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Abstract	
Identifying	brain-based	markers	of	general	cognitive	ability,	i.e.,	“intelligence”,	has	
been	a	longstanding	goal	of	cognitive	and	clinical	neuroscience.	Previous	studies	
focused	on	relatively	static,	enduring	features	such	as	gray	matter	volume	and	white	
matter	structure.	In	this	report,	we	investigate	prediction	of	intelligence	based	on	
task	activation	patterns	during	the	N-back	working	memory	task	as	well	as	six	other	
tasks	in	the	Human	Connectome	Project	dataset,	encompassing	19	task	contrasts.	
We	find	that	whole	brain	task	activation	patterns	are	a	highly	effective	basis	for	
prediction	of	intelligence,	achieving	a	0.68	correlation	with	intelligence	scores	in	an	
independent	sample,	which	exceeds	results	reported	from	other	modalities.	
Additionally,	we	show	that	tasks	that	tap	executive	processing	and	that	are	more	
cognitively	demanding	are	particularly	effective	for	intelligence	prediction.	These	
results	suggest	a	picture	analogous	to	treadmill	testing	for	cardiac	function:	Placing	
the	brain	in	an	activated	task	state	improves	brain-based	prediction	of	intelligence.		
	
	

1	 Introduction	
	
In	addition	to	particular	abilities	associated	with	individual	cognitive	tasks,	there	is	
substantial	evidence	for	an	overarching	general	ability	involved	in	performance	
across	a	diverse	range	of	tasks.1–5	Intelligence	tests	composed	of	multiple	subtests	
can	yield	accurate	estimates	of	this	general	ability,	usually	denoted	g,	and	which	we	
here	refer	to	as	“intelligence”.6,7	Intelligence	is	a	fundamental	dimension	of	
individual	differences	and	is	a	key	contributor	to	a	number	of	important	academic,	
occupational,	health,	and	well-being-related	outcomes.8–13	There	is	thus	substantial	
interest	in	understanding	the	neural	basis	of	intelligence	and	in	developing	
“neuromarkers”	of	intelligence,	objective	brain-based	means	of	measuring	
individual	differences.		
	
One	potentially	promising	route	is	to	construct	neuromarkers	of	intelligence	from	
neuroimaging	maps,	including	structural	and	functional	imaging.	Existing	studies	
have	mainly	investigated	brain	size14,	cortical	thickness/gray	matter	volume15,16,	
white	matter	structure17,	and	resting	state	functional	connectivity18–20	(for	reviews,	
see	21–24).		A	notable	feature	of	these	studies	is	they	mainly	examine	stable,	enduring	
features	of	the	brain,	features	that	are	largely	independent	of	the	person’s	current	
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cognitive	state,	and	in	particular	their	actual	exercise	of	the	cognitive	abilities	that	
are	relevant	to	intelligent	task	performance.	An	alternative	approach	for	
constructing	neuromarkers	of	intelligence,	whose	rationale	resembles	that	for	
cardiac	treadmill	testing,	attempts	to	first	place	the	brain	in	an	activated	state	that	
engages	these	cognitive	abilities,	rendering	brain	features	associated	with	these	
abilities	more	“visible”	to	functional	imaging	(see	25	for	a	suggestion	along	these	
lines).		
	
Interestingly,	while	task-based	neuroimaging	studies	have	been	extensively	used	to	
investigate	the	brain-basis	of	intelligence,	they	have	thus	far	been	used	nearly	
exclusively	for	the	purposes	of	localization:	Activation	patterns	in	higher	versus	
lower	intelligence	individuals	are	compared	to	identify	the	places	in	the	brain	where	
there	are	statistically	significant	differences.26–30	Task-based	studies	have	thus	far	
not	been	used	widely	in	a	prediction	framework	in	which	whole-brain	activation	
patterns	are	harnessed	for	making	predictions	of	each	subject’s	intelligence.		
	
