Towards a Type Theory for Active Objects

Oscar Nierstrasz
Michael Papathoméds

Abstract

Currently popular notions of types, such as signature compatibility, fail to express essential prop-
erties of concurrent active objects that are necessary for their correct use in new contexts. We pro-
pose and explore a new notion of compatibility callgdraction conformancdefined in terms

of the possible interactions between an object and its clients. We relate interaction conformance
to known equivalence relations between communicating concurrent agents, and we show that, by
viewing types as certain kinds of indeterminate agents, interaction conformance gives us a sub-
type relationship. We briefly explore the potential for applying these ideas to concurrent object-
oriented languages.

1 Introduction

A key property of object-oriented languages is that they promote software reuse through inter-
changeability of software components that conform to the same message-passing interface. A
characterization of such an interface fg@e and can be viewed as a constraint on the behaviour

of an object. An object that conforms to the type meets the constraint. A subtype, in this view,
is simply a stronger constraint: all objects that conform to a subtype also conform to the super-
type. The nature of these constraints may vary, however, as may the rules for determining when
one type is a subtype of another. The choice of characterization will depend on the computation-
al model of a particular language and the way in which objects interact. We seek to develop a
notion of type that will serve to characterize concurrent, active objects whose behaviour may not
conform to a strict client/server model of interaction and communication.

Types are useful in programming languages in three significant ways: (1) as a means to ex-
press the abstract behaviour (interface) of software components, (2) to support error-detection
by either static or run-time type-checking, and (3) in the case that static analysis can be per-
formed, as a means to improve execution efficiency by taking advantage of type information
when generating code. We are primarily interested in the first so that we can reason about the
compositionality of active objects, but we hope that this work will lead to benefits of the second
and third kind.

In object-oriented languages that support type-checking, types are typically expressed as
signatures Signature-compatibility is fairly well-understood, especially for functional objects
[2]: a signature is a set of operation names, together with their argument and return types; a sub-
type is a signature with at least the same operations, such that the type of each subtype operation
conforms to the supertype operation.

1. A version of this paper has appeared in: ACM OOPS Messenger, Proceedings OOPSLA/ECOOP 90
workshop on Object-Based Concurrent Systems, vol. 2, no. 2, April 1991, pp. 89-93.

2. Authors’ address: Centre Universitaire d’Informatique, 12 rue du Lac, CH-1207 Geneva, Switzerland.
E-mail: {oscar,michael}@cui.unige.ch. Tel: +41 (22) 787.65.80. Fax: +41 (22) 735.39.05.



O.M. Nierstrasz and M. Papathomas 2

What is at work here is thginciple of substitutabilitf13]: we wish to ensure that a client
of an object receive no surprises when communicating with a subtype instance. This means that
all expected operations must be supported, the return types conform, and all arguments passed
conform to the object’s expectations. Note that there is a two-way contract between the object
and its client: it is the arguments provided by the client that must conform to the expectations of
the object, not vice versa. (It is for this reason that subtypes are not permitted to refine the types
of operation arguments.)

Type systems based on sighature compatibility may be viewed as an approximation to an
underlying notion of behavioral compatibility which gives rise to practical type checking algo-
rithms. However, there is no well-understood notion of behavior compatibility for active objects,
and several limitations to signatures that make them inappropriate to characterize concurrently
executing objects[10]:

» Non-uniform service availability:one cannot express the fact that requests to perform
certain operations may be delayed or rejected depending on the state of the object.

» Multiple concurrent clients:signatures do not capture the interleaving interactions of an
object with multiple concurrent clients.

* Non-client/server protocolsalternative message-passing protocols such as early reply
[6] and send/receivel/reply [3] are not expressible with signatures.

» Re-use criteria:signatures do not provide enough information about the behaviour of a
concurrent object to determine whether it is safe to use in a new context.

Our approach to defining types of active objects is motivated by substitutability, and is
based on a notion of conformance we develop for systems of communicating agents [4][8]. This
approach to types may be applied to actual concurrent object-oriented languages by mapping ob-
jects to agents and carrying over substitutability from the domain of agents to that of objects.
Thus, ifM is a mapping from objects of a concurrent object-oriented language to agents we can
discuss whether two objects O1 and O2 are mutually substitutable by considering the observable
behaviour of the corresponding agents M(O1) and M(02). We then would like to have an equiv-
alence relation over agents that captures our intuitions about substitutability at the level of the
objectsO1 and O2. For examplstrong equivalencg8], by being acongruenceelation guar-
antees the substitutability of M(O1) and M(O2). This is, however, far too strong for capturing
our intuitive understanding of substitutability of two objects O1 and O2 in concurrent object-
oriented languages: it would not, in general, be possible to express the substitutability of two ob-
jects with the same functionality but with different implementations, or of two objects with the
same visible interface to a client, but providing slightly different functionality.

