any w � σ, m(σ) ≥ µ(w),
therefore

Hmax = −
∑
w∈W

µ(w) log2(µ(w)) = H(W )

Such maximality is reached when the messages are descrip-
tions of the models themselves. In the case of CSIT, this means
that a most informative coding will always give the full state
description.

D. Use Semantics for Data Compression

Some extensions of CIT exploit side information, i.e., re-
ceiver’s prior knowledge about the sender, to reduce the length
of the code. Classical results in this area [55] describe how to
achieve optimal coding with respect to the joint entropy of the
source and the side information. In semantic communication,
shared knowledge and inference procedures may act as a
special kind of side information to improve coding efficiency
(i.e., compression). On the other hand, unlike in CIT, semantic
side information is not represented as distributions, but as
logical statements and inference procedures.

With the presence of semantics, some messages may be
semantically equivalent to other messages, and if the equiv-
alency is captured by shared knowledge, this can be used to
compress the source. For example a → (a ∧ b) ∨ (b ∧ c) can
be reformulated as a → b. If a message has many equivalent
forms, we can pick a subset of the forms, hence reducing the
entropy of the source without a “real” (semantic) loss.

To what extent is semantic compression possible? For a
source with a message interface language X and message
distribution P (X), let X be the smallest subset of X such
that

∀x ∈ X, ∃x ∈ X s.t. x ↔ x

and
P ′(x) =

∑
x s.t. x↔x

P (x)

For a message x in X , x is its unique semantic normal form
in X . The next theorem states the bound for lossless semantic
compression.

Theorem 2: For a semantic source with interface language
X , there exists a coding strategy to generate a semantical-
ly equivalent interface language X ′ with message entropy
H(X ′) ≥ H(X). No such X ′ exists with message entropy
H(X ′) < H(X).

Proof sketch: The existence part is trivial. The non-existence
part is shown by the uniqueness of semantic equivalent normal
forms.

The difference H(X) − H(X) can be a large reduction
if the redundancy in semantically equivalent messages is
large. For example, a formula in full disjunctive normal form
with j different clauses and k different propositions has at
least k!j! semantically equivalent forms. For propositional
logic with n propositions, 22

n

semantic equivalence classes
of messages exist. If 22

n

< |X| (|X| is the cardinality of
the set of messages), the reduction can be significant. For
example, suppose our vocabulary allows only connectives ∨,∧
and n proposition names. A propositional message can be
represented with a grammar tree with internal nodes labeled
with connectives and leaves being propositions. A grammar
tree of depth d (thus, with message length O(2d

2

)) may have
2d(d+1)/2n2d possible variations. Thus, for

d ≥
√
(1/2 + 2 log n)2 + 2n+1

22
n

< |X| is true. This translates into a message length limit
of O(22

n+1

) or larger.
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Other semantic data compression strategies may be ex-
plored. One possible approach is to reduce the model en-
tropy of a source, e.g., instead of measuring all models,
measure only minimal models [39]. When some semantic
infidelity is allowed, lossy semantic coding strategies may be
used based on semantic similarity between messages (e.g.,
“black”→“dark”).

E. Implementation

A semantic information calculator has been provided5. The
calculator is able to calculate the semantic entropy of a propo-
sitional message and the model entropy of a propositional
semantic information source.

V. SEMANTIC NOISE AND CHANNEL CODING

A. Semantic Noise

For communication over a noisy channel, the received
message may contain errors. The noise may be added either
at the engineering level or at the semantic level. Below are
some examples of semantic infidelity in communication:

• The meaning of a message is changed due to transmission
errors, e.g., from “copy machine” to “coffee machine”.

• Translation of one natural language into another language
where some concepts in the two languages have no
precise match;

• The source uses English units, while the receiver under-
stands it using metric units (e.g., during the loss of the
Mars Climate Orbiter6);

• A message may be misunderstood due to cultural dif-
ferences, as demonstrated in the incidents of UK Prime
Minister David Cameron’s wearing of a poppy during a
visit to China7 and in Karen Hughes’ speech on women’s
rights to a non-US audience [12].