In	the	current	study,	we	address	this	notable	gap.	Utilizing	the	Human	Connectome	
Project’s	1200	release,	we	construct	a	highly	reliable	measure	of	intelligence	from	
10	measures	from	the	NIH	Toolbox	and	Penn	Neurocognitive	Battery.	We	then	
examine	brain-based	prediction	of	intelligence	from	contrast	maps	derived	from	the	
2-back	working	memory	task	as	well	as	six	other	fMRI	tasks	(19	task	contrasts	in	
total),	and	we	establish	two	things.	First,	task-based	activation	patterns	allow	highly	
reliable	prediction	of	intelligence,	with	performance	appreciably	higher	than	that	
reported	in	other	neuroimaging	modalities.	Second,	tasks	that	tap	executive	
processing	and	that	are	more	cognitively	demanding	yield	more	accurate	
predictions	of	intelligence.		
	
	

2	 Methods	
	
2.1	 Subjects	and	Data	Acquisition	

All	subjects	and	data	were	from	the	HCP-1200	release31,32	and	all	research	was	
performed	in	accordance	with	relevant	guidelines	and	regulations.	Subjects	
provided	informed	consent,	and	recruitment	procedures	and	informed	consent	
forms,	including	consent	to	share	de-identified	data,	were	approved	by	the	
Washington	University	institutional	review	board.	Subjects	completed	two	runs	
each	of	seven	scanner	tasks	across	two	fMRI	sessions,	using	a	32-channel	head	coil	
on	a	3T	Siemens	Skyra	scanner	(TR	=	720ms,	TE	=	33.1ms,	72	slices,	2mm	isotropic	
voxels,	multiband	acceleration	factor	=	8)	with	right-to-left	and	left-to-right	phase	
encoding	directions.	Comprehensive	details	are	available	elsewhere	on	HCP’s	
overall	neuroimaging	approach31,33	and	HCP’s	task	fMRI	dataset34.		
	
Subjects	were	eligible	to	be	included	if	they	had	available	MSMAll	registered	task	
data	for	both	runs	of	all	seven	tasks,	had	full	behavioral	data,	and	no	more	than	25%	
of	their	volumes	in	each	run	exceeded	a	framewise	displacement	threshold	of	
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0.5mm.	These	exclusions	resulted	in	958	subjects.	This	was	further	reduced	to	944	
subjects	in	generating	the	Train/Test	set	split	(see	below).	
	

2.2	 Data	Preparation	

Data	was	preprocessed	through	the	HCP	minimally	preprocessed	pipeline,	which	is	
presented	in	detail	by	Glasser	et	al.35	Briefly,	the	pipeline	includes	gradient	
unwarping,	motion	correction,	fieldmap	distortion	correction,	brain-boundary	
based	linear	registration	of	functional	to	structural	images,	non-linear	registration	
to	MNI152	space,	and	grand-mean	intensity	normalization.	Data	then	entered	a	
surfaced-based	preprocessing	stream,	followed	by	grayordinate-based	processing,	
which	involves	data	from	the	cortical	ribbon	being	projected	to	surface	space	and	
combined	with	subcortical	volumetric	data.		
	
2.3	 FMRI	Tasks		

We	used	contrasts	from	seven	HCP	tasks,	described	in	brief	in	Table	1	(detailed	
descriptions	are	available	elsewhere32,34).	
	
	
N-back	task	 Participants	respond	when	the	picture	shown	on	the	screen	is	the	

same	as	the	one	two	trials	back	(=2-back	condition)	or	the	same	as	
one	shown	at	the	start	of	the	block	(=0-back	condition).		
	

Incentive	

Processing	
Participants	guess	whether	the	number	on	a	mystery	card	will	be	
more	or	less	than	5	and	win	or	lose	money	(reward	condition	=	
mostly	wins;	loss	condition	=	mostly	losses)	

Motor	 Participants	move	fingers,	toes,	and	tongue	
Language	Task	 Participants	answer	questions	about	Aesop’s	fables	(=story	

condition)	or	math	problems	(=math	condition).	
Social	

Cognition	Task	
Participants	watch	video	clips	of	objects	interacting	in	an	agentive	
way	(=theory	of	mind	condition)	or	random	way	(=random	
condition).	