We take as a starting point various previously defined and explored forms of equivalence
between communicating concurrent agents [4][8] and we define a weaker equivalenda-called
teraction equivalencthat expresses when two agents are equivalent with respect to a given set
of observers. We show that for the set of all possible observers, this equivalence is identical to
failures equivalenceWe then define an asymmetric variant of this equivalence datk@c-
tion conformanceWe then explore some of the properties of interaction conformance, and we



3 Towards a Type Theory for Active Objects

show how certain kinds of indeterminate agents can be viewed as types and interaction conform-
ant types as subtypes.

The two-way contract between an object and its clients can be expressed in tereas of
nessandsafetyconditions [5][7]. Safety conditions express whatliswedto happen, and live-
ness conditions express whagisaranteedo happen. Much previous work in temporal speci-
fications has concentrated on specification and formal verification of concurrent programs. Our
goal is less ambitious: we seek to approximatetssible interactionsf an object with its en-
vironment as restricted liveness and safety conditions, and thus obtain a notion of types for ac-
tive objects. Since we can view such conditions as constraints on the behaviour of an object, we
obtain a notion of substitutability, and thus of subtyping.

In order to be effective and generally applicable this approach requires the ability to model
object-oriented language features by agents in such a way that one will easily be able to devise
mappingsV that accommodate the object models and constructs supported by various classes
[11] of concurrent object-oriented programming languages. Apart from being useful for deter-
mining substitutability of objects in a single language, this approach is also interesting because
it provides a common framework for representing and comparing the approaches taken by con-
current object-oriented languages. In 84, we succinctly describe CCS agents that are used for
modelling objects of two rather different classes of concurrent object-oriented programming lan-
guages and we also discuss some object-oriented features that appear difficult to model by CCS
agents. These issues are treated more extensively in [12].

We conclude by summarizing some open problems.

2 Interaction Equivalence

We shall view computations as systems of communicating concurrent ageatgmiis an en-

tity that may communicate with other agents or invisibly change state due to internal communi-

cation. A “system” is just another word for a complex agent made up of other agents. We can
view such systems as labelled transition systems [8] where transitions represent both offers to
communicate and invisible state changes.

A labelled transition systern§, T, { X It 0 T} consists of a sed of states, a séf of
transitions and a set of next-state relatiohs for each . In particular, we shall suppose
thatT = LO{1} whera represents amvisible transition(i.e., an internal communication),
andL = C O C is the set ofisible transitiong(j.e., offers to communicate). The €tepre-
sentsnput offersandC representutput offers Furthermore, we adopt the convention that for
ed L e = e.Ifa = bthen we say that offeesandb match

Every element oS represents (the state of) an agent or a system. If two ggentk) are
concurrently composed (writtgag), then they may communicate with each other if their input
and output offers match. Furthermore, if there are other agents in the environment then either
or g is free to communicate independently with those agents. We can express these rules as fol-
lows:



O.M. Nierstrasz and M. Papathomas 4

L pSp Oplas pla,

2.95%5q O plg> plg,and

3. pSp,a5q0 platply.
Note that ifp andq succeed in communicating with each other, this results in an invisible tran-
sition (i.e., invisible to other agents).

The initials of an agent is the set of transitions it is initially willing to undergo:
initials(p) = {ed T| Op’, p € p'1[1]. An agentp is stable written stableg), if it cannot ini-
tially make an invisible transition, i.e.,if(] initials(p) . A stable agent must communicate with
another agent in order to change state.

A system consisting of a pair of agentandp is deadlockedwrittendl(u,p), if bothu and
p are stable anthitials(u) n initials(p) = 0 . Neithemorp can make an invisible transition,
nor can they communicate with each other. We assume, of course, that the syisised iSth-
erwise either agent could progress by communicating with external agents and so eventually
reach a state where it could communicate with the other.

Definition 1 There is annteraction paths [ L fromptop'if p 0 p', where:
1. p8 p (is the empty sequence),
2. ifpd pandp & p” thepff p” , and
3. ifpd pandp’ 5 p” thepl p" .