A key difference between engineering communication and
semantic communication is how infidelity is handled. Let
X be the input of the channel and Y be the output of
the channel. In engineering communication, the goal is to
minimize the expected difference between X and Y , and a
particular mapping x → y (x is a value of X and y is a value
of Y ) is either a match or not. In semantic communication,
we are concerned with, instead of syntactic preservation of the
message, the semantic similarity between the input and output
messages. Also note that not all syntactic errors will lead to
semantic errors. Suppose that the input message is x1 → x2

and the received message is x2 ∨ ¬x1, there is no semantic
loss. Thus, the semantic effect of noise may be lower than its
impact on syntax transmission due to the presence of semantic
redundancy.

In this paper we will not address communication failures
due to culture, contexts, background knowledge, default as-
sumptions, or other factors that may influence effectiveness

5http://www.cs.rpi.edu/∼baojie/sit/index.php
6http://en.wikipedia.org/wiki/Mars Climate Orbiter
7http://bit.ly/fhMzUn

(“Level C”) of communication. A general discussion of com-
munication failure is also beyond the scope of this paper.

For a source state (interpretation) w, an input message x and
an output message y, there are two kinds of semantic errors8:

• Unsoundness: the sent message is true but the received
message is false, i.e., w � x but w ̸� y

• Incompleteness: the sent message is false but the received
message is true, i.e., w � y but w ̸� x

Some communication tasks may tolerate one kind of error
(e.g., incompleteness) more than the other. In this paper, since
we do not consider lossy source coding, i.e., w � x is always
true, our goal is to reduce unsoundness, formally stated as:

max
∑
w�y

p(w, x, y)

where p(w, x, y) is the joint distribution of w, x, y. For a
semantic source, p(w, x, y) = p(y|w, x)p(w, x) where

p(y|w, x) = p(y|x)

since transmission of the message is independent of source
coding. Note that p(y|x) is the semantic channel transition
distribution.

p(w, x) = p(x|w)µ(w)

where p(x|w) is determined by the semantic encoder (message
generator), and µ(w) is the logical distribution of interpreta-
tions. Thus, our goal is

max
∑
w�y

p(y|x)p(x|w)µ(w)

Since p(y|x) is determined by the semantic channel, and
µ(w) is determined by the source, the goal of semantic channel
coding thus is to optimize the coding scheme p(x|w), i.e.,
given an observed world, choose the strategy that can best
tolerate noise. For instance, if a voice channel has a high
possibility of confusing “p” and “ff”, “copy machine” may
be received as “coffee machine”. Alternatively, assuming that
both sides use “Xerox” as a synonym of “copy machine”,
“Xerox” may reduce the chance of misunderstanding.

Another way to overcome noise is to introduce semantic
redundancy into a message. For example, in HTML, an ‘img’
object (image) may have an ‘alt’ attribute which gives a textual
description of the image and will be shown instead if the image
itself is not transmitted. Note that semantic redundancy may
not necessarily lead to syntactical redundancy. For example,
suppose the topic of communication is weekdays, then the
message “Mon∨Tue∨Wed∨Thu∨Fri” can be reformulated as
a shorter message “¬Sat∧¬Sun”. The two parts of the refor-
mulated message contain semantic redundancy such that if one
part is lost in transmission, the received message is still sound
(although not semantically equivalent to the original message).

8Note that here we implicitly adopted a global semantics assumption, that
is, the sender and the receiver share the same universe of interpretations.
Under certain circumstances, this assumption may not be valid and a local
model semantics [23] may be needed.
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B. Semantic Channel Capacity

Analogous to CIT, a noisy semantic channel has a capacity
limit such that a transmission rate can be achieved with
arbitrarily small semantic errors within the limit. First, we
explain some notations to be used in the theorem.

