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Abstract. A fundamental promise of service oriented architectureAg{@s in the ease
of integrating sharable information, processes, and a@urces through interactions
among the shared components that are modeled as web setvisesxpected that not
only the participating services are complex and have obbé\states, but the number of
interacting services may be also large. Prior work on chgnagghies (conversation pro-
tocols) all focuses on specifying how the interacting wettvises should behave glob-
ally. Studies have shown that the relationships betwedragjend local specifications of
service interactions could be rather intricate. In thisgsagve formulate a framework
consisting of logical and implementation levels. We sureeyl discuss the technical
problems and known results concerning service designysisadnd verification in this
framework.

1 Introduction

A fundamental principle of Service Oriented Architectus&®@) is to design and model
complex software systems as assemblies of bitesize piBeegieces can then be man-
aged and re-used. While the paradigm is promising, thersésiaus lack of principles
to aid the design of complex systems from the existing piesed to help the manage-
ment of systems, small or large. This paper aims at the fopralem and attempts
to develop a technical framework on which service designgipies can be developed.
The framework is based on application needs as well as temhr@sults concerning
composite service design, analysis and verification dgeglan the community.

Two characteristics distinguish service design from itigted system design stud-
ied in the past. First, working with abstractions is a neitgsather than a preference.
There are many reasons a service provider will not revealditailed information con-
cerning the internals of a service. Service design mustaelthe abstract description
of the needed services. Furthermore, it is often requiratiah abstraction of the com-
position is fully developed [24, 3] which can serve as eithatesign specification or
constraints for verification. This high level abstractisrbuilt from the observable ac-
tions of participating services but it is different from s traces. Second, as the SOA
popularity grows, the number of available services alsceiases rapidly. It is necessary
to automate (or semi-automate) many steps in service design

In the services computing community, there have been iigag&ins concerning
the design, analysis, and verification of service compmsiti Most of the prior work
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either focuses on (proposed) standards or concerns sicplast techniques in various
aspects. As an important SOA application domain, busingsiications embrace SOA
on one hand, but on the other hand are struggling with thedaakramework that can

address the complete service design cycle [4].

In this paper, we formulate a technical framework that cetssbf two levels of
abstraction: logical and implementation. At the logicaldle specifications focus on
how participating services should interact with each qthiile the implementation
level provides abstractions of services. Among other thinige framework solidifies
from a formal perspective the differences between WS-C] fhd BPEL [6]. We
give a survey on existing technical results over this fraomw

This paper is organized as follows. Section 2 gives a geniggalission on service
design approaches. Section 3 surveys the existing ch@aplbgmodels. Section 4 fo-
cuses on the key technical problems concerning servicgmlasid analysis. Section 5
concludes the paper.

2 SOA and Service Design

In this section, we give a general discussion on servicegdasnder the influence of
SOA (service oriented architecture). We argue that semgsgn needs two or more
levels of abstraction. On the logical level, specificatiovi§ focus on interactions

among services; on the implementation level, the goal idlteveservice executions
to satisfy logical specifications.

A fundamental premise of SOA is to structure complex soféngstems into “bite-
size” pieces, which can then be easily managed and reuseld aStamework is a clear
departure from the traditional software development apgines aiming at individual
software components due to the changes in many phases oftkédment process
[5]. Among many technical issues is desigh methodologydoistructing new services
(software systems) from assembling existing services.
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Fig. 1. Life cycle of a business process

To illustrate the issues, consider as an example the liféeayica business pro-
cess (to handle, e.g., purchase orders, loan applicagtm$as shown in Fig. 1. In the
design phase, business requirements are used to evenirallyce an operational sys-
tem. The efforts in this phase could involve designs in mldtlayers, from high-level
conceptual to eventual coding. Automated or semi-autodadeignandanalysistools



will provide a significant help in reducing the developmeémig and in improving the
quality of design. During the operation phase, businessqsses, in particular, need to
make changes to adapt to the environment better (chandg®es mdrket, laws, etc.) and
make improvements to achieve business gdaslutiontools could provide support
for monitoring the executions, assessing impact of padéotianges, and even making

the changes.
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Fig. 2. A mediator proceserchestratescomponent” services

