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Abstract

In this thesis, we introduce the use of topological models and methods, formerly used to
analyze computability problems in asynchronous, distributed computer systems, as tools
for the quantification and classification of complexity in such systems.

We extend Herlihy and Shavit's topological computability model [26] to obtain a topo-
logical framework for modeling decision tasks and protocols in the non-uniform iterated
immediate snapshot (NIIS) model, a generalization of the iterated immediate snapshot (IIS)
model of Borowsky and Gafni [10]. We also present an Asynchronous Complexity Theorem,
which gives a complete characterization of the complexity of solving decision tasks in this

model. Our theorem states that the time complexity of any protocol in the non-uniform it-

erated immediate snapshot model solving a decision task is equal to the level of non-uniform

chromatic subdivision necessary to allow a simplicial map from the task's input complex to

its output complex.

To show the power of our theorem, we use it to prove tight upper and lower bounds

on the time to achieve N process Approximate Agreement. Our bound of [logd input- range

where d = 3 for two processes and d = 2 for three or more shows that the intriguing gap

between the known lower and upper bounds implied by the work of Aspnes and Herlihy [1]
is not a technical coincidence.

The main contribution of this work is that, using our framework, we can model and

reason about concurrent executions of asynchronous, distributed protocols using simple,
geometric and topological arguments that require no explicit mention of concurrency at all.
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Chapter 1

Introduction

As we enter the 21st century, computers are progressively being turned into interacting

coordination devices in asynchronous, distributed systems. Unfortunately, the standard,

Turing notions of computability and complexity are not sufficient for evaluating the behavior

of such systems. In the last few years, techniques of modeling and analysis based on

classical algebraic topology [4, 10, 12, 16, 20, 18, 19, 21, 22, 26, 29], in conjunction with

distributed simulation methods [8, 9, 10, 23] have brought about significant progress in

our understanding of asynchronous computability problems. In this thesis, these techniques

are extended and modified to provide a framework for analyzing asynchronous complexity

problems.

1.1 Historical Background and Related Work

In this section, we give a brief account of previous work on computability problems in

fault-prone, asynchronous, distributed systems, applications of algebraic topology to asyn-

chronous computability problems, simulation techniques, and also on characterizing the

Approximate Agreement task.

In 1985, a fundamental paper by Fischer, Lynch and Paterson [15] demonstrated that

traditional Turing computability theory is not sufficient for analyzing computability prob-

lems in asynchronous, distributed systems. In particular, it showed that the well-known

Consensus task, in which each participating process has a private input value drawn from



some set S, and every non-faulty process must decide on an output value equal to the input

of some process, cannot be solved in a message passing system if only one process may fail

by halting. Later, it was also shown that the message passing and shared memory models

are equivalent [2], so this result carries over to shared memory systems as well. This fun-

damental discovery led to the creation of a highly active research area, which is surveyed

in a recent book by Lynch [25].

In 1988, Biran, Moran and Saks [6] introduced a graph-theoretic framework that provides

a complete characterization of the types of tasks that can be solved in a message passing or

shared memory system in the presence of a single failure. This framework proved hard to ex-

tend to more than one failure, however, and even the problems of completely characterizing

specific tasks such as Renaming [5] and Set Agreement [11] remained unsolved.

In 1993, three research teams working independently - Borowsky and Gafni [8], Saks

and Zaharoglou [29], and Herlihy and Shavit [21], derived lower bounds for solving the Set

Agreement task. The paper of Borowsky and Gafni introduced a powerful new simulation

technique for proving solvability and unsolvability results in asynchronous, distributed sys-

tems. The technique allows N-process protocols to be executed by fewer processes in a

resilient way, and has recently been proven correct by Lynch and Rajsbaum [23].

The landmark paper of Herlihy and Shavit [21] introduced a new formalism based on

tools from classical, algebraic topology for reasoning about computations in asynchronous,

distributed systems in which up to all but one process may fail. Their framework consists of

modeling tasks and protocols using algebraic structures called simplicial complexes, and then

applying standard homology theory to reason about them. In 1994 and 1995, Herlihy and

Shavit extended this framework by providing the Asynchronous Computability Theorem,

which states a condition that is necessary and sufficient for a task to be solvable by a wait-

free protocol in shared memory [22, 26], and showed applications of this theorem to tasks

such as Set Agreement and Renaming. In her PhD thesis, Elisabeth Borowsky generalized

this solvability condition to a model consisting of regular shared memory augmented with

set-consensus objects, and under more general resiliency requirements [7].

In 1993, Chaudhuri, Herlihy and Lynch [12] also used topological and geometric ar-

guments to prove tight bounds on solving the Set Agreement problem in the synchronous

message passing model where an arbitrary number of processes may fail.



In 1994, Herlihy and Rajsbaum derived further impossibility results for Set Agreement

by applying classical homology theory [20]. Moreover, in a unifying paper in 1995, Herlihy

and Rajsbaum provided a common, general framework for describing a wide collection of

impossibility results by using chain maps and chain complexes [18]. At the same time,

Attiya and Rajsbaum reproved several impossibility results using a purely combinatorial

framework [4].

Gafni and Koutsopias recently used a reduction from the classical contractibility problem

of algebraic topology to show that it is undecidable whether a certain class of 3-process

tasks are wait-free solvable in the shared memory model or not [16]. This work was then

generalized by Herlihy and Rajsbaum to arbitrary numbers of processes and failures in a

variety of computational models. [19]. Recently, Havlicek showed that, while undecidability

holds in the general case, the problem of solvability is in fact decidable for a relatively large

class of tasks [17].

The immediate snapshot (IS) object was introduced by Borowsky and Gafni in 1993 [9].

It is the basic building block of the iterated immediate snapshot (IIS) model, first implicitly

used by Herlihy and Shavit [21, 22], and more recently formulated as a computation model

by Borowsky and Gafni [10] as part of their new, simplified proof of the Asynchronous

Computability Theorem of Herlihy and Shavit [21, 22, 26]. This work also shows that the

IIS model is computationally equivalent to standard shared memory models by providing a

wait-free implementation of IIS from shared memory, and vice versa. It is not clear, however,

whether these implementations are optimal from a complexity-theoretic viewpoint.

The Approximate Agreement problem, a weakening of the Consensus problem in which

each process has a real valued input, and the non-faulty processes must agree on output

values at most e > 0 apart. It was first introduced in 1986 by Dolev, Lynch, Pinter, Stark

and Weihl [13], in a paper showing that this task can be solved in both the synchronous and

asynchronous message passing models even when assuming the Byzantine failure model (in

which processes may exhibit arbitrary, even malicious behavior). The paper also provided

matching upper and lower bounds for solving the task in these settings. These results were

extended to various failure models by Fekete [14], who also showed optimality in terms of

the number of rounds of communication used.

In 1994, Attiya, Lynch and Shavit published a paper giving a Q(log n) lower bound,



together with an almost matching O(log n) upper bound, where n is the number of processes,

on solving Approximate Agreement in failure-free single-writer, multi-reader shared memory

systems [3]. These results were part of a proof that, in certain settings, wait-free algorithms

are inherently slower than non-wait-free algorithms.

This work was extended by Schenk [30], who showed matching upper and lower bounds

for solving the task in the asynchronous single-writer, multi-reader shared memory model

where the magnitudes of the inputs are bounded above.

Finally, in 1994, Aspnes and Herlihy [1] showed a [log 3 input--range lower bound, together

with a [log 2 inp- range upper bound on solving Approximate Agreement using wait-free

protocols in the atomic snapshot shared memory model.

1.2 This Work

In this thesis, we study the problem of analyzing the complexity of wait-free shared memory

protocols solving decision tasks. In such a task, each process starts with a private input

value and must decide on a private output value according to some task specification.

We focus on a generalized version of Borowsky and Gafni's iterated immediate snapshot

(IIS) model [10], called the non-uniform iterated immediate snapshot (NIIS) Model. The

IIS model has already been used successfully by Borowsky and Gafni [10] as part of their

new simplified proof of the asynchronous computability theorem [26]. We believe it is a

good first candidate for topological modeling and analysis, since it has a particularly nice

and regular geometric representation.

Keeping in style with Herlihy and Shavit's topological computability framework and

Asynchronous Computability Theorem [26], we show in Theorem 4.2 that there is a wait-

free protocol in the NIIS model solving a given decision task with complexity k on a set of

inputs, where k is an integer, if and only if there is a non-uniform chromatic subdivision

of the input complex with level k on the corresponding input simplex that can be mapped

simplicially to the output complex in accordance with the task specification.

The non-uniform chromatic subdivisions we introduce are a looser and more general

form of the iterated standard chromatic subdivisions used in the computability work of

Herlihy and Shavit and Borowsky and Gafni [21, 22, 26, 10]. Unlike iterated standard



chromatic subdivisions, non-uniform chromatic subdivisions allow individual simplexes in

a complex to be subdivided different numbers of times, while assuring that the subdivision

of the complex as a whole remains consistent.

Non-uniformity is a useful property when analyzing complexity, since the time complex-

ity, and hence the level of subdivision, of an input simplex may differ from one set of inputs

to the next. Considering just the complexity of the worst case execution over all input sets

would in many cases make a complexity theorem less than useful.

The power of Theorem 4.2 lies in its ability to allow one to reason about the complexity

of solving decision tasks in a purely topological setting. As we will show, the non-uniform

chromatic subdivisions of a complex provide a clean and high level way of thinking about

the multitude of concurrent executions of a NIIS protocol. We found this topological rep-

resentation very helpful, and we are sure that it will prove to be an invaluable tool for

designing and analyzing concurrent protocols.

We provide one example application of Theorem 4.2. In Chapter 5, we use our topo-

logical framework to show tight upper and lower bounds on the time to solve the Ap-

proximate Agreement problem wait-free in the NIIS model. The best known previous

results, due to Aspnes and Herlihy [1], imply an [log 2 input-range upper bound and an

[log 3 input range J lower bound. We close this gap, proving matching upper and lower bounds

of logd input •range where d = 3 for two processes and d = 2 for three or more.

1.3 Organization

The thesis is organized as follows. Chapter 2 provides a formal definition of decision tasks.

It also contains a thorough description of our model of computation, together with the

complexity measures we use for analyzing protocols in this model. Chapter 3 contains a

collection of necessary definitions and results from algebraic topology, as well as a descrip-

tion of how we model decision tasks and NIIS protocols topologically. It also contains

definitions of the standard chromatic subdivision and the non-uniform chromatic subdivi-

sion. Chapter 4 contains a statement and proof our main theorem. Chapter 5 contains

an application of our Asynchronous Complexity Theorem to the Approximate Agreement

task. Finally, Chapter 6 summarizes our results, and also gives some directions for further



research.



Chapter 2

Model

In order to develop a useful and applicable complexity theory for asynchronous, distributed

computer systems, we need to define some reasonable model of such systems. This model

must be detailed enough so as to accurately and faithfully capture the inherent complexity

of solving tasks in real distributed systems, yet be simple enough so as to easily lend itself to

some practical form of complexity analysis. The model we consider in this thesis consists of

a class of one-shot distributed problems, called decision tasks, together with a novel model of

computation, a type of shared memory called the non-uniform iterated immediate snapshot

(NIIS) model. This chapter contains a detailed description of these fundamental concepts.

It also contains the complexity measures that will be used to analyze the complexity of

solving decision tasks in the non-uniform iterated immediate snapshot model.

2.1 Informal Synopsis

We begin with an informal synopsis of our model, which largely follows that of Herlihy

and Shavit [21, 22, 26]. Some fixed number N = n + 1 of sequential threads of control,

called processes, communicate by asynchronously accessing shared memory in order to solve

decision tasks. In such a task, each process starts with a private input value and halts with a

private output value. For example, in the well-known Binary Consensus task, the processes

have binary inputs, and must agree on some process's input [15]. A protocol is a distributed

program that solves a decision task in such a system. A protocol is wait-free if it guarantees

that every non-faulty process will halt in a finite number of steps, independent of the



progress of the other processes. The time complexity of solving a decision task in this model

on a given input set is the supremum of the number of accesses to shared memory made by

any process on that input set.

2.2 Decision Tasks

In this section, we define decision tasks more precisely. This class of tasks is intended to

provide a simple model of reactive systems, such as databases, file systems, or automatic

teller machines. An input value represents information entering the system from the sur-

rounding environment, such as a character typed at a keyboard, a message from another

computer, or a signal from a sensor. An output value models an effect on the outside world,

such as an irrevocable decision to commit a transaction, to dispense cash, or to launch a

missile. Informally speaking, A decision task is a relation between vectors of input values

and vectors of output values. We define this more precisely below.

Let DI and Do be two data types, possibly identical, called the input data type and the

output data type, respectively. We first define the concept of an input vector.

Definition 2.1 An n + 1-process input vector I is an n + 1-dimensional vector, indexed

by Zn+1 (the integers mod n), each component of which is either an object of type DI, or

the distinguished value 1, with the additional requirement that at least one component of I

must be different from I.

The definition of output vectors is similar to that for input vectors:

Definition 2.2 An n + 1-process output vector 0 is an n + 1-dimensional vector, indexed

by Zn+1, each component of which is either an object of type Do, or the distinguished value

I_.

When it is clear from the context, we omit mentioning the number of processes in

specifying input and output vectors. We denote the i-th component of an input vector I

by f[i], and similarly, we denote the i-th component of an output vector 6 by 0[i]. In the

remainder of this thesis, unless stated otherwise, we will assume that i and j are index values

in the set Zn+1 . These index values will be used both for specifying vector elements and



also to index processes. We note that, in this thesis, we will use the terms "one-dimensional

array"("array" for short) and "vector" interchangeably - they refer to the same data type.

Definition 2.3 A vector U is a prefix of V if V[i] = I implies that U[i] = 1, and for all

i such that U[i] I1, U[i] = V[i].

Definition 2.4 A set V of vectors is prefix-closed if for all V E V, every prefix U of V is

in V.

In this thesis, we will only consider sets of input and output vectors that are finite and

prefix-closed.

