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Abstract. A fundamental promise of service oriented architecture (SOA) lies in the ease
of integrating sharable information, processes, and otherresources through interactions
among the shared components that are modeled as web services. It is expected that not
only the participating services are complex and have observable states, but the number of
interacting services may be also large. Prior work on choreographies (conversation pro-
tocols) all focuses on specifying how the interacting web services should behave glob-
ally. Studies have shown that the relationships between global and local specifications of
service interactions could be rather intricate. In this paper, we formulate a framework
consisting of logical and implementation levels. We surveyand discuss the technical
problems and known results concerning service design, analysis and verification in this
framework.

1 Introduction

A fundamental principle of Service Oriented Architecture (SOA) is to design and model
complex software systems as assemblies of bitesize pieces.The pieces can then be man-
aged and re-used. While the paradigm is promising, there is aserious lack of principles
to aid the design of complex systems from the existing pieces, and to help the manage-
ment of systems, small or large. This paper aims at the formerproblem and attempts
to develop a technical framework on which service design principles can be developed.
The framework is based on application needs as well as technical results concerning
composite service design, analysis and verification developed in the community.

Two characteristics distinguish service design from distributed system design stud-
ied in the past. First, working with abstractions is a necessity rather than a preference.
There are many reasons a service provider will not reveal thedetailed information con-
cerning the internals of a service. Service design must relyon the abstract description
of the needed services. Furthermore, it is often required that an abstraction of the com-
position is fully developed [24, 3] which can serve as eithera design specification or
constraints for verification. This high level abstraction is built from the observable ac-
tions of participating services but it is different from system traces. Second, as the SOA
popularity grows, the number of available services also increases rapidly. It is necessary
to automate (or semi-automate) many steps in service design.

In the services computing community, there have been investigations concerning
the design, analysis, and verification of service compositions. Most of the prior work
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either focuses on (proposed) standards or concerns sophisticated techniques in various
aspects. As an important SOA application domain, business applications embrace SOA
on one hand, but on the other hand are struggling with the lackof a framework that can
address the complete service design cycle [4].

In this paper, we formulate a technical framework that consists of two levels of
abstraction: logical and implementation. At the logical level, specifications focus on
how participating services should interact with each other, while the implementation
level provides abstractions of services. Among other things, the framework solidifies
from a formal perspective the differences between WS-CDL [29] and BPEL [6]. We
give a survey on existing technical results over this framework.

This paper is organized as follows. Section 2 gives a generaldiscussion on service
design approaches. Section 3 surveys the existing choreography models. Section 4 fo-
cuses on the key technical problems concerning service design and analysis. Section 5
concludes the paper.

2 SOA and Service Design

In this section, we give a general discussion on service design under the influence of
SOA (service oriented architecture). We argue that servicedesign needs two or more
levels of abstraction. On the logical level, specificationswill focus on interactions
among services; on the implementation level, the goal is to allow service executions
to satisfy logical specifications.

A fundamental premise of SOA is to structure complex software systems into “bite-
size” pieces, which can then be easily managed and reused. Such a framework is a clear
departure from the traditional software development approaches aiming at individual
software components due to the changes in many phases of the development process
[5]. Among many technical issues is design methodology for constructing new services
(software systems) from assembling existing services.

Business 
Process

initial requirements
design

analysis evolution

Fig. 1.Life cycle of a business process

To illustrate the issues, consider as an example the life cycle of a business pro-
cess (to handle, e.g., purchase orders, loan applications,etc.) as shown in Fig. 1. In the
design phase, business requirements are used to eventuallyproduce an operational sys-
tem. The efforts in this phase could involve designs in multiple layers, from high-level
conceptual to eventual coding. Automated or semi-automated designandanalysistools



will provide a significant help in reducing the development time and in improving the
quality of design. During the operation phase, business processes, in particular, need to
make changes to adapt to the environment better (changes in the market, laws, etc.) and
make improvements to achieve business goals.Evolutiontools could provide support
for monitoring the executions, assessing impact of potential changes, and even making
the changes.
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Fig. 2. A mediator processorchestrates“component” services

If we focus on the result of the design process from the initial requirements, it is nec-
essary to understand service design methodology. Traditional approaches basically treat
the services used as “components” in constructing a new service (or software compo-
nent). The new service “orchestrates” the component services (Fig. 2). We broadly call
such an approachorchestration. Typical examples include BPEL [6] and many work-
flow systems.
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Fig. 3. A choreographyspecifies the interactions between services

There is, however, a new, different methodology calledchoreographythat was re-
cently proposed in services computing community [20, 21, 10, 29]. This new approach
assumes that the participating services, once “connected”, will run on their own with no
global intervention; the composite service design is then to specifyhowandwhenthe
participating services should interact with each other. Fig. 3 depicts this scenario.

