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ABSTRACT 

Thermal design power trends and power densities for present and future single-core microprocessors are 

investigated. These trends are derived based on Moore’s law and scaling theory. Both active and stand-by power are 

discussed and accounted for in the calculations. A brief discussion of various leakage power components and their 

impact on the power density trends is provided. Two different lower limits of heat dissipation for irreversible logic 

computers that have previously appeared in the literature are discussed. These are based on the irreversibility of 

logic to represent one bit of information, and on the distribution of electrons to represent a bit. These limits are 

found to be two or more orders of magnitude lower than present-day microprocessor thermal design power trends. 

Further, these thermal demand trends are compared to the projected trends for the desktop product sector from the 

International Technology Roadmap for Semiconductors (ITRS) [1]. To evaluate the thermal impact of projected 

power densities, heat sink thermal resistances are calculated for a given technology target. Based on the heat sink 

thermal resistance trends, the evolution of a consistent air-cooling limit is predicted. One viable alternative to air-

cooling, i.e., the use of high-efficiency solid-state thermoelectric coolers (TECs), is explored in detail. The impact of 

different parasitics on the thermoelectric figure of merit (ZT) is quantified. 

 

NOMENCLATURE 

A  Area, cm
2
 

C  Capacitance, F 

DF  Density factor, cm
-2

 

E   Energy, J 

f  Frequency, Hz 

I  Current, A 

kB  Boltzmann Constant, J/K 

k  Thermal conductivity, W/mK 

L  Channel length, m 

l  TEC leg length, m 

m  Swing parameter 

n  Device parameter 

N  Number of electrons 
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P  Power, W  

Q  Heat transfer rate, W 

q  Charge of an electron, eV 

q”  Power density or heat flux, W/cm
2
 

R  Thermal impedance, C-cm
2
/W  

Rel  Electrical resistance, m
2
 

S  Entropy, J/K 

T  Temperature, K 

V  Voltage, V 

W  Channel Width, m 

Z  Figure of merit, K
-1

 

Greek Symbols 

  Seebeck coefficient, V/K 

sf  Switching activity factor 

  Scaling factor 

  Coefficient of performance 

  Linearized body effect coefficient 

  Drain induced barrier lowering coefficient or Packing coefficient 

  Thermal conductance, W/K 

  Carrier mobility 

  Thermal resistance, C/W 

  Electrical resistivity, m
2
 

  Electrical conductivity, 1/m
2
 

Subscripts 

a  Ambient 

c  Configurational or Cold or Case or Core 

d  Drain 

F  Fermi 

g  Gate 

HS  Heat sink 

h  Hot 

i  Interstitial 

j  Junction 

l  Logical 

n  N-type 

ox  Oxide 

p  P-type 
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r  Reference 

s  Source or Heat sink 

sub  Sub-threshold 

s-c  Short-circuit 

tec  Thermoelectric cooler  

th  Threshold 

0  Zero-bias 

 

1.  INTRODUCTION 

The invention of the transistor in 1947 and the subsequent invention of integrated circuits in 1958 sparked 

the unprecedented growth of information processing technology employing silicon devices [2,3].  In the last five 

decades, the semiconductor industry has grown to become one of the largest industries in the world.  The continued 

growth and development of the semiconductor industry has primarily relied on the exponential increase in the 

density of transistors in solid-state integrated circuits.  The principal theme that has enabled such unprecedented 

growth is that decreasing the feature size of the unit transistor improves overall circuit performance while reducing 

the cost of the manufactured component.  The performance of digital electronics has increased dramatically over the 

last five decades.  Historically, the scaling of planar transistors has held to an observation by Gordon Moore in 1965 

[4], known popularly as Moore’s Law, which essentially forecasts that the number of transistors on a chip doubles 

every 18 months.  While such an exponential trend cannot continue indefinitely due to fundamental limits imposed 

by basic physics, such barriers have to date been overcome, by innovations in materials processing techniques that 

have enabled faster and smaller devices and circuits [5].  Extensive literature exists on the difficulties of continued 

scaling and offers guidelines for future scaling of today’s MOS technology [2,3,6,7,8]. 

The dissipation of energy in the form of heat has long been recognized as a potential issue that may limit 

information processing [4].  Both the supply of power and the removal of heat limit the performance of the 

information processing technology.  In computing systems, information is represented by digitized electrical signals.  

In digital circuits, transistors are implemented as switches and valves.  Electronic devices alter potential barriers that 

control the flow of carriers between power supplies and ground.  In CMOS inverters, the most commonly used 

circuit family, currents flow during changes in logic states to charge the capacitances of devices and wires.  Current 

flow ceases when a component voltage reaches the value of the voltage source.  Energy is expended in charging and 

discharging the capacitances of the circuit, and the associated flow of carriers between power supply to ground 

generates heat.  Additionally, in integrated circuits, many layers of interconnects generate heat due to Joule heating. 

Increasing thermal management demand driven by increasing performance of semiconductor devices, 

typically represented by microprocessors, over the past two decades has led to the development of a number of 

innovative technologies [9,10,11,12].  As shown in [9], thermal demand is defined as the need to develop heat 

removal strategies that maintain the active surface of the microprocessor at or below a specific temperature while 

dissipating a highly non-uniform power.  The non-uniformity of power across the chip surface tends to diminish the 

efficacy of thermal management solutions [9] and any assessment of heat removal solutions must accurately 
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comprehend the non-uniformity of power.  Since on-chip power distributions tend to be proprietary information, and 

somewhat design-specific, the definition of strategic thermal demand becomes difficult.  This can potentially lead to 

a non-optimal (both in terms of cost and performance) thermal solution and make setting strategic thermal directions 

for product families difficult.  Thus the dependence on power distribution data must be reduced in setting strategic 

thermal directions.  One path to achieving this is through the definition and use of a “density factor” to define 

efficacy of thermal management solutions [9].  Another is to attempt a definition of the strategic thermal demand; 

this is the focus of the work presented here. 

