
Towards a UML Profile for Software Product Lines!

Tewfik Ziadi1, Loïc Hélouët1, and Jean-Marc Jézéquel2

1 IRISA-INRIA, Campus de Beaulieu 35042 Rennes Cedex, France
{tziadi,lhelouet}@irisa.fr

2 IRISA-Rennes1 University, Campus de Beaulieu 35042 Rennes Cedex, France
jezequel@irisa.fr

Abstract. This paper proposes a UML profile for software product lines. This
profile includes stereotypes, tagged values, and structural constraints and it makes
possible to define PL models with variabilities. Product derivation consists in
generating product models from PL models. The derivation should preserve and
ensure a set of constraints which are specified using the OCL.

1 Introduction

The Unified Modeling Language (UML) [5] is a standard for object-oriented analysis
and design. It defines a set of notations (gathered in diagrams) to describe different
aspects of a system: use cases, sequence diagrams, class diagrams, component diagrams
and statecharts are examples of these notations. A UML Profile contains stereotypes,
tagged values and constraints that can be used to extend the UML metamodel.

Software Product Line engineering aims at improving productivity and decrease real-
ization times by gathering the analysis, design and implementation activities of a family
of systems. Variabilities are characteristics that may vary from a product to another.
The main challenge in the context of software Product Lines (PL) approach is to model
and implement these variabilities. Even if the product line approach is a new paradigm,
managing variability in software systems is not a new problem and some design and
programming techniques allows to handle variability; however outside the Product Line
context, variability concerns a single product, i.e variability is inherent part of a single
software and is resolved after the product is delivered to customers and loaded into its
final execution environment. In the product line context, variability should explicitly be
specified and is a part of the product line. Contrarily to the single product variability, PL
variability is resolved before the software product is delivered to customers. [1] calls the
variability included in a single product “the run time variability”, and the PL variability
is called “the development time variability”. UML includes some techniques such as
inheritance, cardinality range, and class template that allow the description of variability
in a single product i.e variablity is specified in the product models and resolved at run
time. Furthermore, it is interesting to use UML to specify and to model not only one
product but a set of products. In this case the UML models should be considered as
reference models from which product models can be derived and created. This variabil-
ity corresponds to the product line variability. In this paper we consider this type of
! This work has been partially supported by the FAMILIES European project. Eureka Σ! 2023

Program, ITEA project ip 02009.

F. van der Linden (Ed.): PFE 2003, LNCS 3014, pp. 129–139, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

130 Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel

variability and we use UML extension mechanisms to specify product line variability
in UML class diagrams and sequence diagrams. A set of stereotypes, tagged values and
structural constraints are defined and gathered in a UML profile for PL.

The paper is organized as follows: Section 2 presents the profile for PL in terms
of stereotypes, tagged values and constraints, Section 3 presents the use of this profile
to derive product models from the PL, Section 4 presents related work, and Section 5
concludes this work.

2 A UML Profile for Product Lines

The extensions proposed here for PL are defined on the UML 2.0 [5] and they only
concern the UML class diagrams and sequence diagrams. We use an ad - hoc exam-
ple to illustrate our extensions. The example concerns a digital camera PL. A digital
camera comports an interface, a memory, a sensor, a display and may comport a com-
pressor. The main variability in this example concerns the presence of the compressor,
the format of images supported by the memory, which can be parameterized and the
interface supported. We distinguish three types of interfaces: Interface 1, Interface 2,
and Interface 3.

2.1 Extensions for Class Diagrams

UML class diagrams are used to describe the structure of the system in terms of classes
and their relationships. In the context of Product Lines, two types of variability are
introduced and modeled using stereotypes.

Stereotypes

– Optionality. Optionality in PLs means that some features are optional for the PL
members. i.e: they can be omitted in some products. The stereotype
<<optional>> is used to specify optionality in UML class diagrams. The op-
tionality can concern classes, packages, attributes or operations. So The
<<optional>> stereotype is applied to Classifier, Package and Feature meta-
classes.

– Variation. We model variation point using UML inheritance and stereotypes: each
variation point will be defined by an abstract class and a set of subclasses. The
abstract class will be defined with the stereotype <<variation>> and each
subclass will be stereotyped <<variant>>.A specific product can choose one or
more variants. These two stereotypes extend the metaclass Classifier. The alternative
variability especially defined in feature driven approaches is a particular case of
our variation variability type where each product should choose one and only one
variant. This can be modeled using OCL (Object Constraint Language) [10] as a
mutual exclusion constraint between variants. The mutual exclusion constraint will
be presented in Section 3.