Relational	Task	 Participants	identify	the	dimension	along	which	a	cue	pair	of	
objects	differs	and	determine	if	a	target	pair	differs	along	same	
dimension	(=relational	condition).	Or	they	determine	if	a	cue	
object	matches	a	member	of	a	target	pair	along	a	given	dimension	
(=match	condition).	

Emotion	Task	 Participants	decide	whether	one	of	two	presented	faces	match	one	
at	the	top	of	the	screen	(=face	condition)	or	else	they	perform	the	
same	task	with	shapes	(=shape	condition)	

Table	1:	Seven	HCP	fMRI	Tasks.	

	
At	the	single	subject-level,	fixed-effects	analyses	were	conducted	using	FSL’s	FEAT	
to	estimate	the	average	effects	across	runs	within-participants,	using	2mm	surface	
smoothed	data.	Some	tasks	permitted	multiple	contrasts	beyond	the	standard	
experimental	versus	control	condition	(e.g.,	N-back	allows	additional	contrasts	
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based	on	all	four	stimulus	types).	To	reduce	the	complexity	of	the	analysis	and	avoid	
loss	of	power	from	smaller	number	of	trials,	we	focused	on	the	standard	contrasts	
yielding	a	total	of	19.	A	full	list	of	filenames	of	the	contrast	maps	used	can	be	found	
in	the	Supplemental	Table	S1.		
	
2.4	 Constructing	a	General	Intelligence	Factor	

We	conducted	an	exploratory	factor	analysis	utilizing	the	strategy	and	associated	
code	supplied	by	Dubois	and	colleagues	(https://github.com/adolphslab/HCP_MRI-
behavior),	who	recently	investigated	prediction	of	intelligence	from	resting	state	
fMRI	in	the	HCP	dataset36.	Unadjusted	scores	from	ten	cognitive	tasks	for	1181	HCP	
subjects	were	included	in	the	analysis	(subjects	with	missing	data	or	MMSE	<	26	
were	excluded),	including	seven	tasks	from	the	NIH	Toolbox	(Dimensional	Change	
Cart	Sort,	Flanker	Task,	List	Sort	Test,	Picture	Sequence	Test,	Picture	Vocabulary	
Test,	Pattern	Completion	Test,	Oral	Reading	Recognition	Test)	and	three	tasks	from	
the	Penn	Neurocognitive	Battery	(Penn	Progressive	Matrices,	Penn	Word	Memory	
Test,	Variable	Short	Penn	Line	Orientation	Test),	with	additional	details	supplied	
in36.		
	
We	applied	Dubois	and	colleagues’	code	to	this	data,	which	in	turn	uses	the	omega	
function	in	the	psych	(v	1.8.4	)	package37	in	R	(v3.4.4).	In	particular,	the	code	
performs	maximum	likelihood-estimated	exploratory	factor	analysis	(specifying	a	
bifactor	model),	oblimin	factor	rotation,	followed	by	a	Schmid-Leiman	
transformation38	to	find	general	factor	loadings.		
	
To	assess	reliability,	in	a	separate	analysis,	we	re-ran	the	factor	analysis	excluding	
46	subjects	that	had	Test/Retest	sessions	available.	We	then	estimated	factor	scores	
for	both	sessions	for	these	subjects	and	calculated	test/retest	reliability	via	
intraclass	correlation	(we	used	ICC(2,1)	in	the	Shrout	and	Fleiss	scheme39).	
	

2.5	 Train/Test	Split	

The	958	subjects	after	exclusions	were	divided	into	two	groups.	To	generate	a	test	
dataset	of	100	unrelated	subjects	we	first	selected	the	86	subjects	with	no	siblings	
who	passed	exclusion	criteria.	Then,	we	randomly	selected	14	families	from	those	
families	with	2	siblings	included	and	randomly	dropped	one	sibling	of	each	pair.	
This	resulted	in	944	total	subjects	for	our	analyses,	with	844	in	the	training	data	and	
100	unrelated	subjects	in	the	test	set.	
	