Definition 2.5 An input set is a finite, prefix-closed set of input vectors. An output set

is a finite, prefix-closed set of output vectors.

Next, we define the notion of a task specification map, which maps each element of the

input set to a subset of the output set. Our definition is similar to that of Havlicek [17].

Definition 2.6 Let I and 0 be input and output sets, respectively. A task specification

map relating the two sets is a relation y C I x 0 such that the following conditions hold:

* For all I E I, there exists a vector 0 E 0 such that (I, 0) E 7.

* For all (1, 0) E y, and for all i, I[i] = I if and only if 0[i] = 1.

As a convenient notation, we denote the set of vectors 0 in 0 such that (I, 0) E '

by 7(f). For a given input vector I, the set of vectors y(7) simply represents the set of

legitimate output vectors for the set of inputs specified by I. This set will generally contain

more than one allowable output vector. We are now ready to give a precise definition of

decision tasks.

Definition 2.7 A decision task V = (1,0,7) is a tuple consisting of a set I of input

vectors, a set 0 of output vectors, and a task specification map y relating these two sets.



We note that, by definition, decision tasks are inherently one-shot, in the sense that all

processes have a single input and must decide on a single output exactly once.

Not all entries in a given input vector need contain an input value; some may contain the

special value I, indicating that some processes do not receive an input value. We formalize

this notion of participation in the definition below.

Definition 2.8 For any input vector I, if the i-th component is not I, then i participates in

I. Otherwise, we say that i does not participate in I. Moreover, we define the participating

set in I to be set of participating indexes.

As noted by Herlihy and Shavit [21, 22, 26], the reason for incorporating an explicit

notion of participating indexes in our formalism for decision tasks is that it is convenient

for distinguishing between tasks such as the following, which have the same sets of input

and output vectors, but different task specification maps.

Example 2.9 The n + 1-process Unique-Id task is defined as follows:

* I= {[Xo,... ,x n]xi E {i,I}}.

SO = {[o,... ,Xn] Z x i E Zn+ U {l },(xi= sxj) = (x i = 1)}.

S7 = {((, ) I (I[i] = ± < O[i] = ±)}.

Example 2.10 The n + 1-process Fetch-And-Increment task is defined as follows:

SI= {[x0,...,x,] x i E {i,I}}.

O = {[o,... , X] x i E Zn+1U (xi= zx) * (xi= 1)}.

* 7 is the set of pairs (I, 0) for which the following conditions hold:

- _i]i=I•(d[i]= I

- If 0[i] # I, then 0[i] must be less than the size of the participating set of I.

The two decision tasks above differ in that the task specification map of Fetch-And-

Increment involves explicit mention of the participating set of the input vectors, while that

of Unique-Id does not.



2.3 One-Shot Immediate Snapshot

Borowsky and Gafni's immediate snapshot (IS) object [9] has by now been proven to be

a useful building block for the construction and analysis of protocols in asynchronous,

distributed systems [9, 10, 21, 22, 26, 28].

Informally, an n + 1-process IS object consists of a shared n + 1-dimensional memory

array, and supports a single type of external operation, called writeread. The IS object has

n + 1 ports, one for each process. We typically associate process i with the i-th port. Each

writeread operation writes a value to a single shared memory array cell, and then immedi-

ately returns a snapshot view of the entire array. There is a separate writeread operation

for each of the IS object's n + 1 ports. A writeread operation on port i writes its value to

the i-th cell of the memory array.

Formally, we can specify IS objects as I/O automata [24]. Let D be any data type, and

define 9(D) to be the data type (D U {l}) n+ 1 , the set of all n + 1-arrays each of whose cells

contains either an element of D, or I. We index the elements of V(D) using the numbers

in Zn+ 1. An IS automaton for n + 1-processes and data type D called IS, is defined as

in Figure 2-1. We refer to such an object as an IS~7+  object. When the data type and

number of processes are clear from the context, we usually omit the sub- and superscripts

above.

For all i, the inv_writeread(v)i,x action simply writes the input value v to the i-th cell of

the input_value array of IS.. This array provides temporary storage for inputs to the IS` + 1

object. At the same time, the flag "inv" is written to the i-th cell of the interface array,

which indicates that an input has arrived on port i. The update(U ) action periodically

copies a set of values corresponding to the indexes in U, from the input_value array to

the memory array. The set U must be a subset of the indexes i with the property that

interface/i] = inv. Additionally, a copy of the memory array is written to the i-th cell of

the returnvalue array for each i E U. Finally, the flag "ret" is written to the i-th cell of

the interface array for each i E U, indicating that a response value to the invocation on

port i is available. The ret_writeread(S);i, output action provides a response to a previous

invocation on port i. Its only effect on the IS object is to reset the value interface[i] to 1,

thereby preventing more than one response to an invocation. The ret_writeread(S)i,x action



ISn 1 object named IS,

Signature

Inputs:

inv_writeread(v)i,.,,
Internals:

update(U),
Outputs:

ret_writeread(S)i,.,

v ED, iE6 {0,..., n}.

SC {0o,... ,n}.

S E V(D), i E O0,... ,n}.

State

memory
input-value
return-value
interface

E 0(D), initially (_L,... , I).

E 0(D), initially (1,... , I).
E 2'(D), initially (I,... ,I).

E {inv, ret, Il}n+, initially (.,... , 1)

Transitions

input: inv.writeread(v)i,
Eff: inputvalue[i] := v

interface[ij := inv

internal: update(U)
Pre: U C {i I interface[i] = inv}
Eff: For all i in U do

memory[if := inputvalue[if
For all i in U do

returnvaluefif := memory
For all i in U do

interface[i] := ret

output: ret.writeread(S)i,,
Pre: interface[i] = ret

return.value[i] = S
Eff: interface[i] := I

Figure 2-1: I/0 Automaton for an ISQ +1 object with name IS,.



can only occur after a return value has been written to the i-th cell of the return_value array,

and the flag "ret" has been written to the corresponding cell in the interface array.

In the remainder of this section, we will state and prove a few basic properties about IS

objects. These properties will be useful later, when we prove the correctness of a topological

framework for analyzing the complexity of protocols in models of computation that include

multiple IS objects. For the purpose of this discussion, let us for the remainder of this

section fix our attention on a single ISj+ 1 object, which we will call IS,. Following Lynch

[25], we define executions of the automaton IS, as follows.

Definition 2.11 An execution fragment of IS, is either a finite sequence

so, al, si, a2, S2, ... I a- 1 , Sr or an infinite sequence so, al, si, a2, s2 , ... of alternating states

and actions such that for all k, where k > 1, the action ak brings the object from state sk-1

to state Sk. An execution fragment beginning with a start state is called an execution.

We note that the specification of ISx does not in any way restrict the number of accesses

that may occur on any given port in an execution. In fact, it even allows two invocations

on a port i before any response is given to the first invocation. In this thesis, however, we

will only be using IS objects as building blocks to construct more complicated, long-lived

models of computation, not as long-lived objects in their own right. Therefore, we will only

consider a restricted class of executions of ISz, called one-shot executions, as defined below.

Definition 2.12 A one-shot execution of ISx is an execution for which there is at most

one invocation and at most one response on each port.

From Figure 2-1, it is clear that, while inv_writeread(v)i,x actions are always enabled,

no ret_writeread(S)i,. action may occur on a port i before an inv-writeread(v);i, action has

occured on the same port. Definition 2.13 provides a convenient notation for matching

inv_writeread(v)i,x and retwriteread(S);i, actions in one-shot executions.

Definition 2.13 For all i, a writeread(v, S)i,. operation in a one-shot execution a is an

inv_writeread(v)i,, action together with the next retwriteread(S)i,x action on the same port.

The operation writeread(v, S)i,, uses the i-th port of IS, to write the value v to the

i-th cell of memory , and subsequently return a snapshot S.



Definition 2.14 For all i, an incomplete operation in a one-shot execution a is an

inv_writeread(v);i, action for which there is no subsequent ret_writeread(S)i,x action on the

same port.

An incomplete operation inv_writeread(v)i,x in a uses the i-th port of IS, to write a

value v to the i-th cell of memory, but there is no subsequent response on the i-th port in

a. In the remainder of this section, we will be considering only one-shot executions of ISx.

Lemma 2.15 For any two distinct actions update(U) and update((U') in a one-shot exe-

cution a of ISx, the index sets U and U' are disjoint.

Proof. Suppose without loss of generality that U occurs before U', and suppose i E

U. Immediately after the action update(lU), interface[i] is equal to "ret". Since we are

considering a one-shot execution, interface[i] will remain equal to "ret" for the remainder

of the execution. Hence, the precondition of the update(U') action guarantees that i f U'.

C1

We can now define what we mean by concurrent operations of ISx.

Definition 2.16 Two operations writeread(vi, Si)i,z and writeread(v3 , Sj)j,x in a one-shot

execution a of ISx are concurrent if there exists an action update(U) in a such that i,j E U.

ISx exhibits a property called self-containment: A snapshot returned on port i by

a ret_writeread(S)i,. action in a one-shot execution a must necessarily contain the value

written to memory in the matching, preceding inv_writeread(v)i,. action on port i that is

part of the same operation. This property is proven in Lemma 2.17.

Lemma 2.17 Consider any operation writeread(vi, Si)i,x in a one-shot execution a of ISx.

Then Si[i] I±.

Proof. The input value vi is written to memory by an action update(Ui). In the same

action, after the vi has been written to memory, the memory variable is copied to

return_value[i]. This value is then returned as a response on port i. It follows that Si[i] $ I

for all i. 0



The value returned by a ret writeread(S)i,. action is a 1-dimensional array of type t(D).

In the following lemma, we prove that IS, exhibits the property that the set of snapshots

returned in a one-shot execution can be totally ordered by the prefix relation defined in

Definition 2.3.

Lemma 2.18 Consider any two writeread operations in a one-shot execution a,

writeread(vi, Si)i,x and writeread(vj, Sj)j,x . Either Si is a prefix of Sj, or Sj is a prefix of

Si-

Proof. Suppose the values vi and vj are written to memory by the actions update(Zi)

and update(uj), respectively.

If these actions are the same, that is, if U/ = Uj, the two operations writeread(vi, Si)i,

and writeread(vj, Sj)j,x are concurrent. In this case, the value of memory that is copied to

return_value[i] is identical to the value copied to return_value[j], since both are copied by

the same update(Ui) action. It follows that Si = Sj. Now suppose Ui / Uj, and suppose

update(l4i) occurs after update (j). Since no memory cells are ever reset, it follows that

the memory version that is written to return_value[j] during update('j) is a prefix of the

version that is written to returnvalue[i] during update(Ui). Hence Sj is a prefix of Si. The

case where update(Uj) occurs after update(Ui) is similar, and in this case we have that Si

is a prefix of Sj. The lemma follows. O

The next lemma concerns what is referred to as the immediacy property of one-shot

executions of IS,. If a value written to memory by an invocation on port j is contained in

a snapshot on port i, then the snapshot returned on port j is a prefix of that returned on

port i. This corresponds to the informal notion of a writeread operation on port j happening

before a writeread operation on port i.

Lemma 2.19 Consider any two writeread operations in a one-shot execution a,

writeread(vi, Si)i,x and writeread(vj, Sj)j,x. If Si[j] # I then Sj is a prefix of Si.

Proof. Suppose the values vi and vj are written to memory by the actions update (U) and

update((U3), respectively, and suppose Si[j] 5 i. This implies that either vj was written to

memory during update(Ui), in which case Ui = Uj, or the action update(lj) occured before



ISx

Figure 2-2: Diagram of IS,.

update(Ui). In either case, since no memory cells are ever reset or written to more than

once in a one-shot execution, we have that Sj must be a prefix of Si. 0

Finally, we will prove that one-shot executions are finite, a property that we shall need

when discussing fairness in the IIS model, to be introduced in Section 2.4.

Lemma 2.20 Any one-shot execution a of IS. is finite.

Proof. The number of actions of type invwriteread(v)i,x in a is at most n + 1, one for

each port. Similarly, the number of actions of type ret_writeread(S)i,x is at most n + 1.

By Lemma 2.15, the number of update(U) actions is bounded by n + 1 as well. Hence a is

finite. O

Figure 2-2 shows a stylized diagram of the IS object ISx.

2.4 The Iterated Immediate Snapshot (IIS) Model

The iterated immediate snapshot (IIS) model, first used implicitly by Herlihy and Shavit

[22, 26], was recently formulated as a computation model by Borowsky and Gafni [10].

The model assumes a finite sequence IS +1, IS ' IS•,• ... ISk-(D) of IS objects,
" D D D "',O(D)"g2(D9k-l(D) of IS objects,

denoted by IS1,IS2 , IS 3,... ,ISk, where k > 0. In the k-shot IIS model, there are k

available IS objects in sequence.

Each protocol in the IIS model is fully determined by the maximum number n + 1 of

processes that can participate, the number k of IS objects available, and a decision map



Figure 2-3: I/O Automaton for environment E in P(n,k,6).

6 : Ok(D) - Do, where Do is an arbitrary data type, which we call the protocol's output

data type. We refer to the protocol obtained by fixing these parameters as P(n,k,6)-

We can specify the P(n,k,6) protocol using I/O automata [24, 25] as follows. Each IS

object is specified as in figure 2-1, and each process i is specified as in Figure 2-4. The

external environment E is modeled as an automaton as specified in Figure 2-3. The pro-

tocol P(n,k,6) can then be specified by composing the automata for the processes with the

Environment automaton and the IS object automata by matching up operations as fol-

lows. Assume that for each process i, and each x, where 1 < x < k, the object IS, is

connected to the x-th port on i, and the i-th process is connected to the i-th port on IS,.

For each processor i and IS object IS, we match up i's and ISx's inv_writeread(v)i,x and

retwriteread(S)i,x actions. Moreover, each process i's start(v)i, decide(S)i and faili actions

are matched up with E's start(v)i, decide(S)i and faili actions. The resulting protocol au-

tomaton is denoted P(n,k,6) = {E; 0, 1,..., n; IS 1, IS 2,..., ISk}.

