

 inter-
face. A

iour
 view,
super-
g when
tation-
elop a
ay not

 to ex-
tection
e per-
ation

out the
cond

sed as

cts
; a sub-
peration

 90

d.
Towards a Type Theory for Act ive Objects1

Oscar Nierstrasz
Michael Papathomas2

Abstract
Currently popular notions of types, such as signature compatibility, fail to express essential prop-
erties of concurrent active objects that are necessary for their correct use in new contexts. We pro-
pose and explore a new notion of compatibility called interaction conformance defined in terms
of the possible interactions between an object and its clients. We relate interaction conformance
to known equivalence relations between communicating concurrent agents, and we show that, by
viewing types as certain kinds of indeterminate agents, interaction conformance gives us a sub-
type relationship. We briefly explore the potential for applying these ideas to concurrent object-
oriented languages.

1 Introduction

A key property of object-oriented languages is that they promote software reuse through
changeability of software components that conform to the same message-passing inter
characterization of such an interface is a type, and can be viewed as a constraint on the behav
of an object. An object that conforms to the type meets the constraint. A subtype, in this
is simply a stronger constraint: all objects that conform to a subtype also conform to the
type. The nature of these constraints may vary, however, as may the rules for determinin
one type is a subtype of another. The choice of characterization will depend on the compu
al model of a particular language and the way in which objects interact. We seek to dev
notion of type that will serve to characterize concurrent, active objects whose behaviour m
conform to a strict client/server model of interaction and communication.

Types are useful in programming languages in three significant ways: (1) as a means
press the abstract behaviour (interface) of software components, (2) to support error-de
by either static or run-time type-checking, and (3) in the case that static analysis can b
formed, as a means to improve execution efficiency by taking advantage of type inform
when generating code. We are primarily interested in the first so that we can reason ab
compositionality of active objects, but we hope that this work will lead to benefits of the se
and third kind.

In object-oriented languages that support type-checking, types are typically expres
signatures. Signature-compatibility is fairly well-understood, especially for functional obje
[2]: a signature is a set of operation names, together with their argument and return types
type is a signature with at least the same operations, such that the type of each subtype o
conforms to the supertype operation.

1. A version of this paper has appeared in: ACM OOPS Messenger, Proceedings OOPSLA/ECOOP
workshop on Object-Based Concurrent Systems, vol. 2, no. 2, April 1991, pp. 89-93.

2. Authors’ address: Centre Universitaire d’Informatique, 12 rue du Lac, CH-1207 Geneva, Switzerlan
E-mail: {oscar,michael}@cui.unige.ch. Tel: +41 (22) 787.65.80. Fax: +41 (22) 735.39.05.

O.M. Nierstrasz and M. Papathomas 2

t
ns that
 passed
 object
ions of
e types

 to an
lgo-

jects,
rrently

orm
t.

f an

eply

 of a

nd is
]. This
ing ob-

bjects.

e can
ervable
equiv-
 of the

uring
ject-

wo ob-
 the

lence
lled

en set
tical to

d we
What is at work here is the principle of substitutability [13]: we wish to ensure that a clien
of an object receive no surprises when communicating with a subtype instance. This mea
all expected operations must be supported, the return types conform, and all arguments
conform to the object’s expectations. Note that there is a two-way contract between the
and its client: it is the arguments provided by the client that must conform to the expectat
the object, not vice versa. (It is for this reason that subtypes are not permitted to refine th
of operation arguments.)

Type systems based on signature compatibility may be viewed as an approximation
underlying notion of behavioral compatibility which gives rise to practical type checking a
rithms. However, there is no well-understood notion of behavior compatibility for active ob
and several limitations to signatures that make them inappropriate to characterize concu
executing objects[10]:

• Non-uniform service availability: one cannot express the fact that requests to perf
certain operations may be delayed or rejected depending on the state of the objec

• Multiple concurrent clients: signatures do not capture the interleaving interactions o
object with multiple concurrent clients.

• Non-client/server protocols: alternative message-passing protocols such as early r
[6] and send/receive/reply [3] are not expressible with signatures.

• Re-use criteria: signatures do not provide enough information about the behaviour
concurrent object to determine whether it is safe to use in a new context.