If we focus on the result of the design process from the inidiquirements, it is nec-
essary to understand service design methodology. Tradltapproaches basically treat
the services used as “components” in constructing a nevicgefer software compo-
nent). The new service “orchestrates” the component ses\(ieig. 2). We broadly call
such an approaabrchestration Typical examples include BPEL [6] and many work-

flow systems.
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Fig. 3. A choreographyspecifies the interactions between services

There is, however, a new, different methodology cattedreographythat was re-
cently proposed in services computing community [20, 21220 This new approach
assumes that the participating services, once “conneatétifun on their own with no
global intervention; the composite service design is tleespecifyhowandwhenthe
participating services should interact with each othey. Fidepicts this scenario.

Comparing the orchestration and choreography approaahegdiator is an exe-
cutable program and a part of the implemented business ggotberefore, analysis,
monitoring, and updates will need to be performed on the atediand the used ser-



vices as a whole. On the contrary, a choreography is merelgiadl specification of
the observable behaviors by the interacting services dbtieal level (Fig. 3). In the
ideal case, the choreography completely captures theceepghaviors; thus, analysis
and updates would only need to be done at the logical levelb®lieve that a clear
separation of logical and implementation levels shouldalamental principle that
would allow us to separate and localize concerns and make théependent in de-
veloping better systems. The principle is reminiscent dfralar principle in the data
management systems [26].

While the logical level describes the global behaviorss ipossible to allow more
levels of abstraction in the implementation level. To thisleMealy services [10] and
BPEL4Chor [14] are mathematical and practical (respelgfivmodels in the imple-
mentation level with high abstraction. Techniques for osdrsg with and verification of
such models have been studied in the distributed computidgerification communi-
ties [22].

A choreography is “realizable” if there is an implementataf the interacting ser-
vices whose behavior is identical to the choreography.rOifteservice design, the
choreography language for the logical level and the imptgaten model are already
given. Ideally, each choreography can be realized and érgriementation realizes a
choreography, i.e., the two levels are “equivalent” in samese.

However, the current situation is that there are many egsthplementation mod-
els while new choreography languages are being developsidd of being the ideal
case, their relationships are not clearly known. Thereftdre ability to clearly sep-
arate the logical and implementation levels hinges on wgtdeding the fundamental
relationship between choreography specifications anddmehtations. To this end, we
phrase the following two key challenges concerning charéation of choreographies
and implementations, respectively.

Challenge 1 Can we capture the set of all realizable choreographiesa(fpven im-
plementation model)?

Challenge 2 Can we capture the set of implementations that realize dgoaphies (in
a given choreography language)?

In the remainder of the paper, we give an overview of chorgolgy models and
then focus on technical problems concerning, in partigtit@ two challenges.

3 Choreography Models

In this section, we define the key notion of a “choreographyletiband give a brief
survey of several choreography modeling languages that been studied. We divide
the languages into three categories based on their unadgrfisameworks: finite state
automata, Petri nets, and process algebras. Subsectialis8usses the elements in a
choreography model and related notions, and give a sumnh#rg existing choreogra-
phy modeling languages with respect to these elementseSiitnss 3.2 to 3.4 provide
more details of the models in each of the three categories.



3.1 Elements of a choreography model

As illustrated in Fig. 3, a choreography defines the obséevalberactions among the
participating services. We use the woglisbalandlocalto mean the behaviors or activ-
ities that are viewed in theverall composition perspectiaad in thendividual service
perspectiverespectively. Thus ehoreography modelf typically has two components:
a specificatiorC' of the desired global behaviorsand a representatiahof local ser-
vicesand their local behaviors which collectively should satigfe specified global
behaviors.