The objectives of the present work are to forecast, based on the scaling theory for MOSFETs, the power 

densities that are expected to be dissipated by microprocessors and to analyze the capabilities of the various state-of-

the-art cooling technologies to maintain microprocessor junction temperatures within acceptable limits.  The specific 

objectives of the work are to forecast (1) the thermal design power trends and the associated thermal solution 

demands, (2) leakage power trends and their impact on cooling demand, (3) peak power density trends, and (4) the 

limits of air cooling.   

Further, based on the thermal solution demands, an analysis is performed on the impact of different 

parasitics on the performance of Thermoelectric Cooler (TEC) modules, a field that has attracted recent interest [13]. 

 

2.  POWER DISSIPATION 

In this section, the fundamental (lower) limits on the power dissipation are discussed followed by a brief 

discussion of power dissipation by transistors [6].  Since the objective of the present work is to project the power 

dissipation trends of microprocessors, a brief overview of the scaling theory employed to improve CMOS 

technologies along a Moore’s Law trajectory is discussed.  A detailed description of leakage power and its impact on 

thermal management is then presented. 

 

2.1 Lower Limits on Power Dissipation for Irreversible Logic Computing 

According to a basic principle of the thermodynamics of computations, i.e., the Landauer principle [14], 

any irreversible manipulation of information, such as erasure of a bit, which throws away the computer’s previous 

logical state must be accompanied by an increase in entropy in the processing environment.  Erasure of a bit changes 

the logical entropy of the system from kBlog2 to kBlog1 (= 0), where kB is the Boltzmann constant.  Then the bit 

erasure essentially is associated with an energy dissipation of kBTlog2 per bit.  This is also referred to as the 

Shannon-von Neumann-Landauer limit and is the minimum energy that should be supplied for any computation via 

irreversible logic; it is expressed as   

 log 2l BE k T        (1) 

This dissipation of energy is only due to the act of erasure and is independent of any other internal energy and 

entropy associated with the physical representation of the bit [15].  It is also known that the same amount of energy, 

El, is dissipated during signal transmission by interconnects [3, 6,16].   
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In addition to logical entropy, entropy can also be associated with the distribution of electrons making up a 

bit.  Using the Sommerfeld approximation, valid for temperatures that are low compared to the Fermi temperature, 

the electronic entropy per bit of information is defined as [15]  

2

2

B
c

F

N k T
S

T


         (2) 

where N is the number of electrons (= Cload/q) per bit and TF is the Fermi temperature (~ 10
5
 K).  The temperature of 

the bit is assumed to be the same as that of the chip.  The configurational energy consumed for processing one bit of 

information (if the bit was cooled) is given by  

Ec=TdSc        (3) 

Equations (1) and (3) provide the lower bound on energy consumption by irreversible logic computers; 

however, the practical applicability of these equations must be called into question since the energy consumption 

predicted by equations (1) and (3) is three or more orders of magnitude lower than the electrostatic energy consumed 

by present-day electronics. 

 

2.2 Power Estimation for Typical Microprocessors 

In digital circuits, transistors are implemented as switches.  Current flow between the source and drain 

terminals in a transistor is controlled by the voltage at the gate terminal.  The gate is electrically isolated from the 

silicon by a thin insulating layer.  The gate influences the device through the electric field resulting from different 

gate biases.  A schematic of a MOS transistor is shown in Figure 1. 

In general, for CMOS circuits, power is dissipated during standby and active modes.  The total power 

dissipation during the active mode consists of static and dynamic components.  Switching power or dynamic power 

dissipation is due to charging and discharging of capacitive load (sfCV
2
fclock).  Dynamic power consumption occurs 

whenever there is a power-consuming voltage transition in the device.  The switching activity factor (sf) is defined 

as the effective number of power-consuming voltage transitions (e.g., the 0  1 transition is a power-consuming 

transition) experienced by the output capacitive load.  The switching activity factor depends on the circuit topology 

and logic style, as well as on the input signal statistics.  For a two-input logic gate where the inputs are uniform and 

equally probable, the switching factor can be expressed as P0  P1 where P0 and P1 are the probabilities that 0 or 1 

appear as the output.  Therefore the activity factor can be defined as the mean probability of the possible outputs.  

The evaluation of switching activity factors for large circuits is complicated as the input signals are not uniform.  

Switching activity is one of the main reasons for the higher power consumption of logic transistors where the 

activity factors are very high compared to cache transistors.  A smaller component of dynamic power dissipation 

occurs due to the short-circuit current, also called crow-bar current, that flows momentarily when both PMOS and 

NMOS in an inverter are simultaneously conducting during a state change. 