• I(X;Y ) = H(X)−H(X|Y ) is the mutual information
between X and Y . It represents syntactical channel
equivocation, which may be a result of technical noise
or non-literal semantic transmission.

• HKs,Is(W |X) is the equivocation of the semantic en-
coder, given the sender’s local knowledge Ks and in-
ference procedure Is. Intuitively, a higher HKs,Is(W |X)
means higher semantic ambiguity in semantic coding.

• Hs;Kr,Ir (Y ) = −Σyp(y)Hs(y) is the average logical
information of received messages, given the receiver’s
local knowledge Ks and inference procedure Is. A higher
Hs;Kr,Ir (Y ) means stronger ability of the receiver to
interpret received messages.

For a simplified model, we assume Ks = Kr and Is = Ir
and omit the subscript. The limit is given in the theorem below:

Theorem 3 (Semantic Channel Coding Theorem): For ev-
ery discrete memoryless channel, the channel capacity

Cs = sup
P (X|W )

{I(X;Y )−H(W |X) +Hs(Y )}

has the following property: For any ϵ > 0 and R < Cs, there
is a block coding strategy such that the maximal probability
of semantic error is < ϵ.

The argument of sup is the semantic coding strategy. A
proof sketch is given in the appendix. The proof uses a strategy
similar to that used by Shannon [54] in deriving engineering
channel capacity, using the Asymptotic Equipartition Property
(AEP).

Note that semantic channel capacity may be higher or
lower than the engineering channel capacity (sup{I(X;Y )}),
depending on whether Hs(Y ) or H(W |X) is larger. This
implies that using a semantic encoder with low semantic
ambiguity and a semantic decoder with strong inference ability
and/or a large shared knowledge base, we may achieve high-
rate semantic communication using a low-rate engineering
channel.

VI. DISCUSSIONS

The basic model presented in the paper has many lim-
itations. However, we believe the model is fairly general
for future extensions. Some such potential extensions have
been discussed in the paper. Here, we list some additional
extensions.

A. Intended Messages and Expressed Messages

It is often the case that people intend to say something, but
due to practical reasons or restrictions in the language, are
not able to express precisely the intended message (see Figure
1). A person in a foreign country with limited knowledge of
the local language, a little child with a small vocabulary, or
an animal trainer who must give instructions using symbols

comprehensible to an animal, are some typical examples. An
intended message is an exact coding of the observed world,
while what is actually expressed, an expression, may or may
not be the same, hence causing a semantic loss.

Sometimes, the loss is intentional and of practical value,
e.g., the loss caused by an abstract of a paper, a real-time
voice commentary of a game, or transcript of a talk. In our
simplified model, we do not distinguish intended messages
from expressed messages, but studying their relations is cer-
tainly important in the future.

Lossy source coding studies finding expressed messages
with minimal expected semantic errors with respect to intend-
ed messages. Such a coding strategy may rely on semantic
similarity measurements between messages. There is an exten-
sive literature on similarity measuring, e.g., [10, 40, 50]. Some
promising candidates include Lin’s similarity measure [40] and
Normalized Compression Distance [58].

B. First-Order Languages

For a first-order language, it may not have the finite model
property, or the finite domain property for its models. Thus,
it may be difficult to evaluate the distribution of its models.
Therefore, it may be difficult to obtain model entropy of a
semantic source with a first-order language as background
knowledge. We also need to consider several additional syntax
constructs:

• How to handle variables?
• How to handle quantifier?
• What are the logical probabilities of first-order sentences

with/without free variables?
When we talk about probability of a logical sentence, it

should be noted there are two types of probabilities [26]. For
the first type (type-1), the probability on the domain, which
can be used to give semantics to formulae involving questions
like “for a randomly selected individual in a randomly chosen
model, the chance that this individual is an instance of A is
0.5”. Type-1 probability may be empirically determined by
sampling the domain of possible models without considering
any background knowledge.