A specification of desired global behaviors is callechareography, and a repre-
sentation of a service is calledservice implementation. A choreography modeling
languageprovides means to define choreography models, i.e., chapbigs, service
implementations, and their semantics including a mechatoscompare global behav-
iors generated by service implementations with a chorgigrdn this perspective, we
informally view a choreography modeling languageas a collection of choreography
models,£ = {(C,I) | C is a choreography anfl service implementations In the
remainder of the paper, we also conveniently vieas a paitC = (C,Z), whereC is a
collection of choreographies afida collection of service implementations.

A choreography can be defined using the following two typdsasic elements: (1)
a set ofobservable actionthat happen at individual services (locally), and (2) a $et o
sequencing (global) constraintg the activities in (1).

Observable local actions are typically of two kinasessagingctions for com-
municating with other services including sending and r@ngi messages, and local
activitiesthat are performed at individual services independent loéroservices. The
use of activities in a choreography is primarily for orgédnigservice operations in or-
der to satisfy the logical requirements of a compositiom.&s@mple, a “searching for
books” (on a catalog) operation should happen before a f@hétoperation.

Sequencing constraints restrict the actions to specifiddrorgs. Although these
resemble the control flow constructs in programming, a Hetdifference is that it may
not be obvious how an individual constraint on two actigtia a choreography can
be enforced when the activities have no connections. As \a# see in Subsection
4.2, some of such cases can be logical consequence of oth&raiats (that can be
enforced), and others simply cannot be implemented. Thanes of the interesting
problems concerning choreography modeling languages.

The second component of a choreography model is a set otedmiplementa-
tions. When the services interact within a compositionirtbellective global behav-
iors should “conform” to the specification. In the followinge explore two essential
ingredients needed in defining the notion of conformance Jakter will be given in
Subsection 4.1.

Clearly, the services must communicate with each otheigusinessaging model
Different messaging models have been used in the literatdmder one model the
sender of a message waits for the receiver to consume thageefsem the channel be-
fore it continues. The model is simple and prohibits the sefrdm taking any further
actions, including sending another message prior to thewoption of the first by the
receiver. We call this modslynchronous messagimgthe spirit of service composition.
In contrastasynchronous messagingpdels allow the sender to continue its execution



immediately after its completion of the send action. A diecigo be made is how to
handle the situation when new messages arrive before oldages are consumed. A
natural approach is to useFdFO queuefor each receiver to store all its unconsumed
messages in their arriving order. One can also place a limthe size of FIFO queues,
in which case, an incoming message sent to a full queue caulskoone of several pos-
sible actions, including: overwrite the oldest messagletedéself, or block the sender’s
execution. A messaging model should clearly define the metio be taken.

The second ingredient is how to formulate tiiebal behaviors of an execution of
servicesand compare them against a choreography. One straightiaparoach is to
use traces of the service executions modulo irrelevand&tiThis has been studied
in mostly automata based choreography models. The otheramploy the notion of
bisimulationbetween the generated global behaviors and choreograpist. pocess
algebra based choreography models adopt this approach.

Table 1 summarizes some selected choreography modeliggdges in the three
categories. Rows in the table indicate specific elementhaéngtobal or local speci-
fications. Messaging and activity mean whether a choretgvaprvice implementa-
tion can include messaging actions and non-messagingtedi{respectively). Here
“Global” means choreography, “Local” means service impatation, “G/L” stands
for both choreography and service implementation (in altlede examined, the control
flow constructs are the same for choreography and servideimgmtation). For exam-
ple, in Colombo the global behavior specification couldesthat the “listen-to-music”
activity in one service should happen before the “checkaativity in another. The row
“Messaging model” shows the model used for the languagelsthenlast row “Seman-
tics” identifies whether the comparison of generated glblellaviors and a choreog-
raphy uses trace based semantics or bisimulation. Firtaltyprocess algebra based
modeling languages either model activities of particwaes (shown as “Limited” in
table) or require one service to control choice or iterafglrown as “Dominated”).