2.6	 Dimensionality	Estimation	and	Principal	Component	Analysis		

In	the	training	dataset,	each	subject’s	unthresholded	task	data	from	19	task	
contrasts	was	vectorized	and	concatenated	yielding	19	matrices,	each	with	
dimensions	of	844	subjects	by	91282	grayordinates.	We	next	estimated	the	number	
of	intrinsic	dimensions	associated	with	each	task	contrast.	This	was	accomplished	
by	submitting	each	of	the	19	subjects	x	grayordinates	contrast	matrices	to	the	
dimensionality	estimation	procedure	of	Levina	and	Bickel40.	This	is	a	maximum	
likelihood	estimation	method	based	on	distance	between	close	neighbors,	which	we	
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previously	successfully	applied	to	HCP	resting	state	data41.	

Dimensionality	estimation	found	a	mean	of	72	dimensions	across	the	19	task	
contrasts.		Because	prior	studies	by	our	group41	showed	small	differences	in	the	
number	of	components	make	little	difference	in	classifier	performance,	we	chose	the	
round	number	of	75	components	for	each	task.	We	also	verified	that	using	the	exact	
task-specific	number	of	components	made	no	difference	to	the	outcome	(see	
Supplemental	Table	S2).	

Next,	each	of	the	19	subjects	x	grayordinates	contrast	matrices	was	submitted	to	
principal	components	analysis	using	the	pca	function	in	MATLAB	(2015b),	yielding,	
for	each	contrast,	843	components	ordered	by	descending	eigenvalues.	

2.7		 Brain	Basis	Set	Modeling		

Our	aim	was	to	predict	each	subject’s	intelligence	from	their	expression	scores	for	n	
components	(where	n	was	typically	set	to	be	75;	see	above).	To	accomplish	this,	we	
used	Brain	Basis	Set	(BBS)	modeling,	previously	described	in	detail41.	
	
In	a	training	dataset,	we	calculate	the	expression	scores	for	each	of	the	n	
components	for	each	subject	by	projecting	their	data	onto	the	75	principal	
components.	We	then	fit	a	linear	regression	model	with	these	expression	scores	as	
predictors	and	the	phenotype	of	interest	(i.e.,	intelligence)	as	the	outcome,	saving	B,	
the	n	x	1	vector	of	fitted	coefficients,	for	later	use.	In	a	test	dataset,	we	again	
calculate	the	expression	scores	for	each	of	the	n	components	for	each	subject.	Our	
predicted	phenotype	for	each	test	subject	is	the	dot	product	of	B	learned	from	the	
training	dataset	with	the	vector	of	component	expression	scores	for	that	subject.		
We	assessed	performance	of	BBS-based	prediction	of	intelligence	by	calculating	the	
correlation	between	predicted	versus	actual	intelligence	in	the	test	sample.	
	
2.8		 Addressing	Additional	Potential	Confounds		

In	an	additional	analysis,	we	used	multiple	regression	to	remove	a	number	of	
potential	confounds	from	the	intelligence	variable	(i.e.,	g).	Similar	to	Dubois	et	al.36,	
variables	regressed	were:	age,	handedness,	gender,	brain	size,	multiband	
reconstruction	algorithm	version	number	(HCP	variables:	Age_In_Yrs,	Handedness,	
Gender,	FS_BrainSeg_Vol,	fMRI_3T_ReconVrs),	and	mean	framewise	displacement	
(task-specific	values	were	used).	Analyses	involving	intelligence	prediction	were	
then	repeated	with	the	confound-cleansed	variable.	Results	were	broadly	similar	to	
the	original	analyses	and	are	presented	in	Supplemental	Table	S2.	
	