In any execution a of P(n,k,S), the first action executed by any process i is a start(v)i action,

which stores an input value v in its locaLstate variable. Lemma 2.21 states that in a given ex-

ecution a, some processes may not receive a start(v)i action, and duplicate start(v)i actions

may not occur.

Environment E

Signature

Inputs:

decide(S)i , SE k (D).
Internals:

Outputs:

start(v) , v E D.
faili

State

status E {1, participating, started, decided, failedln+ , initially in {I, participating} n+ 1

Transitions

input: decide(S)i output: start(v)i
Eff: status := decided Pre: status = participating

Eff: status = started
output: faili

Pre: status = started
Eff: status := failed



Lemma 2.21 In any execution a of P(n,k,j), the environment E may issue at most one

start(v)i action for each process i.

Proof. The proof follows immediately from the specification of the environment E in

Figure 2-3. A start(v)i action occurs only if the status[i] field is initially set to participating.

Moreover, since the status[i] field is set to started by any start(v)i action, and never reset

to participating, the precondition of start(v)i prevents duplicate start(v)i actions. 0

In the case where a process i does not have a start(v)i action in a, i takes no steps at

all in this particular execution.

Definition 2.22 A process i is said to participate in an execution a of the protocol P(n,k,6)

if a contains a start(v)i action. The set of participating processes in a is called the partic-

ipating set in a.

A process i is said to decide in an execution a when it executes a decide(S)i action.

After executing a decide(S)i action, a process i does not take any further steps in a. The

value S returned by the decide(S)i action is process i's output value in a.

For any execution a of P(n,k,6), the processes' input values can conveniently be repre-

sented using an n + 1-dimensional input vector I, as specified in the previous section, with

input data type D. The i-th entry of I is the input of process i. Similarly, the processes'

output values in a can be represented using an n + 1-dimensional output vector 0. The i-th

entry of 0 is the output of process i.

It should be noted that the notions of participating processes and sets defined for exe-

cutions and input vectors are consistent; A process i participates in an execution a if and

only if the index i participates in the input vector I corresponding to a. Therefore, when

the meaning is clear from the context, we usually omit qualifying a participating set with

an execution or input vector.

Suppose for now that no processes fail in the execution a of P(n,k,6), that is, for all i,

no faili action occurs in a. We will discuss the issue of failures later in this section. In

the non-failing case, each participating process i starts by accessing the first IS object by

executing a writeread(v)i,is, action, where v is equal to localstate, which initially contains



the input of process i. The response consists of a snapshot Si E 0(D) of the first IS object's

shared memory vector, containing the input values of some of the participating processes.

In particular, process i's input is always contained in the output i receives. Upon receiving

the response Si, process i copies this value to its locaLstate variable, after which it accesses

the second IS object by executing a writeread(v)i,is2 action, where v is equal to localstate.

In effect, the output from the first IS object is used as an input to the second. Each non-

failing, participating process accesses exactly k IS objects in sequence in this manner, before

deciding. The number k of IS objects accessed is the same for each non-failing, participating

process in any execution of the protocol. Once a process has received an output from the

k-th IS object and stored this value in the local_state variable, it applies a decision map 6

to this value, which maps the local state to an output value, stores the result in localstate,

and halts. The localstate variable now contains the process' decision value.

All executions of any protocol P(n,k,6) are necessarily finite, as stated in Lemma 2.23.

Lemma 2.23 Let a be an execution of the protocol P(n,k,6). Then a is finite.

Proof. It follows from Lemma 2.21 that a contains at most n + 1 actions of type start(v)i.

It is also clear from the specification of E that it contains at most n + 1 actions of type

decide(S)i and at most n + 1 actions of type faili. Now, for all x, where 1 < x < k, the

restriction of a to IS, denoted as, is a one-shot execution of ISx. It follows that ax is

finite by Lemma 2.20. Now, every action of a necessarily belongs to the restriction a. for

some x, where 1 < x < k, and so we conclude that a is finite. O

We are particularly interested in protocols that guarantee strong fault-tolerance condi-

tions. The failure model we shall be concerned with only involves stopping failures, that

is, we assume that each process i may simply stop without warning, after which it issues

no further locally controlled actions. We model this using the faili action, as shown in

Figure 2-4.

Definition 2.24 A process i fails in an execution a of P(n,k,6) if a contains a faili action.

To ensure that the faili action achieves the stopping failure property we want, we need

the following lemma.



Process i

Signature

Inputs:

retwriteread(S)i,x,
start(v)i,
faili

Internals:

Outputs:

inv_writeread(v)i,x,
decide(S)i,

State

localstate
counter
status

Transitions

input: retwriteread(S)i ,.
Eff: localstate := S

counter := counter +1

If status waiting do

status := ready

output: inv_writeread(v)i,.
Pre: counter = x < k

localstate = v : I
status = ready

Eff: status := waiting

input: start(v)i
Eff: locaLstate := v

output: decide(S)i
Pre: counter > k

jz(locaLstate) = S
status = ready

Eff: status := decided

input: faili
Eff: status := failed

Figure 2-4: I/O Automaton for process i running k-shot IIS protocol.

S E Uk, O1(D).
v E D.

v C0 9'(D).
S E V (D).

(Ut=o '(D)) U {L}, initially in the fresh state i.

Z, initially 1.

{ready, waiting, decided, failed}, initially ready.



Lemma 2.25 Let a be an execution of P(n,k,6) that contains a faili action. Then a contains

no actions locally controlled by i (invwriteread(v)j,x or decide(S)i ) after the faili action.

Proof. The faili action sets the status variable to the value failed. Since all actions locally

controlled by i require the status variable to have the value ready, and no input actions may

change the status variable once it has been set to failed, the lemma follows. O

We do not consider other, more complicated models, such as the Byzantine failure model,

in which processes may exhibit arbitrary behavior. We use the following fairness condition,

adapted from Lynch [25], for protocols in the IIS model.

Definition 2.26 An execution a of a protocol P(n,k,6) is fair if, for all i, in the final state

of a, no locally controlled action of process i is enabled.

In the remainder of this thesis, unless stated otherwise, we restrict our attention to

the set of fair executions of a protocol. Furthermore, we will focus on protocols with the

property that any non-failing process eventually decides, independent of the progress of the

other processes. This is called wait-free termination. In this thesis, we use the following

formalization of the wait-free termination condition, also adapted from Lynch [25].

Definition 2.27 A protocol P(n,k,6) is wait-free if, in any fair execution a of P(n,k,8), for

all i, and all x, where 1 < x < k, every inv_writeread(v)j,x action issued by a process i has

a following retwriteread(S)i,x action.

The IIS protocols we consider trivially satisfy the wait-free termination condition, since,

for all x, y, where 1 < x, y < k, invocations and responses on any given port i of IS, are

independent of invocations and responses on any other port j of IS, (note that x and y

may be equal).

A stylized interconnection diagram of the k-shot IIS model is given in Figure 2-5. The di-

agram does not show any internal actions, nor does it show the start, decide and fail actions

of the processes.
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Figure 2-5: Diagram of the k-shot IIS model.

2.5 The Non-Uniform Iterated Immediate Snapshot (NIIS)

Model

In this section, we generalize the IIS model by introducing the non-uniform IIS (NIIS)

model. In the standard IIS model, the number of IS objects available is finite, and the

number of IS objects accessed is fixed over all processes and all executions. The NIIS model,
however, assumes an infinite sequence IS+1,ISn+1 IS"+1 ... of IS objects, denoted

" II'-'z D 7 (D)' ·-k192(D)'
"' "

IS 1,IS2,IS3 , .... The number of IS objects accessed by any two distinct processes in a

given execution need not be the same, and, moreover, the number of objects accessed by

any fixed process may vary from execution to execution. The motivation behind this is to

be able to model complexity more accurately, as will be shown in later sections.

Each protocol in the NIIS model can be fully characterized by the maximum number

n + 1 of processes that can participate, a predicate function r : U.o g'(D) -* {true, false),

which each process applies to its localstate variable after each complete writeread operation

to determine whether or not to decide, and a decision map 6 : Uk0 o O'(D) -- Do, where

Do is an arbitrary data type, which we call the protocol's output data type. We refer to the

protocol obtained by fixing these parameters as P(n,,r,).

We can specify the P(n,r,S) protocol using I/O automata [24, 25] as follows. Each IS ob-



Figure 2-6: I/O Automaton for environment E in P(,,,,)-

ject is specified as in Figure 2-1, and each process i is specified as in Figure 2-7. The external

environment E is modeled as an automaton as specified in Figure 2-6. The protocol P(n,i,i,)

can then be specified by composing the automata for the processes with the environment E

automaton and the IS object automata by matching up operations as follows. Assume that

for each process i, the x-th IS object, ISV, is connected to the x-th port on i, and for each IS

object ISx, the i-th process is connected to the i-th port on IS,. For each processor i and

IS object IS,, we match up i's and ISx's invwriteread(v)i,x and ret_writeread(S)i,x actions.

Moreover, each process i's start(v)i , decide(S)i and faili actions are matched up with

E's start(v)i , decide(S)i and faili actions. The resulting protocol automaton is denoted

P(n,,s) = {E;0,1,... ,n;IS1,IS2,...}.

The only significant difference between a protocol P(,,,,s) in the NIIS model and a

protocol in the IIS model is that after each complete writeread operation, each process checks

whether it has reached a final state by applying the predicate r to the locaLstate variable.

If r returns true, the process executes a decide(S)i action and halts. Otherwise, it accesses

the next IS object as in the IIS model, and so on. In fact, any protocol P(n,k,6) in the IIS

model is equivalent to a protocol p(,n,, 6 ) in the NIIS model, in which the predicate r simply

Environment E

Signature

Inputs:
decide(S)i , S E U>_I, V'(D).

Internals:

Outputs:
start(v)i , v E D.
faili

State

status E {f-L, participating, started, decided, failed}"+l , initially in {I, participating}n+l.

Transitions

input: decide(S)i output: start(v)i
Pre: status = started Pre: status = participating
Eft: status := decided Eff: status = started

output: faili
Pre: status = started
Eft: status :=failed



checks whether or not the localstate variable is of type 19k(D) or not.

Notice that, unlike the IIS model, the NIIS model permits infinite executions, for some

choices of the termination predicate map T. We only consider protocols for which r is

chosen such that the entire system does not have any infinite executions, however. The

failure model we use for the NIIS model is the same as for the IIS model, that is, we allow

stopping failures, in which a process simply stops taking steps. As for the IIS model, we

model stopping failures using faili actions, as shown in Figure 2-7.

We use the following fairness condition, adapted from Lynch [25], for protocols in the

NIIS model.

Definition 2.28 An execution a of a protocol P(n,-,S) is fair if a is finite, and in the final

state no locally controlled action of process i is enabled.

In the remainder of this thesis, unless stated otherwise, we restrict our attention to the

set of fair executions of a protocol. We use the following wait-free termination condition,

also adapted from Lynch [25], for protocols in the NIIS model.

Definition 2.29 A protocol P(n,7,6) is wait-free if, in any fair execution a of P(n,,,s), for all

i, and all x, where 1 < x, every inv_writeread(v);i, action issued by a process i is followed

by a ret_writeread(S)i,x action.

The NIIS protocols we consider trivially satisfy the wait-free termination condition,

since, for all x, y, where 1 < x, y 5 k, invocations and responses on any given port i of IS,

are independent of invocations and responses on any other port j of ISy (note that x and

y may be equal).

A stylized interconnection diagram of the NIIS model is given in Figure 2-8. The

diagram does not show any internal actions, nor does it show the start and decide actions

of the processes.

2.6 Solvability of Decision Tasks

In this section we specify the safety property [25] we will consider in this thesis, which we

call solvability. We will define precisely what it means to solve a decision task in the NIIS



Process i

Signature

Inputs:

ret_writeread(S)i,. ,
start(v)i,
faili

Internals:

Outputs:

invwriteread(v)i,,,
decide(S)i,

SE U' u 1 '(D).
v E D.

vEUUI~ 91(D).
S E U'=0o9 1'(D).

State

localstate
status

E (U=o0 
1(D)) U f{-}, initially in the fresh state -1.

E {ready, waiting, decided,failed}, initially ready.

Transitions

input: retwriteread(S)i%,
Eff: localstate := S

If status waiting do

status := ready

output: inv-writeread(v)i,,
Pre: r(localstate ) = false

status = ready
local-state = vA I

Eff: status := waiting

input: start(v)i
Eff: localstate := v

output: decide(S)i
Pre: r(locaLstate) = true

ip(locaLstate) = S
status = ready

Eff: status := decided

input: faili
Eff: status := failed

Figure 2-7: I/O Automaton for process i running NIIS protocol.
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Figure 2-8: Diagram of the NIIS model.

model. Since the IIS model is equivalent to a special case of the NIIS model, the definitions

below also apply directly to the IIS model. Although we are primarily interested in the fair

executions of a given protocol, these definitions do hold for all executions of a protocol.

Definition 2.30 Suppose we are given a decision task D = (I, O, 7), and an execution a

of a protocol P•,7,c) in the NIIS model, with corresponding input and output vectors I and

0, respectively. Then P(,,s) solves D in a if 0 is a prefix of some vector in y(I).

Informally, this means that if P(,n,,,) solves a task V = (I, O, 7y) in a, then the outputs

of a are consistent with some continuation a' of a, where the outputs of a' correspond to

some vector in y(f).

Definition 2.31 A protocol P(n,,,6) solves a decision task D = (1, 0,y) if it solves it in

every execution a.

2.7 Complexity Measures for the IIS and NIIS Models

We now define the complexity measures to be used for analyzing the performance of pro-

tocols in the NIIS model. Since the IIS model is equivalent to a special case of the NIIS

u, v_w V, LG, cG,4L v/ ix



model, these measures also apply directly to the IIS model. As we will see however, these

measures expose a potential weakness of the IIS model: All processes always take the same

number of steps in every execution of a given protocol.