The second type (type-2) of probability, which is essentially
what Bar-Hillel and Carnap have used in their propositional
version of CSIT, is a probabilistic distribution on possible
worlds, or degree of belief as called by some authors [26].
It involves questions like “The probability that F is true is
0.5” where F is a first-order sentence (i.e., a formula without
free variables), e.g., ∃xA(x). F is true in some models, and
false in some other domains. The likelihood that F is true will
be a statistical measurement over the set of all models, but not
over domains of these models. Evaluating type-2 probability is
related to the probabilistic logics of Nilsson [47], Scott [52],
Gaifman [22] and many of their follow-up work on first-order
logic (e.g., [2, 30], also see a survey [16]).

In first-order logic, since the domain of models may vary,
we need to know the distribution function µ of models.
Different assumptions may be made when we work with
different domains. A generic a priori distribution may be the
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“algorithmic Solomonoff probability” [29] of models accord-
ing to their minimal descriptive length, i.e., their Kolmogorov
complexity. That is, the chance that we choose a model s is
2−K(s), where K(s) is the Kolmogorov complexity of model
s. Intuitively, in this distribution a “simple” model is preferred.
As neither Kolmogorov complexity nor algorithmic probability
is computable, some approximations may be used instead.

In some domains, we may use assumptions about the model
distributions based on properties of models. For example, if
the models are set of tweets, then one possible distribution is
by their authors. Another possible assumption is by the size
of models. For instance, the size of city follows the Rank-size
distribution (Zipf’s law) [21], and the number of some animals
in a region follows the Poisson distribution.

Extending SIT to first-order language would help connect
this area to the Semantic Web [7], as Semantic Web languages
such as RDF [6], OWL [5] and RIF [8] are rooted in
some variations of first-order languages. For instance, efficient
information-theoretical algorithms for ontology compression,
ontology mapping, and ontology transmission may be discov-
ered as a result.

C. Semantic Misinformation

When a message or knowledge base is not consistent, it may
still carry some useful information, but may also carry some
misinformation. Both information and misinformation should
be measured. In CSIT, Bar-Hillel and Carnap didn’t separate
the two notions, hence producing the Bar-Hillel-Carnap Para-
dox (BCP). Bar-Hillel and Carnap have commented this issue
in their paper:

“It might perhaps, at first, seem strange that a self-
contradictory sentence, hence one which no ideal
receiver would accept, is regarded as carrying with
it the most inclusive information. It should, however,
be emphasized that semantic information is here not
meant as implying truth. A false sentence which
happens to say much is thereby highly informative in
our sense. Whether the information it carries is true
or false, scientifically valuable or not, and so forth,
does not concern us. A self-contradictory sentence
asserts too much; it is too informative to be true.”
[9]

BCP may lead to counterintuitive consequences or practical
difficulties in applications. For instance, suppose we have a
large knowledge base9:

A1 ∧A1,∧... ∧Ak

for a very large k. If we add a “small” inconsistency to the
knowledge base, such as

A1 ∧A1,∧... ∧Ak ∧ ¬Ak

then suddenly the knowledge base becomes (trivially) most
informative. As a large knowledge base (e.g., the Web) is very

9We use “knowledge base” to refer information sources or messages,
depending on the context where it is used.

likely to be inconsistent, the applicability of CSIT would be
limited due to BCP.

Another issue of BCP is that it makes no difference between
contradictions of different kinds. For instance, one may expect
that (A∧¬A)∧ (B ∧¬B) is “worse” than A∧¬A. However,
in CSIT, both of them have the same maximum amount of
information. As such, CSIT is not able to measure misinfor-
mation.

Solutions to BCP include assigning to all inconsistent cases
the same infinite information value [42], excluding inconsis-
tent cases [31], assigning to all inconsistent cases the same
zero information [1, 43], and measuring information based on
truthlikeness [15, 19].