Comparing the orchestration and choreography approaches,a mediator is an exe-
cutable program and a part of the implemented business process. Therefore, analysis,
monitoring, and updates will need to be performed on the mediator and the used ser-



vices as a whole. On the contrary, a choreography is merely a logical specification of
the observable behaviors by the interacting services at thelogical level (Fig. 3). In the
ideal case, the choreography completely captures the service behaviors; thus, analysis
and updates would only need to be done at the logical level. Webelieve that a clear
separation of logical and implementation levels should be fundamental principle that
would allow us to separate and localize concerns and make them independent in de-
veloping better systems. The principle is reminiscent of a similar principle in the data
management systems [26].

While the logical level describes the global behaviors, it is possible to allow more
levels of abstraction in the implementation level. To this end, Mealy services [10] and
BPEL4Chor [14] are mathematical and practical (respectively) models in the imple-
mentation level with high abstraction. Techniques for reasoning with and verification of
such models have been studied in the distributed computing and verification communi-
ties [22].

A choreography is “realizable” if there is an implementation of the interacting ser-
vices whose behavior is identical to the choreography. Often in service design, the
choreography language for the logical level and the implementation model are already
given. Ideally, each choreography can be realized and everyimplementation realizes a
choreography, i.e., the two levels are “equivalent” in somesense.

However, the current situation is that there are many existing implementation mod-
els while new choreography languages are being developed. Instead of being the ideal
case, their relationships are not clearly known. Therefore, the ability to clearly sep-
arate the logical and implementation levels hinges on understanding the fundamental
relationship between choreography specifications and implementations. To this end, we
phrase the following two key challenges concerning characterization of choreographies
and implementations, respectively.

Challenge 1 Can we capture the set of all realizable choreographies (fora given im-
plementation model)?

Challenge 2 Can we capture the set of implementations that realize choreographies (in
a given choreography language)?

In the remainder of the paper, we give an overview of choreography models and
then focus on technical problems concerning, in particular, the two challenges.

3 Choreography Models

In this section, we define the key notion of a “choreography model” and give a brief
survey of several choreography modeling languages that have been studied. We divide
the languages into three categories based on their underlying frameworks: finite state
automata, Petri nets, and process algebras. Subsection 3.1discusses the elements in a
choreography model and related notions, and give a summary of the existing choreogra-
phy modeling languages with respect to these elements. Subsections 3.2 to 3.4 provide
more details of the models in each of the three categories.



3.1 Elements of a choreography model

As illustrated in Fig. 3, a choreography defines the observable interactions among the
participating services. We use the wordsglobalandlocal to mean the behaviors or activ-
ities that are viewed in theoverall composition perspectiveand in theindividual service
perspective, respectively. Thus achoreography modelM typically has two components:
a specificationC of thedesired global behaviors, and a representationI of local ser-
vicesand their local behaviors which collectively should satisfy the specified global
behaviors.

A specification of desired global behaviors is called achoreography, and a repre-
sentation of a service is called aservice implementation. A choreography modeling
languageprovides means to define choreography models, i.e., choreographies, service
implementations, and their semantics including a mechanism to compare global behav-
iors generated by service implementations with a choreography. In this perspective, we
informally view a choreography modeling languageL as a collection of choreography
models,L = {(C, I) | C is a choreography andI service implementations}. In the
remainder of the paper, we also conveniently viewL as a pairL = (C, I), whereC is a
collection of choreographies andI a collection of service implementations.

A choreography can be defined using the following two types ofbasic elements: (1)
a set ofobservable actionsthat happen at individual services (locally), and (2) a set of
sequencing (global) constraintsof the activities in (1).

Observable local actions are typically of two kinds:messagingactions for com-
municating with other services including sending and receiving messages, and local
activities that are performed at individual services independent of other services. The
use of activities in a choreography is primarily for organizing service operations in or-
der to satisfy the logical requirements of a composition. For example, a “searching for
books” (on a catalog) operation should happen before a “checkout” operation.