Let P(n,,,) be a protocol in the NIIS model solving a given decision task D, let I be an

input vector, and let a be any execution of P(n,7,6) that corresponds to I. For all i, let ti

be the number of IS objects accessed by process i in a. Clearly, ti is an integer. We first

define the time complexity of the execution a.

Definition 2.32 The time complexity of a, denoted t,, is maxi ti, the maximum number

of IS objects accessed by any process.

We note that t, is well-defined, since the number of processes n + 1 is finite. Moreover,

by definition of the max function, t, is an integer value. We use the definition given above

to define the time complexity of the protocol P on the input vector I.

Definition 2.33 The time complexity of P(n,7,6) on I, denoted ty, is the supremum of the

set {tc I t, is an execution corresponding to I}.

Finally, we define the complexity of a protocol P(n,r,6 ) on an input set I.

Definition 2.34 The time complexity ofP(n,7,6) on I, denoted tJ, is the supremum of the

set {tr IIE I}.

The reason for preferring these simple, discrete complexity measures over other, more

elaborate measures such as real time, for instance, is the highly regular structure of the

IIS and NIIS models. We make the assumption that each access to an IS object takes the

same amount of time, and do not worry about breaking up the time required to complete

each access to an IS object into subparts. Instead, we group the time spent on invocation,

response, and on local computation at the IS object. This assumption is somewhat strong,

as the presence of asynchrony in our model will tend to introduce varying delays for each

access to an object. However, we believe that, as a first step towards a complexity theory,

this assumption is justifiable, as it allows for complexity measures that are simple and easy

to apply, and that have a particularly nice topological representation, as we will see in

Chapter 3.



The motivation behind introducing non-uniformity to the IIS model is to give a more

accurate description of the complexity of solving decision tasks. With our complexity mea-

sures, the required amount of computation in order to solve a given decision task in the

NIIS model may vary from process to process, from input value to input value, and indeed

from execution to execution. Were we to restrict our attention to the uniform IIS model,

however, the complexity measures defined above would be somewhat less useful, since in

this model, all processes always take the same number of steps in a given execution, and

any process will take the same number of steps in all executions in which it participates. In

other words, the complexity of solving a task in the IIS model is always the same across all

processes and all executions, namely the number k of IS objects available. Thus, the intro-

duction of non-uniformity allows us to more accurately capture the complexity of solving

decision tasks.



Chapter 3

Topological Framework

In this section we first introduce some known tools from the field of algebraic topology and

show how they may be used to model decision tasks and protocols in the NIIS model of

computation. We then introduce a new tool for analyzing complexity in this setting, called

the non-uniform iterated chromatic subdivision.

3.1 Basic Topological Definitions and Concepts

This section introduces the basic topological definitions and concepts that we shall need

for modeling decision tasks and wait-free protocols in the NIIS model. Some of these

definitions are fairly standard, and are mainly taken from popular textbooks on algebraic

topology [27, 31], while others are due to Herlihy and Shavit [21, 22, 26]. Some of the figures

used in this section are also adopted from Herlihy and Shavit's work [21, 22, 26].

A vertex ' is a point in a Euclidian space RI . A set {0o,..., 4n} of vertexes is geo-

metrically independent if and only if the set of vectors {i - vio}"==l is linearly independent.

Clearly, for a set of n + 1 vertexes to be geometrically independent, 1 > n. We can now

define the concept of a geometric simplex, or simplex for short.

Definition 3.1 Let {o, ... , i } be a geometrically independent set of vertexes in RI . We

define the n-simplex S spanned by vo,..., vn to be the set of all points x such that x =

Eý=o0 tifi where EL=o ti = 1 and ti > 0 for all i.



V1  V2

Figure 3-1: Example of a 2-simplex.

For example, a 0-simplex is a vertex, a 1-simplex a line segment, a 2-simplex a solid

triangle, and a 3-simplex a solid tetrahedron. For an example of a 2-simplex see Figure 3-1.

For simplicity, we often denote the simplex spanned by a set {0o,..., Vn} of geometrically

independent vertexes as (v0o,... , ). The number n is called the dimension of the simplex

S, and is often denoted by dim(S). For clarity, we will sometimes include the number n as

an explicit superscript when referring to a simplex, that is, we will write S n to refer to the

simplex spanned by the vertexes in {o, ... , Vn}.

Any simplex T spanned by a subset of {vo,. .. , n} is called a face of S. The faces of S

different from S itself are called the proper faces of S. The simplex spanned by the vertexes

{v'o, Vl} is a proper face of the 2-simplex in Figure 3-1.

The union of the proper faces of S is called the boundary of S, and is denoted Bd(S).

The interior of S, denoted Int(S), is defined by the set equation Int(S) = S - Bd(S).

We will use a vertex to model the state of a single process, and a simplex to model

consistent states of all the processes involved in solving a decision task or in running a

protocol in the NIIS model. To model a collection of such states we need the concept of a

geometric, simplicial complex, or complex for short, which is defined below.

Definition 3.2 A geometric simplicial complex K in the Euclidean space RI is a collection

of geometric simplexes in R1 such that

* Every face T of every simplex S in KI, where dim(T) < dim(S), is contained in IK.

* The intersection U of any two simplexes S, T in K, where dim(U) _ dim(S),dim(T),



is contained in KC.

In this thesis we will only consider finite complexes. The dimension of a complex K,

often denoted by dim(K), is the highest dimension of any of its simplexes, and is also

sometimes indicated explicitly by a superscript. An n-dimensional complex (or n-complex)

is pure if every simplex is a face of some n-simplex. All complexes considered in this paper

are pure, unless stated otherwise. A simplex S in K with dimension dim(S) = dim(K) is

called a maximal simplex.

Given a simplex S, let S denote the complex of all faces of S, and let S denote the

complex consisting of all proper faces of S. We note that, since S contains all faces of

S except S itself, dim(S) = dim(S) - 1. An example of a pure, 2-dimensional simplicial

complex, which we call KS, is shown in Figure 3-2. This complex equals the union of S and

T, where S is the 2-simplex spanned by {ivo, gi, v2}, and T is the 2-simplex spanned by

{vo, Vi, v3}. Both S and T are maximal simplexes in this example.

If L is a subcollection of K that is closed under containment and intersection, where

dim(L) < dim(Ks), then C is a complex in its own right. It is called a subcomplex of KS. For

example, the complex S of faces of S is a subcomplex of KI in Figure 3-2

One subcomplex of a complex KI of particular interest is the subcomplex of all simplexes

in IC of dimension at most p, where p is some integer between 0 and dim(K:). We call

this subcomplex the p-th skeleton of a KI, denoted skelP(Ks). The elements of the collection

skelo(K) are called the vertexes of KS. The 0-skeleton of the complex KS in Figure 3-2 is the

collection of vertexes {{10o},..., {v}}. Similarly, the 1-skeleton of KI is the union of the

0-skeleton described above and the collection {{ioi, i },... {iog, 3}, {V 2, }, {VU, V3}}.

We now define a way of "adding" simplexes, known as starring.

Definition 3.3 Let S = (so,... ,s,) and T = (to,... ,tq) be simplexes. Then the star of S

and T, denoted S T is the simplex (so,... , 7Sp, to,... , tq).

We may extend the notion of starring to complexes as well, as shown below.

Definition 3.4 Let KI and L2 be simplicial complexes, not necessarily of the same dimension.

Then the star of K and L, denoted KI * L, is the collection of simplexes K U L U {IS * T I S E

K,T E L}.
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Figure 3-2: Example of a pure, 2-dimensional simplicial complex.

The star of two complexes KI and L is a complex in its own right [27].

Let IKI be the subset Use•r S of R' that is the union of the simplexes of K. Giving each

simplex its natural topology as a subspace of R1 , we topologize I/Kl by declaring a subset A

of KIIC to be closed iff A n S is closed for all S E KIC. This space is called the polytope of KC.

Conversely, K is called a triangulation of ICKI.

In practice, the geometric representations we have given for simplexes and complexes

are not always convenient, since the analytic geometry involved can get quite involved.

Therefore, we introduce the notions of abstract simplexes and abstract complexes.

Definition 3.5 An abstract simplex S is a finite, nonempty set.

The dimension of S is its cardinality. Each nonempty subset T of S is called a face

of S. Each element of S is called a vertex of S. There is a close relationship between

geometric simplexes and abstract simplexes; Any geometrically independent set of vectors

{v'o,... , In} not only span a geometric simplex, they also form an abstract simplex.

Definition 3.6 An abstract complex KC, is a collection of abstract simplexes, such that if

S is in IKa, so is any face of S.

Most concepts defined for geometric complexes immediately carry over to abstract com-

plexes; The dimension of Ka, often denoted by dim(/CKa), is the highest dimension of any of

its simplexes. An n-dimensional abstract complex (or n-complex) is pure if every simplex



is a face of some n-simplex. If La is a subcollection of IC, that is itself an abstract complex,

then La is called a subcomplex of Ca.

Definition 3.7 Let 'C be a geometric complex, and let V be the vertex set ofCK. Let 'Ca be

the collection of all subsets S of V such that S spans a simplex in 'C. Then Ca is called the

vertex scheme of K.

Definition 3.8 Two abstract complexes Ca and La are isomorphic if there is a bijective

correspondence 0 between their vertex sets such that a set S of vertexes is in CKa iff $(S) E

La. The bijective correspondence 0 is called an isomorphism.

Theorem 3.9 Every abstract complex Ka is isomorphic to the vertex scheme of some geo-

metric complex KC in R 2 dim(K a)+
l

We will not prove this theorem here. For a proof, see any standard textbook on algebraic

topology [27, 31]. In the rest of this thesis, for convenience, we will often use abstract and

geometric representations of simplexes and complexes interchangeably. The remainder of

this section, however, which introduces a number of important topological concepts, such

as simplicial maps, subdivisions and carriers, is set in the context of geometric complexes.

We first define the notions of simplicial vertex maps and simplicial maps from one

complex into another.

Definition 3.10 Let K and £ be complexes, possibly of different dimensions, and let i :

skelo(KC) --+ skelo(£) be a function mapping vertexes to vertexes. Suppose that whenever the

vertexes vo,. . . , i, of IC span a simplex of C, the vertexes p(go),..., Is(i,) span a simplex of

L. Then It is called a simplicial vertex map from KC to L. p can be extended to a continuous

map p. : 1KI -+ ILI such that

n n

i=O i=O

This continuous extension is called a simplicial map from KC to £.

For simplicity, we henceforth refer to the simplicial vertex map u as the simplicial

map, without actual reference to the continuous extension p,, which is less relevant for our
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Figure 3-3: Example of a simplicial map between two complexes.

purposes. As a further abuse of notation, we usually write P : K: -+ £ when we refer to the

simplicial vertex map, glossing over the fact that this map is in fact only defined on the

vertexes of KI, and that the image of the map is a subset of the vertex set of C. Henceforth,

unless stated otherwise, all maps between complexes are assumed to be simplicial. An

example of a simplicial map is given in Figure 3-3.

We note that a simplex and its image under a simplicial map need not have the same

dimension. A simplicial map i : KC - £ is non-collapsing if it preserves dimension, that is,

for all S E K: dim(Ms(S)) = dim(S).

Definition 3.11 A coloring of an n-dimensional complex KI is a non-collapsing simplicial

map X : K -- S, where S is an n-simplex.

Intuitively, a coloring corresponds to a labeling of the vertexes of the complex such that

no two neighboring vertexes (connected by a 1-simplex) have the same label. A chromatic

complex (IC, X) is a complex K: together with a coloring X of K1. An example of a chromatic

complex is given in Figure 3-4, where the colors are the values {1, 2, 3}. When it is clear from

the context, we specify the chromatic complex (K, x) simply as the complex K, omitting

explicit mention of the coloring X.

Definition 3.12 Let (IC, Xc) and (£, Xc) be chromatic complexes, and let p : K --+ be a

simplicial map. We say that p is chromatic if, for every vertex V1 E K, Xr(i') = Xc(,(4 5)).

I

I

I

I
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Figure 3-4: Example of a 1-dimensional chromatic complex.

In other words, y is chromatic if it maps each vertex in K: to a vertex in £ of the same

color. All the simplicial maps we consider in this thesis are chromatic. We can now define

the concepts of a subdivision of a complex, and the carrier of a simplex in a subdivision.

Definition 3.13 Let K be a complex in R'. A complex a(K) is said to be a subdivision of

KC if the following two conditions hold:

* Each simplex in a(I) is contained in a simplex in KC.

* Each simplex of K equals the union of finitely many simplexes in a(IC).

An example of a complex and its subdivision is given in Figure 3-5.

Definition 3.14 If S is a simplex of o(IC), the carrier of S, denoted carrier(S) is the

unique smallest T E IC such that S C ITI.

The concept of a carrier of a simplex is illustrated in Figure 3-6. The original complex

is shown on the right, and the subdivided complex is shown on the left. A simplex S in the

subdivision and the corresponding carrier carrier(S) in the original complex are highlighted

in the figure.

A chromatic subdivision of (KI, Xc) is a chromatic complex a(Kl), X,(c)) such that a(KC)

is a subdivision of KI, and for all S in a(K), X,(K)(S) C X c(carrier(S)). A simplicial map
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Figure 3-5: Example of a pure, 2-dimensional simplicial complex and a subdivision of it.

Simplex S Carrier(S)

Figure 3-6: The Carrier of a Simplex

UI : al() - a 2 (KC) between chromatic subdivisions of K: is carrier preserving if for all

S E al(KC), carrier(S) = carrier(pi(S)). All subdivisions we consider in this thesis will be

chromatic, unless explicitly stated otherwise.

3.2 Topological Modeling of Decision Tasks

Earlier in this section, we defined the notion of a decision task in terms of input and output

vectors. That definition was intended to help the reader understand what a decision task

is, but it lacks the mathematical structure necessary to prove interesting results. We now

reformulate this definition in terms of simplicial complexes.