Table 1. Summary of Choreography Models

Automata ':S{g Process algebras
= p

- | S5 = T | o
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Global messaging yes | yes no yes | yes | yes | yes
Local messaging yes | yes | yes | yes | yes | yes | yes
Global activity | yes | no | yes | no no | yes | yes
Local activity | yes | no | yes | no no | yes | yes
G/Lsequence| yes | yes | yes | yes | yes | yes | yes
G/L parallel | yes | yes | yes | yes | yes | yes | yes
GI/L choice yes no yes | yes | yes | yes | yes
G/LRecursion| yes | yes | yes | yes | no | yes | yes
Messaging model FIFO | FIFO |FIFO(1)| sync | sync | sync | sync

| Semantics | trace | trace| trace | bisim | bisim | bisim | trace |
LCan be extended to include the element 2Limited 3Dominated




In the remainder of the section, we give a short survey of@bgraphy languages
based on their underlying formalisms.

3.2 Automata based models

Automata based choreography models represent both chapigs and service im-
plementations using finite state automata (or their vas)a#in advantage is that state
machines explicitly capture a snapshot of a composite cemxecution as a “state”
and (local/global) behaviors can be easily captured asssems of states in which each
state transition may be associated with a message or aityactiv

At the service implementation level, send and receive aréateal as message ac-
tions since they are separate individual actions while ti@aography level only the
status of whether a message has happened (been sent) ees$inThis group of chore-
ography modeling languages includes conversation prtg¢@ea Mealy services [10,
19], UML collaboration diagrams [9], and the Colombo seexiomposition model [1].
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(a) A conversation protocol (b) A Mealy service (c) Let’s [2an

1/A1:cdInquiry
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A2:cdAvailability
1:0rder\l/TA2,BZ/2:orderRepIy

—|7 1/B1:bookinquiry -
:Store :BookSupplleﬂ

B2:bookAvailability
(d) A UML collaboration diagram

Fig. 4. Automata based Choreography Modeling Languages

The use of conversations to specify choreographies waallg proposed in the
IBM Conversation Support Project [20,21]. A formal modekéd on this idea was
developed in [10] under which a conversation protocol isesented as finite state au-
tomaton over messages, and each service as a Mealy macl@néhevinput/output
messages of the service. An example of a conversation miagshown in Fig. 4(a),
and a Mealy service in Fig. 4(b) where the leading symbbldénotes an action of
sending a message an@’“a receiving action. Each service has an associated FIFO
queue (of unbounded capacity) for storing unconsumed intpmessages. When ser-
vices are executing, a virtual globabtcherrecords the sequence of messages for all
send actions. Aonversatiors the sequence of messages recorded by the watcher in a
successful execution. A conversation protocaasisfiedif every conversation by the
services is a word accepted by the conversation protocohzatbn.



The automata based choreography modeling approach spegiftboreography
through states and transitions. It is easy to use since fisioach is commonly used
to specify protocols and policies. The languagg’s danceg30, 31] provides a set of
sequencing constraint primitives to allow a choreographyet specified in a graphical
language. For example, Fig. 4(c) shows a message fréonB should “weak-precede”
another message’, this means thaB cannot senan’ prior to A sending message.

A variation of the conversation/Mealy model was studied9h {vhich also uses
Mealy services with unbounded FIFO queues. However, idstéaonversation proto-
cols, UML collaboration diagrams are used to specify chgraphies. Fig. 4(d) illus-
trates a UML collaboration diagram which specifies that adéo” message is followed
by “cdInquiry” and “bookInquiry” messages in any orderaaftheir corresponding re-
sponses are made, “orderReply” can then be sent out.

Finally, another interesting variation is the Colombo magsed to study an auto-
mated composition problem for semantic web services [h)il&r to the UML model,
the local services are represented as Mealy services (leddo allow OWL-S like se-
mantic descriptions) but the message queues are limitednmst one message (size
1). Choreographies, however, are represented by finite atabmata over only activ-
ities without messages. The model is an extension of théee8Roman” model for
composing interactive web services [2].