Constraints. A UML profile also includes constraints that can be used to define struc-
tural rules for all models specified by the defined stereotypes. An example of such profile

Towards a UML Profile for Software Product Lines 131

constraint concerns the stereotype <<variant>>. It specifies that all classes stereo-
typed <<variant>>, should have one and only one ancestor among all its ancestors
stereotyped <<variation>>. This can be formalized using the OCL as follows:

context <<variant>>
inv: self.supertype → select(oclIsKindOf(Variation))→size()=1

Example. Figure 1 shows the class diagram of the camera PL example, the Com-
pressor class is defined with the stereotype <<optional>> to indicate that some
camera products do not support the compression feature. The camera interface is de-
fined as an abstract class with three concrete subclasses: Interface 1, Interface 2, and
Interface 3. A specific product can support one or more interfaces, so the stereotype
<<variation>> is added to the abstract class Interface. All subclasses of the
interface abstract class are defined with the stereotype <<variant>>. Notice that
the class diagram of the camera PL includes a class template Memory with a parameter
that indicates the supported format of images. This type of variability is resolved at run
time and all camera products include it.

Camera
<<variation>>

Interface

<<optional>>
Compressor

Sensor Memory

ImageFormat

<<variant>>
Interface 1

<<variant>>
Interface 2

<<variant>>
interface 3

Display

Decompress()

1

Compress()

1

1Switch_on()
Capture()
Recall()
Info()

11

Start_capture() Store_data()
Recall()

Write()
ShowPic()

1 1

1

1

1

Fig. 1. The class diagram of the Camera PL

2.2 UML Extensions for Sequence Diagrams

In addition to class diagrams, UML includes other diagrams that describe other aspects
of systems. Sequence diagrams model the possible interactions in a system. They are
generally used to capture the requirements, but can then be used to document a system,
or to produce tests. The UML 2.0 [5] makes sequences diagrams very similar to the ITU
standard MSC (Message Sequence Chart)[7]. It introduces new mechanisms, especially
interaction operators such as alternative, sequence, and loop to design respectively a
choice, a sequencing, and a repetition of interactions. [11] proposes three constructs to
introduce variability in MSC. In this subsection we formalize this proposition in terms of
extensions on the UML 2.0 metamodel for sequence diagrams. Before describing these
extensions, we briefly present sequence diagrams as defined in UML 2.0 metamodel.

132 Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel

Sequence Diagrams in UML 2.0. Figure 2 summarizes the UML 2.0 metamodel part
that concerns sequence diagrams (interested readers can consult [5] for a complete de-
scription of the metamodel). The Interaction metaclass refers to the unit of behavior
that focuses on the observable exchanges of information between a set of objects in the
sequence diagram. The Lifeline metaclass refers to the object in the interaction. Interac-
tionFragment is a piece of an interaction. The aggregation between the Interaction and
the InteractionFragment specifies composite interaction, in the sense that an interaction
can enclose other sub-interactions. The CombinedFragment defines a set of interaction
operators that can be used to combine a set of InteractionOperand. All possible opera-
tors are defined in the enumeration InteractionOperator. The EventOccurence metaclass
refers to events that occur on a specific lifeline, these events can be either sending, re-
ceiving messages or other kinds. The notation of an interaction in a sequence diagram
is a solid-outline rectangle (see Figure 3 for example). The keyword sd followed by the
name of the interaction in a pentagon in the upper left corner of the rectangle.

InteractionFragment

Interaction

Lifeline EventOccurrence

CombinedFragment

<<enumeration>>
InteractionOperator

InteractionOperand

fragment

0..1

0..1

lifeline

1

*

enclosingInteraction

*

events
{ ordered }

interactionOperator : InteractionOperator

operand0..1

1..*

*
enclosingOperand

0..1

fragment

*

alt

loop

seq
….

Fig. 2. UML 2.0 metamodel: Interaction part [5]

Stereotypes and Tagged Values. Variability for sequence diagrams is introduced in
terms of three constructs: Optionality, Variation and Virtuality, in what follows we for-
malize these constructs using stereotypes and tagged values on the UML 2.0 metamodel.

– Optionality. Optionality proposed for sequence diagrams comports two main as-
pects: optionality for objects in the interaction, and optionality for interactions
themselves. Optionality for object is specified using the stereotype
<<optionalLifeline>> that extends the Lifeline metaclass. Optional in-
teractions are specified by the stereotype <<optionalInteraction>> that
extends the Interaction metaclass.