To measure semantic misinformation, we plan to extend
the model-theoretical semantics we studied to a paraconsistent
semantics, e.g., Logic of Paradox (LP) [48]. D’Alfonso [15]
has first proposed this approach. However, he does not distin-
guish information and misinformation. We also note that the
LP semantics is not the only choice for handling inconsistent
knowledge. There is a large body of study on measuring
incoherence or inconsistency in logics, e.g., the ones using
alternative semantics [18] [62] [27], operational semantics
[36], and other approaches [28] [49] [24]. The LP semantics is
preferred due to its relative simpleness and that it is a natural
extension of our model-theoretical approach10.

D. Semantic Mismatch

Semantic mismatch may arise from differen reasons. If
the sender and the receiver use different local knowledge
bases or inference procedures, a received message may not
be interpreted as intended.

Another potential cause of semantic mismatch is when the
the sender and the receiver do not share the same universe of
interpretations. A local model semantics [23] could be needed
for this case, which has been widely used in studying semantic
differences due to contextuality and modularity in knowledge
bases.

Different model distributions may also lead to semantic
mismatches. In extensions of CIT, if the sender and the
receiver do not have an agreed symbols distribution, errors in
decoding is almost unavoidable [32]. We plan to study whether
we can extend [32] for addressing semantics.

E. Semantic Noises

Semantic noises are different from technical noises, which
can be modeled as a random process. Typical technical noise
patterns, e.g., Additive white Gaussian noise (AWGN), are
useful for gaining insight into the behavior of a noisy commu-
nication channel before we consider other more complicated
reasons for communication interferences. We are going to
extend our framework to study questions like: Are there typical
semantic noise patterns that we can precisely model? How
semantic noise is related to semantic mutual information? How
such noise patterns affect lossy communication?

10Many properties of classic logics still hold in the LP semantics, e.g., De
Morgan’s laws. However, modus pollens does hold in the LP semantics
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F. Relation to Algorithmic Information Theory

Another related area of research is Algorithmic Information
Theory (AIT) [11] and Kolmogorov Complexity [38]. It has
been shown that Shannon’s statistical definition of information
is closely related to algorithmic information as measured by
Kolmogorov complexity [25]. How is SIT related to AIT?
Are there universal semantic coding algorithms (i.e., distri-
bution independent) corresponding to universal (syntactical)
coding algorithms studied in AIT? How resource-bounded
Kolmogorov complexity is related to bounded rationality in
communication? We believe investigating these connections
may help us to better understand the both areas.

VII. CONCLUSION

In this paper, we presented some initial results of our
investigation into measuring semantic information and seman-
tic coding. We proposed a model-theoretical framework for
measuring semantic information in information sources and
communication channels.

An interesting result is that the fundamental theorems
of classical information theory have semantic counterparts.
These theorems reveal the existence of some semantic coding
algorithms for data compression and reliable communication.
However, as in Shannon’s paper [54], these theorems do not
tell us how to develop optimal coding algorithms. We note that
for both source coding and channel coding, bound-achieving
algorithms could be computationally difficult. Efficient seman-
tic coding algorithms deserve further investigation.

This paper is intentionally focused on an abstract basic
model of semantic communication so that we can focus on
the “core” issues. We will extend the framework in future
work as suggested in the discussion section.
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information and kolmogorov complexity. CoRR c-
s.IT/0410002 (2004).

[26] HALPERN, J. Y. An analysis of first-order logics of
probability. Artif. Intell. 46 (December 1990), 311–350.

[27] HUNTER, A. Measuring inconsistency in knowledge via
quasi-classical models. In AAAI/IAAI (2002), pp. 68–73.

[28] HUNTER, A., AND KONIECZNY, S. Measuring inconsis-
tency through minimal inconsistent sets. In KR (2008),
pp. 358–366.

[29] HUTTER, M., LEGG, S., AND VITANYI, P. M. Algorith-
mic probability. Scholarpedia 2, 8 (2007), 2572.