That is,sis a trace of the communications tpas willing to exchange with other agents,
possibly interleaved with invisible transitions, and leading eventually topstatée can now
define the interactions between an agent and its environment.

Definition 2 The set ofinteractions up to deadlockf an agenp with an observeu is
wy(p) = {slp8 p,ud u,di, p)}.

Definition 3  Two agentg andq areinteraction equivalentwith respect to an observey
written p Liq  ifw ,(p) = w,(0).

What we wish to capture with this definition is the idea that, starting from some initial state,
a client (or observer) cannot distinguish between two agents if they support exactly the same set
of interactions. Note that interaction equivalence is not recursively defined, so states reachable
from p andg by the same sequence of transitions need not themselves be interaction equivalent.
Interaction equivalence is therefore a much weaker notiondibservation equivalend8]. If
we consider certain kinds of observers, however, we obtain other known equivalences.

Recall thap andg aretrace equivalenif they have the same set of observable actions, i.e.,
if tracesp) = traces), wheretraces(p) = {s| Op', p N p'} . Now let us consider the agent
STARthat repeatedly accepts all offers or invisibly changes state to a dead agent, i.e.,
DeOL, STARS STARINASTARS nil , wherenitials(nil) = O . We can observe the
following simple result:

Theorem 4 pandq are trace equivalent iff L&,



5 Towards a Type Theory for Active Objects

The proof is straightforward, as;po{p) is equal to the traces of

We now obtain the main result of this section. We shall extend interaction equivalence to
setsof observers in the obvious wayl), g HuOU, pL] g

Recall thatp andq arefailures equivalent], written p [} ¢ if failuresp) = failuresg),
where:
failures(p) = { (5, XO| pd p', stable(p’), Xfinite, X N initials(p’) = O}

This expresses the idea that two agents are equivalent if they fail (i.e., cannot proceed) under the
same circumstances.

Theorem 5 p andq are failures equivalent iff they are interaction equivalent with respect to
the set of all possible observers, i.ep i q

Proof: (1) We shall first show thagi (kg pLk q .

Suppose that [ q . failures(p) = O  thgnnever deadlocks with respect to any observ-
er, and so neither dogsin this casg andq are clearly failures equivalent. Now let us suppose
that failures(p) # O .

Choose an arbitrarys, XJ0 failures(p) . Now consider an obsemers that accepts ex-
actly the complement &f leading tou’ whereu’ > nil, De 0 X .

In this casep T U initials(u’) = X and s(u’,p). As a consequencs/] wy,(p) , but
since p and q are interaction equivalent for all observessjs also inw,(q) . Hence
[§, X failures(q) and so by symmetry we conclude thandq are failures equivalent.

(I1) Let us now prove the converse. Suppose phgt andithe® is an arbitrary ob-
server. Ifw,(p) = O theng, initials(u)J0 failures(p) , hence also in failugs(We can then
conclude thato (q) = O and thatj,q

Now we suppose thabd (p) # 1  and select sanew, (p) . By Definition 2 we deduce
that there is some’ such thatu U, pﬁ p° andl(u’, p’) . Hence, for every finite
X O initials(u’) we havels, XOO failures(p) . But by failures equivalencepofindg we also
havels, XJO failures(q) , hence O wy(q) . By symmetry we concludethgp) = w,(q) , and
by ranging over all observeus we conclude thép [ig O

3 Interaction Conformance

We shall now define an asymmetric variant of interaction equivalence that will give us a form
of “type compatibility” for agents.

Definition 6 An agentpisinteraction conformanto an agend with respect to an observer
u, writtenp «,q , if:

1. w,(p) 0 wy9),
2. w700 wy(p)#0, and
3. sUwy(p), ss Hw,(@O B, ss'w,p).

By condition 1 it is obvious that f«, g« p , then(], g



O.M. Nierstrasz and M. Papathomas 6

The other two conditions are there to provide additional liveness and safety conditions.
Condition 2 says that d can interact at all with, thenp must offer at least some interactions.
Condition 3 says that @ (andg) can communicate with up to the interaction pat) and ifq
can possibly continue after this point, theemust also offer to continue (though it may restrict
the choices offered hy).

At this point we introduce the idea thay(p) somehow exprassesxpectationof p.
Any of the interactions i (p) are acceptable, with the choice ppBy the same token, if
expects any of the interactionsury(q) , apds,q , thenll be satisfied by the refined choic-
es offered byp.