Static power dissipation is due to the various leakage currents arising due to device limitations in the 

transistor.  A schematic of the dynamic and static power consumption mechanisms in MOSFETs is shown in Figure 

2.  The total power dissipation during the active mode can be expressed as  

 2

tot sf load dd clock s c dd leak ddP C V f I V I V            (4) 
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The first two terms on the right hand side are components of the dynamic power and the third term is the static (or 

leakage) component.  In equation (4), sf is the activity factor, Cload is the load capacitance that includes gate, 

junction and interconnect (or line) capacitances, Vdd is the supply voltage, fclock is the clock frequency, Is-c is short-

circuit (or crow-bar) current and Ileak is leakage current.  The switching power has been the most dominant 

component of power dissipation in circuits.  But the leakage power is increasing at an exponential rate mainly due to 

sub-threshold conduction and gate-oxide tunneling [5].  A brief discussion of leakage power is presented later in this 

paper.  It should be noted that equation (4) applies to an isolated transistor.  If the distribution of transistor 

geometries is assumed to be the same across large groups of transistors implemented on the silicon, then this 

equation can be generalized for the entire chip by multiplying with the average number of transistors.  However, the 

size of transistors varies significantly on the die.  In view of the assumption of uniform transistor size, equation (4) 

only provides an order of magnitude estimation.  In general, the area of the memory cache transistors is smaller than 

the logic transistors and the transistor density in the cache is higher than the logic transistor density. 

 

2.3 Scaling Theory 

Historically, the total numbers of transistors on a chip have doubled every 12 months [4].  By the early ’80s 

the scaling of transistor sizes, and hence the number of transistors, slowed down due to increased complexities 

involved in printing the device dimensions onto the chip.  The total number of transistors in the ’90s doubled every 

18 to 24 months, bearing out Moore’s Law.  This period of 18 to 24 months is commonly referred to as a technology 

generation; the microprocessor technology for that generation is characterized by the minimum feature size (gate 

length), which is known as a technology node [1]. 

Scaling of semiconductor technology increases the transistor density, improves the transistor performance 

and reduces transistor power consumption.  Three defined goals for current technology scaling [17] are to: (1) 

reduce gate delay (~ CV/I) by 30% and thus increase the operating frequency (f  ~ I/CV) by 43% [1/(1-0.3)]; (2) 

double the transistor density; and (3) reduce the energy per transition (CV
2
) by 65% and hence, the power 

consumption (CV
2
f) by 50%, where C and V scale as 0.7 per generation along with linear dimensions to follow 

Moore’s law.  These technological improvements are achieved through advancements in architecture, circuit design 

and fabrication technology.  Over the last two decades, two different scaling methods have mainly been employed to 

achieve these technological improvements. 

The two scaling approaches are: (1) constant voltage scaling where the supply voltage is maintained 

constant, and (2) constant electric field scaling where vertical and horizontal electric fields are maintained constant.  

If supply voltage remains constant (constant voltage scaling), and if the device dimensions are shrunk by 30%, the 

capacitance scales down by 30% (C ~ ) and the frequency increases by 43%, since f ~ I/CV (1/) where I also 

scales by a factor of .  As result, the power remains constant:  P ~ CV
2
f   0.7  1

2
  (1/0.7) = 1.  A schematic 

diagram depicting constant voltage scaling is shown in Figure 3.  Present-day technologies employ constant electric 

field scaling where the device dimensions and supply voltages are scaled.  Scaling of the supply voltages reduces the 

switching power dissipation (quadratic influence).  Constant electric field scaling is illustrated in Figure 4.  
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However, scaling the supply voltage leads to a severe penalty in speed of operation of the circuits.  This is because 

the propagation delay (time required for signal to travel from input to output) increases as the voltage is scaled: 

  CV/(V-Vth)
n
      (5) 

This increase in propagation delay limits the circuit speed and hence the switching frequency.  In order to lower the 

power consumption without significant performance loss, the electric field scaling methodology also employs 

threshold voltage scaling [17,18].  It should be noted that the supply and the threshold voltages are not scaled by the 

same factor.  This scaling requires a decrease in threshold voltage which increases the static power dissipation in the 

current technologies, i.e., it increases the off-state current Ileak.  In constant field scaling, the device dimensions and 

voltage are scaled by 30%, the capacitance scales by 30% and frequency increases by 43%.  Therefore, the power P 

scales by the factor ~ 0.7  0.7
2
  (1/0.7) = 0.5.  A detailed description of the effect of constant field scaling on 

various device parameters such as capacitance, resistance, and gate delay is available in [17]. 

Figure 5 shows the maximum power dissipation of several Intel microprocessors, up to the 0.13 m node.  

Technology nodes prior to 0.8 m employed constant voltage scaling and hence the power increased dramatically 

due to doubling of transistors (though power consumed by a single transistor remained constant) every generation.  

Constant field scaling has been used thereafter.  It is seen that when the microprocessors move to the next generation 

with constant voltage scaling, the power remains constant, as against constant field scaling where the power 

decreases when the technology is improved.  This is consistent with the scaling arguments discussed above.  The 

leakage or static power in technology nodes before 0.18 m was less than 5% of the total power.  It should be noted 

that the power dissipation is not governed just by technology scaling, but also by the micro-architecture 

implementation, circuit design, and other parameters. 

 

2.4 Leakage Power: Mechanisms and Trends 

In this section, three important leakage mechanisms in current technologies are briefly discussed.  A 

detailed review of leakage mechanisms and their reduction methodologies is available in [19].   

2.4.1 pn Junction Reverse-Bias Current 

Figure 6 schematically illustrates various leakage mechanisms in a MOS transistor.  Typically, the source 

and drain to well junctions are reverse-biased.  Junction leakage occurs due to minority carrier diffusion/drift near 

the edge of the depletion region and electron-hole pair generation in the depletion region of the reverse-biased 

junction.  Also, if both n and p regions are heavily doped (high electric field) to attain the desired threshold voltage, 

as is the case in current technologies, band-to-band tunneling occurs, i.e., electrons from the valence band of the p 

region tunnel through to the conduction band of the n region.  In such situations, band-to-band tunneling dominates 

the pn junction leakage current. 