To illustrate our constructions, we will use the well-known Unique-Id task as an informal

example. We will give a formal, topological definition of decision tasks later. The Unique-Id

a-

i

i ',



task was introduced in Section 1, but we restate it here for convenience.

Example 3.15 The n + 1-process Unique-Id task is defined as follows:

*I= {[0,..., n]}.

* O= {[x0,... ,, I Vi,j :zi E (Z)n+l U {} A(x i = xj) (xi = 1)}.

* = {(, 6) (I[i] = [i] = 1)}.

We represent the (unique) n + 1-dimensional input vector I= [0,..., n] to the Unique-

Id task as a simplex S, called an input simplex, with dimension 0 < dim(S) < n. The

dimension of S equals the number of non-I elements in the vector. Each vertex i' in S

is labeled with a process id and an input value: (i, vi), where f[i] = vi. We use ids(S) to

denote the simplex's set of process ids, and vals(S) to denote the multiset of values. If J is

a prefix of I, then the simplex corresponding to J is a face of S. The set I of input vectors

is thus modeled as a complex I of input simplexes, called the input complex.

Similarly, we represent each n + 1-dimensional output vector O = [xl,...,z, ], where

for all i,j, either xi = I or 0 < xi _ n and (xi = xj) =: (xi = 1), as a simplex T, called

an output simplex, with dimension 0 < dim(T) < n. Each vertex i7 in T is labeled with

a process id and an output value: (i, vi), where 0 [i] = vi. We use ids(T) to denote the

simplex's set of process ids, and vals(T) to denote the multiset of values. If P is a prefix of

0, then the simplex corresponding to P is a face of T. The set O of input vectors is thus

modeled as a complex O of output simplexes, called the output complex.

The task specification map y induces a topological task specification map P for the

Unique-Id task in the natural way, mapping each input simplex S E I to a set F(S) of

output simplexes in O, with the property that for all T E F(S), the set vals(T) contains no

non-I duplicates.

We can now give an alternative, topological representation of the Unique-Id decision

task by simply specifying it as a tuple D = (Z, O, F) consisting of an input complex I, and

output complex O, and a topological task specification map, F.

Figure 3-7 shows two triangles (2-simplexes) corresponding to two distinct outputs for

the 3-process Unique-Id task, one given by the output vector 01 = [0, 1,2], the other given
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Figure 3-7: Part of output complex for the 3-proc Unique-Id task.

by the output vector 02 = [3, 1, 2]. Notice that the vertexes of each simplex are colored by

the appropriate process ids.

This topological representation gives an alternative interpretation of the notion of "sim-

ilar" system states. The processes corresponding to vertexes on the common boundary of

the two simplexes cannot distinguish between the two global output sets based on their own

output values. Unlike graph-theoretic models (e.g., [6]), simplicial complexes capture in a

natural way the notion of the degree of similarity between the two global output sets: it is

the dimension of the intersection of the two 2-simplexes.

We now give a novel, formal procedure for how to specify a given decision task D =

(I,O,'-) topologically. We first construct a representation using abstract simplexes and

complexes. It then follows from Theorem 3.9 that there exists a representation using geo-

metric simplexes and complexes, for which the vertex scheme is isomorphic to the abstract

representation. There are standard ways of constructing such geometric complexes [27], but

we choose not to get into the details of these constructions in this thesis.

Definition 3.16 Let I E I be an input vector. The input simplex corresponding to I,

denoted S(I), is the abstract simplex ((io, vio),..., (ir, vim)), where for all ij, where io •

ij < im, i. E {0,... ,n} A I[ij] $1, and for all i, (f[i]= 1) =- (i {io,... ,im}).

Definition 3.17 Let 0 E 0 be an output vector. The output simplex corresponding to

0, denoted T(O), is the abstract simplex ((i0 , v),... , (im, vim)), where for all ij, where



io < ij < im, ij E {0,... ,n} A [ij] , and for all i, (O[i] = A) ý (i {io,... ,im}).

Having defined input and output simplexes, we can define input and output complexes.

Definition 3.18 The input complex corresponding to I, denoted I, is the collection of

input simplices S(I) corresponding to the input vectors of I.

Definition 3.19 The output complex corresponding to O, denoted (, is the collection of

output simplices T(O) corresponding to the output vectors of O.

We have to prove that these definitions make sense topologically, that is, that the input

and output complexes thus defined are in fact abstract complexes. We will do the proof for

input complexes in the lemma below. The proof relies on the requirement that the sets of

input vectors we consider are prefix-closed.

Lemma 3.20 Given a set I of input vectors. The corresponding input complex I, as defined

in Definition 3.18, is an abstract, chromatic complex.

Proof. Clearly, I as defined above is a collection of abstract simplexes. We must show

that this collection satisfies the requirements of Definition 3.6, that is, we must establish

that I is closed under containment.

Let S(I) = (so,... ,m) be an abstract simplex of Z, and let T = (t~,...,tm'), where

m' < m, be a face of S(f). It follows that skelo(T) C skelo(S(I)). Consider the vector

J, the i-th entry of which is I iff i 4 ids(T), and otherwise val(>j), where i = id(i). We

claim that this vector is a prefix of I. Suppose f[i] = I. Then i F ids(S(I)), and hence

i 0 ids(T). It follows that J[i] = I. Now suppose that J[i] $ i. Then there is a vertex 1j

in T with id(i) = i and val(t3) = f[i]. Since skelo(T) C skelo(S(T)), this vertex is also a

vertex of S(I), and so it follows that I[i] = val(Fj) = J[i]. It follows that Jis a prefix of

I. Since we only consider prefix-closed sets of input vectors, J must be in I. The simplex

corresponding to J, denoted S(J) is equal to T, and hence T is in 1.

It follows that I is an abstract complex. Moreover, let S = (s'o,..., s) be any n-

simplex. Then the map X : I --+ S defined by X(6) = -Si, where i = id(6) is a chromatic and

simplicial map from I to S, and hence I is a chromatic, abstract complex, as required. 0



Lemma 3.21 Given a set 0 of output vectors. The corresponding output complex O, as

defined in Definition 3.18, is an abstract, chromatic complex.

The proof is identical to the proof of Lemma 3.20, and will be omitted here. Given

a pair of (abstract) input and output complexes, we may apply Theorem 3.9 to construct

a corresponding pair of geometric chromatic input and output complexes by embedding

the abstract complexes in R 2n+ 1 . As discussed in Section 3.1, the abstract and geometric

representations of a complex are equivalent up to linear isomorphism, and thus we will work

with both interchangeably in the remainder of this thesis.

We now construct a topological equivalent of the task specification map -y C I x O.

Definition 3.22 The topological task specification map corresponding to y, denoted F C

I x O, is defined as follows.

(S()I,T(0)) e r ,= (I1 0) e -y

As a convenient notation, for all S(I) E Z, we denote the set of simplexes T(O) in

0 such that (S(I ,T(0)) E r by r(S(I)). Usually, we simply refer to a topological task

specification map as a "task specification map". We now prove that task specifications are

id-preserving; if a process i has an input value, it must also have an output value, and vice

versa.

Lemma 3.23 For all S(I) E , and all T(6) E r(S(I)), ids(T) = ids(S).

Proof. Let S(I) be any simplex in I, and let T(0) E F(S(i)). Then d E -y() by

Definition 3.22. Suppose i ý ids(S(1)). Then I[i] = I by Definition 3.16, and hence by

Definition 2.6, 0[i] = I. It follows from Definition 3.17 that i ý ids(T(d)). Now suppose

i _ ids(T(d)). Then d[i] = I by Definition 3.17, and hence by Definition 2.6, I[i] = I. It

follows from Definition 3.16 that i ý ids(S(I)). 0

An illustration of a pair of input and output complexes, together with a task specification

map relating them, is given in Figure 3-8.



Definition 3.24 Given a decision task V = (I, O, y), the corresponding topological repre-

sentation of the task, denoted V = (1, 0, r), consists of an input complex I corresponding to

I, and output complex 0 corresponding to 0, and a task specification map F corresponding

to 7.

Input Set of legal
/Simplex output simplexes

F-

X

Input Complex Output Complex

Figure 3-8: A Decision Task

In the remainder of this paper, we will specify decision tasks using both Definition 2.7

and Definition 3.24 interchangeably. A set of inputs or outputs may thus be specified as

either a vector or as a simplex the vertexes of which are labeled with process ids and values.

3.3 Topological Modeling of NIIS Protocols

We model protocols in the NIIS model in much the same way that we model decision tasks.

As discussed in Chapter 2, the sets of inputs and outputs for any execution a of a protocol

(,,) in the NIIS model can be modeled using n+ 1 process input and output vectors. We

denote the sets of input vectors and output vectors of a protocol by I and 0, respectively.

We are only interested in protocols that solve decision tasks, so we may assume that the set

I of possible input vectors to a protocol is prefix-closed. The following lemma states that

for any protocol in the NIIS model, the set 0 of possible output vectors from all executions

of the protocol must necessarily be prefix-closed. Recall from Section 2.5 that we are only

considering the set of fair (and hence finite) executions of a protocol here.



Lemma 3.25 Let 0 be the set of possible output vectors of a protocol P(n,r,6) in the NIIS

model, with corresponding set of input vectors I. Then 0 is prefix-closed.

Proof. Let 0 be an output vector produced by the execution ao, and let P be a prefix

of 0. We construct an execution ap as follows: For each i such that 0[i] = vi : I = P[i],

replace the action decide(S)i (S is the snapshot returned by that action) in ao with a

faili action, meaning that process i fail-stopped before deciding. Clearly, the execution

thus obtained is a possible execution of P(,,,,6), and its output vector is P. Hence P is in

0, and O is prefix-closed. 0

Given that both the set of input vectors I and the set of output vectors O associated

with a protocol P(,r,s) are prefix-closed sets of vectors, we can construct corresponding

input and output complexes, denoted I and P(n,,,)(1), respectively. These complexes are

constructed in the same way as the complexes corresponding to input and output sets of

vectors for decision tasks, and the proofs that they are indeed chromatic complexes are also

identical. The output complex P(n,-,6)(I) is called a protocol complex.

Let J be a subcomplex of the input complex I. The set of possible outputs when the

protocol is given inputs corresponding to simplexes in J is denoted P(n,'r,6)(j).

Lemma 3.26 Let J be a subcomplex of . Then P(n,r,s)(J) is a subcomplex of P(n,T,s)(T).

Proof. It suffices to show that P(n,T,6)(J) is a complex, since P(,,•,,)(J) is clearly a subset

of P(,n,,,,)(T). We simply look at the set of vectors J corresponding to the subcomplex J in

isloation, as the set of input vectors to the protocol P(n,r,6). This set is prefix-closed since

j is a complex, and hence closed under containment. Hence the set P of output vectors

given input vecors in J is prefix-closed by Lemma 3.25. It follows from Lemma 3.21 that

P(,,T,,6)(,), the complex corresponding to P(,,,',), is a complex, and hence a subcomplex of

P(,,,,) (Z). o

In the remainder of this thesis, we will specify protocols in NIIS using both its formal

specification from Section 2.5 as well as protocol complexes as described in this section

interchangeably. A set of inputs or outputs may thus be specified as either a vector or as a

simplex the vertexes of which are labeled with process ids and values.



3.4 Subdivisions

The standard chromatic subdivision was introduced by Herlihy and Shavit as part of their

work on asynchronous computability [21, 22, 26]. It is essentially a chromatic generalization

of the standard barycentric subdivision from classical algebraic topology [27, 31]. In this

section, we will present a complete, formal definition of the standard chromatic subdivision,

together with a proof that this definition does indeed correspond to a chromatic subdivision

of a given complex. Our definition is somewhat different from that of Herlihy and Shavit

[21, 22, 26], as it is based on an explicit, inductive, geometric construction, which we

later formally prove to be a chromatic subdivision. We also introduce the concept of a

non-uniform chromatic subdivision, a generalization of the standard chromatic subdivision,

in which the different simplexes of a complex are not necessarily subdivided the same

number of times. Informally, a non-uniform chromatic subdivision of level 1 of a complex

KIC, denoted by X 1(K), is constructed by choosing, for each n-simplex in K1, a single face

of the simplex (a face can be of any dimension and could also be the whole simplex) to

which we apply the standard chromatic subdivision. We then induce the subdivision onto

the rest of the simplex. The subdivisions of any two individual simplexes must be such that

they agree on their shared face. This can be seen in Figure 3-9. Its right hand side shows

a valid non-uniform chromatic subdivision of a complex where, for example, the simplex

(b, c, d)'s subdivision is the result of subdividing the 1-face (c, d) once and then inducing

this subdivision onto the rest of the simplex. The left hand side structure is not a legal

subdivision, since the subdivision of the simplex (b, c, d) does not agree with that of the

simplex (a, b, d) on the shared face (b, d). This structure is not even a simplicial complex,

since it contains an object that is not a simplex (the cross-hatched region in Figure 3-9. A k-

th level non-uniform chromatic subdivision of a complex K, denoted by ,k(K), is generated

by repeating this process k times, where only simplexes in faces that were subdivided in

round k - 1 can be subdivided in phase k. The complex on the right hand side of Figure 3-9

is an example of a non-uniform chromatic subdivision of level 2, since the face (a, d) is

subdivided twice.

Later, we will show that these structures correspond in a natural way to the set of

protocol complexes in the NIIS model of computation. In fact, it turns out that each non-

uniform standard chromatic subdivision is equal to some NIIS protocol complex (up to
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Figure 3-9: Valid and Invalid Non-uniform Subdivisions

isomorphism).

3.4.1 The Standard Chromatic Subdivision

In this section we provide our definition of the standard chromatic subdivision, and prove

that this definition does indeed specify a chromatic subdivision of a given complex. While

Herlihy and Shavit gave a high level combinatorial definition of the standard chromatic

subdivision [21, 22, 26], our definition is based on an explicit, geometric construction.