2.9	 Consensus	Component	Maps	for	Visualization	

We	used	BBS	with	75	whole-brain	components	to	make	predictions	about	
intelligence.	To	help	convey	overall	patterns	across	the	entire	BBS	predictive	model,	
we	constructed	“consensus”	component	maps.	We	first	multiplied	each	component	
map	with	its	associated	beta	from	the	fitted	BBS	model.	Next,	we	summed	across	all	
75	components	yielding	a	single	map,	and	z	scored	the	entries.	
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3	 Results	
	
3.1.	Constructing	a	g	Factor	From	Ten	HCP	Behavioral	Tasks	

As	reported	by	Dubios	and	colleagues36,	a	bifactor	model	with	a	general	factor	g	and	
four	group	factors,	fit	the	data	very	well	(CFI=0.990;	RMSEA=0.0311;	SRMR=0.0201;	
BIC=-0.519).	The	solution	is	depicted	in	Figure	1.	Following	Dubois	and	colleagues,	
we	interpret	the	four	group	factors	as:	1)	Crystallized	Ability;	2)	Processing	Speed;	
3)	Visuospatial	Ability;	and	4)	Memory.		
	
The	general	factor	g,	which	we	refer	to	throughout	as	“intelligence”	and	which	is	the	
focus	of	this	report,	accounts	for	58.5%	of	the	variance	(coefficient	omega	
hierarchical	ω42),	while	group	factors	account	for	18.2%	of	the	variance.	Based	on	
the	46	subjects	in	the	retest	dataset	for	HCP,	test-retest	reliability	for	g	was	found	to	
be,	0.78,	which	is	conventionally	classified	as	very	good	(we	used	ICC(2,1)	in	the	
Shrout	and	Fleiss	scheme39).	
	
	

	
	

Figure	1:	Bifactor	Model	Based	on	Ten	Behavioral	Tasks	from	the	HCP	Dataset	

with	General	Factor	(“g”)	and	Four	Group	Factors.	C=Crystallized	Intelligence,	
S=Processing	Speed,	V=Visuospatial	Ability,	M=Memory.		
	
	
	
3.2	 Contrasts	associated	with	the	N-Back	task	are	highly	effective	at	

predicting	intelligence	in	out-of-sample	subjects.	
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Because	working	memory	has	been	strongly	and	consistently	linked	with	
intelligence35,43,44,	we	first	investigated	prediction	of	intelligence	based	on	the	N-
back	working	memory	task.	A	BBS	model	utilizing	75	components	was	fit	in	the	
training	dataset	and	then	applied	to	the	test	dataset.	The	correlation	in	the	test	
dataset	between	predicted	intelligence	and	actual	intelligence	was	0.68	(p	=	8.5	x	
10-15).		
	
Figure	2	shows	the	top	three	components	based	on	statistical	significance	displayed	
so	that	greater	expression	of	these	components	predicts	greater	intelligence.	These	
components	include	large	activations	in	supplementary	motor	area	(SMA),	
precuneus,	and	dlPFC,	as	well	as	deactivations	in	anterior	default	mode	network	
(DMN).	To	convey	“average”	patterns	across	all	75	components,	we	constructed	
consensus	component	maps	(see	Methods)	and	they	are	displayed	in	Figure	3.	These	
show	additional	patterns	predictive	of	intelligence,	including	deactivation	of	
posterior	cingulate	cortex	and	fronto-polar	cortex.	
	
	
	

	
Figure	2:	Visualization	of	the	Three	Most	Intelligence-Predictive	Components	
From	the	2-back	vs.	0-back	Task	Contrast.	The	three	most	statistically	significant	
components	are	shown	from	a	75-component	brain	basis	set	model	trained	to	
predict	intelligence	scores.	
	