– Variation.A variation point in a PL sequence diagram means that for a given product,
only one interaction variant defined by the variation point will be present in the
derived sequence diagram. The Interaction encloses a set of sub-interactions, the
variation mechanism can be specified by two stereotypes: <<variation>>
and <<variant>>; the both stereotypes extend the Interaction metaclass. To

Towards a UML Profile for Software Product Lines 133

distinguish different variants in the same sequence diagram, we associate to the
interaction stereotyped with <<variant>> a tagged value: {variation =
Variation} to indicates its enclosing variation point(the enclosing interaction
stereotyped with <<variation>>).

– Virtuality. A virtual part in a sequence diagram means that this part can be redefined
for each product by another sequence diagram. The virtual part is defined using a
stereotype <<virtual>> that extends the Interaction metaclass.

An interaction can be a variation point and a variant for another variation point
in the same time. This means that it is enclosed in the interaction stereotyped
<<variation>> and in the same time it encloses a set of interaction variants. In
this situation, the interaction is defined with the two stereotypes: <<variation>>
and <<variant>>.

Constraints. Structural constraints can be associated to the stereotypes and the tagged
value defined above. For example, the constraint that concerns the <<variant>>
stereotype and that specifies that each interaction stereotyped <<variant>> should
be enclosed in one and only one interaction stereotyped <<variation>> can be
formalized using OCL as an invariant to the <<variant>> stereotype:

context<<variant>>
inv: self.enclosingInteraction → select(oclIsKindOf(Variation)→ size()=1

Fig. 3. The Sequence Diagram Capture

134 Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel

Example. Figure 2 shows the CapturePL sequence diagram that concerns the camera
PL example. It illustrates the interaction to capture and to store data into the memory. This
sequence diagram includes two types of variability: the presence of the Compressor
object and the variation in the interaction Store. The Compressor lifeline is defined
as optional, and the interaction Store (stereotyped <<variation>>) defines two
variants interaction Var1 and Var2 (stereotyped <<variant>>) to store data into
the memory. The first stores data after its compression and the second one stores them
without compression. The tagged value {variation = Store} is added to the two
interactions variants.

Table 1. Stereotypes and tagged values in the UML profile for PL

Stereotype/Tagged values Applies to Description

<<optional>> Classifier, Package, Feature Indicates that the element (classifier,
package, or feature) is optional.

<< variation>> Classifier Indicates that the abstract class rep-
resents a variation point with a set
of variants.

<<variant>> Classifier Indicates that a class is a variant of
a variation point.

<<optionalLifeline>> Lifeline Indicates that the lifeline in the se-
quence diagram is optional.

<<optionalInteraction>> Interaction Indicates that the behavior described
by the interaction is optional.

<<variation>> Interaction Indicates that the interaction is a
variation point with two or more in-
teraction variants.

<<variant>> Interaction Indicates that the interaction is a
variant behavior in the context of a
variation interaction.

<<virtual>> Interaction Indicates that the interaction is a vir-
tual part.

{variation = Variation} <<variant>> Indicates the variation point related
to this variant.

2.3 The Profile Structure

Table 1 summarizes the defined stereotypes and tagged values in the UML profile
for PL. Figure 4 illustrates the structure of the proposed profile for PL (we follow
notations for profiles as defined in [5]). Stereotypes are defined as class stereotyped
with <<stereotype>>. UML metaclasses are defined as classes stereotyped with
<<metaclass>>. Tagged values are defined as attributes for the defined stereotypes.
The extensions proposed for class diagrams are defined in the staticAspect pack-
age, and thus for sequence diagrams are gathered in the dynamicAspect package.
The <<variant>> stereotype in the staticAspect (respectively in the package

Towards a UML Profile for Software Product Lines 135

Fig. 4. UML profile for PL

dynamicAspect) inherits from the <<optional>> stereotype (respectively from
the <<optionalInteraction>> stereotype). This means that each variant is op-
tional too.

3 From PL Models to Product Models

A UML profile includes not only stereotypes, tagged values and constraints but also a
set of operational rules that define how the profile can be used. These rules concern for
example code generation from models that conform to this profile or model transforma-
tions. For the PL profile, this part can be used to define the product derivations as model
transformations. A product derivation consists in generating from PL models the UML
models of each product. The product line architecture is defined as a standard architec-
ture with a set of constraints [2]. PL constraints guide the derivation process. In what
follows we present two types of PL constraints: the generic constraints that apply to all
PL, and specific constraints that concern a specific PL. We show how these constraints
should be considered for the derivation process.