Let KIC be a pure, n-dimensional, chromatic geometric complex, where the colors are the

numbers in Z,+ 1 . Label each vertex ' in KI with (i, vi), where i is the color of v, and vi

is a value in some set DI chosen such that no two vertexes in K have the same label. In

order to define the standard chromatic subdivision of KIC, we inductively define a sequence

of subdivisions L, of the skeletons of K, where 0 < p < n as follows. Let £o = skelo(lC).

Now suppose that £p-1 is a chromatic subdivision of the p - 1-skeleton of KC. Each vertex

v in p-1_ is labeled (i, Si), where Si is the vertex scheme of some simplex in skelP-'(lK).

The labels (i, Si) are such that any T = (t4,..., tr), where r < p - 1, is a simplex in £p-1

iff ids(T) C ids(carrier(T) and the following conditions hold for all 1 < i,j < r:

* id(ti) / id(tj).

* id(iK) E ids(val(tC))

* val(t~) is a face of val(tj) or vice versa

Ld
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* id(t) E ids(val(ti)) =- val(t-) is a face of val(ti)

Let S = (si,... , sý) be a p-simplex in K. The set Bd(S) is the polytope of a subcomplex

of the p - 1-skeleton of K, and hence of a subcomplex of £p_1, which we denote £IBd(S).

Let b be the barycenter of S, and let 6 be some positive real number such that 0 < 6 < 1.

For each 1 < i < p, define rfi to be the point (1 + 6)b - 6bs. These points are called the

midpoints of S. Label rfi with (i, S), S here being the vertex scheme of the geometric

simplex S. Let Ms be the set of midpoints of S. We define 1 s to be the union of £Bd(S)

and all the faces of all chromatic p-simplexes T = (to, ... ,t), such that for all 1 < i,j < p:

ti E skel0(LBd(S)) U Ms, and the following conditions hold:

* id(ti) 5 id(tj).

* id(Ei) E ids(val(it))

* val(t~) is a face of val(t;) or vice versa

* id(t) E ids(val(ti)) => val(t') is a face of val(ti)

We now define £P to be the complex consisting of the union of the complexes £s, as

S ranges over all the p-simplexes of K. We now prove that this structure makes sense

mathematically, that is, that it is in fact a subdivision of the p-skeleton of K.

Lemma 3.27 For all 0 < p < n, £p is a chromatic subdivision of skelP(IK).

Proof. We argue by induction. The case p = 0 is trivial. So suppose p > 0, and suppose

the claim holds for Lo,... , £-1. We will first prove that p, is a chromatic simplicial

complex. To that end, we prove the following auxiliary lemma.

Lemma 3.28 For all p-simplexes S in IC, 1s is a chromatic complex.

Proof. We must show that £s is closed under containment and intersection. Let U be a

simplex in £s, and let V be a face of U, where 0 < dim(V) < dim(U) < p. If U is in £Bd(S),

then so is V, since 2Bd(S) is a complex (since £p is a subdivision and hence a complex by

assumption). Hence V is in 1s. Suppose U is not contained in £Bd(s). Then U must be



the face of a p-simplex T as described above. By definition of £s, all the faces of T, and

hence all faces of U, must be in Cs. It follows that Cs is closed under containment.

Let U, V be simplexes in 1 s, and suppose their intersection, denoted by W, is nonempty.

If U, V are both in IBd(S), it follows immediately that VT is in £Bd(S) and hence in Ls.

Similarly, if U is in £CBd(S) but V is not, then W = U n V = U n (V n I£Bd(S) ). Note

that V n ICBd(S)l is a simplex in £Bd(S), since all the criteria given above are satisfied.

Hence it follows that W is in £IBd(S), and hence in £s. If neither U nor V is in CBd(S),

then since all faces of U and V are in £s, then so is W. It follows that £s is closed under

intersection, and hence is a complex. That £s is chromatic follows from the fact that

we only include chromatic simplexes in £s in our construction (note that £p-1 and hence

£Bd(S) are chromatic by assumption). 0

Notice that for all distinct p-simplexes S, T we have that I|£sl n IITI = S n T, which is

a simplex in skelP-1 (K), and hence is the polytope of a subcomplex of £p,-1, and hence of

both £s and £T. It follows that /p is a simplicial complex [27]. It remains to show that

£P is a chromatic subdivision. To this end, we must first show that every simplex in Lp is

contained in some simplex in skelP(KI), and that every simplex in skelP(K) is the union of

finitely many simplexes in p,. Now, it is clear from our construction that any simplex Tq in

I2, is contained in some simplex S in skelP(KI). Also, since for all simplexes S in skelP(IK),

the set of midpoints is finite, and Cp-1 is a subdivision of skelP-l (K) by assumption, it

follows that S is the union of finitely many simplexes in £p. Hence £p is a subdivision.

This subdivision is chromatic, since £p-1 is chromatic by assumption, since the colors used

to color the midpoints of any simplex S are exactly the colors used to color S, and since

any simplex in 4p including midpoints must satisfy the requirement that no two vertexes

have the same color (id). 0

We are now ready to give our definition of the standard chromatic subdivision of a

complex K.

Definition 3.29 The standard chromatic subdivision of K, denoted X(K), is the complex

An.

An example of a complex and its standard chromatic subdivision is given in Figure 3-10.
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Figure 3-10: Example of a 2-dimensional complex and its standard chromatic subdivision.

Applying the standard chromatic subdivision k times, where k > 1, yields a subdivision

Xk(I) = Xk-1(X(Kj)), which we call the kth iterated standard chromatic subdivision

[21, 22, 26]. Since the standard chromatic subdivision of a complex is again a complex, and a

chromatic subdivision of a chromatic subdivision of KIC is itself a chromatic subdivision of 1K,

Xk(K) is a chromatic subdivision of 1K. The number k is called the level of the subdivision.

Moreover, for all k, Xk(lC)= Xk-l(X(C)) = X(Xk-l(IC)).

We will mostly use the vertex scheme representation of the standard chromatic subdivi-

sion, as it has a particularly compact representation, as stated in the lemma below. We note

that this formulation of the standard chromatic subdivision is equivalent to the definition

of Herlihy and Shavit [21, 22, 26].

Lemma 3.30 Let IC be a pure, chromatic complex of dimension n. The vertex scheme

of X(IC) is the closure under containment of the set of all n-simplexes of the form S =

((0, So),... , (n, S,)), where for all i, Si is the vertex scheme of some face of a simplex S

in IC, and the following conditions hold for all i, j:

* i E ids(Si).

* Si is a face of Sj or vice versa.

* If j E ids(Si), then Sj is a face of Si.

Proof. We argue by induction on k, where 0 < k < n. It is immediate that the simplexes

of X(KC) lying in the subdivision Co of skelo0 (K) are of this form (each such simplex is a



vertex of K: labeled with a process id and a value), and the requirements above are all

satisfied trivially.

Now suppose the claim holds for 0,..., k - 1. Consider a simplex T lying in the subdi-

vision £ k of skelk(IK) and not in £k-1. Then T = U*V, where U is a simplex in £k-1, and

V is a simplex each vertex of which is one of the midpoints in Ms, where S = carrier(T).

By assumption, V is non-trivial, meaning that there is at least one vertex in V. However,

U may be trivial. For each vertex v'in V, val(6) = S, the vertex scheme of S. Hence for i,j

in ids(V), since ids(V) C ids(S), all the conditions listed above are clearly satisfied. For

i,j in ids(U), the conditions are satisfied by induction. Now suppose i is in ids(U), while

j is in ids(V). Notice that Si = carrier(U), and Sj = carrier(V) = S.

The first condition follows by induction (for i) and since ids(V) C ids(S) = vals(V)

(for j). Since carrier(U) is a face of S, it follows that Si is a proper face of S, and hence

of Sj, which equals the vertex scheme of S, and so the second condition is satisfied. It is

clear that i is in ids(Sj), since Sj equals the vertex scheme of S, and i is in ids(carrier(U)),

which is a subset of ids(S). That Si is a face of Sj has already been established. It follows

that, since X(KI) is chromatic, ids(U) n ids(V) = emptyset, ids(Si) C ids(carrier(U)), and

j is not in ids(carrier(U)), j cannot be in ids(Si). It follows that the third condition is

satisfied. O

In the remainder of this thesis, we will usually work with this description of the standard

chromatic subdivision, and refer to it as X(KI). Whenever the distinction between the

geometric and abstract representations of X(K:) is significant, it will be mentioned explicitly.

3.4.2 The Non-Uniform Chromatic Subdivision

In this section, we define the non-uniform chromatic subdivision, and prove that this defi-

nition does indeed specify a chromatic subdivision of a given complex.

Definition 3.31 Let K be a pure n-dimensional chromatic complex, where the colors are the

numbers in Zn+1 . We will give a recursive definition of a non-uniform chromatic subdivision

of IC. In general, we denote a k-level non-uniform chromatic subdivision of a complex KC by

.k(K), for k > 0.



Figure 3-11: Example of level 1 non-uniform chromatic subdivision of a 2-complex.

If dim(K) = 0, then for all k > 0, Xk(lK) is IC itself. Now suppose dim(K/) > 0. Then

,O(IC) is KC itself. For k > 0, Ik(K) is given by the following procedure: Partition the

vertexes of KI into two disjoint sets, A and B, where A is nonempty. From these sets we

construct two complexes, denoted by A and B, respectively, as follows: A simplex S in KI is

in A if the vertexes spanning S are all in A, and it is in B if its spanning vertexes are all

in B. The subdivision XIk(C) is the complex consisting of all simplexes in 8, all simplexes

in ik-1(X(A)), and all simplexes of the form S *T, where S is a simplex in Xk-l(X(A)),

T is a simplex in B, and carrier(S) *T is a simplex in ICK.

Informally speaking, a non-uniform chromatic subdivision of level k is one in which there

is some simplex in KI which is subdivided k times, but no simplex that is subdivided more

than k times. Note that the k level standard chromatic subdivision is a special case of the k

level non-uniform chromatic subdivision. Hence for all k > 0, there exists some non-uniform

chromatic subdivision of level k. Our definition of non-uniform chromatic subdivisions is

designed to easily model protocol complexes of the NIIS model. At any level of the recursion,

the vertexes in A can be thought of as corresponding to processes that continue computing

given their current local state, while the vertexes in B correspond to processes that decide.

An example of a level 1 non-uniform chromatic subdivision of a 2-complex KI is given in

Figure 3-11, and an example of a level 2 non-uniform chromatic subdivision of a slightly

bigger 2-complex L is given in Figure 3-12. Note that in Figure 3-12 the complex A for the

second level of recursion is isomorphic to the complex A for the first level of recursion in

Figure 3-11.
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Figure 3-12: Example of level 2 non-uniform chromatic subdivision of a 2-complex.

An example of a chromatic subdivision that does not satisfy Definition 3.31 is given in

Figure 3-13. It is not a non-uniform chromatic subdivision because the vertex b is part of

the B complex at the first level of recursion (that is, it is not part of the subcomplex that

is subdivided further), while in the next level of recursion, the edge between d (which is in

the A complex at the first level of recursion, and hence is to be subdivided further) and b

is subdivided, meaning that b is in the A complex at the second level of recursion, which is

clearly impossible, since the carrier of any vertex in the A complex at the second level must

be a simplex in the A complex at the first level of recursion. Informally, this simply means

that, if a vertex is not to be part of the complex to be further subdivided at the first level,

it cannot be part of the complex to be further subdivided at the second level.

Lemma 3.32 Any non-uniform chromatic subdivision Xk(j) is a chromatic subdivision of

/C.
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Figure 3-13: Example of a subdivision that is not a non-uniform chromatic subdivision.

Proof. We first note that Xk(/C) is well-defined, since each recursive step lowers the level

of subdivision by 1, and XO(IC) is defined for all /C. We will prove that pk(/C) is a chromatic

subdivision by induction on k.

The case where k = 0 is trivial, since o(K/C) = C. Now suppose that k > 0, and that

for 0 < 1 < k - 1, and any complex IC, Xt(IC) is a chromatic subdivision of 1C. If B = 0, the

result follows by induction and by Lemma 3.27. So suppose that B is nonempty.

We first show that Xk(/C) is closed under containment. Let U be a simplex in ,k(C),

and let V be a face of U. If U is in B, then so is V, since B is a complex. Hence V is

in Xk(jC). Similarly, if U is in Pk-1(X(A)), then so is V, since Xk-l(X(A)) is a complex

by our induction hypothesis. Now suppose U = S *T for some S in Xk-l(X(A)), T in B.
Then S n V is in Xk-1(X(A)), and T n V is in B. It follows that V = (S n V) * (T n V),

where carrier(S n V) * (T n V) is a simplex in 1C. By Definition 3.31, V is in pk(/C). It

follows that Xk(/C) is closed under containment.

Let U, V be simplexes in k(KC), and let W be their intersection. If both U, V are

in B, then so is W, since B is closed under intersection. Similarly, if both U and V are

in ik-1(X(A)), then so is W, since Xk-l(X(A)) is closed under intersection. If U is

in B and V is in Xk-I(X(A)), or vice versa, then U n V = 0, and so containment under

intersection holds vacuously. We now consider the case where either U or V is not contained

in either complex, that is, suppose U = S *T for some S in pk-1(X(A)), T in B, and



V = X * Y for some X in Xk-l(X(A)), Y in B. Now, Un V = (S* T) n (X * Y), and

(S*T) n(X*Y) =(Sn X)*(Tn Y) [27]. IfSnX = 0or T Y=0, then one of the

cases discussed above applies, and V is in ,k(K). So suppose now that S, T, X, Y, and

the intersections S n X and Y n T are all nonempty. Since carrier(S n X) is a face of both

carrier(S) and carrier(X), it follows that carrier(S n X) * T and carrier(S n X) * Y are

simplexes in K/, and so is their intersection carrier(S n X) * (T n Y), since K is a complex.

It follows that V is in Pk(KI). This concludes the proof that Xk(K/) is a complex. That it

is a chromatic complex follows directly from Lemma 3.27.