	
We	next	trained	additional	BBS	models	on	the	2-back	vs.	baseline	and	0-back	vs.	
baseline	contrasts.	The	correlation	in	the	test	dataset	between	predicted	intelligence	
and	actual	intelligence	was	0.58	(p	=	2.0x10-10)	and	0.43	(p	=	6.2x10-6),	respectively.	
The	consensus	component	models	in	Figure	3	revealed	an	interesting	change	in	
directionality	across	these	contrasts.		For	example,	pre-SMA	strongly	predicts	
greater	intelligence	in	the	2-back	contrast	vs.	baseline	but	the	reverse	is	true	in	the	
0-back	vs.	baseline	contrast.	Additionally,	less	activation	(i.e.,	deactivation)	of	the	
anterior	DMN	predicts	higher	intelligence	in	the	2-back	vs.	0-back	contrast,	but	the	
reverse	is	true	in	the	0-back	vs.	baseline	contrast.	
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Figure	3:	Consensus	Component	Maps	for	Seven	Task	Contrasts	Highly	

Predictive	of	Intelligence.		Each	consensus	component	map	captures	aggregate	
patterns	across	a	75-component	brain	basis	set	model	for	prediction	of	intelligence.	
(top	row)	N-Back	Task;	(middle	row)	Relational	Task;	(bottom	row)	Math	–	Story	

Contrast.		

	
3.3	 Looking	across	all	19	task	contrasts,	tasks	involving	executive	

processing	and	higher	cognitive	demand	are	more	effective	in	predicting	

intelligence	

We	next	compared	intelligence	prediction	based	on	the	three	N-back	task	contrasts	
with	the	remaining	16	contrasts	from	the	other	six	HCP	tasks.	As	with	the	N-back	
task,	we	trained	BBS	models	for	each	task	contrast	in	the	train	dataset	and	applied	
the	models	to	the	held	out	test	dataset.		
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Figure	4:	Intelligence	Prediction	Across	19	Task	Contrasts.	A.	Prediction	of	

Intelligence	Using	Brain	Basis	Set	Modeling	For	19	HCP	Task	Contrasts.	Small	Black	

Dots	=	results	with	additional	regression	of	a	number	of	potential	confounds	(see	§2.8).	

B.	FPN/DMN	Activation	Patterns	During	a	Task	Strongly	Predict	Effectiveness	of	That	

Task	in	Predicting	Intelligence.		

	

	
Results	are	shown	in	Figure	3.	Tasks	involving	executive	processing	were	top	
performers,	including	contrasts	from	the	N-back	task	and	relational	reasoning	task,	
as	well	as	the	math	vs.	story	contrast	of	the	language	processing	task.	The	reward	vs.	
baseline	and	punishment	vs.	baseline	contrasts	of	the	gambling	task,	both	of	which	
involve	making	numerical	judgments,	also	performed	well.		
	
3.4		 FPN/DMN	activation,	a	measure	of	task	demandingness,	predicts	which	

tasks	are	effective	for	intelligence	prediction	

A	number	of	studies	have	observed	that	tasks	that	are	cognitively	demanding	
produce	activation	in	regions	of	frontoparietal	network	(FPN)45–48	and	deactivation	
of	regions	of	default	mode	network	(DMN)49–52.	Building	on	these	observations,	we	
hypothesized	the	more	cognitively	demanding	tasks	(operationalized	in	terms	of	
activation	levels	of	FPN	and	DMN)	should	be	more	effective	in	predicting	
intelligence.	To	ensure	comparability	across	task	contrasts,	we	focused	on	the	12	
task	contrasts	that	compared	a	task	condition	versus	resting	baseline.	We	
performed	a	regression	analysis	with	accuracy	of	intelligence	prediction	as	the	
outcome	variable	and	FPN	and	DMN	activation	as	predictors.	Results,	shown	in	
Figure	4,	support	our	hypothesis:	The	correlation	across	task	contrasts	between	
predicted	accuracy,	based	on	FPN	and	DMN	activation,	and	actual	accuracy	in	
predicting	intelligence	is	0.67	(FPN	standardized	β =	0.63,	DMN	standardized	β	=	-
0.58,	p	=	0.0482).		
	