Ultimately a practical notion of type must translate into some notation for specifying the
expectations of an observer. Without considering yet what such a notation might look like, let
us consider some of the properties it should have. First of all we would like to be able to deter-
mine whether an ageptsatisfies a type constraint without explicit consideration of the behav-
iour of the observer. One way to do this is to let the type expression itself be an agent that char-
acterizeso(p) -

Definition 7 We define theunsof an agent to be the set of itgotentialinteractions up to
deadlock, runs(t) = wg (1) , whereRUN accepts all offersad infinitum OelL,
RUN £ RUN.

If an observeru declares its interest in an agent of typehat is taken to mean that
w,(t) = runs(t), and thati will be satisfied by any agepsuch thap «, t . In order to determine
whether we have suchpawe should be able to test whethpiis of typet,” which we write as
p:t, without having to explicitly consider the relatigp

Sincet is independent af it must somehow express both the possibility of deadlock (ter-
mination of interaction) at certain points as well as the possibility of continuing. Such an agent
is indeterminate since its behaviour may differ in two identical situations after the same se-
guence of communications. Agents representing programmed objects, however, (normally!)
should be determinate

A plausible definition op:t would be:
1. pis determinate,
2. traces(p) U traces(t) , and
3. sUtraces(p), ss U traces(t) O [5", ss" [ traces(p) -

Because of condition p,cannot choose to deadlock unless a deadlock was in any case in-
evitable, i.e.sOruns(p) iffs[] runs(t) anch[s Oruns(t) . Itis now easy to see from the def-
inition of «, thatw,(t) = runs(t) andg:t would guarantee that, t

A plausible subtype relatiofi, :< t might obtained by simply dropping condition 1 above,
however this would permtit to introduce new deadlocks. Somewhat more satisfactory would
be the following definition:

1. For a precise definition of determinacy, see [8].



7 Towards a Type Theory for Active Objects

1. runs(t’) O runs(t) , and
2. s[traces(t'), sS [ traces(t) O ", ss' U traces(t') .

This immediately gives us the desirable property that, t:<t’" 0 runs(t’) = runs(t) O
t' [ t. Our subtype relationship is defective, however, in that it only allows us to refine the
choices offered by, not to provide new alternatives ignoredwbyrhis is important if we are to
capture properties of inheritance in object-oriented languages where subclass instances that un-
derstand additional messages may be used without danger in contexts where superclass instanc-
es are expected.

To handle this, we must suppose thats(u) = runs(t) , that is,capable obnly the
communications specified lby(This may seem rather extreme, but remembetisathe rest
of the environment, so we are only concerned with communications baiveeeit) Then we
can allowt” to add new interaction paths outside those offereq that is condition 1 would
become:runs(t’) n traces(t) O runs(t) . A subtype must provide at least some of the interactions
of a supertype, but otherwise is free to offer any other communications, provided they will be
ignored (!). Unfortunately this definition invalidates the property that:«t" makest andt’
equivalent as types.

In fact, there is something deeper at issue here, which is that we have only taken into ac-
count the expectations osagleconcrete observer So far we have not expressed the idea that
the observer might also make choices, that iskdiehaviour might not be completely deter-
mined. For this, we must extend interaction conformance to sets of observers just as we did for
interaction equivalencga«, q ifludU, p«,q .F@rto conform tag, it must do so foall
possible elements df, representing the possible choices of behaviour for the observer. The
choice, in this case, is up to the observerpnd¥hat we need is to specify the expectations of
an abstract observer as@junctionof the expectations of a set of concrete observers. An agent
satisfies the specification if it satisfies the expectations of all possible instantiations of the ob-
server. We shall now briefly consider some possible mappings of objects to communicating
agents using CCS as a formalism for describing the behaviour of agents.

4 Modelling Objects by CCS Agents

The detailed description of a mapping of concurrent object-oriented programming languages to
CCS agents is treated elsewhere [12]. Here, we provide a brief indication of how the semantics
of various objects models ranging from passive data objects to active objects can be accommo-
dated within a common framework. We will also briefly discuss some shortcomings of CCS for
expressing the semantics of active objects and discuss possible extensions. The presentation of
objects as CCS agents also illustrates some difficulties concerning the notion of types expressed
on agents, as objects that service requests concurrently should be equated with objects that pro-
cess requests one after the other.