We now prove that ,k(K) is a chromatic subdivision. Given a simplex U in ,k(K). If

U is in B then U is clearly contained in a simplex in K), namely itself, and that the colors

of U are contained in the set of colors of its carrier. If U is in Xk-1(X(A)), it follows by

induction and Lemma 3.27 that U is contained in some some simplex carrier(U) in A, and

hence in KIC, and that the colors of U are a subset of the colors of its carrier. Now suppose

U = S * T, where carrier(S) * T is in K. Then U is contained in carrier(S) * T, and the

colors of U are a subset of the colors of carrier(S) * T. Now consider any simplex U in K.

We can decompose it into two disjoint faces S and T, such that S E A and T E B. The

simplex S is subdivided according to jk-I(X(A)), which by induction and Lemma 3.27

consists of finitely many simplexes. The simplex T is not subdivided at all. It follows that

the subdivision ,Xk(K) subdivides U into finitely many simplexes (those in Pk-1(X(S))*T).

This completes the proof that Xk(K) is a chromatic subdivision. O

A non-uniform subdivision Xk(K) of a complex induces a non-uniform chromatic subdi-

vision of any subcomplex C of K1. The level of the induced subdivision of 1£ may vary from

subcomplex to subcomplex.

Definition 3.33 Let KI be a chromatic complex, f- a subcomplex or simplex of K, and let

Ik(K) be a non-uniform iterated chromatic subdivision of C. We denote its restriction to

simplexes in C for 2k(1C). The level of 2k(l) on L is the maximal level of subdivision of

jk(£), which we denote by kc.

It is clear that for any subcomplex or simplex L of KI, it must be the case that the level

of ,k(K) on £ is less than or equal to k.



Chapter 4

The Asynchronous Complexity

Theorem

The strength and usefulness of the NIIS model of computation comes from the fact that

each of its associated protocol complexes has a nice, recursive structure. In fact, it turns

out that any protocol complex of NIIS is equal to some non-uniform iterated chromatic

subdivision of the input complex, and vice versa. This is the essence of our main theorem,

which we state and prove in this chapter.

The level of subdivision necessary for the existence of a simplicial map from the input

to the output complex of a decision task that agrees with the task specification can be

interpreted as a topological measure of the task's time complexity. The following definition

introduces the concept of mappability, which is a useful construct for reasoning about this

topological measure.

Definition 4.1 Given a decision task D = (7, 0, F) and a non-negative integer k, we say

that Xk(Z) is a mappable subdivision of the input complex, and k is a mappable level of

subdivision if there exists some chromatic simplicial map It from Xk(Z) to 0 such that for

all T in Pk(Z), a(T) E r(T).

This definition extends naturally to individual simplexes as the map induces different

levels of subdivision on the individual simplexes in accordance with the idea that, in order

to solve a decision task, some processes may have to do more computational work than



others, and some inputs may require more computation than others. We can now state our

main theorem:

Theorem 4.2 (Time Complexity) A decision task D = (I, 0, I) has a wait-free solution

protocol in the NIIS model with worst case time complexity ks on inputs in S, where S is a

simplex in I, if and only if there is a mappable non-uniform iterated chromatic subdivision

Xk( 1 n) with level ks on S.

Keeping in style with Herlihy and Shavit [21, 22, 26], the theorem simply states that

solvability of a decision task D = (I, O, F) in the NIIS model is equivalent to the existence

of a chromatic simplicial map ,p from some non-uniform chromatic subdivision Xk(T) to 0

that agrees with the task specification r, that is, for all T in Xk(I), m(Tm ) E r(T). The

level ks is a lower bound on the worst case time complexity of solving this task with inputs

in S in the NIIS model.

The theorem also immediately provides a matching upper bound given the subdivision

and simplicial mapping. Simply run the normal form protocol of Figure 2-7. Since each

process can locally store the subdivision and mapping, the termination predicate map r

just needs to test if the locaLstate variable is equal to some node v in the subdivision and

if so return yi(v).

In the remainder of this chapter, we will give a proof of our asynchronous time complexity

theorem. We first state and prove a lemma about the protocol complex of a protocol in the

IIS model with only one available IS object.

Lemma 4.3 Let A be an input complex in the IIS model with a single IS object. The

corresponding protocol complex is isomorphic to X(A).

Proof. We will construct an isomorphism T from the abstract complex P(n,T,8)(A) to the

abstract complex (vertex scheme) X(A), as specified by Lemma 3.30. Let v = (i, Si) be any

vertex in P(,,•,s)(A). Then T(6) = (i, Ti), where T i is the simplex in A such that for all j,

Si[j] = vj if and only if (j, vj) E Ti. Notice that this isomorphism is chromatic, that is, the

id of a vertex equals the id of its image under T.

By Lemma 3.30, we must show that a set of vertexes Vo,..., Im in skelo(P(,,,6)(A)),

where m, < n, form a simplex in P(n,7 ,s)(A) if and only if the set of vertexes @(og), ... , Q(Vm)



in skelo(X(A)) form a simplex in X(A). Suppose without loss of generality that for all i,

where 0 < i < m, Vi = (i, Si), where Si E '(DI), and DI is the input data type (that is,

the id of the i-th vertex is i).

Suppose that the vertexes io,... , vm do form a simplex V in in P•(,,,6)(A). This output

simplex corresponds to some execution a in the 1-shot IS model, with corresponding input

simplex U in A. Each vertex in U is labeled with a process id i and an input value vi E DI.

Notice that dim(V) •< dim(U), since some participating processes may not decide, that is,

they may fail (execute a faili action) before executing a decide action.

From Lemma 2.17, we have that, for any vertex 'i = (i, Si) in V, Si[i] = vi. This implies

that (i, vi) is in Ti. From Lemma 2.18, we have that, for any two vertexes i'i = (i, Si) and

ifj = (j, Sj) in V, either Si is a prefix of Sj or vice versa. Suppose without loss of generality

that Sj is a prefix of Si. Then for all x, where 0 < x < n, if Si[x] = I, then Sj[x] = I,

and if Sj [x] I then Si[x] = Sj[x]. It follows that if (x, vx) is in Tj it is also in Ti, and if

x is not in ids(Ti), then it is also not in ids(Tj) This implies that Tj is a face of Ti. From

Lemma 2.19, it follows that, if Si[j] = vj, then Sj is a prefix of Si. This means that, if

(j, vj) is in Ti, then Tj is a face of Ti.

Now suppose that the vertexes T(fo0),..., (i'm) in skelo(X(A)) form a simplex V in

X(A). We will construct an execution a with corresponding output simplex U such that

WQ(U) = V. Let W = carrier(V). Partition the set ids(V) into a collection of nonempty

concurrency classes of process ids, C1, ... , Ck for some k > 0, such that any two process

indices i, j are in the same concurrency class if and only if Ti = Tj.

We can define a total order -< on this collection of concurrency classes as follows. Let

CX, C, be distinct concurrency classes. Then Cx n C, = 0. Since both classes are nonempty,

we can pick an element from each, say i E Cx and j E C,. By assumption, Ti $ Tj. Then

be Lemma 3.30, either Ti is a face of Tj or Tj is a face of Ti. In the first case, let Cx -< Cy,

and in the second case, let C, -< Cx. The faces of a simplex are totally ordered, and hence

- is a total order of the concurrency classes.

Now use this ordered partition of the participating processes in a to define a second

partition C', ... , C' of the set ids(W) as follows. For each concurrency class C of ids(V),

define a concurrency class C' of ids(W) as follows. C' is the union of C and all i E ids(W) -

ids(V) such that C is the least concurrency class (as determined by -<) such that for all



j E C, i E Tj. Note that this is a partition of all of ids(W) since W = carrier(S). This

partition gives us a new collection of concurrency classes C, ... , C(.

We are now ready to construct a. First position updatec! actions in increasing order ac-

cording to the -< ordering. For each concurrency class C', position the inv_writeread(v);,is,

actions of all i such that i E C, immediately before the updatec, action (their internal order-

ing does not matter). Similarly, position the ret_writeread(v)i,is, and decide(S)i actions

of all i such that i E Cx and i E ids(V) immediately after the updatec, action, but before

the inv_writeread(v)i,is, actions associated with the next concurrency class C'. Processes

i whose index is not in ids(W) do not participate and hence take no steps in a. Pro-

cesses i whose index is in some concurrency class C' but not in ids(V) do not execute a

retwriteread(v)i,is, action, instead they execute a faili action after the updatec, action,

but before the inv_writeread(v)i,is, actions associated with the next concurrency class C'.

By construction, each deciding process i decides Si in a, as required. The lemma follows.

We now consider the protocol complex of a protocol in NIIS with time complexity 1 on

the input complex I, that is, some processes access a single IS object, while some decide

based only on their own inputs. We will show that, if 6 is trivial, which we denote by 6 = 1,

then this protocol complex is indeed a non-uniform chromatic subdivision.

Lemma 4.4 The protocol complex P(n,r,1 )(Z) of any NIIS protocol of time complexity 1

with input complex I is equal to some non-uniform chromatic subdivision X 1 (Z) up to

isomorphism.

Proof. We will show how to construct the protocol complex P(,,r,1)(Z), and prove this

construction is in accordance with Definition 3.31.

Consider any vertex Vi in Z. It is labeled with (i, vi), where i is a process id and vi

represents an input value to process i. According to the specification of NIIS protocols

in Section 2.5, process i will (provided it does not fail), upon having received the input

vi, either execute an action inv_writeread(v)i,Is, or decide(S)i , depending on whether

-r(localstate ) evaluates to true or not. In this way, the predicate map r induces a partition

of the vertexes of I into two disjoint sets A and B. Since the time complexity of P(n,r,) on



any input simplex in I is 1, the set A must be nonempty. We now construct complexes A

and B as in Definition 3.31, that is, a simplex T in I is in A if and only if all its vertexes

are in A, and it is in B if and only if all its vertexes are in B.

The vertexes in A correspond to processes that, based on their input values, execute

an inv_writeread(v)i,Is, action with the object IS 1 . By Lemma 4.3, the protocol complex

P(n,,,1)(A) equals X(A) up to isomorphism. A simplex U is in P(n,r,l)(I) if and only if it

corresponds to an output vector of an execution a of the protocol. In any execution a of

the protocol, some of the participating, non-failing processes decide on their input values

(corresponding to vertexes in B), while some decide on the snapshots they receive from the

object IS 1 (corresponding to vertexes in P•(n,,1)(A)). It follows that P(n,T,l)(I) contains

any simplex in B, any simplex in P(n,,,l)(A) = X(A), and any simplex of the form S *T,

where S is in X(A), T is in B, and carrier(S) *T is in I. The lemma follows. O

Lemma 4.5 For all k > 0, the protocol complex P(n,,,1)(T) of any protocol in the NIIS

model, with time complexity k on inputs in -I is equal to some non-uniform chromatic

subdivision Xk(I) up to isomorphism.

Proof. We use induction on the time complexity k. By Lemma 4.4, the result holds for

k = 1. Now suppose k > 1, and that the result holds for 1,..., k - 1. Consider the protocol

complex P(n,r,1)(I) of any protocol in the NIIS model with time complexity k on inputs in

I.

Any vertex i- in I is labeled with (i, vi), where i is a process id and vi represents an

input value to process i. According to the specification of NIIS protocols in Section 2.5,

any non-failing process i will, upon having received the input vi, either execute an action

inv_writeread(v)i,is, or decide(S)i , depending on whether r(vi) evaluates to true or not.

In this way, the predicate map r induces a partition of the vertexes of I into two disjoint

sets A and B. Since the time complexity of P(n,',1) on inputs in I is k, the set A must be

nonempty. We now construct complexes A and B as in Definition 3.31, that is, a simplex

T in I is in A iff all its vertexes are in A, and it is in B iff all its vertexes are in B.

The vertexes in A correspond to processes that, based on their input values, execute

an inv_writeread(v)i,is, action with the object IS1. By Lemma 4.3, the output protocol

complex on inputs in A after the first IS access equals X(A). The final protocol complex



P(n,l,1)(A) is given by applying X(A) as an input complex to the Protocol. Since the

complexity of the protocol on inputs in I, and hence on inputs in A, is k, the complexity

of the protocol on inputs in X(A) must be k - 1. It follows by induction that the protocol

complex P(n,•,l)(A) equals some non-uniform chromatic subdivision Xk-1(X(A)) of X(A)

up to isomorphism. A simplex U is in P(nrl,1)(2) iff it corresponds to a valid set of outputs of

an execution a of the protocol. In any execution a of the protocol, some of the participating,

non-failing processes decide on their input values, while some decide on the snapshots they

receive from some IS object. It follows that P(n,r,I)(I) contains any simplex in B, and

simplex in P(n,.,1)(A) = Xk-i(X(A)), and any simplex of the form S * T, where S is in

Xk-1(X(A)), T is in B, and carrier(S)*T is in I. It follows from Definition 3.31 that the

protocol complex P(n,j,1)(I) equals some non-uniform chromatic subdivision Pk(l) of I up

to isomorphism. o

We must also prove that, for any mappable non-uniform chromatic subdivision Xk(-)

of an input complex I, there is a matching protocol P(n,j,i) in the NIIS model.

Lemma 4.6 For any mappable non-uniform chromatic subdivision Xk(Z) of an input com-

plex I, there is a matching protocol P(n,r,1) in the NIIS model such that the protocol complex

P(n,•,,)(1) = ,k(l) up to isomorphism.

Proof. Given a vertex ' in I. The definition of the subdivision ik(I) induces a sequence

of non-uniform chromatic subdivisions I, V1(Z),... ,jk(Z), and corresponding sequences

Ao,... , Ak-1 and Bo,... , Bk-1 of complexes, the former sequence specifying the subcom-

plex to be subdivided further at each level of recursion.

In order to construct a protocol for n + 1 processes, we must specify the function r :

Uk=0o l(D) -+ {true, false} and the decision map 6 : U•Uko 1(D) - Do. We specify r to

be true for all values v such that there is a vertex 1' in one of the complexes Ao,,..., ,Ak-1

with val(i') = v, and r to be false for all values v such that there is a vertex ' in one of the

complexes Bo,... , Bk- with val(i') = v. For all other values v, r evaluates to false. This

definition is well-formed, since for all p, where 0 < p _ k, it follows from Definition 3.29

and Definition 3.31 that there are no two vertexes in PP(Z) with the same process-value

label pair, and for all p, q, where 0 < p, q _ k and p # q, Bp and Bq have no vertexes with

common labels (process id and value label). This concludes the proof. 0



We now give the proof of Theorem 4.2.