Our approach to defining types of active objects is motivated by substitutability, a
based on a notion of conformance we develop for systems of communicating agents [4][8
approach to types may be applied to actual concurrent object-oriented languages by mapp
jects to agents and carrying over substitutability from the domain of agents to that of o
Thus, if M is a mapping from objects of a concurrent object-oriented language to agents w
discuss whether two objects O1 and O2 are mutually substitutable by considering the obs
behaviour of the corresponding agents M(O1) and M(O2). We then would like to have an
alence relation over agents that captures our intuitions about substitutability at the level
objects O1 and O2. For example, strong equivalence [8], by being a congruence relation guar-
antees the substitutability of M(O1) and M(O2). This is, however, far too strong for capt
our intuitive understanding of substitutability of two objects O1 and O2 in concurrent ob
oriented languages: it would not, in general, be possible to express the substitutability of t
jects with the same functionality but with different implementations, or of two objects with
same visible interface to a client, but providing slightly different functionality.

We take as a starting point various previously defined and explored forms of equiva
between communicating concurrent agents [4][8] and we define a weaker equivalence cain-
teraction equivalence that expresses when two agents are equivalent with respect to a giv
of observers. We show that for the set of all possible observers, this equivalence is iden
failures equivalence. We then define an asymmetric variant of this equivalence called interac-
tion conformance. We then explore some of the properties of interaction conformance, an

3 Towards a Type Theory for Active Objects

nform-

of

ci-
s. Our

 for ac-
ect, we

model
 devise

lasses
eter-
cause
y con-
sed for
g lan-
by CCS

muni-
e can

ffers to

ppose

,

or

ut
ither

s as fol-
show how certain kinds of indeterminate agents can be viewed as types and interaction co
ant types as subtypes.

The two-way contract between an object and its clients can be expressed in terms live-
ness and safety conditions [5][7]. Safety conditions express what is allowed to happen, and live-
ness conditions express what is guaranteed to happen. Much previous work in temporal spe
fications has concentrated on specification and formal verification of concurrent program
goal is less ambitious: we seek to approximate the possible interactions of an object with its en-
vironment as restricted liveness and safety conditions, and thus obtain a notion of types
tive objects. Since we can view such conditions as constraints on the behaviour of an obj
obtain a notion of substitutability, and thus of subtyping.

In order to be effective and generally applicable this approach requires the ability to
object-oriented language features by agents in such a way that one will easily be able to
mappings M that accommodate the object models and constructs supported by various c
[11] of concurrent object-oriented programming languages. Apart from being useful for d
mining substitutability of objects in a single language, this approach is also interesting be
it provides a common framework for representing and comparing the approaches taken b
current object-oriented languages. In §4, we succinctly describe CCS agents that are u
modelling objects of two rather different classes of concurrent object-oriented programmin
guages and we also discuss some object-oriented features that appear difficult to model
agents. These issues are treated more extensively in [12].

 We conclude by summarizing some open problems.

2 Interaction Equivalence

We shall view computations as systems of communicating concurrent agents. An agent is an en-
tity that may communicate with other agents or invisibly change state due to internal com
cation. A “system” is just another word for a complex agent made up of other agents. W
view such systems as labelled transition systems [8] where transitions represent both o
communicate and invisible state changes.

A labelled transition system consists of a set S of states, a set T of
transitions and a set of next-state relations for each . In particular, we shall su
that where τ represents an invisible transition (i.e., an internal communication)
and is the set of visible transitions (i.e., offers to communicate). The set C repre-
sents input offers and represents output offers. Furthermore, we adopt the convention that f

. If then we say that offers a and b match.

Every element of S represents (the state of) an agent or a system. If two agents p and q are
concurrently composed (written p|q), then they may communicate with each other if their inp
and output offers match. Furthermore, if there are other agents in the environment then ep
or q is free to communicate independently with those agents. We can express these rule
lows:

S T { |
t

t→ T}∈, ,〈 〉
t→ t T∈

T L τ{ }∪=
L C C∪=

C
e L∈ e

=, e= a b=

O.M. Nierstrasz and M. Papathomas 4

tran-

o:

with

,

ntually

,

tate,
me set
chable
ivalent.

i.e.,
nt
t, i.e.,
e

1. ,

2. , and

3. .