Sequencing constraints restrict the actions to specified orderings. Although these
resemble the control flow constructs in programming, a notable difference is that it may
not be obvious how an individual constraint on two activities in a choreography can
be enforced when the activities have no connections. As we shall see in Subsection
4.2, some of such cases can be logical consequence of other constraints (that can be
enforced), and others simply cannot be implemented. This isone of the interesting
problems concerning choreography modeling languages.

The second component of a choreography model is a set of service implementa-
tions. When the services interact within a composition, their collective global behav-
iors should “conform” to the specification. In the following, we explore two essential
ingredients needed in defining the notion of conformance, the latter will be given in
Subsection 4.1.

Clearly, the services must communicate with each other using amessaging model.
Different messaging models have been used in the literature. Under one model the
sender of a message waits for the receiver to consume the message from the channel be-
fore it continues. The model is simple and prohibits the sender from taking any further
actions, including sending another message prior to the consumption of the first by the
receiver. We call this modelsynchronous messagingin the spirit of service composition.
In contrast,asynchronous messagingmodels allow the sender to continue its execution



immediately after its completion of the send action. A decision to be made is how to
handle the situation when new messages arrive before old messages are consumed. A
natural approach is to use aFIFO queuefor each receiver to store all its unconsumed
messages in their arriving order. One can also place a limit on the size of FIFO queues,
in which case, an incoming message sent to a full queue could cause one of several pos-
sible actions, including: overwrite the oldest message, delete itself, or block the sender’s
execution. A messaging model should clearly define the actions to be taken.

The second ingredient is how to formulate theglobal behaviors of an execution of
servicesand compare them against a choreography. One straightforward approach is to
use traces of the service executions modulo irrelevant actions. This has been studied
in mostly automata based choreography models. The other is to employ the notion of
bisimulationbetween the generated global behaviors and choreography. Most process
algebra based choreography models adopt this approach.

Table 1 summarizes some selected choreography modeling languages in the three
categories. Rows in the table indicate specific elements in the global or local speci-
fications. Messaging and activity mean whether a choreography/service implementa-
tion can include messaging actions and non-messaging activities (respectively). Here
“Global” means choreography, “Local” means service implementation, “G/L” stands
for both choreography and service implementation (in all models examined, the control
flow constructs are the same for choreography and service implementation). For exam-
ple, in Colombo the global behavior specification could state that the “listen-to-music”
activity in one service should happen before the “checkout”activity in another. The row
“Messaging model” shows the model used for the languages, and the last row “Seman-
tics” identifies whether the comparison of generated globalbehaviors and a choreog-
raphy uses trace based semantics or bisimulation. Finally,two process algebra based
modeling languages either model activities of particular types (shown as “Limited” in
table) or require one service to control choice or iteration(shown as “Dominated”).

Table 1.Summary of Choreography Models
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Global messaging yes yes no yes yes yes yes
Local messaging yes yes yes yes yes yes yes
Global activity yes1 no yes no no yes2 yes
Local activity yes1 no yes no no yes2 yes
G/L sequence yes yes yes yes yes yes yes
G/L parallel yes1 yes1 yes1 yes yes yes yes
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G/L Recursion yes yes2 yes yes no yes3 yes3
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1Can be extended to include the element 2Limited 3Dominated



In the remainder of the section, we give a short survey of choreography languages
based on their underlying formalisms.

3.2 Automata based models

Automata based choreography models represent both choreographies and service im-
plementations using finite state automata (or their variants). An advantage is that state
machines explicitly capture a snapshot of a composite service execution as a “state”
and (local/global) behaviors can be easily captured as sequences of states in which each
state transition may be associated with a message or an activity.

At the service implementation level, send and receive are modeled as message ac-
tions since they are separate individual actions while the choreography level only the
status of whether a message has happened (been sent) is of interest. This group of chore-
ography modeling languages includes conversation protocols and Mealy services [10,
19], UML collaboration diagrams [9], and the Colombo service composition model [1].
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Fig. 4. Automata based Choreography Modeling Languages

The use of conversations to specify choreographies was originally proposed in the
IBM Conversation Support Project [20, 21]. A formal model based on this idea was
developed in [10] under which a conversation protocol is represented as finite state au-
tomaton over messages, and each service as a Mealy machine over the input/output
messages of the service. An example of a conversation protocol is shown in Fig. 4(a),
and a Mealy service in Fig. 4(b) where the leading symbol “!” denotes an action of
sending a message and “?” a receiving action. Each service has an associated FIFO
queue (of unbounded capacity) for storing unconsumed incoming messages. When ser-
vices are executing, a virtual globalwatcherrecords the sequence of messages for all
send actions. Aconversationis the sequence of messages recorded by the watcher in a
successful execution. A conversation protocol issatisfiedif every conversation by the
services is a word accepted by the conversation protocol automaton.