Proof. (Of Theorem 4.2) Let V = (1, 0, F) be a decision task. Lemma 4.5 states that

any protocol complex P(n,T,1)(I), with worst case complexity ks on input S, corresponds to

a non-uniform chromatic subdivision Xk(gn) with level ks on S. Suppose now the decision

map 6 is not trivial. Then, if P(n,v,s) solves D = (I, 0, F), z = 6 is a simplicial map from

jk(in) to O that is in correspondence with F, so Xk(In) is mappable.

Lemma 4.6 states that any mappable non-uniform chromatic subdivision ,k(jn) with

level ks on S is equal to the protocol complex P(n,-,l)(I) (where 6 is trivial) of a protocol

in the NIIS model with worst case complexity ks on input S. If there is a simplicial map

ip from Xk(In) to O that is consistent with F, then by setting 6 = P, we have a protocol

P(n,,8S) solving D = (1, 0, F) with complexity ks on input S. The theorem follows. O



Chapter 5

Applications of the Asynchronous

Complexity Theorem

5.1 Approximate Agreement

As an application of Theorem 4.2, we will analyze the well-known Approximate Agreement

task, in which each process i is given an input xi taken from some finite subset of the real

numbers, and is required to decide on some output yi such that, for some predetermined

e > 0, maxi yi - mini yi < e, and for all i, yi E [mini xi, maxi xi]. Aspnes and Herlihy [1]

proved a lower bound that implies a worst case time complexity of log3 maxi i -mini zi and

an upper bound of [log 2 maxi xi-mini x in the NIIS model'. In this chapter, we will show

that this log 2 vs. log 3 gap is not simply a technical fluke. We specify the finite n + 1-process

Approximate Agreement task for E > 0 as follows:

* I= {[x0,... ,n]l xi E V U {I}}, where V is a finite subset of R.

* o = {[yo,... , Yn] I Y V U {L},(yi,y j $ 1) = lYi- yjl :E}.

* 7 = {(f, o) I d[i] E [mini f[i], maxi f[i]] U {I}}.

Theorem 5.1 Given e > 0, there is a protocol (n,,,6) solving Approximate Agreement

with complexity [logd max E f~i]-minI f ] on any input vector I, where d = 3 if the size of the

1Although their proofs are for the read/write register model, they carry over to the NIIS model



participating set of I is 2, and d = 2 if the size of the participating set of I is 3 or more.

Moreover, this protocol is optimal on each input vector.

Theorem 4.2 provides the lower bound directly, and the matching upper bound protocol

follows from the subdivision and the simplicial map. We hope to convince the reader that

this is an excellent example of how topological modeling exposes subtle points which would

otherwise be difficult to grasp.

(0,0) (2,2)

(1, ((0, 0), (1, 1), (2,2)))

Figure 5-1: Simplex Subdivided by an Approximate Agreement Protocol

The key intuition behind our ability to close the gap between the upper and lower

bounds for Approximate Agreement is depicted in Figure 5-1, which shows the subdivisions

induced by a three process protocol on the input vector [0, 1,2]. Aspnes and Herlihy [1]

derive their lower bound for any n + 1 process algorithm from a "bad" execution in which

only the two processes with inputs farthest apart participate. Such an execution in our

model corresponds to a sequence of chromatic subdivisions of the edge between (0, 0) and

(2, 2).

In the end, the vertexes of each 1-simplex in the non-uniform chromatic subdivision of

the edge connecting (0, 0) and (2, 2) must be mapped by a simplicial map to vertexes with

output values that are less than c apart, and hence connected by a simplex in the output

complex. Since each subdivision introduces two new vertexes and splits the edge in three, in

log3 2 such steps one can cut the distance among these vertexes to E. However, note that if

one considers executions in which 3 processes participate, we run into a problem: No matter

how we subdivide the 2-simplex, there is always a path of 1-simplexes between (0, 0) and



(2, 2) that includes the vertex (1, ((0, 0), (1, 1), (2, 2))) (marked by a darker color). Hence,

for 3 process executions, only a single new vertex will be introduced to this path between

(0, 0) and (2, 2), and so the maximum distance between any two vertexes is cut by at most

a half for each level of subdivision. Hence our tight log 2 lower bound. Our upper bounds

follow directly from Theorem 4.2 by specifying the proper subdivision and map. The key

thing to note about the proof of Theorem 5.1 is that it does not involve any mention of the

actual executions; All we need to do is argue about the topology of the inputs and outputs

and then apply Theorem 4.2.

Proof. We first restate the description of the Approximate Agreement task using our

topological framework as follows:

* I is the closure under containment of the collection of all simplexes of the form

((0, xo),..., (n, xn)), where for all i, xi E V.

* 0 is the closure under containment of the collection of all simplexes of the form

((0, yo),... ,(n, yn)), where for all i, j, yi E V and (yi - yj - E.

* P = {(S, T) I vals(T) C [min vals(S), max vals(S)]}.

Note that the size of the participating set for the input vector corresponding to a simplex

S in I equals dim(S) + 1. Theorem 5.1 then states that, given E > 0, there is a protocol

(n,,,8) solving Approximate Agreement with complexity logd maxvals(s)min vals(s)] on

any input simplexS, where d = 3 if dim(S) = 1, and d = 2 if dim(S) _ 1. Moreover, this

protocol is optimal on each input simplex S.

We first establish the lower bound. Let P(n,T,S) be a protocol that solves Approximate

Agreement with worst case complexity ks on S, where S is any input simplex of dimension

n > dim(S) > 0. Let D(S) = maxeaEs val(i) - val(ii). Then Theorem 4.2 states that there

is some mappable non-uniform chromatic subdivision Xk(I), with level ks on S. We will

show that ks > jlogd DSJ. The proof uses the following lemma.

Lemma 5.2 Let 1 < k. Label the vertexes of Vt(S) with real numbers in a way that agrees

with the initial value labeling of S, and let Is be the level of •I(S). Then



D(S)
D(X (S)) > d

Proof. Suppose without loss of generality that 1 = ls. We first give the proof for the

case of two participating processes and d = 3. By definition of D(S), there is a 1-simplex

U = (uTO, iU') in S such that D(U) = D(S). The complex •I(U) contains at most 31 1-

simplexes, denoted U1,..., UM, where M < 31. These form a continuous path from Uio to

i1, the endpoints of which are labeled with val(GUo) and val(il), respectively. So the best we

can do is cut D(U) in 31 pieces. The triangle inequality tells us that D(U) _ EZM D(Ui) <

Mmaxi D(Ui) < 3k maxi D(Ui). Hence maxi D(Ui) 2 D(U)/3' = D(S)/31. The lemma

follows, since maxi D(Ui) • D(X'(S)).

We now prove the case where the size of the participating set is greater than 2 (and hence

dim(S) is greater than 1) and d = 2. We argue by induction on 1. The case 1 = 0 is trivial.

Now suppose the claim is true for I - 1. By definition of D(A."-1(S)), there is a 1-simplex

U = (ui, U-) in '-1'(S) such that D(U) = D(.I-1(S)). U is a face of some 2-simplex

U' = (u-, •i, i2). Suppose first that the next level of non-uniform chromatic subdivision

does not subdivide U completely. Then there is some 1-simplex T in the level 1 non-uniform

subdivision of U' with D(T) > D(U)/2. Since D(U) = D(,X'I-(S)) and D(T) _ D(,'(S)),

the lemma follows by induction. Suppose instead that the next level of subdivision does

subdivide U' completely. Then the level I subdivision has an internal vertex M2 , colored

with id(' 2), and two neighboring 1-simplexes To = (iio, in2 ) and T1 = (Af2 , i 1). The triangle

inequality then tells us that D(U) • D(To) + D(T1 ) 2 maxi D(Ti), where i E {0, 1}. It

follows that D(X,(S)) Ž D(X,-1(S))/2. The lemma follows by induction. o

Suppose now that there exists a chromatic simplicial map C : Xk(I) - 0 such that,

for all simplexes T in Pk(I), p(T) E r(carrier(T)). We can associate this map with a

labeling of the vertexes in jk(1 ) as follows. Label each vertex & in Xk(I) with val(p(6)).

This labeling agrees with the input value labeling of 1, since for any vertex V, the task

specification requires that for any simplex So that contains V, it must be the case that p(6) E

D(So). Choose two neighboring simplexes So and S1 containing & such that D(So)nD(Si) =

val(i6). It follows that p(4) = val(6). Now let T be any simplex in Pk(I). By definition of

p, p(T) is a simplex in O, and hence D(p(T)) < E. It follows that D(T) = D(p(T)) < E,



and hence that D(Xk(Z)) < E, where D(Xk(1)) is equal to maxzTEXjk()D(T). Clearly, for

any input simplex S, it follows that the labels on the restriction of ,k(Z) to S, ,k(S),

have range less than E. The previous lemma then states that E > D(,k(S)) > Dd4. We

conclude that

ks ! log9d

To prove the upper bound, we construct a mappable non-uniform chromatic subdivision

2k(I) of the input complex with level ks = [logd D) on each input simplex S, according

to Definition 3.31. As argued above, the requirement that the subdivision be mappable is

equivalent to saying that there is a vertex labeling of Xk(Z) that agrees with the initial

value labeling of I with the additional property that D(,k(I)) < E.

For each level of subdivision I < k, a vertex ' is in A if there is another vertex ' such

that val(V) - val(ii) > E, otherwise it is in B. Before applying the next level of subdivision

to X(A) (as specified by Definition 3.31), we relabel all new vertexes in X(A) (those not

in skelo(A)) as follows: If the dimension of A is 1, label the new vertexes in X(A) with

(2 min val(A) + max val(A))/3 and (min val(A) + 2 max val(A))/3, respectively. This cuts

the distance between the vertexes with values apart in 3. Otherwise, label the new vertexes

with (min val(A)+ max val(A))/2. This cuts the distance between the values furthest apart

in 2.

It is clear from this construction that, at each level of recursion, for all simplexes S in I

we have that, if D(XI(S)) > E, then either D(X'+1(S)) = D(Xt(S))/d), or D(XI+1(S)) < C.

It follows that the level ks of :k(I) on S is [logd ], where d = 3 if dim(S) = 1, and

d = 2 if dim(S) > 1. We conclude from Theorem 4.2 that there is a wait-free protocol

that solves Approximate Agreement with worst case time complexity [logd on input

S, where d = 3 for two participating processes and d = 2 for three or more. o



Chapter 6

Conclusion and Directions for

Further Research

In this thesis, we have extended the topological framework of Herlihy and Shavit [21, 22, 26]

to obtain a complete characterization of the complexity of solving decision tasks in the

NIIS model, a generalization of Borowsky and Gafni's IIS model [10]. The main difference

between Theorem 4.2 and Herlihy and Shavit's Asynchronous Complexity Theorem is that

in our proof, we construct an explicit protocol complex for the NIIS model, and show that

this complex is indeed equal to a non-uniform chromatic subdivision. Since non-uniform

chromatic subdivisions have a recursive structure, they are well-suited for arguing about

complexity - according to Theorem 4.2, the level of recursion of a mappable non-uniform

chromatic subdivision of a task's input complex is the complexity of the corresponding

wait-free NIIS solution protocol.

We have applied Theorem 4.2 to tighten the upper and lower bounds on solving the

Approximate Agreement task implied by the work of Aspnes and Herlihy [1], by proving

matching upper and lower bounds of [logd inputL-ange where d = 3 for two processes and

d = 2 for three or more. The intuition behind this result, as well as its formal proof, is based

on simple, geometric and topological arguments about the level of non-uniform chromatic

subdivision that is necessary and sufficient for mappability. We believe this is an excellent

example of how Theorem 4.2 exposes subtle properties of protocols in asynchronous shared

memory systems, and how it allows us to reason formally about them without having to



argue directly about concurrent executions.

A possible direction for further research is to apply Theorem 4.2 to other decision tasks,

such as for example Renaming. A good first step towards this end would be to formulate a

precise statement of the task using our topological framework, and then state and prove a

version of Theorem 4.2 for comparison-based protocols, which are guaranteed to satisfy the

symmetry requirements of the Renaming task.

Another possible direction is to try to extend our topological framework to other models

of computation, such as the atomic snapshot model, the single-writer multi-reader model,

or even the multi-writer multi-reader model. Our choice of the NIIS model was motivated

by the fact that its protocol complex is highly structured, and corresponds to a non-uniform

chromatic subdivision, as the proof of Theorem 4.2 shows. Other, less restricted models,

such as the ones mentioned above, do not have this property, and so in order to prove

a result similar to Theorem 4.2 in any of these models, one would need to identify some

invariant, recursive substructure that one can model topologically with reasonable ease.

An alternative approach would be to use simulation techniques to relate the NIIS model

to other models of computation, thereby obtaining an indirect characterization of the com-

plexity of solving decision tasks in these models. Currently, however, the best known

wait-free simulation of a single IS object using atomic snapshots requires O(N) accesses

to shared memory by each process, where N is the number of processes. There is thus

an important open problem in finding an optimal, wait-free implementation of NIIS using

atomic snapshot, and vice versa.

Finally, it is possible to extend the work presented in this thesis by using our exist-

ing topological framework to develop a characterization of the work complexity involved in

solving decision tasks in the NIIS model. As was the case for time complexity, a mappable

non-uniform chromatic subdivision of an input complex does contain the information neces-

sary to describe work complexity. The main difficulty to be overcome is to find an easy way

of extracting this information from the subdivided complex. One possible approach to this

problem would involve some form of topological invariant that keeps track of the maximal

sum of the number of IS objects accessed by the processes corresponding to the vertexes in

each simplex in the subdivision.
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