Note that if p and q succeed in communicating with each other, this results in an invisible
sition (i.e., invisible to other agents).

The initials of an agent is the set of transitions it is initially willing to underg
[1]. An agent p is stable, written stable(p), if it cannot ini-

tially make an invisible transition, i.e., if . A stable agent must communicate
another agent in order to change state.

A system consisting of a pair of agents u and p is deadlocked, written dl(u,p), if both u and
p are stable and . Neither u nor p can make an invisible transition
nor can they communicate with each other. We assume, of course, that the system is closed. Oth-
erwise either agent could progress by communicating with external agents and so eve
reach a state where it could communicate with the other.

Definition 1 There is an interaction path from p to p' if , where:

1. (ε is the empty sequence),

2. if and then , and

3. if and then .

That is, s is a trace of the communications that p is willing to exchange with other agents
possibly interleaved with invisible transitions, and leading eventually to state p'. We can now
define the interactions between an agent and its environment.

Definition 2 The set of interactions up to deadlock of an agent p with an observer u is
.

Definition 3 Two agents p and q are interaction equivalent with respect to an observer u,
written if .

What we wish to capture with this definition is the idea that, starting from some initial s
a client (or observer) cannot distinguish between two agents if they support exactly the sa
of interactions. Note that interaction equivalence is not recursively defined, so states rea
from p and q by the same sequence of transitions need not themselves be interaction equ
Interaction equivalence is therefore a much weaker notion than observation equivalence [8]. If
we consider certain kinds of observers, however, we obtain other known equivalences.

Recall that p and q are trace equivalent if they have the same set of observable actions,
if traces(p) = traces(q), where . Now let us consider the age
STAR that repeatedly accepts all offers or invisibly changes state to a dead agen

 and , where . We can observe th
following simple result:

Theorem 4 p and q are trace equivalent iff .

p p′e→ p|q p′ |qe→⇒

q q′e→ p|q p|q′e→⇒

p p′e→ q q′e→, p|q p′ |q′τ→⇒

initials p() {e T | p ′∃∈ p p ′
e

 } →,≡
τ initials p()∉

initials u() initials p()∩ ∅=

s L
*∈ p p′s⇒

p p
ε⇒

p p′s⇒ p′ p″e→ p p″se⇒

p p′s⇒ p′ p″τ→ p p″s⇒

ωu p() {s| p p′s⇒ u u′s⇒ dl u′ p′,()}, ,=

p qu∼ ω u p() ωu q()=

traces p() {s | p ′∃ p p ′ }
s ⇒,≡

e∀ L∈ STAR STAR
e→, STAR nil

τ→ initials nil() ∅=

p qSTAR∼

5 Towards a Type Theory for Active Objects

ce to

der the

t to

rv-
se

s ex-

t

y ob-

uce
e

nd

 form

r

The proof is straightforward, as is equal to the traces of

p

.

We now obtain the main result of this section. We shall extend interaction equivalen

sets

 of observers in the obvious way: iff .

Recall that

p

 and

q

 are

failures equivalent

[1], written if failures(

p

) = failures(

q

),
where:

This expresses the idea that two agents are equivalent if they fail (i.e., cannot proceed) un
same circumstances.

Theorem 5

p

 and

q

 are failures equivalent iff they are interaction equivalent with respec
the set of all possible observers, i.e., if .

Proof:

(I) We shall first show that .

Suppose that . If then

p

 never deadlocks with respect to any obse
er, and so neither does

q

. In this case

p

 and

q

 are clearly failures equivalent. Now let us suppo
that .

Choose an arbitrary . Now consider an observer that accept
actly the complement of

s

, leading to

u'

 where .

In this case, , and so

dl

(

u

´,

p

). As a consequence, , bu
since

p

 and

q

 are interaction equivalent for all observers,

s

 is also in . Hence
 and so by symmetry we conclude that

p

 and

q

are failures equivalent.

(II) Let us now prove the converse. Suppose that and that is an arbitrar
server. If then , hence also in failures(

q

). We can then
conclude that and that .