The automata based choreography modeling approach specifies a choreography
through states and transitions. It is easy to use since this approach is commonly used
to specify protocols and policies. The languageLet’s dance[30, 31] provides a set of
sequencing constraint primitives to allow a choreography to be specified in a graphical
language. For example, Fig. 4(c) shows a message fromA to B should “weak-precede”
another messagem′, this means thatB cannot sendm′ prior toA sending messagem.

A variation of the conversation/Mealy model was studied in [9], which also uses
Mealy services with unbounded FIFO queues. However, instead of conversation proto-
cols, UML collaboration diagrams are used to specify choreographies. Fig. 4(d) illus-
trates a UML collaboration diagram which specifies that an “order” message is followed
by “cdInquiry” and “bookInquiry” messages in any order, after their corresponding re-
sponses are made, “orderReply” can then be sent out.

Finally, another interesting variation is the Colombo model used to study an auto-
mated composition problem for semantic web services [1]. Similar to the UML model,
the local services are represented as Mealy services (extended to allow OWL-S like se-
mantic descriptions) but the message queues are limited to at most one message (size
1). Choreographies, however, are represented by finite state automata over only activ-
ities without messages. The model is an extension of the earlier “Roman” model for
composing interactive web services [2].

3.3 Petri-net based models

Petri nets are another widely used tool to model, among otherthings, flow of con-
trol, and therefore a suitable candidate for choreography modeling languages. In [16],
a Petri-net based choreography modeling language called Interaction Petri Nets (IPN)
was developed. IPN treats a messaging action as a transitionfiring in describing a chore-
ography. For example, Fig. 5 shows a choreography in IPN equivalent to the UML col-
laboration diagram in Fig. 4(d). Note that the use of Petri nets allows the concurrent
Store-CDSupplier conversations and Store-BookSupplier conversations to be explicitly
separated, in contrast to the UML collaboration diagram.

Cust      Store
order

Store  CDSup
cdInquiry

Store  BKSup
bookInquiry

CDSup  Store
cdAvail

BKSup  Store
bookAvail

Store    Cust
orderReply

Fig. 5. Interaction Petri Nets

In [16], the technical problem studied concerns the local enforcement of an IPN
choreography. In their study, the local services are represented by “behavior interfaces”
that are Petri nets with “input/output” places. The services communicate with each other
in the synchronous messaging model, rather than FIFO queuesin automata based lan-
guages discussed in Subsection 3.2.



3.4 Process algebra based models

Recently, there have been several efforts in developing choreography modeling lan-
guages using process algebras [11, 8, 12, 25]. Common in these studies are that both
choreographies and service implementations are specified in (slightly different) process
algebras, with a key difference being the separation of sending and receiving a message
at the local level but not at the global level, similar to the automata and Petri nets based
models discussed in Subsections 3.2 and 3.3. All these approaches use the synchronous
messaging model for communication.

In [11], process algebras, called the “Bologna” model in Table 1, for choreographies
and service implementations (the latter are often called orchestration in process algebra
based languages) were developed. The Bolonga model does notinclude recursion in
choreography and service implementation specifications. The semantics of satisfaction
of a choreography by an execution of service implementations is defined through a
bisimulation between the two algebras. Global Calculus andEndpoint Calculus [12]
was an attempt to provide a theoretical model for WS-CDL; they also include detailed
operations and parameter passing. The semantics connecting the Global and Endpoint
Calculi is also based on bisimulation. The concept of dominant role for choice and loop
structures, which allows the “projection” of each choreography by inserting additional
synchronization communications, was developed in Chor & Role [25]. In their model, a
trace based semantics is used instead of bisimulation. Table 1 shows the basic elements
available in these process algebra based languages.

4 Design and Analysis Problems

In this section, we define several key research problems concerning reasoning, design,
analysis, and verification of choreographies and service implementations. In particu-
lar, we focus on the two challenges raised in Section 2 and discuss specific technical
problems around the challenges.