2.4.2 Sub-threshold Leakage Current 

 The gate delay of a transistor (the approximate time required to charge the gate capacitance) can be 

expressed as  = Cgate Vdd/Id,sat, where Cgate is the gate capacitance per unit width, Vdd is the supply voltage and Id,sat 

is the saturation drain current per unit width of the transistor.  Capacitance Cgate is proportional to the ratio of 

channel length to oxide thickness.  As the device dimensions shrink by a factor k, Cgate remains constant.  But the 
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drain current is proportional to (Vdd –Vth)
n
, where n ranges between 1 to 2.  As Vdd is scaled by k, in order to 

maintain the drain current Id, Vth should also be reduced.  This reduction in Vth along with the device dimensions 

causes an increase in sub-threshold leakage.  Sub-threshold leakage current occurs when the gate voltage is below 

the threshold voltage and mainly consists of diffusion current.  When the gate voltage is less than the threshold 

voltage, the number of mobile carriers and the longitudinal electric field are small, and hence the drift component of 

the sub-threshold drain-to-source current is negligible.  Therefore, sub-threshold conduction is dominated by the 

diffusion current, and carriers move by diffusion along the surface below the channel.  The sub-threshold leakage of 

a MOS device can be expressed as [19,20] 

 
 

0

, 0 exp 1 exp
g s th s ds ds

sub leak

B B

V V V V V V q
I A

m k T q k T

        
          

   (6) 

where    
2

0 0 1 exp 1.8 exp thB
ox

B

V qk TW
A C m

L q k T




   
    

   
, 0 is the zero-bias mobility, Cox is the gate oxide 

capacitance, W and L are the channel width and length, m is the sub-threshold swing coefficient (body effect 

coefficient), T is the temperature, q is the electron-charge,  is the drain induced barrier lowering (DIBL) 

coefficient,  is the linearized body effect coefficient, ΔVth is a parameter accounting for the transistor-to-transistor 

leakage variation, Vth0 is the zero bias threshold voltage, and V is the voltage. It should be noted that the sub-

threshold leakage current depends exponentially on threshold voltage and temperature, Isub,leak  exp (-Vth/T), i.e., 

any further decrease from the present-day values of threshold voltage and increase in transistor temperature would 

increase the leakage current and static power exponentially.  The temperature dependency of sub-threshold leakage 

power is brought out in Figure 7.  The sub-threshold leakage power is calculated using the expression [20] 

, exp th
sub leak

B

qV
I B

nk T

 
   

 
      (7) 

Here, B and n are device parameters and are usually obtained from experiments.  In Figure 7, a threshold voltage of 

0.34 V and n = 1.4 [21] are used.  In Figure 7, the vertical axis is the sub-threshold leakage power normalized with 

the peak temperature of 100C (ratio of leakage power at any given temperature to leakage power at 100C) and the 

horizontal axis is the temperature.  As the maximum allowable temperature of the device is reduced from 100C to 

70C, the sub-threshold leakage power reduces by 50%.  Significant power reduction can be obtained if the junction 

temperature is reduced.  This dependence on temperature of leakage power (and hence, of total thermal design 

power) has serious implications in microprocessor testing and noise immunity [22]. 

2.4.3 Gate-Oxide Tunneling 

As the device dimensions shrink, the gate-oxide thickness also reduces.  This reduction in gate-oxide 

thickness causes an increase in the electric field across the oxide.  The high electric field coupled with low oxide 

thickness results in tunneling of electrons.  The tunneling of electrons between the p-type substrate and gate can be 

either Fowler-Nordheim (FN) tunneling where the electrons tunnel into the conduction band of the oxide layer, or 

direct tunneling where the electrons directly tunnel to the gate through the forbidden energy gap of the SiO2 layer 

[19].  FN tunneling occurs only when the oxide layer is thick (as in earlier technology generations) and electric field 
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across the layer is high.  In very thin oxide layers (< 3 nm), electrons from the silicon surface directly tunnel to the 

polysilicon gate.  It has been reported that the minimum allowable gate-oxide thickness for MOS transistors is 0.7 

nm; below this thickness, the gate oxide breaks down [23].  The suggested alternative solution to SiO2 is to use a 

high dielectric constant material for the gate electrode [23].  Other leakage mechanisms such as punch-through and 

gate-induced drain leakage and techniques for leakage reduction are detailed in [19]. 

The two major leakage currents plaguing present-day microprocessors are gate-oxide tunneling and sub-

threshold leakage current.  At the device level and at room temperature, the contributions of gate-oxide tunneling 

current and sub-threshold leakage current are similar in relative magnitude.  But as microprocessors are operated at 

higher temperatures (~ 373 K), the sub-threshold leakage dominates the gate-oxide tunneling.  In general, leakage is 

highest in “hot spots” because the temperature is high in these regions leading to higher sub-threshold leakage.  In 

the SRAM memory cache, gate-oxide tunneling current dominates sub-threshold current, while in core logic the 

converse is observed.  A detailed account of contributions from various leakage currents to the total leakage power 

is beyond the scope of this work. 