Now we suppose that and select some . By Definition 2 we ded
that there is some

u'

 such that and . Hence, for every finit
 we have . But by failures equivalence of

p and q we also
have , hence . By symmetry we conclude that , a
by ranging over all observers u, we conclude that .

3 Interaction Conformance

We shall now define an asymmetric variant of interaction equivalence that will give us a
of “type compatibility” for agents.

Definition 6 An agent p is interaction conformant to an agent q with respect to an observe
u, written , if:

1. ,

2. , and

3. .

By condition 1 it is obvious that if , then .

ωSTARp()

p qU∼ u∀ U∈ p qu∼,

p qf∼

failures p() { s X,〈 〉 | p p ′
s ⇒ stable p ′ () X finite X , initials p ′ () ∩, ,≡ ∅ } =

p qS∼

p qS∼ p qf∼⇒

p qS∼ failures p() ∅=

failures p() ∅≠

s X,〈 〉 failures p()∈ u S∈
u′ nil

e→ e∀ X∈,

u u′s⇒ initials u′() X= s ωu p()∈
ωu q()

s X,〈 〉 failures q()∈

p qf∼ u S∈
ωu p() ∅= ε initials u(),〈 〉 failures p()∈

ωu q() ∅= p qu∼

ωu p() ∅≠ s ωu p()∈
u u′s⇒ p p′s⇒, dl u′ p′,()

X initials u′()⊆ s X,〈 〉 failures p()∈
s X,〈 〉 failures q()∈ s ωu q()∈ ω u p() ωu q()=

p qS∼

p qu«

ωu p() ωu q()⊆

ωu q() ∅≠ ωu p() ∅≠⇒

s ωu p()∈ ss′ ωu q()∈, s″∃ ss″ ωu p()∈,⇒

p qu pu« « p qu∼

O.M. Nierstrasz and M. Papathomas 6

itions.
s.

ict

-

 the
e, let

 deter-
av-
t char-

t
e

ter-
agent
 se-
ally!)

se in-
ef-

e,
uld
The other two conditions are there to provide additional liveness and safety cond
Condition 2 says that if q can interact at all with u, then p must offer at least some interaction
Condition 3 says that if p (and q) can communicate with u up to the interaction path s, and if q
can possibly continue after this point, then p must also offer to continue (though it may restr
the choices offered by q).

At this point we introduce the idea that somehow expresses u’s expectations of p.
Any of the interactions in are acceptable, with the choice up to p. By the same token, if u
expects any of the interactions in , and , then u will be satisfied by the refined choic
es offered by p.

Ultimately a practical notion of type must translate into some notation for specifying
expectations of an observer. Without considering yet what such a notation might look lik
us consider some of the properties it should have. First of all we would like to be able to
mine whether an agent p satisfies a type constraint without explicit consideration of the beh
iour of the observer. One way to do this is to let the type expression itself be an agent tha
acterizes .

Definition 7 We define the runs of an agent t to be the set of its potential interactions up to
deadlock, , where RUN accepts all offers ad infinitum: ,

.

If an observer u declares its interest in an agent of type t, that is taken to mean tha
, and that u will be satisfied by any agent p such that . In order to determin

whether we have such a p, we should be able to test whether “p is of type t,” which we write as
p:t, without having to explicitly consider the relation .

Since t is independent of u it must somehow express both the possibility of deadlock (
mination of interaction) at certain points as well as the possibility of continuing. Such an
is indeterminate, since its behaviour may differ in two identical situations after the same
quence of communications. Agents representing programmed objects, however, (norm
should be determinate1.

A plausible definition of p:t would be:

1. p is determinate,

2. , and

3. .

Because of condition 1, p cannot choose to deadlock unless a deadlock was in any ca
evitable, i.e., iff and . It is now easy to see from the d
inition of that and p:t would guarantee that .