3.1 Generic Constraints

The introduction of variability, and more especially optionality in the UML class di-
agrams (specified by the <<optional>> stereotype), improves genericity but can
generate some incoherences. For example, if a non-optional element depends on an op-
tional one, the derivation can produce an incomplete product model. So the derivation
process should preserve the coherence of the derived products. [12] proposes to formal-
ize coherence constraints using OCL. Constraints that concern any PL model are called
Generic Constraints. An example of such constraint is the dependency constraint that
forces non optional elements to depend only on non optional elements. A dependency in
the UML specifies a require relationship between two or more elements. It is represented
in the UML meta-model [5] by the meta-class Dependency; it represents the relation-
ship between a set of suppliers and clients. An example of the UML Dependency is the

136 Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel

“Usage”, which appears when a package uses another one. The dependency constraints
is specified using OCL as an invariant for the Dependency metaclass1:

context Dependency
inv:
self.supplier exists(S:ModelElement | S.isStereotyped (’optional’)) implies
self.client forAll(C:ModelElement | C.isStereotyped(’optional’))

While the <<variant>> stereotype inherits from the <<optional>> one
(see Figure 4), the dependency constraint also is applied to variants. In the sens that a
non-optional element can not depends on the variant one. The generic constraints may
be seen as well-formedness rules for the UML modeled product line.

3.2 Specific Constraints

A fundamental characteristic of product lines is that all elements are not compatible.
That is, the selection of one element may disable (or enable) the selection of others. For
example in the sequence diagram CapturePL in Figure 4 the choice of the variant
Var1 in the specific product needs the presence of the compressor object. Dependen-
cies between PL model elements are called Specific Constraints. They are associated to
a specific product line and will be evaluated on all products derived from this PL. So
another challenge for the product derivation is to ensure specific constraints in the de-
rived products. These constraints can be formalized as OCL meta-level constrains [12].
The following constraint specifies the presence dependency in the sequence diagram
CapturePL between the interaction variant Var1, and the Compressor lifeline. i.e:
the presence of the interaction variant Var1 requires the presence of the Compressor
lifeline. It is added as an invariant to the Interaction metaclass:

context Interaction
inv: self.fragments → exists (I: IntercationFragment | I.name =’Var1’) implies
self.lifeline → exists (L:Lifeline | L.name=’Compressor’)

In addition to the presence constraint, specific constraints include the mutual exclu-
sion constraint. It expresses in a specific PL model that two optional classes cannot be
present in the same product. This can be formalized using OCL, for example the mutual
exclusion constraint between two optional classes called C1 and C2 in a specific PL is
expressed using OCL as an invariant to the Model meta-class2:

context Model
inv:
self.presenceClass(’C1’) implies not self.presenceClass(’C2’))
and (self.presenceClass(’C2’) implies not self.presenceClass(’C1’))

1 isStereotyped(S) : boolean is an auxiliary OCL operation indicates if an element
is stereotyped by a string S.

2 presenceClass(C) : boolean is an auxiliary OCL operation indicates if a class named
C is present in a specific UML Model.

Towards a UML Profile for Software Product Lines 137

3.3 Product Models Derivation

The products derivation consists in generating from the PL models (UML class diagrams
and sequence diagrams) models for each product. Product line models should satisfy
generic constraints before the derivation while the derived product model should satisfy
specific constraints. This means that generic constraints represent the pre-conditions of
the derivation process and specific constraints represent the post - conditions for the
derivation process:

DeriveProduct(PLModel : Model):Model
pre: –check generic constrains on PLModel
post: – check specific constraints on the derived product model.

Figure 5 shows the derived class diagram for a camera product. This product does
not support the compression feature and only supports Interface 1 and Interface 2. It
is obtained from the PL class diagram by removing the class Compressor and the
class Interface 3. Figure 6 shows the derived Capture sequence diagram for this
camera product. It is obtained by removing the Compressor lifeline and the choice of
the Var2 interaction (the Var1 interaction is removed).

Camera
Interface

Sensor Memory

ImageFormat

Interface 1 Interface 2

Display

Switch_on()
Capture()
Recall()
Info()

11

Start_capture()

1

1

Write()
ShowPic()

1 1

Store_data()
Recall()

1

1

Fig. 5. The derived class diagram for a specific camera product

4 Related Work

Many work have studied modeling of PL variability using UML. [4] uses UML ex-
tensions mechanisms to specify variability in UML diagrams. However, despite the
<<optional>> stereotype for UML statecharts and sequence diagrams, these exten-
sions mainly focuses on the static aspects of the PL architecture. To model dynamic
aspects of PLs, we have proposed three constructs to specify variability in sequence
diagrams.