The temperature dependency of the leakage power presents significant challenges to the thermal 

management of microprocessors.  Figure 8 illustrates the typical junction temperature vs. thermal resistance plot 

[24] used to define the cooling solution (heat sink) requirements.  Thermal resistance () is the resistance to heat 

flow from one point to another (e.g., ja is resistance to heat flow from the junction to ambient) and is the ratio of 

temperature difference between the points to the power dissipated, T P   .  In switching-power-dominant 

technologies where leakage power is negligible, the junction temperature vs. thermal resistance plot is a straight line 

(solid black line in the figure).  If the junction temperature is increased, the requirements on the heat sink are 

relaxed.  In leakage-power-dominant technologies on the other hand, shown as a red dashed line in Figure 8, an 

increase in junction temperature aggravates the situation by increasing the power dissipation requirements and hence 

decreasing the allowing thermal resistance.  Significant power savings can be extracted when microprocessors are 

operated below present-day device operating temperatures. 

2.5 Estimated Power Trends 

Figure 9 shows the estimated average power trends for single core micro-architecture.  Plotted in Figure 9a 

are the lower bounds on the power density trends calculated from equations (1) and (3).  In calculating the power 

density from equations (1) and (3) it was assumed that all the transistors are active.  Figure 9 also show an example 

estimated trend based on equation (4).  In the projected power density curve, the leakage power was fixed at 30% of 

the total power after 2005, while the short-circuit power was fixed at 5% of the switching power.  The initial values 

and expected trends for the various parameters used to calculate the trends are listed in Table 1 [25,26,27,28].  The 

voltage was assumed to scale by 15% every technology generation [25].  The frequency scaling was deduced from 

Intel datasheets provided in [26].  A typical switching activity factor () value of 0.1 was used for all the 

calculations [27,28].  The die size is kept constant at 1.4 cm
2
.  Also plotted in Figure 9 are published data from ITRS 

2004 [1].  Based on the ratio of logic to memory power density (~ 10) [29], the hot spots can be estimated, roughly, 

to be 3 to 8 times the average power density.  The peak flux range is established by considering the cache transistors 

to constitute between 50% and 90% of the total (cache + logic) transistors on the chip, and taking a geometric mean 
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of their contribution to average power density (qcache
%cache

  qlogic
(1-%cache)

).  Thus, with 50% cache and 50% logic, and 

a logic to cache power density ratio of 10, the average flux is 3.16 (= 1
0.5

  10
0.5

).  Therefore, the ratio of hot-spot 

power density (only logic) to average power density is 10/3.16 (~ 3). 

Estimates such as those developed here for average and peak power density offer a mechanism to 

determine the thermal impact of the power density projections, and to develop commensurate thermal solutions.  

However they are not intended to provide projections on future directions since these estimates do not account for 

the impact of low-power circuit techniques and architectural innovations such as multi-core and multi-thread 

processing which have a significant impact on the evolution of thermal demand.  These projections should be 

assumed to bound only single-core and single-thread application-based power density evolutions. 

 

3.  THERMAL MANAGEMENT OF MICROPROCESSORS 

The thermal impact of the projected power density trends of microprocessors in terms of heat sink 

requirements is now discussed.  Cooling solution demands are typically expressed in terms of the allowable thermal 

resistance to heat flow from junction (transistor) to ambient as a function of thermal design power.  The definition of 

thermal resistance is general and holds for different thermal architectures of which two types may be considered:  

one, where a thermal interface material (TIM) is used to thermally couple a bare die to a heat sink, and a second, 

where the heat sink interfaces with an integrated heat spreader (IHS) through a TIM [9].  For non-uniform power 

distribution on the die, a simple metric called the density factor for characterizing the extent of non-uniformity is 

suggested in [9].  For non-uniform on-die power density distribution, the thermal design power (TDP) can be 

expressed as  

 
 

j a

jc jc cs sa

T T
TDP

DF R  




  
     (8) 

In the above equation, the subscripts j,c,s and a refer to junction, case, sink and ambient, respectively.  In equation 

(8), R is the thermal impedance defined as the thermal resistance normalized by die area for a uniformly powered 

die, and is expressed as 
 ,maxj x

jx die

T T
R A

TDP


  .  In equation (8), DF is the density factor which accounts for non-

uniformity in the power distribution and is defined as the ratio of thermal resistance to thermal impedance.  The 

density factor can be mathematically expressed as  

js

js

js

DF
R


       (9) 

The density factor quantifies the impact of die size and die-power maps on the thermal resistance from junction to 

any specific location along the primary heat flow path. 

In Figure 10 the evolution of heat sink requirements (ca = cs + sa) is plotted based on the projected 

average power density (qavg”) calculated above for various technology generations.  The heat sink resistance 

requirement, ca, can be obtained using the following equation 
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    ,max ,maxj a j c

ca required

T T T T

TDP


  
      (10) 

where (Tj,max –Tc) = Rjc  qavg”.  A package thermal impedance value Rjc of 0.1-0.3 C-cm
2
/W was used along with 

junction to ambient temperature difference (Tj,max – Ta) of 60C to calculate the heat sink resistance.  The solid lines 

and symbols represent the case for a uniformly powered die (DF = 1/Adie from equation 9).  The dashed lines and 

hollow symbols show the impact of power non-uniformity (DF = 1.5 cm
-2

) on the required second-level thermal 

package in order to maintain the junction to ambient temperature difference of 60C. 

Refrigeration cooling, in principle, can provide negative thermal resistance.  Solid-state thermoelectric 

refrigeration has recently been shown to have the capability of cooling very high power densities [13].  Due to the 

high heat flux handling potential of solid-state thermoelectric refrigeration, and since this technology has the 

potential of scaling along with circuit technology, it is explored in the next section as one of the viable options for 

cooling future microprocessors.  There are, of course, many other viable cooling options in the literature, such as 

single or two-phase liquid cooling.  These are not discussed here and solid-state refrigeration is considered as an 

illustrative example.  A number of reviews of liquid cooling and other viable alternative technologies can be found 

in [30,31,32]. 