A plausible subtype relation, t´ :< t might obtained by simply dropping condition 1 abov
however this would permit t´ to introduce new deadlocks. Somewhat more satisfactory wo
be the following definition:

1. For a precise definition of determinacy, see [8].

ωu p()
ωu p()

ωu q() p qu«

ωu p()

runs t() ωRUN t()≡ e∀ L∈
RUN RUN

e→

ωu t() runs t()= p tu«

u«

traces p() traces t()⊆

s traces p()∈ ss′ traces t()∈, s″∃ ss″ traces p()∈,⇒

s runs p()∈ s runs t()∈ ss′∃¬ runs t()∈

u« ωu t() runs t()= p tu«

7 Towards a Type Theory for Active Objects

 the

 that un-
 instanc-

tions
ill be

nto ac-
hat
r-
 did for

 The
 of
gent
e ob-

cating

ges to
antics
ommo-
S for
tation of
ressed

that pro-

gram-
ts and
1. , and

2. .

This immediately gives us the desirable property that ⇒ ⇒
. Our subtype relationship is defective, however, in that it only allows us to refine

choices offered by t, not to provide new alternatives ignored by u. This is important if we are to
capture properties of inheritance in object-oriented languages where subclass instances
derstand additional messages may be used without danger in contexts where superclass
es are expected.

To handle this, we must suppose that , that is, u is capable of only the
communications specified by t. (This may seem rather extreme, but remember that u is the rest
of the environment, so we are only concerned with communications between u and t.) Then we
can allow t´ to add new interaction paths outside those offered by t, that is condition 1 would
become: . A subtype must provide at least some of the interac
of a supertype, but otherwise is free to offer any other communications, provided they w
ignored (!). Unfortunately this definition invalidates the property that t´:<t:<t´ makes t and t´
equivalent as types.

In fact, there is something deeper at issue here, which is that we have only taken i
count the expectations of a single concrete observer u. So far we have not expressed the idea t
the observer might also make choices, that is, that u’s behaviour might not be completely dete
mined. For this, we must extend interaction conformance to sets of observers just as we
interaction equivalence: iff . For p to conform to q, it must do so for all
possible elements of U, representing the possible choices of behaviour for the observer.
choice, in this case, is up to the observer, not p. What we need is to specify the expectations
an abstract observer as a conjunction of the expectations of a set of concrete observers. An a
satisfies the specification if it satisfies the expectations of all possible instantiations of th
server. We shall now briefly consider some possible mappings of objects to communi
agents using CCS as a formalism for describing the behaviour of agents.

4 Modelling Objects by CCS Agents

The detailed description of a mapping of concurrent object-oriented programming langua
CCS agents is treated elsewhere [12]. Here, we provide a brief indication of how the sem
of various objects models ranging from passive data objects to active objects can be acc
dated within a common framework. We will also briefly discuss some shortcomings of CC
expressing the semantics of active objects and discuss possible extensions. The presen
objects as CCS agents also illustrates some difficulties concerning the notion of types exp
on agents, as objects that service requests concurrently should be equated with objects
cess requests one after the other.

The approach we take for expressing objects as agents follows the definition of a pro
ming language in terms of CCS given in [8]. We omit the details of representing statemen
expressions as agents which are described in [12] and is essentially the same as in [8].

runs t ′() runs t()⊆

s traces t ′()∈ ss′ traces t()∈, s″∃ ss″ traces t ′()∈,⇒

t ′ :<t t:<t ′, runs t ′() runs t()=
t ′ tu∼

runs u() runs t()=

runs t ′() traces t()∩ runs t()⊆

p qU« u∀ U∈ p qu«,

O.M. Nierstrasz and M. Papathomas 8

gents

i-

t gener-
,
turning
guag-
dex
ethod.

on dis-
d in-

elled
ethod

r of
 . is
nt.
.

Objects may be represented by the composition of three kinds of agents: Vi representing the
object’s instance variables, Mi representing the object’s methods, and OB being used to describe
the message passing and method activation behavior of a particular model of objects.

An object with instance variables V1,...,Vn and methods M1,…,Mk is represented by:

The agents Vi, representing the instance variables, are composed1 with the methods Mi, and the
access sort ACC(Vi) of the variables is hidden so that they may only be accessed by the a
that represent the object’s methods.

An instance variable V is represented by an agent where:

Loc(y) represents a location that stores the value Y. V models a variable that first has to be in
tialized and then acts as Loc.