In reasoning, we study the problem of “conformance”, i.e., whether service imple-
mentations only generate global behaviors consistent witha choreography. As illus-
trated in Fig. 3, service design is to generate service implementations from a choreogra-
phy such that the global behaviors of services are completely captured by the choreog-
raphy. This “realizability” problem is important in understanding choreography spec-
ifications and thus addressing Challenge 1. A key technical problem in Challenge 2
focuses on the other direction, and demands the understanding of service implementa-
tions that realize a set of desirable choreographies. For this challenge, we formulate the
“analysis” problem for service implementations.

Subsection 4.1 focuses on the conformance problem, Subsections 4.2 and 4.3 ex-
plore the problems of realizability and analysis, respectively. Subsection 4.4 outlines
the main methodologies of verifying composite services.

4.1 The conformance problem

The conformanceproblem is stated as follows, assuming some fixed choreography
modeling languageL: Given a choreographyC in L and a setI of service implementa-



tions inL, is it possible to determine if every possible execution ofI always generates
the behaviors allowed byC?

The conformance problem is fundamental in choreography design. It is very desir-
able that the problem is solvable for choreography modelinglanguages of interest. The
problem has been studied for several choreography modelinglanguages.

The conformance problem is decidable for conversation protocols and Mealy ser-
vices (with queues) when the queue size is bounded by some pre-determined constant,
since the set of conversations of Mealy services with bounded queues is always a reg-
ular language [10]. It turned out that when the queue size restriction is removed, the
problem becomes undecidable [18]; the key reason for this isthat the class of finite
state automata with (unbounded) FIFO queues are as computationally expressive as the
class of Turing machines [7].

For process algebra based choreography languages, the problem was initially stud-
ied for the Bologna model without repetition [11]. The problem was further studied in
a model extended with repetition in [8]. After projecting the choreography to local ser-
vices, the checking procedure can be done locally without considering other services.

Given the known results, it appears that the conformance problem is decidable when
queue sizes are bounded and undecidable for unbounded queues, in the choreography
languages that have been proposed so far. In [19], it was observed that there are service
compositions that need queues of size greater than 1 (possibly unbounded). It is interest-
ing to identify classes of choreographies where the conformance problem is decidable
for unbounded queues.

4.2 Realizing choreographies

The choreography approach to service design raises severalnew interesting questions.
A key problem is whether it is possible to turn a choreographyinto service implementa-
tions automatically (Fig. 3). In this subsection, we discuss this “realizability” problem
and other related problems.

We fix some choreography modeling languageL and letC be a choreography. We
define the following notions. The choreographyC is (weakly) realizableif there exists
a setI of service implementations such that the behaviors of executing I coincides with
(respectively, are contained in)C. Weak realizability is useful when realizability cannot
be achieved. We will discuss this notion later in the subsection.

The realizability problem is stated as follows: For a given choreography modeling
languageL, is every choreographyC in L (weakly) realizable? Furthermore, ifC is
(weakly) realizable, it is desirable to construct service implementations.

Some choreographies are not realizable. Consider the choreographyC1 = {m1m2}
where services1 sends a messagem1 to s3 ands2 sendsm2 to s3. Obviouslys2 has no
way of knowing whetherm1 is sent. ThusC1 is not realizable. Such a “missing connec-
tion” is a frequently cited reason for non-realizability (e.g., [18, 31, 12, 25, 16]). When
FIFO queues are used, the reasons for non-realizability aresometimes not so obvious.
Fig. 6 shows a choreographyC2 = {m3m4m5, m4m3} over three servicess4, s5, s6

and messagesm3, m4, m5. Since every service has a FIFO queue, it was shown that
every implementation that permits the two conversations inC2 will also permit the
conversation “m4m3m5” that is not inC2 [17].



C2 : s5s4 s6

m3

m4

m5m3m4m5 m4 m3

Fig. 6. An non-realizable conversation protocol

Realizability for automata-based languages was studied for conversation protocols
[18, 19] and UML collaboration diagrams [9] with Mealy services and FIFO queues.
For the case of conversation protocols, a sufficient condition for realizability was es-
tablished in [18] which consists of three sub-conditions “lossless join”, “synchronous
compatible”, and “autonomous”. This condition was generalized to include message
contents and “guarded automata” in [19]. For UML collaboration diagrams, a sufficient
realizability condition is obtained in [9] which focuses onthe predecessor of eachsend
action. In both cases, it remains an open problem whether therealizability problem is
decidable and/or a necessary and sufficient condition exists.