 

4.  SOLID-STATE REFRIGERATION 

The potential benefits of using system-level refrigeration cooling of microprocessors have been reported in 

previous studies such as [33].  These benefits include higher carrier mobility and thus carrier saturation velocity 

(higher speed), lower interconnect resistances (higher speed), reduced sub-threshold currents (lower power), lower 

electro-migration and thermal wear out (higher reliability) [34].  Vassighi et al. [35] studied the trade-offs in 

microprocessor frequency and system power achievable for low-temperature operation using refrigeration for the 

130 nm technology node.  For the case where the power dissipated by the microprocessor with and without 

refrigeration was maintained constant, an 11% increase in frequency was reported in the presence of refrigeration.  

For the case where the frequency was constant, a 38% reduction in power (compared to air cooling) was reported. 

 

4.1  Background 

Solid-state thermoelectric cooling has the advantages of long life, no moving parts, no emissions of toxic 

gases, low maintenance, and high reliability [36].  Another major advantage of solid-state refrigeration is that it can 

be structured into modular units and can be miniaturized.  Solid-state thermoelectric refrigerators utilize the Peltier 

effect to pump heat from one location to another.  When current is passed through two dissimilar metals or metal-

semiconductor pairs that are connected to each other at two junctions, heat is released at one junction and absorbed 

at the other [37].  Other refrigeration technologies that use the Peltier effect to pump heat are solid-state thermionic 

and thermo-tunneling (thermionic) refrigerators. 

Table 2 compares the various thin-film refrigeration technologies which exploit the Peltier effect 

[38,39,40,41].  In solid-state thermionic coolers, an emitter and collector consisting of either metal or a heavily 

doped semiconductor are separated by a solid-state barrier material which is made of a less heavily doped 
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semiconductor.  The barrier is made thin enough so that electrons travel ballistically through the barrier layer.  Due 

to the Peltier effect at the barrier/metal (or semiconductor) junction, electrons pass through the barrier layer from the 

emitter to the collector causing cooling at the emitter-barrier junction and heating at the barrier-collector junction 

[38].  The primary difference between solid-state thermionic and thermoelectric devices arises because of the 

ballistic transport of electrons through the barrier region in the former.  Compared to thermoelectric devices, the 

electrical current through a thermionic device is nonlinear and there is no Joule heating in the barrier layer for an 

ideal thermionic device.  A vacuum thermionic device has two parallel plates separated by vacuum.  This technology 

can be considered as an extension of thermionic cooling that combines the effect of thermionic cooling (evaporative 

emission) with quantum mechanical electron tunneling [39].  There are many variations possible to thermionic 

refrigerators depending on the design of the barrier.  Though thermo-tunneling seems to have high theoretical 

efficiency compared to solid-state refrigerators, solid-state thermoelectric refrigerators have the advantage of having 

been studied in detail by many previous investigators and their capabilities and limitations are well known [40,41].  

Also, recent developments in both bulk and low-dimensional TE materials (the latter exploiting quantum 

confinement effects) have improved the thermoelectric figure of merit significantly [42].  Hence the present study 

focuses on solid-state thermoelectric refrigerators. 

Solid state cooling based on the Peltier effect was discovered as early as 1800 [42].  Extensive technical 

literature exists on solid-state thermoelectric energy conversion devices [42,43]; a detailed review of the literature is 

beyond the scope of this work. A typical thermoelectric cooler is shown in Figure 11.  The p-type and n-type 

semiconductor elements are connected on the hot and cold sides such that a current flows through all the elements in 

series (if they were in parallel, the effects would cancel out).  Practical devices are made of many pairs of p-n legs, 

usually arranged such that current flows in series through the legs and energy flows in parallel from the cold side to 

the hot side.  Efficient solid-state refrigerators based on the Peltier effect require materials of high electrical 

conductivity (), high Seebeck coefficient () and low thermal conductivity (k) [42,44].  All these requirements can 

be combined into a figure of merit for thermoelectric energy conversion: 

2

Z
k

 
       (11) 

The higher the value of Z for a thermoelectric material, the higher is its efficiency.  The recent resurgence in 

thermoelectrics research inspired by developments in nano-structured and bulk materials is leading to the 

achievement of higher Z values [13]. 

 

4.2 Mathematical Modeling 

For an ideal thermoelectric device (Figure 12), under steady-state conditions, the heat absorbed at the cold 

junction and rejected at the hot junction can be written as [42,45] 

  21

2
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2
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where  p n

A
k k

l
   and  p n

l
R

A
   .  In equations (12) and (13),  is the Seebeck coefficient, I the current, 

k the thermal conductivity,  the electrical resistivity, and l and A are the length and cross-section area of the 

thermoelectric element.  In order to pump heat from the heat source, the external power that should be supplied is 

given by 

2

tec h cP Q Q I R T          (14) 

It should be noted that equations (12) and (13) do not account for parasitic losses such as interface losses due to 

contact resistances, back conduction through the interstitial material and other parasitic losses.  In equations (12) and 

(13), the first term on the right hand side accounts for the Peltier effect, the second term accounts for heat 

conduction and the third accounts for Joule heating as current passes through the thermoelectric material. 