[30] JAUMARD, B., FORTIN, A., SHAHRIAR, M. I., AND
SULTANA, R. First order probabilistic logic. In Fuzzy
Information Processing Society, 2006. NAFIPS 2006.
Annual meeting of the North American (June 2006),
IEEE, pp. 341 – 346.

[31] JEFFREY, R. The Logic of Decision. University of
Chicago Press, 1983.

[32] JUBA, B., KALAI, A. T., KHANNA, S., AND SUDAN, M.
Compression without a common prior: an information-
theoretic justification for ambiguity in language. In
Innovations in Computer Science - ICS 2011, (Jan 2011),
Tsinghua University Press, pp. 79–86.

[33] JUBA, B., AND SUDAN, M. Universal semantic commu-
nication i. In STOC (2008), pp. 123–132.

[34] JUBA, B., AND SUDAN, M. Universal semantic com-
munication ii: A theory of goal-oriented communication.
Electronic Colloquium on Computational Complexity
(ECCC) 15, 095 (2008).

[35] KOHLAS, J., AND SCHNEUWLY, C. Information algebra.
In Sommaruga [56], pp. 95–127.

[36] KONIECZNY, S., LANG, J., AND MARQUIS, P. Quan-
tifying information and contradiction in propositional
logic through test actions. In Proceedings of the 18th
international joint conference on Artificial intelligence
(San Francisco, CA, USA, 2003), Morgan Kaufmann
Publishers Inc., pp. 106–111.

[37] LANGEL, J. Logic and Information, A Unifying Ap-
proach to Semantic Information Theory. Ph.d. disser-
tation, Universitat Freiburg in der Schweiz, 2009.

[38] LI, M., AND VITNYI, P. M. An Introduction to Kol-
mogorov Complexity and Its Applications, 3 ed. Springer
Publishing Company, Incorporated, 2008.

[39] LIFSCHITZ, V. Computing circumscription. In IJCAI
(1985), pp. 121–127.

[40] LIN, D. An information-theoretic definition of similarity.

In ICML (1998), pp. 296–304.
[41] LOEWENSTERN, D., AND YIANILOS, P. N. Significantly

lower entropy estimates for natural dna sequences. Jour-
nal of Computational Biology 6, 1 (1999), 125–142.

[42] LOZINSKII, E. Information and evidence in logic sys-
tems. Journal of Experimental & Theoretical Artificial
Intelligence 6, 2 (1994), 163–193.

[43] MINGERS, J. The nature of information and its rela-
tionship to meaning. Taylor & Francis, Inc., Bristol, PA,
USA, 1997, pp. 73–84.

[44] NAFRIA, J. M. D., AND ALEMANY, F. S., Eds. What
is really information? An interdisciplinary approach
(2009), vol. 7, tripleC.

[45] NAKAMOTO, T. The initiation of eukaryotic and prokary-
otic protein synthesis: a selective accessibility and mul-
tisubstrate enzyme reaction. Gene 403, 1-2 (2007), 1–5.

[46] NAKAMOTO, T. Evolution and the universality of the
mechanism of initiation of protein synthesis. Gene
(2009).

[47] NILSSON, N. J. Probabilistic logic. Artif. Intell. 28, 1
(1986), 71–87.

[48] PRIEST, G. Logic of paradox. Journal of Philosophical
Logic 8 (1979), 219–241.

[49] QI, G., AND HUNTER, A. Measuring incoherence in de-
scription logic-based ontologies. In ISWC/ASWC (2007),
pp. 381–394.

[50] RESNIK, P. Semantic similarity in a taxonomy: An
information-based measure and its application to prob-
lems of ambiguity in natural language. J. Artif. Intell.
Res. (JAIR) 11 (1999), 95–130.

[51] SCHMIDT, A. O., AND HERZEL, H. Estimating the
entropy of dna sequences. J. Theor. Biol. 188 (1997),
369–377.