3.3 Petri-net based models

Petri nets are another widely used tool to model, among dtiiegs, flow of con-
trol, and therefore a suitable candidate for choreograpbgeting languages. In [16],
a Petri-net based choreography modeling language caltedhbtition Petri Nets (IPN)
was developed. IPN treats a messaging action as a trarf#itimnin describing a chore-
ography. For example, Fig. 5 shows a choreography in IPNvatgrit to the UML col-
laboration diagram in Fig. 4(d). Note that the use of Petts radlows the concurrent
Store-CDSupplier conversations and Store-BookSuppdieversations to be explicitly
separated, in contrast to the UML collaboration diagram.

CDSup Storg

_ Storé CDSup_ ~ “O\
(> - () —
Cust> Stor¢ cdinguiry cdAval Store> Cust

order NSt BrSU _ [BKSUp Storg,_ ~ orderReply
bookInquiry " | bookAvail |

A

o

Fig. 5. Interaction Petri Nets

In [16], the technical problem studied concerns the locérement of an IPN
choreography. In their study, the local services are remtesl by “behavior interfaces”
that are Petri nets with “input/output” places. The sersic@nmunicate with each other
in the synchronous messaging model, rather than FIFO quewaegtomata based lan-
guages discussed in Subsection 3.2.



3.4 Process algebra based models

Recently, there have been several efforts in developingedysaphy modeling lan-
guages using process algebras [11, 8,12, 25]. Common ie #tadies are that both
choreographies and service implementations are spedaifigtightly different) process
algebras, with a key difference being the separation ofisgrahd receiving a message
at the local level but not at the global level, similar to thecanata and Petri nets based
models discussed in Subsections 3.2 and 3.3. All these agipes use the synchronous
messaging model for communication.

In[11], process algebras, called the “Bologna” model inlgédhfor choreographies
and service implementations (the latter are often calletlestration in process algebra
based languages) were developed. The Bolonga model doéschale recursion in
choreography and service implementation specifications.SEmantics of satisfaction
of a choreography by an execution of service implementatierdefined through a
bisimulation between the two algebras. Global Calculus Bndpoint Calculus [12]
was an attempt to provide a theoretical model for WS-CDLy thiso include detailed
operations and parameter passing. The semantics compéntitGlobal and Endpoint
Calculi is also based on bisimulation. The concept of domtinale for choice and loop
structures, which allows the “projection” of each choreqary by inserting additional
synchronization communications, was developed in Chor &IR5]. In their model, a
trace based semantics is used instead of bisimulatione Tadiiows the basic elements
available in these process algebra based languages.

4 Design and Analysis Problems

In this section, we define several key research problemsetoimg reasoning, design,
analysis, and verification of choreographies and servigdeémentations. In particu-
lar, we focus on the two challenges raised in Section 2 antligssspecific technical
problems around the challenges.

In reasoning, we study the problem of “conformance”, i.ehether service imple-
mentations only generate global behaviors consistent avithoreography. As illus-
trated in Fig. 3, service design is to generate service impigations from a choreogra-
phy such that the global behaviors of services are completgitured by the choreog-
raphy. This “realizability” problem is important in undéading choreography spec-
ifications and thus addressing Challenge 1. A key technigablpm in Challenge 2
focuses on the other direction, and demands the understaatiservice implementa-
tions that realize a set of desirable choreographies. Focltallenge, we formulate the
“analysis” problem for service implementations.

Subsection 4.1 focuses on the conformance problem, Sifrseet.2 and 4.3 ex-
plore the problems of realizability and analysis, respetyi Subsection 4.4 outlines
the main methodologies of verifying composite services.

4.1 The conformance problem

The conformanceproblem is stated as follows, assuming some fixed chorebgrap
modeling languagé&: Given a choreography in £ and a sef of service implementa-



tions in L, is it possible to determine if every possible executiod afways generates
the behaviors allowed b§/?

The conformance problem is fundamental in choreographigdelt is very desir-
able that the problem is solvable for choreography moddéinguages of interest. The
problem has been studied for several choreography modaligmiages.