The following (parasitic) losses, besides the intrinsic losses due to Joule heating and heat conduction through 

the TEC leg, should be accounted for in the design of a TEC module: 

 electrical contact resistance offered by the inclusion of anti-diffusion layers and solders [46,47], 

 thermal contact resistance due to electron and phonon boundary resistances at the thermal/metal interfaces, 

and non-equilibrium effects (i.e., interaction between phonons and electrons) [48], 

 substrate thermal resistance and spreading resistance at the hot and cold sides [49], and 

 back heat conduction through the interstitial materials and supporting frames. 

The effects of electrical contact resistance and back conduction through the interstitial material on the effective Z of 

the material are discussed further in the following as these are the major parasitic losses that limit the 

miniaturization of Peltier coolers. 

 

4.3 Electrical Contact Resistance 

Figure 13 shows a thermoelectric cooling leg with various sources of electrical resistance [50].  The 

representation in Figure 13 shows the various layers of material used besides the metal electrode and thermoelectric 

material.  All these layers contribute to the electrical contact resistance.  As current is passed through these layers, 

Joule heating at the interface where the Peltier effect occurs lowers the effectiveness of the thermoelectric modules 

[50].  The definition of Z for a practical thermoelectric device can be recast as follows [51, 52] 

2 2 1 ' 1
'

2 2
1 1el el

Z
Z

R RR k Z
l l

 

 
 

   
   

      
    

   

    (15) 

in which Rel is the electrical contact resistance (m
2
).  In equation (15) Z’ is the modified or effective figure of 

merit of the thermoelectric device. 

Figure 14 shows the effect of electrical contact resistance on the figure of merit as a function of leg length 

of the thermoelectric device.  Two bounds on Rel are used, the upper bound being the microfabrication limit on the 

order of 10
-11

 m
2
 [53] and the assumed lower-bound worst case Rel of 10

-8
 m

2
.  It can be observed that Rel poses 

constraints on the miniaturization as the contact resistance itself is enough to bring down the effective Z’ to less than 

10% of its intrinsic value (Z).  From equation (15), it is seen that Rel should be much lower than the product of leg 
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length and electrical resistivity of the TEC material (Rel << l) for a high operating figure of merit (Z’).  As 

discussed earlier, the shorter the leg length of the TEC, the higher is its cooling power density (qc”  l).  The effect 

of electrical contact resistance on the heat dissipation capacity of the thermoelectric device can be easily 

accommodated in equations (12)-(14) by lumping them into the resistance term (R).  Other interface effects on Z are 

discussed in detail in [53]. 

 

4.4 Back Heat Conduction 

As heat is pumped from the cold junction to the hot junction, there is back flow of heat from the hot to the 

cold junction through the thermoelectric element and also through the interstitial material between the 

thermoelectric materials.  A schematic of the back conduction in a typical thermoelectric element is depicted in 

Figure 15.  The packing density () of the thermoelectric material may be defined as the ratio of the area of the 

thermoelectric material to the total area of the thermoelectric module,  = Atec/(Atec + Ai).  The effect of back 

conduction through the interstitial material on the operating Z’ of the TEC can be expressed as  

 

2 2
' 1 '

11
1 1tec tec ii

tec

Z
Z

KR k Z k kk

k

  

  



 
   
      
          
   

     (16) 

Using equation (16), the effect of back conduction is illustrated in Figure 16.  It may be noted that equation (16) 

reduces to the appropriate limit for  = 0 (Z = 0 because of no thermoelectric material) and  = 1 (Z’ = Z).  It is also 

observed that a higher packing density and lower ki/ktec ratio result in a higher operating figure of merit.  The effect 

of back conduction of heat through the interstitial material in the TEC module can be included in the mathematical 

model (equations 12-14) by using the unit-cell model and lumping the interstitial thermal conductivity (ki) and 

packing density () in  as  

1
1 1 i

tec

tec

kA
k

l k




  
    

  
     ( ) 

 For achieving a high operating Z’ for the TEC module, the electrical contact resistance and the back 

conduction through the interstitial material should be reduced.  The electrical contact resistance can be lowered by 

using microfabrication techniques to prepare the metal TE leg junction.  The back conduction through the interstitial 

material can be reduced by using highly insulating materials and through higher packing density. 

 

4.5 Impact of Loss Mechanisms on TEC Efficiency 

The two loss mechanisms described in the previous two sections not only reduce the effective ZT value, but 

they also decrease the efficiency of the TEC module.  The electrical contact resistance increases the internal heating 

(I
2
R) of the TEC itself and hence reduces the amount of energy it can pump.  Back conduction also reduces the net 

heat pumping.  The coefficient of performance (COP) is the typical efficiency metric for refrigeration systems and is 

defined as the ratio of energy pumped to the energy input required to achieve the pumping (COP = Qc/(Qh-Qc)).  

TECs can be operated under many different conditions such as maximum heat pumping ability, maximum COP, and 
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optimal COP and heat pumping conditions depending on the driving current (usually normalized with the optimal 

current, i.e., I/Iopt).  It is well known that the maximum COP is higher for higher ZT material [42].  A detailed 

discussion on the effect of ZT on the COP can be obtained from references [43,45,53,54].  Hence, it is readily 

apparent that the loss mechanisms would decrease the maximum COP and move the point of this reduced maximum 

to a different current.  The movement, however, is dependent on the loss mechanism.  Increasing the electrical 

contact resistance pushes the maximum COP to a lower value of I/Iopt.  This is due to the increased self-heating 

caused by the additional resistance.  The addition of the back conduction, on the other hand, pushes the maximum 

COP to a higher value of I/Iopt, since it now takes additional heat pumping, from the driving current, to compensate 

for the back conduction of heat through the material surrounding the TEC elements.  While the changes described 

are qualitatively independent of the scale of the TEC module, the impact on the magnitude of heat pumping is 

strongly dependent on both the values of the loss mechanism and the scale of the TEC module. 