The approach we take for expressing objects as agents follows the definition of a program-
ming language in terms of CCS given in [8]. We omit the details of representing statements and
expressions as agents which are described in [12] and is essentially the same as in [8].



O.M. Nierstrasz and M. Papathomas 8

Objects may be represented by the composition of three kinds of ageegsesenting the
object’s instance variablell; representing the object’'s methods, &lbeing used to describe
the message passing and method activation behavior of a particular model of objects.

An object with instance variables V1,...,Vn and methods MMk is represented by:
O = ((V{|V,...[VaIM{IM; ... [IMACC( V))\...\ACC( V,,)|OB)
\ACC(M,)...\ACC(M,)

The agent¥;, representing the instance variables, are comﬁ(miﬁtﬂthe method#/;, and the
access soACC(V) of the variables is hidden so that they may only be accessed by the agents
that represent the object’s methods.

An instance variabl¥ is represented by an agewvit= put,,x.Loc,,(x) where:

Loc,(y) = putyx.Loc,(X) +£,y.Loc\,(y)

Loc(y) represents a location that stores the valug models a variable that first has to be ini-
tialized and then acts asc.

Methods are mapped to agents of the fMrgiven below:
M = cally;.ardy;; X+ ardyjnXn-Bodyy; (X, ..., xp)|M

A sequence of evengsgy,x is used for getting the method argumeBtzdyis an agent, not de-

scribed here, that represents the actual execution of the method’s statements. This agent gener-
ates the eventeply,; ;x anddong, ; used for supplying the resuk, computed by the method,

and for indicating that the method execution is finished. The use of separate events for returning
the result and for indicating completion of method execution is necessary for modelling languag-
es in which a result may be returned before the end of the execution of a method. Thesindex
used for telling apart the arguments and return values of multiple activation of the same method.
It is necessary for modeling languages in which methods may execute concurrently.

The agenOBis used for describing various message acceptance and method activation dis-
ciplines. It accepts method invocation requesti; o \ j2;---a, from other agents and in-
vokes the object’s methods according to the object model of the lan@lisgesed for identi-
fying the caller,O the object calledV the method to be invoked ands used to distinguish
among several calls made by the same caller.

Objects of languages in which method execution is mutually exclusive may be modelled
by the agen®B, shown below, which accepts a new message and invokes the requested method
only after the previous method execution is completed.

OBg = % (caIIC,O, M, J-al---an.caIIM'1.arg,\,,llal---arg,\,,,lan.
C.'M,j

replym, 1x.replye o w, j.x.doneM, 1.0Bp)

1. The operator | mentioned earlier is used to compose concurrent agents; \ is the restriction operator of
CCS, which is used to hide a list of event labels; + is the exclusive choice, or summation operator; and . is
the prefixing operator of CCS that specifies the replacement behaviour following a communication event.
See [8] for a complete description of CCS, or [9] in this volume for the description of a similar notation.



9 Towards a Type Theory for Active Objects

The sum is taken witl ranging over the set of callefd, ranges over the set of the object’s
methods anglover natural numbers.

Objects that behave like passive abstract data types whose methods may be executed con-
currently may be modelled by an ag&®’ . This agent accepts method invocation requests, in-
vokes the requested method and creates a new instance of itself that may handle further invoca-
tions concurrently.

OB'y= Czw[callc, o M 18- a,.cally j.argy a,...argy a,
’ replym, 1x.replyc o u 1-X-doney, 1.0B o]
[OBolfo, Ml

fo,mis arelabelling used to distinguish among multiple concurrent activations of a method han-
dled by different instantiations @B

fom = {callg o wm i+1/callc o m Cally i+ /cally .argy i, aJsargy ;a,

doneMl - 1/donq\,,, i,repIyCl M, i+ lx/replycl M, iX }

5 Conclusions

We have argued that a new notion of type based on substitutability of observable behaviour is
needed for concurrent object-oriented languages, and that formalisms based on process calculus
and labelled transition systems are appropriate for developing and reasoning about object types.

We have introducethteraction equivalencea weak form of equivalence that equates
agents that are indistinguishable for a given set of observers, and we have demonstrated its re-
lationship to trace equivalence and failures equivalences. We have also introduced an asymmet-
ric variant callednteraction conformancthat permits us to compare non-equivalent agents, and
we have shown how indeterminate agents can be viewed as “types” that constrain the behaviour
of interaction conformant, determinate agents. When we restrict our attention to a single observ-
er at a time, we can obtain a form of subtype relation over types.