The conformance problem is decidable for conversationogas and Mealy ser-
vices (with queues) when the queue size is bounded by sormdepeemined constant,
since the set of conversations of Mealy services with bodmpleues is always a reg-
ular language [10]. It turned out that when the queue sizigicgen is removed, the
problem becomes undecidable [18]; the key reason for thilsasthe class of finite
state automata with (unbounded) FIFO queues are as congmaiht expressive as the
class of Turing machines [7].

For process algebra based choreography languages, tHermrafas initially stud-
ied for the Bologna model without repetition [11]. The predol was further studied in
a model extended with repetition in [8]. After projectingtbhoreography to local ser-
vices, the checking procedure can be done locally withonsickering other services.

Given the known results, it appears that the conformande@mois decidable when
gueue sizes are bounded and undecidable for unboundedsyiretiee choreography
languages that have been proposed so far. In [19], it wasdbthat there are service
compositions that need queues of size greater than 1 (fyssibounded). Itis interest-
ing to identify classes of choreographies where the cordoire problem is decidable
for unbounded queues.

4.2 Realizing choreographies

The choreography approach to service design raises sevahteresting questions.
A key problem is whether it is possible to turn a choreograptyservice implementa-
tions automatically (Fig. 3). In this subsection, we disctigs “realizability” problem
and other related problems.

We fix some choreography modeling languayand letC' be a choreography. We
define the following notions. The choreograptiys (weakly realizableif there exists
a setl of service implementations such that the behaviors of ékegii coincides with
(respectively, are contained i6). Weak realizability is useful when realizability cannot
be achieved. We will discuss this notion later in the sulisact

Therealizability problem is stated as follows: For a given choreography niogel
language’, is every choreograph§ in £ (weakly) realizable? Furthermore,dt is
(weakly) realizable, it is desirable to construct servioplementations.

Some choreographies are not realizable. Consider the@ipaehyC, = {mims}
where service; sends a message; to s3 ands, sendsns to s3. Obviouslyss has no
way of knowing whethem is sent. Thug’; is not realizable. Such a “missing connec-
tion” is a frequently cited reason for non-realizabilityde [18, 31, 12, 25, 16]). When
FIFO queues are used, the reasons for non-realizabilitg@restimes not so obvious.
Fig. 6 shows a choreograpldyy = {msmams, mams} over three servicesy, ss, sg
and messages3, my, ms. Since every service has a FIFO queue, it was shown that
every implementation that permits the two conversation§4rwill also permit the
conversationtnymsms” that is not inCs [17].
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Fig. 6. An non-realizable conversation protocol

Realizability for automata-based languages was studieddioversation protocols
[18,19] and UML collaboration diagrams [9] with Mealy sergs and FIFO queues.
For the case of conversation protocols, a sufficient comifior realizability was es-
tablished in [18] which consists of three sub-conditiorssless join”, “synchronous
compatible”, and “autonomous”. This condition was gerieeal to include message
contents and “guarded automata” in [19]. For UML collabmmatdiagrams, a sufficient
realizability condition is obtained in [9] which focuses the predecessor of easknd
action. In both cases, it remains an open problem whetheetidezability problem is
decidable and/or a necessary and sufficient conditionsexist

When queues are bounded or synchronous messaging is wseduyeue size is 0),
the realizability problem becomes easier. For the case wiarsation protocols and
Mealy services, it was shown in [10] that the set of convérsgatof Mealy services
with bounded queues is always a regular language (rathecthrgext-sensitive for un-
bounded queues). This result leads to a decision proceouredlizability for bounded
queues [17]. Furthermore, a necessary and sufficient dondian be formulated by
modifying the sufficient condition in [18] for the unboundggeue case.

When a choreography is realizable, it is desirable to prediue service implemen-
tations. For the conversation protocols and Mealy serviodet) it was shown that the
service implementations are simply projections of the ebgraphy to the individual
services [17]. The language Let's Dance contains a richesfssequencing constraint
primitives, projecting a choreography into local serviaks® needs to consider the spe-
cific constraints [31]. (The referenced paper also inclidesalizability checking algo-
rithm.)