Methods are mapped to agents of the form M given below:

A sequence of events argMix is used for getting the method arguments. Body is an agent, not de-
scribed here, that represents the actual execution of the method’s statements. This agen
ates the events replyM,jx and doneM,j used for supplying the result, x, computed by the method
and for indicating that the method execution is finished. The use of separate events for re
the result and for indicating completion of method execution is necessary for modelling lan
es in which a result may be returned before the end of the execution of a method. The inj is
used for telling apart the arguments and return values of multiple activation of the same m
It is necessary for modeling languages in which methods may execute concurrently.

The agent OB is used for describing various message acceptance and method activati
ciplines. It accepts method invocation requests from other agents an
vokes the object’s methods according to the object model of the language. C is used for identi-
fying the caller, O the object called, M the method to be invoked and j is used to distinguish
among several calls made by the same caller.

Objects of languages in which method execution is mutually exclusive may be mod
by the agent OB, shown below, which accepts a new message and invokes the requested m
only after the previous method execution is completed.

1. The operator | mentioned earlier is used to compose concurrent agents; \ is the restriction operato
CCS, which is used to hide a list of event labels; + is the exclusive choice, or summation operator; and
the prefixing operator of CCS that specifies the replacement behaviour following a communication eve
See [8] for a complete description of CCS, or [9] in this volume for the description of a similar notation

O V1|V2…|Vn|M1|M2…|Mk()\ACC V1()\…\ACC Vn()|OB()=

\ACC M1()…\ACC Mk()

V putVx.LocV x()=

LocV y() putVx.LocV x() getVy.LocV y()+=

M callMj .argMj1x1.….argMjnxn.BodyMj x1 … xn, ,()|M≡

callC O M j, , , a1…an

OBO (callC O M j, , , a1
…an.callM 1, .argM 1, a1

…argM 1, an.

C M j, ,
∑≡

replyM 1, x.replyC O M j, , , .x.doneM 1, .OBO)

9 Towards a Type Theory for Active Objects

’s

ted con-
 in-
 invoca-

 han-

iour is
calculus
t types.

es
d its re-
ymmet-
and
haviour
bserv-

h can
can be
d lan-
CS. In
ot di-
upport
und in
ier. It
ee, for
ave to
pply to

reason
The sum is taken with C ranging over the set of callers, M ranges over the set of the object
methods and j over natural numbers.

Objects that behave like passive abstract data types whose methods may be execu
currently may be modelled by an agent OB́ . This agent accepts method invocation requests,
vokes the requested method and creates a new instance of itself that may handle further
tions concurrently.

fO,M is a relabelling used to distinguish among multiple concurrent activations of a method
dled by different instantiations of OB’.

5 Conclusions

We have argued that a new notion of type based on substitutability of observable behav
needed for concurrent object-oriented languages, and that formalisms based on process
and labelled transition systems are appropriate for developing and reasoning about objec

We have introduced interaction equivalence, a weak form of equivalence that equat
agents that are indistinguishable for a given set of observers, and we have demonstrate
lationship to trace equivalence and failures equivalences. We have also introduced an as
ric variant called interaction conformance that permits us to compare non-equivalent agents,
we have shown how indeterminate agents can be viewed as “types” that constrain the be
of interaction conformant, determinate agents. When we restrict our attention to a single o
er at a time, we can obtain a form of subtype relation over types.

Our notions of conformance apply to notations such as CCS [8] or Abacus [9], whic
be used as semantic targets for the definition of object models. We illustrate how CCS
used to capture two rather different models of objects used in concurrent object-oriente
guages. There are, however, object-oriented features that are difficult to represent in C
particular, systems with dynamic intercommunication structure or dynamic linkage are n
rectly representable [8]. This is problematic as concurrent object-oriented languages s
systems with dynamic intercommunication structure: object identifiers may be passed aro
messages allowing any object to communicate with another provided it knows its identif
is easy to extend the CCS language so that dynamic linkage is directly representable. S
example, the specification of an actor based-language using Abacus [9]. However, we h
consider more carefully the effects such extensions may have on the algebraic laws that a
the operators used for modelling object-oriented features, as this may affect our ability to
about the properties of objects.