KobrA [1] is a method that combines product line engineering and component-based
software development. It uses the UML to specify component. Variability is introduced

138 Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel

Fig. 6. The derived Sequence Diagram for a specific camera product

in the KobrA components using the <<variant>> stereotype. This stereotype is used
to model any feature that are not common to all product. [3] proposes a set of UML
extensions to describe product line variability. They only concern UML class diagrams.
While we use OCL to model specific constraints, [3] models them using two stereotypes:
<<require>> and <<mutex>> respectively for the presence and the exclusion mutuel
constraint.

[9] proposes notations for product lines. They are gathered in the profile called UML-
F. In fact this profile is defined for frameworks and it only concerns static aspects of the
product line. [8] proposes a metamodel based on UML for product line architectures.
Variability is introduced only in terms of alternatives.

5 Conclusion

In this paper, we have proposed a set of extensions as a UML profile for PL. These
extensions concern UML class diagrams, and sequence diagrams. They are defined on the
UML 2.0 metamodel. This profile is not yet implemented. We have only proposed some
constraints, the definition of the defined profile should be refined with more constraints.

We intend to implement this profile with the UMLAUT. UMLAUT [6] is a framework
for building tools dedicated to the manipulation of models described using the UML. A
new version of the UMLAUT framework is currently under construction in the Triskell3

team based on the MTL (Model Transformation Language), which is an extension of
OCL with the MOF (Meta-Object Facility) architecture and side effect features, so it
permits us to describe the process at the meta-level and to check OCL constraints. The
MTL language can be used to define the derivation process.

3 www.irisa.fr/triskell

Towards a UML Profile for Software Product Lines 139

References

1. Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties, Oliver Laitenberger, Roland
Laqua, Dirk Muthig, Barbara Paech, Jürgen Wüst, and Jörg Zettel. Component-based Product
Line Engineering with UML. Component Software Series. Addison-Wesley, 2001.

2. Clements.P Bass.L and Kazman.R. Software Architecture in Practices. Addison-Wesley,
1998.

3. Matthias Clauß. Modeling variability with uml. In GCSE 2001Young Researchers Workshop,
2001.

4. J.C Duenas, W. El Kaim, and Gacek C. Style, structure and views for handling commonalities
and varibilities - esaps deliverable (wg 2.2.3). Technical report, ESAPS Project, 2001.

5. Object Management Group. Uinified modeling language specification version 2.0: Super-
structure. Technical Report pct/03-08-02, OMG, 2003.

6. Wai-Ming Ho, Jean-Marc Jézéquel,Alain Le Guennec, and François Pennaneac’h. UMLAUT:
an extendible UML transformation framework. In Proc. Automated Software Engineering,
ASE’99, Florida, October 1999.

7. ITU-T. Z.120 : Message sequence charts (MSC), november 1999.
8. Dirk Muthig and ColinAtkinson. Model-driven product line architectures. In Gary J. Chastek,

editor, Software Product Lines, Second International Conference, SPLC 2, San Diego, CA,
USA, August 19-22, 2002, Proceedings, volume 2379 of Lecture Notes in Computer Science.
Springer, 2002.

9. Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product line annotations with uml-f.
In Gary J. Chastek, editor, Software Product Lines, Second International Conference, SPLC
2, San Diego, CA, USA, August 19-22, 2002, Proceedings, volume 2379 of Lecture Notes in
Computer Science. Springer, 2002.

10. J. Warmer and A. Kleppe. The Object Constraint Language-Precise Modeling with UML.
Object Technology Series. Addison-Wesley, 1998.

11. Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel. Modeling behaviors in Product Lines.
In Proceedings of Requirement Engineering for Product Lines Workshop (REPL02), pages
33–38, September 2002.

12. Tewfik Ziadi, Jean-Marc Jézéquel, and Frédéric Fondement. Product line derivation with
uml. In Jilles van Gurp and Jan Bosh, editors, Proceedings Software Variability Manage-
ment Workshop, pages 94–102. University of Groningen Departement of Mathematics and
Computing Science, 2003.

	1 Introduction
	2 A UML Profile for Product Lines
	2.1 Extensions for Class Diagrams
	2.2 UML Extensions for Sequence Diagrams
	2.3 The Profile Structure

	3 From PL Models to Product Models
	3.1 Generic Constraints
	3.2 Specific Constraints
	3.3 Product Models Derivation

	4 Related Work
	5 Conclusion
	References