In the following, we briefly summarize recent work on redltitidy in process alge-
bra and Petri nets based models, all of which assume synohsanessaging.

Realizability for process algebras was investigated prilgnan the Global and End-
point Calculi [12] and Chor & Role [25]. The main approachhese studies is to de-
velop a “projection” operator which takes as input a chorapgyC and a participant
service and produces an implementation for the servicegbheis to have the behav-
iors of the projected services to be identical to the chatagioyC. In the context of
Global and Endpoint Calculi, a sufficient condition of reability involving connect-
edness, well-threadedness, and coherence was obtaifjeth[Chor & Role, a differ-
ent approach was taken which consists of two parts. Firstchoreography algebra
uses dominated choice and repetition. Then, the projecii@mator inserts additional
messages so that the generated services can synchronizetlyarn the performed ac-
tivities [25]. Intuitively, the added messages allows tloenéhator to communicate its
decision to others, thus avoiding the missing connectioblem mentioned earlier.

If a choreography” is not realizable, sometimes one could further limit the ser
vice implementations (that are obtained from projectirgg¢choreography) so that they
weakly realizeC. Naturally, it is necessary to require that the generatethal be-
haviors are not trivial (e.g., a nonempty set of traces)alt ft is also ideal that the
generated behaviors should be as “close”'tas possible. In [16], the problem of weak



realizability was studied for the IPN model. The main ide#oisntroduce additional

constraints on the service implementations so that thergiteglobal behaviors are
always allowed by the choreography. An algorithm was givanchoreographies re-
stricted to bounded Petri nets.

Before we end this subsection, it is worthwhile to mentiomwork of [1]. In their
model, a choreography is a finite state automaton over olisler(local) activities.
Given a choreographg’ and a set of Mealy services (with “open” or configurable
message channels), the choreography synthesis problemmdamnect message channels
among the services such that the set of observable actadtyences from executing the
Mealy services is exactly the choreograplyit was shown there that the construction
can be done in double exponential time complexity.

In spite of the studies on the realizability problem, theeeraany interesting open
problems. For example, for the conversation/Mealy sermioglel, are there restricted
subclasses of Mealy services which allow unbounded quewsbstkat the realizability
problem is decidable? In general, in any choreography nmgidnguage, if a chore-
ography is not realizable, can we always find the “maximatViee implementations
that weakly realize the choreography?

4.3 Analyzing service implementations

Subsection 4.2 discussed design problems in the top-dosimoia, i.e., from chore-

ographies to implementations. In this subsection, we falbasanalysis problem, i.e.,
to characterize service implementations whose global\befsaare representable by
choreographies.

The analysis problem may occur when one attempts to veriyvén implemen-
tations e.g., a set of BPEL services, satisfy propertienfiteted over their global be-
haviors [18, 19]. If the global behaviors of the implemeiatatcan be characterized by
a choreography’, reasoning and verification can be performedthat is expected
to be simpler and more efficient. In practice, it is not uncamrhat one starts with
a set of choreographies (a choreography language) and kmgesstrain the imple-
mentations to those that realize some of the choreograpiésnote that a related
but different issue concerns verification of localized mdies, e.g., concerning two
services, and has been studied variously in the literaee, e.g., the survey [27] for
details.)

The analysisproblem is defined as follows. Let = (C,Z) be a choreography
modeling language whelgis a collection of choreographies afich collection of im-
plementations. Can we decide if an arbitrarily given impdeation inL realizes some
choreography i? Furthermore, what is the (largest) subSef of implementations
that realize some choreographie€in

Several preliminary results concerning the analysis gnobhave been obtained.
We begin with the conversation protocols and Mealy serviveslel of [10]. While
it is known that the computation power of Mealy services isifigicomplete [7], the
set of conversations of a set of Mealy services is neverbelecontext sensitive lan-
guage (accepted by a quasi-realtime automaton with 3 qu§l@ls Reference [10]
also gives examples of Mealy services with non-regular atteontext-free sets of
conversations, which are not definable by conversatioropods. It further identifies



two conditions on implementations which guarantee to pcedegular sets of conver-
sations (can be captured by conversation protocols). Tsieidiwwhen the queue sizes
are bounded to some fixed number. In this case, each queuecaadeled as a finite

state automaton and the composition can be characterizsiresproduct machine of
all Mealy services and queue automata, which turns out toftréta state automaton.