 

5.  CONCLUSIONS 

A study was undertaken to estimate the thermal design power and peak power density trends of single-core 

microprocessors. Two different lower bounds on the power density are discussed and they are found to be two 

orders of magnitude less than the present-day power densities.  A review of various components of power dissipated 

by microprocessors is provided and the impacts of leakage power on the cooling solutions are discussed.  Average 

and peak power density trends are estimated based on technological scaling trends for single-core micro-

architectures.  Heat sink thermal resistance requirements for projected power densities are also calculated.  

Projections from this work show that significant improvements in packages and heat sinks for system cooling 

continue to be required. 

Solid-state thermoelectric refrigeration is a promising technology for high power density cooling and so its 

limitations are studied.  Thin-film thermoelectric coolers (TECs) are particularly attractive for cooling high heat 

fluxes, but thinning of a TEC, while yielding a higher cooling capability, also results in greater parasitic losses. 
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Table 1.  Parameter values and trends [25,26,27,28]. 

Parameters Initial Value Trends 

Capacitance (fF) 1.9 0.7x 

Voltage (V) 1.5 0.85x 

Average number of 

transistors (millions) 
55 2x 

Frequency (GHz) 2.2 1.5x 

Activity factor 0.1  

Die size (cm
2
) 1.4  
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Table 2.  Comparison of electronic refrigeration technologies [38-42]. 

 

Technology 
Physical 

Mechanism 
Advantages Disadvantages Remarks 

Thermoelectric 

Current passed 

through a two 

dissimilar metals (or) 

semiconductors that 

are connected to each 

other at two junctions 

(Peltier junction) 

- Theory and values 

well established 

- Flexibility in 

fabrication routes 

(Sputtering, Vapor 

deposition, etc) 

- Joule heating 

- Heat conduction 

- Thermo-tunneling 

has the highest 

theoretical COP 

compared to 

thermoelectrics & 

solid-state 

thermionic 

- Thermoelectric & 

solid-state 

thermionic 

TI/ 
0.5

) 

(d – barrier width;  

- mean-free path); 

For d < , 

thermoelectric 

coolers are superior 

than solid-state 

thermionic devices 

Solid-state 

Thermionic 

Electrons passing 

through a barrier 

layer from the 

emitter to the 

collector cause 

cooling at the 

emitter-barrier 

junction (ballistic 

transport of 

electrons) 

- High ZT for thin 

films 

- In ideal device, 

Joule heating is 

absent 

- Very complex 

material system and 

may not be easy to 

controllably 

fabricate 

- Often slow 

fabrication 

Thermionic 

(Thermotunneling) 

Selective evaporation 

emission of hot 

electrons over a 

barrier layer 

combined with 

quantum mechanical 

electron tunneling 

(vacuum gap) from 

cathode to anode 

- Theoretical 

efficiency 

(COP/COPCarnot) ~ 

0.7 

- No ohmic 

resistance 

- Radiation is the 

only mode of heat 

transfer 

- Not easy to 

implement for the 

case of chip cooling 

due to small gaps 

and requirement of 

vacuum 

- Material work 

function values 

limits practical 

devices (>500 K) 
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Figure 1.  Schematic diagram of MOS transistor. 
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Figure 2.  Schematic diagram of (a) dynamic and (b) static power dissipation mechanisms in CMOS technologies. 

The dynamic power dissipation is due to the charging of capacitance. It is noted that the input is zero for static 

power dissipation.   
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Figure 3. Schematic illustration of constant voltage scaling. The electric field increases as the technology is scaled, 

and the channel length and gate oxide thickness decrease while voltage remains constant. 
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Figure 4. Schematic illustration of constant electric field scaling. The electric field remains constant while the linear 

dimensions and voltage decrease with each generation. 
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Figure 5. Maximum power dissipation of several microprocessors [17].  

 

Figure 6.  Schematic illustration of the various leakage currents in MOS transistors. S, G, B, D and L in the figure 

are source, gate, body, drain terminals and channel length, respectively. 

1 – pn Junction leakage current  

2 – Sub-threshold leakage current 

3 – Gate-oxide tunneling 

4 – Gate induced drain leakage current 

5 – Punchthrough 
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Figure 7. Sub-threshold leakage power normalized with respect to temperature as a function of temperature. 
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Figure 8. Schematic diagram illustrating the electro-thermal coupling of junction temperature and total thermal 

resistance [24]. 
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(b) 

Figure 9. Estimated evolution of average power density (a) with and (b) without the lower limits on the power 

dissipation (projected power density is based on Equation (4)).  See section 2.5. 
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Figure 10. Evolution of external heat sink requirements based on the projected average power density trends (UP – 

Uniform Power and DF – Density Factor).  The ambient temperature is assumed to be 40C in this calculation. 

 

 

Figure 11. Schematic diagram of a solid-state thermoelectric cooler. 
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Figure 12. Schematic diagram of an ideal single-stage thermoelectric cooling module. 
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Figure 13. Schematic diagram of a thermoelectric device with various sources of electrical contact resistance 

(adapted from [50]). 
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Figure 14. Effect of electrical contact resistance (Rel) on operating figure of merit of the TEC module. 

 

 

 

 

Figure 15. Schematic of back flow of heat through the interstitial and thermoelectric element along with the unit-cell 

model considered. 
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Figure 16.  Effect of back conduction through the interstitial material on the operating figure of merit (Z’) of the 

TEC module. 
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