3.5.	 Across	the	19	task	contrasts,	activation	signatures	of	intelligence	are	

spatially	distributed	and	task-specific		
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We	next	compared	the	consensus	component	maps	associated	with	the	19	contrasts	
(seven	maps	are	shown	in	Figure	3,	and	the	remaining	maps	are	shown	in	
Supplemental	Figure	S1).	Signatures	of	intelligence	prediction	associated	with	each	
task	were	highly	distributed,	with	remarkable	variation	in	these	signatures	across	
tasks.	Prominently	represented	regions	include:	superior	parietal	cortex	(reward	vs.	
baseline,	punishment	vs.	baseline),	dlPFC	(math	vs.	story),	anterior	insula	(relational	
v.	match),	fronto-polar	cortex	(math	vs.	story),	pre-SMA	(relational	vs.	match),	and	
visual	cortex	(relational	vs.	match,	reward	vs.	baseline,	punishment	vs.	baseline).	All	
75	components	as	well	as	consensus	component	maps	for	each	of	the	19	task	
contrasts	have	been	shared	on	BALSA,	the	Human	Connectome	Projects’	website	for	
sharing	and	hosting	neuroimaging	datasets	and	can	be	accessed	here:	
https://balsa.wustl.edu/study/show/MZPv.	
	

4	 Discussion	
This	study	is	the	first	to	systematically	assess	neuroimaging-based	prediction	of	
intelligence	across	multiple	fMRI	task	conditions.	We	find	that	whole-brain	task	
activation	patterns	are	a	highly	effective	basis	for	prediction	of	intelligence,	with	a	
model	trained	on	activation	during	the	N-back	working	memory	task	achieving	a	
0.68	correlation	with	intelligence	scores	in	an	independent	sample.	Additionally,	we	
demonstrate	that	more	cognitively	demanding	tasks	are	particularly	effective	for	
intelligence	prediction.	These	results	highlight	the	importance	of	placing	the	brain	
in	an	activated	task	state	for	accurate	brain-based	prediction	of	intelligence.		
	
Role	of	executive	regions	in	prediction	of	intelligence	

The	importance	of	fronto-parietal	network,	as	well	as	related	executive	regions	(e.g.,	
dorsal	anterior	cingulate),	for	intelligence	has	been	highlighted	in	previous	work,	
especially	in	Jung	and	Haier’s	influential	fronto-parietal	integration	theory21.	In	a	
similar	vein,	Duncan	and	colleagues	proposed	that	“multiple	demand”	cortex—
regions	of	the	brain	that	activate	across	a	broad	range	of	cognitively	demanding	
tasks45—are	a	primary	substrate	of	intelligence27.	The	present	study	extends	these	
findings	by	demonstrating	a	key	role	for	fronto-parietal	regions	as	a	major	source	of	
discriminative	information	for	making	subject-level	predictions	of	intelligence.	This	
additional	role	of	executive	regions	was	supported	in	three	complementary	ways.	
	
First,	in	looking	across	the	set	of	19	contrasts	derived	from	seven	HCP	tasks,	we	
found	that	tasks	that	tap	executive	processes	were	more	predictive	of	intelligence	
(e.g.,	N-back	task	contrasts,	relational	reasoning	task	contrasts,	and	math	vs.	story	
contrast).	Second,	we	found	that	FPN	activation	and	DMN	deactivation,	highly	
associated	with	the	cognitive	demandingness	of	task	conditions45–52,	predict	which	
task	contrasts	will	be	effective	for	intelligence	prediction.	Third,	within	highly	
predictive	contrasts,	such	the	2-back	vs.	0-back	contrast	and	math	vs.	story	contrast,	
activation	patterns	in	executive	regions	were	prominent	among	regions	predictive	
of	intelligence.		
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Interestingly,	for	certain	regions,	the	directionality	of	prediction	of	intelligence	
exhibited	some	variability	across	task	contrasts	in	a	way	suggestive	of	moderation	
by	task	difficulty	(for	example,	see	pre-SMA	in	0-back	compared	to	2-back	and	in	
match	compared	to	relational).	These	observations	are	consistent	with	a	neural	
efficiency	model	of	intelligence	proposed	by	Neubauer	and	Fink53.	They	propose	
that	higher	intelligence	is	associated	with	greater	processing	efficiency	in	
elementary	cognitive	tasks	(leading	to	less	activation	in	more	intelligent	
individuals)	but	greater	processing	capacity	in	demanding	cognitive	tasks	(leading	
to	greater	activation	in	more	intelligent	people),	thus	potentially	explaining	the	
flipped	directions	of	activation	observed	across	the	easy	and	hard	conditions	of	the	
N-back	and	other	tasks.		
	