When queues are bounded or synchronous messaging is used (i.e., queue size is 0),
the realizability problem becomes easier. For the case of conversation protocols and
Mealy services, it was shown in [10] that the set of conversations of Mealy services
with bounded queues is always a regular language (rather than context-sensitive for un-
bounded queues). This result leads to a decision procedure for realizability for bounded
queues [17]. Furthermore, a necessary and sufficient condition can be formulated by
modifying the sufficient condition in [18] for the unboundedqueue case.

When a choreography is realizable, it is desirable to produce the service implemen-
tations. For the conversation protocols and Mealy service model, it was shown that the
service implementations are simply projections of the choreography to the individual
services [17]. The language Let’s Dance contains a richer set of sequencing constraint
primitives, projecting a choreography into local servicesalso needs to consider the spe-
cific constraints [31]. (The referenced paper also includesa realizability checking algo-
rithm.)

In the following, we briefly summarize recent work on realizability in process alge-
bra and Petri nets based models, all of which assume synchronous messaging.

Realizability for process algebras was investigated primarily on the Global and End-
point Calculi [12] and Chor & Role [25]. The main approach in these studies is to de-
velop a “projection” operator which takes as input a choreographyC and a participant
service and produces an implementation for the service. Thegoal is to have the behav-
iors of the projected services to be identical to the choreographyC. In the context of
Global and Endpoint Calculi, a sufficient condition of realizability involving connect-
edness, well-threadedness, and coherence was obtained [12]. In Chor & Role, a differ-
ent approach was taken which consists of two parts. First, the choreography algebra
uses dominated choice and repetition. Then, the projectionoperator inserts additional
messages so that the generated services can synchronize correctly on the performed ac-
tivities [25]. Intuitively, the added messages allows the dominator to communicate its
decision to others, thus avoiding the missing connection problem mentioned earlier.

If a choreographyC is not realizable, sometimes one could further limit the ser-
vice implementations (that are obtained from projecting the choreography) so that they
weakly realizeC. Naturally, it is necessary to require that the generated global be-
haviors are not trivial (e.g., a nonempty set of traces). In fact it is also ideal that the
generated behaviors should be as “close” toC as possible. In [16], the problem of weak



realizability was studied for the IPN model. The main idea isto introduce additional
constraints on the service implementations so that the generated global behaviors are
always allowed by the choreography. An algorithm was given for choreographies re-
stricted to bounded Petri nets.

Before we end this subsection, it is worthwhile to mention the work of [1]. In their
model, a choreography is a finite state automaton over observable (local) activities.
Given a choreographyC and a set of Mealy services (with “open” or configurable
message channels), the choreography synthesis problem is to connect message channels
among the services such that the set of observable activity sequences from executing the
Mealy services is exactly the choreographyC. It was shown there that the construction
can be done in double exponential time complexity.

In spite of the studies on the realizability problem, there are many interesting open
problems. For example, for the conversation/Mealy servicemodel, are there restricted
subclasses of Mealy services which allow unbounded queues such that the realizability
problem is decidable? In general, in any choreography modeling language, if a chore-
ography is not realizable, can we always find the “maximal” service implementations
that weakly realize the choreography?

4.3 Analyzing service implementations

Subsection 4.2 discussed design problems in the top-down fashion, i.e., from chore-
ographies to implementations. In this subsection, we focusthe analysis problem, i.e.,
to characterize service implementations whose global behaviors are representable by
choreographies.

The analysis problem may occur when one attempts to verify ifgiven implemen-
tations e.g., a set of BPEL services, satisfy properties formulated over their global be-
haviors [18, 19]. If the global behaviors of the implementation can be characterized by
a choreographyC, reasoning and verification can be performed onC that is expected
to be simpler and more efficient. In practice, it is not uncommon that one starts with
a set of choreographies (a choreography language) and hopesto constrain the imple-
mentations to those that realize some of the choreographies. (We note that a related
but different issue concerns verification of localized properties, e.g., concerning two
services, and has been studied variously in the literature.See, e.g., the survey [27] for
details.)