OB′O callC O M 1, , , a1…an.callM 1, .argM 1, a1…argM 1, an.[
C M,
∑≡

replyM 1, x.replyC O M 1, , , .x.doneM 1, .OB′O]

|OB'O[f O M,]

f O M, {callC O M i 1+, , , /callC O M i, , , ,callM i 1+, /callM i, ,argM i 1+, ak/argM i, ak,=

doneM i 1+, /doneM i, ,replyC M i 1+, , x/replyC M i, , x }

O.M. Nierstrasz and M. Papathomas 10

of ob-

ls?

atic or
lan-

ournal

om-

inistra-

ril

an-

d for

edings

a,

riented

 and

5-17,

We can summarize the open problems as follows:

1. How should we characterize substitutability for a

set

 of possible observers?
(Can the notion of a type as an indeterminate agent be usefully extended?)

2. Does interaction conformance lead to a useful notion of substitutability at the level
jects? (Are there other, more appropriate conformance relations?)

3. What mappings of objects to agents are useful for comparing various object mode

4. Are there object models and conformance relations that can lead to practical (st
run-time) type-checking algorithms for concurrent object-oriented programming
guages?

References

 [1] S.D. Brookes, C.A.R. Hoare and A.W. Roscoe, “A Theory of Communicating Sequential Processes,” J
of the ACM, vol. 31, no. 3, pp. 560-599, July 1984.

[2] L. Cardelli and P. Wegner, “On Understanding Types, Data Abstraction, and Polymorphism,” ACM C
puting Surveys, vol. 17, no. 4, pp. 471-522, Dec 1985.

[3] W.M. Gentleman, “Message Passing Between Sequential Processes: the Reply Primitive and the Adm
tor Concept,” Software – Practice and Experience, vol. 11, pp. 435-466, 1981.

[4] C.A.R. Hoare,

Communicating Sequential Processes

, Prentice-Hall, 1985.

[5] L. Lamport, “Specifying Concurrent Program Modules,” ACM TOPLAS, vol. 5, no. 2, pp. 190-222, Ap
1983.

[6] B. Liskov, M. Herlihy and L. Gilbert, “Limitations of Synchronous Communication with Static Process
Structure in Languages for Distributed Computing,” 13th Symposium on Principles of Programming L
guages, St. Petersburg Beach, Florida, Jan 13-15, 1986.

[7] Z. Manna and A. Pneuli, “Verification of Concurrent Programs: the Temporal Framework,” in

The Correct-
ness Problem in Computer Science

, ed. R.S. Boyer and J.S. Moore, pp. 215-273, Academic Press.

[8] R. Milner,

Communication and Concurrency

, Prentice-Hall, 1989.

[9] O.M. Nierstrasz, “A Guide to Specifying Concurrent Behaviour with Abacus,” in

Object Management

, ed.
D.C. Tsichritzis, Centre Universitaire d’Informatique, University of Geneva, July 1990, (to be submitte
publication).

[10] O.M. Nierstrasz and M. Papathomas, “Viewing Objects as Patterns of Communicating Agents,” Proce
OOPSLA ’90, 1990, (to appear).

[11] M. Papathomas, “Concurrency Issues in Object-Oriented Programming Languages,” in

Object Oriented De-
velopment

, ed. D.C. Tsichritzis, pp. 207-245, Centre Universitaire d’Informatique, University of Genev
July 1989.

[12] M. Papathomas, “Using Process Algebra for the Description and Comparison of Concurrent Object-O
Languages,” in preparation

[13] P. Wegner and S. B. Zdonik, “Inheritance as an Incremental Modification Mechanism or What Like Is
Isn’t Like,” in

Proceedings of the European Conference on Object-oriented Programming

, ed. S. Gjessing
and K. Nygaard, Lecture Notes in Computer Science 322, pp. 55-77, Springer Verlag, Oslo, August 1
1988.

	Towards a Type Theory for Active Objects
	1 Introduction
	2 Interaction Equivalence
	3 Interaction Conformance
	4 Modelling Objects by CCS Agents
	5 Conclusions