While	activation	patterns	in	executive	regions	clearly	play	an	important	role	in	
explaining	the	success	of	our	task-based	approach	to	intelligence	prediction,	there	is	
still	clear	evidence	for	substantial	discriminative	information	about	intelligence	
located	outside	executive	regions.	This	is	apparent	in	looking	at	the	consensus	
component	images	in	Figure	3	as	well	Figure	S1	in	the	Supplement.	Activations	are	
observed	in	distributed	regions	of	cortex,	including	non-executive	regions	such	as	
visual	cortex,	lateral	temporal	cortex,	and	temporal	pole,	among	other	regions.		
	
Comparison	of	task-based	prediction	with	other	modalities	

Previous	studies	using	neuroimaging	for	prediction	of	intelligence	have	primarily	
used	structural	measures,	for	example	cortical	thickness15,16	or	white	matter	
structure17,	for	reviews	see	21–23.		In	terms	of	functional	fMRI,	recent	studies	have	
examined	resting	state	connectivity	patterns.18–20	In	an	important	study	by	Dubois	
and	colleagues36	that	examined	the	same	HCP	1200	dataset	used	in	the	present	
study,	they	found	resting	state	connectivity	patterns	predicted	intelligence	with	a	
correlation	of	0.44	in	cross-validated	testing	(see	also	a	related	finding	from	our	
group41).	While	impressive,	this	is	still	substantially	less	than	the	peak	correlation	of	
0.68	achieved	in	the	present	study	in	out-of-sample	testing.	
	
There	are	two	interrelated	reasons	why	task-based	fMRI	might	potentially	offer	
more	reliable	prediction	of	intelligence	than	other	modalities.	The	first	appeals	to	
the	“treadmill	testing”	idea	already	mentioned:	actively34	engaging	in	cognitive	tasks	
has	the	potential	to	unmask	critical	intelligence-relevant	features	of	the	brain	that	
are	otherwise	invisible	in	other	modalities	such	as	structural	brain	imaging.	A	
second	potential	advantage	of	task-based	methods	is	specificity.	Tasks	are	
constructed	by	their	designers	to	target	specific	psychological	processes,	often	with	
control	conditions	that	subtract	away	contributions	from	auxiliary	processes	of	no	
interest.	This	will	tend	to	make	classification	more	accurate	as	the	feature	set	is	
culled	of	a	sizable	number	of	uninformative	features.	
	
Future	Directions	

Results	from	this	study	open	the	door	to	promising	additional	lines	of	research.	It	is	
notable	that	we	used	the	set	of	imaging	tasks	that	were	included	in	the	HCP	dataset.	
These	imaging	tasks,	in	turn,	were	selected	based	on	diverse	considerations	(see	34),	
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but	maximizing	prediction	of	intelligence	was	not	among	them.	Thus,	it	is	plausible	
that	one	can	do	still	better:	It	should	be	possible	to	intentionally	design	and	
optimize	an	imaging	task	battery—based	on	findings	from	the	literature	as	well	as	
trial-and-error	experimentation—to	yield	even	more	accurate	task-based	prediction	
of	intelligence,	and	future	work	should	explore	this	possibility.	
	
In	sum,	this	study	firmly	establishes	the	effectiveness	of	task-based	fMRI	for	
prediction	of	intelligence	and	demonstrates	that	tasks	that	tap	executive	processing	
and	that	are	more	cognitively	demanding	are	associated	with	better	prediction	
accuracy.	
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