[52] SCOTT, D., AND KRAUSS, P. Assigning probabilities
to logical formulas. In Aspects of Inductive Logic,
J. Hintikka and P. Suppes, Eds., vol. 43 of Studies in
Logic and the Foundations of Mathematics. Elsevier,
1966, pp. 219 – 264.

[53] SELIGMAN, J. Channels: From logic to probability. In
Sommaruga [56], pp. 193–233.

[54] SHANNON, C. E. A mathematical theory of communica-
tion. Bell System Technical Journal 27 (1948), 379–423,
625–56.

[55] SLEPIAN, D., AND WOLF, J. Noiseless coding of
correlated information sources. IEEE Transactions on
Information Theory (July 1973), 471–480.

[56] SOMMARUGA, G., Ed. Formal Theories of Information:
From Shannon to Semantic Information Theory and Gen-
eral Concepts of Information [Muenchenwiler Seminar
(Switzerland), May 2009] (2009), vol. 5363 of Lecture
Notes in Computer Science, Springer.
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APPENDIX

A. Proofs
Proof Sketch of the Semantic Channel Coding Theorem
To prove that Cs is indeed an upper bound for error-free

transmission rate, we use a similar strategy to that used by
Shannon [54] in deriving the engineering channel capacity.

Shannon’s proof relies on the Asymptotic Equipartition
Property (AEP)([13], Chapter 3). AEP states that for inde-
pendently, identically distributed (i.i.d.) random variables Xi,
the probability of observing the sequence X1, X2, ..., Xn is
close to 2−nH(X). Thus, the set of all possible sequences can
be divided into typical sets where the sample entropy is close
to the entropy of individual variables, and other non-typical
sets with low possibilities. We only need to discuss typical
sets, and their properties are true with high probabilities for
all sequences.

The argument goes as follows:
1) A semantic error occurs if a received message is not

entailed by the currently observed interpretation at the source.
2) Let N be a sufficiently large number.

−→
W = w1, ..., wN is

the sequence of observed interpretations. Accordingly,
−→
X and−→

Y are sequences of sent messages and received messages.
3) According to AEP, there are 2H(Y )∗N typical Y se-

quences, and 2H(X)∗N typical X sequences. For each typi-
cal Y sequence, there are 2H(X|Y )∗N possible typical input
message sequences of X .

4) Let the rate of transmission be R (messages/time unit).
For any possible typical sequence of X , the chance that it
is indeed a message sequence is 2(R−H(X))∗N . For a typical
sequence of Y , there are 2(H(X|Y )+R−H(X))∗N typical input
messages.

5) For each typical sequence of X , there are 2H(W |X)∗N

typical sequences of interpretations that cause it. For a typical
sequence of Y , the number of typical sequences of interpre-
tations that cause it is 2(H(X|Y )+R−H(X)+H(W |X))∗N

6) For a randomly chosen interpretation w and message y,
the chance that w � y is m(y). Therefore, for a sequence
of W and a sequence of Y , the chance that each segment of
W is a model of the corresponding segment of Y is M =
m(y1)m(y2)...m(yN ). Since logM = log y1 + log y2 + ... +

log yN = −ΣiHs(yi), M = 2−Hs(Y )∗N .

7) For a typical sequence of Y , the chance that there
is a semantic error, i.e., none of the typical sequence of
interpretations that cause it (via X) entails it, is

(1− 2−Hs(Y )∗N )2
(H(X|Y )+R−H(X)+H(W |X))∗N

When N → ∞, the above expression approaches

1− 2(H(X|Y )+R−H(X)+H(W |X)−Hs(Y ))∗N

If

R < R0 = H(X)−H(X|Y ) +Hs(Y )−H(W |X)

the probability of semantic errors approaches 0.
8) If the average error of all possible semantic coding

strategies can approach 0 below transmission rate R0, there
must exist a semantic coding algorithm that is better than the
average performance.
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