Our notions of conformance apply to notations such as CCS [8] or Abacus [9], which can
be used as semantic targets for the definition of object models. We illustrate how CCS can be
used to capture two rather different models of objects used in concurrent object-oriented lan-
guages. There are, however, object-oriented features that are difficult to represent in CCS. In
particular, systems with dynamic intercommunication structure or dynamic linkage are not di-
rectly representable [8]. This is problematic as concurrent object-oriented languages support
systems with dynamic intercommunication structure: object identifiers may be passed around in
messages allowing any object to communicate with another provided it knows its identifier. It
is easy to extend the CCS language so that dynamic linkage is directly representable. See, for
example, the specification of an actor based-language using Abacus [9]. However, we have to
consider more carefully the effects such extensions may have on the algebraic laws that apply to
the operators used for modelling object-oriented features, as this may affect our ability to reason
about the properties of objects.



O.M. Nierstrasz and M. Papathomas 10

We can summarize the open problems as follows:

1. How should we characterize substitutability f@mesof possible observers?
(Can the notion of a type as an indeterminate agent be usefully extended?)

2. Does interaction conformance lead to a useful notion of substitutability at the level of ob-

jects? (Are there other, more appropriate conformance relations?)

3. What mappings of objects to agents are useful for comparing various object models?

4. Are there object models and conformance relations that can lead to practical (static or

run-time) type-checking algorithms for concurrent object-oriented programming lan-
guages?

References

[1]

(2]

3]

[4]
5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

S.D. Brookes, C.A.R. Hoare and A.W. Roscoe, “A Theory of Communicating Sequential Processes,” Journal
of the ACM, vol. 31, no. 3, pp. 560-599, July 1984.

L. Cardelli and P. Wegner, “On Understanding Types, Data Abstraction, and Polymorphism,” ACM Com-
puting Surveys, vol. 17, no. 4, pp. 471-522, Dec 1985.

W.M. Gentleman, “Message Passing Between Sequential Processes: the Reply Primitive and the Administra-
tor Concept,” Software — Practice and Experience, vol. 11, pp. 435-466, 1981.

C.A.R. Hoare Communicating Sequential Procesdesentice-Hall, 1985.

L. Lamport, “Specifying Concurrent Program Modules,” ACM TOPLAS, vol. 5, no. 2, pp. 190-222, April
1983.

B. Liskov, M. Herlihy and L. Gilbert, “Limitations of Synchronous Communication with Static Process
Structure in Languages for Distributed Computing,” 13th Symposium on Principles of Programming Lan-
guages, St. Petersburg Beach, Florida, Jan 13-15, 1986.

Z. Manna and A. Pneuli, “Verification of Concurrent Programs: the Temporal FramewofigigGorrect-
ness Problem in Computer Scienped. R.S. Boyer and J.S. Moore, pp. 215-273, Academic Press.

R. Milner, Communication and Concurrendyrentice-Hall, 1989.

O.M. Nierstrasz, “A Guide to Specifying Concurrent Behaviour with AbacusJhject Managemenéed.
D.C. Tsichritzis, Centre Universitaire d’Informatique, University of Geneva, July 1990, (to be submitted for
publication).

O.M. Nierstrasz and M. Papathomas, “Viewing Objects as Patterns of Communicating Agents,” Proceedings
OOPSLA '90, 1990, (to appear).

M. Papathomas, “Concurrency Issues in Object-Oriented Programming Langua@dsggcinOriented De-
velopmented. D.C. Tsichritzis, pp. 207-245, Centre Universitaire d’'Informatique, University of Geneva,
July 1989.

M. Papathomas, “Using Process Algebra for the Description and Comparison of Concurrent Object-Oriented
Languages,” in preparation

P. Wegner and S. B. Zdonik, “Inheritance as an Incremental Modification Mechanism or What Like Is and
Isn’t Like,” in Proceedings of the European Conference on Object-oriented Progragreding. Gjessing

and K. Nygaard, Lecture Notes in Computer Science 322, pp. 55-77, Springer Verlag, Oslo, August 15-17,
1988.



	Towards a Type Theory for Active Objects
	1 Introduction
	2 Interaction Equivalence
	3 Interaction Conformance
	4 Modelling Objects by CCS Agents
	5 Conclusions