The analysisproblem is defined as follows. LetL = (C, I) be a choreography
modeling language whereC is a collection of choreographies andI a collection of im-
plementations. Can we decide if an arbitrarily given implementation inL realizes some
choreography inC? Furthermore, what is the (largest) subset⊆ I of implementations
that realize some choreographies inC?

Several preliminary results concerning the analysis problem have been obtained.
We begin with the conversation protocols and Mealy servicesmodel of [10]. While
it is known that the computation power of Mealy services is Turing complete [7], the
set of conversations of a set of Mealy services is nevertheless a context sensitive lan-
guage (accepted by a quasi-realtime automaton with 3 queues) [10]. Reference [10]
also gives examples of Mealy services with non-regular and non-context-free sets of
conversations, which are not definable by conversation protocols. It further identifies



two conditions on implementations which guarantee to produce regular sets of conver-
sations (can be captured by conversation protocols). The first is when the queue sizes
are bounded to some fixed number. In this case, each queue can be modeled as a finite
state automaton and the composition can be characterized assome product machine of
all Mealy services and queue automata, which turns out to be afinite state automaton.
The second concerns the topology of the services and messagechannels. It was shown
that when the graph of services and message links is a tree, the set of conversations is
also a regular language.

The analysis problem was studied in [19] withC being the set of all conversation
protocols. Motivated by the bounded queue case, the notion of “synchronizability” was
formulated as follows. A set of Mealy services issynchronizableif its set of conversa-
tions does not change when unbounded queues are replaced with synchronous messag-
ing (or bounded queues). A sufficient condition for synchronizability on Mealy services
is identified which consists of synchronous compatible and autonomous sub-conditions.

As a final remark, the analysis problem focuses on the global behaviors of service
implementations. At the first glance, this appears to simplyproduce the system traces.
However, detailed system traces may not correspond to global behaviors permitted by
choreographies, as it was shown in [10]. Secondly, having a logical representation of
service behaviors is critical in many SOA applications, in fact, a key to business process
design lies in the logical representations of both requirements and software processes
[24].

Much of the analysis problem remains unknown. For example, is there a sufficient
and necessary condition for synchronizability? Also, there are practical service imple-
mentations that are not synchronizable but they realize conversation protocols. Is it
possible to characterize all conversation protocol-realizing implementations? It is also
interesting to explore there problems for other choreography models.

4.4 Approaches to verification

There have been many studies on verifying compositions of web services recently (see
the survey [27]). Most of these studies treat service compositions as distributed systems
and properties to be verified are thus formulated over the distributed systems. Clearly
the technical results from these studied are valuable contributions to the understanding
of the technology that SOA can provide.

On the other hand, due to many reasons, applications of SOA inmany areas includ-
ing in particular business process management demand a separation of at least logical
and implementation levels in process development. Verification of system properties
is not sufficient if the system properties cannot be mapped toproperties at the logical
level. In our framework of service design, this means that weought to be able to verify
properties over choreographies of service implementations. Here we give a sampler of
results along this line of verification of choreography properties.

Service design can use the top-down approach starting from achoreography. In this
case, verification of logical properties can be done on the specified choreography first
and if the choreography is satisfactory, it can be considered for realization [18].

We now consider the second scenario: start with service implementations (e.g., a
collection of BPEL services). References [15, 28] studied the problem of checking if



a single service implementation is consistent with a choreography or other services.
In [23], a choreography representing the global behaviors is first obtained which is
then used for verification. This approach is not applicable for the conversation/Mealy
machine model since the global behaviors are not always representable as conversation
protocols [19]. Instead, analysis on service implementations is performed first and if
the implementations are synchronizable, a conversation protocol can be constructed
and verified.

The verification problem for services is perhaps better understood. Still, a serious
challenge is the verification of services with data (from infinite domains) included. Per-
haps the semantic web services approach such as OWL-S [13] ofdescribing service
semantics (with data) could help developing feasible verification approaches.

5 Conclusions

Design of web services appears to have a new twist comparing with traditional soft-
ware development: having a logical level specification of global behaviors that are not
identical to system traces. Such a logical-implementationlevel separation played a fun-
damental role in the development of data management techniques in the early days. It
may possibly turn out to be a fundamental design principle for SOA.

In this paper we examined one aspect of the logical-implementation separation,
namely how choreographies are related to the (abstract) service implementations. While
prior technical results help to identify main issues on thistopic, more efforts are needed
to understand the different concerns at each level and to develop techniques and tools
for service design.
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