The second concerns the topology of the services and messaggels. It was shown

that when the graph of services and message links is a treaetlof conversations is
also a regular language.

The analysis problem was studied in [19] wifhbeing the set of all conversation
protocols. Motivated by the bounded queue case, the notitsynchronizability” was
formulated as follows. A set of Mealy servicessigchronizablédf its set of conversa-
tions does not change when unbounded queues are replateslwithronous messag-
ing (or bounded queues). A sufficient condition for syncliwahility on Mealy services
is identified which consists of synchronous compatible ariddreEomous sub-conditions.

As a final remark, the analysis problem focuses on the glodladbiors of service
implementations. At the first glance, this appears to sinppbduce the system traces.
However, detailed system traces may not correspond to bihateaviors permitted by
choreographies, as it was shown in [10]. Secondly, havingpacl representation of
service behaviors is critical in many SOA applicationsdcatf a key to business process
design lies in the logical representations of both requéinets and software processes
[24].

Much of the analysis problem remains unknown. For examglthere a sufficient
and necessary condition for synchronizability? Also, ¢here practical service imple-
mentations that are not synchronizable but they realizerersation protocols. Is it
possible to characterize all conversation protocol-e#adiimplementations? It is also
interesting to explore there problems for other choreduyapodels.

4.4 Approaches to verification

There have been many studies on verifying compositions bfseevices recently (see
the survey [27]). Most of these studies treat service colitipos as distributed systems
and properties to be verified are thus formulated over theilolised systems. Clearly
the technical results from these studied are valuable ibomitns to the understanding
of the technology that SOA can provide.

On the other hand, due to many reasons, applications of S@fny areas includ-
ing in particular business process management demand eatiepaf at least logical
and implementation levels in process development. Vetifinaof system properties
is not sufficient if the system properties cannot be mappemtdperties at the logical
level. In our framework of service design, this means thabught to be able to verify
properties over choreographies of service implementstidere we give a sampler of
results along this line of verification of choreography prdes.

Service design can use the top-down approach starting frdm@ography. In this
case, verification of logical properties can be done on tleeifipd choreography first
and if the choreography is satisfactory, it can be consiifrerealization [18].

We now consider the second scenario: start with serviceemehtations (e.g., a
collection of BPEL services). References [15, 28] studlesl groblem of checking if



a single service implementation is consistent with a chgnaghy or other services.
In [23], a choreography representing the global behavierfirst obtained which is
then used for verification. This approach is not applicabletlie conversation/Mealy
machine model since the global behaviors are not alwaysseptable as conversation
protocols [19]. Instead, analysis on service implemeotatiis performed first and if
the implementations are synchronizable, a conversatiotopol can be constructed
and verified.

The verification problem for services is perhaps better tsided. Still, a serious
challenge is the verification of services with data (fromriité domains) included. Per-
haps the semantic web services approach such as OWL-S [H&scfibing service
semantics (with data) could help developing feasible \aiifon approaches.

5 Conclusions

Design of web services appears to have a new twist compaiithgtraditional soft-
ware development: having a logical level specification obgl behaviors that are not
identical to system traces. Such a logical-implementdéoeel separation played a fun-
damental role in the development of data management teobsig the early days. It
may possibly turn out to be a fundamental design principle&SfoA.

In this paper we examined one aspect of the logical-imple¢atiem separation,
namely how choreographies are related to the (abstrasfreémplementations. While
prior technical results help to identify main issues on thjsc, more efforts are needed
to understand the different concerns at each level and telale¥echniques and tools
for service design.
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