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Abstract

Visual compatibility prediction refers to the task of deter-

mining if a set of items go well together. Existing techniques

for compatibility prediction prioritize sensitivity to type or

context in item representations and evaluate using a fill-in-

the-blank (FITB) task. We scale the FITB task to stress-

test existing methods which highlights the need for a com-

patibility prediction framework that is sensitive to multiple

modalities of item relationships. In this work, we introduce

a unified framework for compatibility learning that is jointly

conditioned on the type, context, and style. The framework

is composed of TC-GAE, a graph-based network that mod-

els type & context; SAE, an autoencoder that models style;

and a reinforcement-learning based search technique that

incorporates these modalities to learn a unified compati-

bility measure. We conduct experiments on two standard

datasets and significantly outperform existing state-of-the-

art methods. We also present qualitative analysis and dis-

cussions to study the impact of components of the proposed

framework.

1. Introduction

The 2018 Fashion United [35] analysis values the global

fashion industry at $3 trillion, an approximate 2% of the

world GDP. A recent report by Shopify [31] (2018) esti-

mates revenue for the apparel and clothing segment itself to

rise by $257.8 billion over the next 2 years [28]. The State

of Fashion report by McKinsey [24] in 2018 emphasizes the

critical role of intelligent systems in driving this growth.

Consequently, several recent efforts have been directed

towards providing smart, intuitive experiences for fash-

ion commerce such as visually similar retrieval [7, 12,
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40, 20] , fine-grained product tagging [1, 21], virtual try-

on [14, 38, 10, 4, 3] and compatible recommendations

[22, 8, 36, 13, 34, 2]. The problem of predicting fashion

compatibility refers to determining if a set of items go well

together. The problem is particularly challenging due to the

complex interplay of human creativity, style expertise, and

self-expression involved in the process of transforming a

collection of seemingly disjoint items into a cohesive con-

cept.

Initial methods such as [22, 37] learn item representa-

tions in independence and then perform pairwise compar-

isons between items to predict compatibility. Recent state-

of-the-art methods focus on incorporating item interactions

and differ with respect to their primary modality of focus.

[36] focuses on type conditioning in pairwise relationships.

In contrast, methods such as [13, 8, 9] prioritize item con-

text, defined by the set of neighboring items it is known to

be compatible with when learning representations for com-

patibility prediction. In consistence with real-world appli-

cations, existing methods report performance using a fill-

in-the-blank(FITB) evaluation task. The FITB task consists

of test questions with an incomplete (partial) outfit and set

of 4 candidate items as input with the objective to pick the

next-best item recommendation. In contrast, real-world rec-

ommender systems may routinely require querying for next-

best items over a larger set of candidate choices.

To stress-test the corresponding robustness of existing

techniques, we scale the FITB task by linearly increasing

the number of candidate choices. Our observations ne-

cessitate the requirement for a more efficient compatibility

framework. We posit that the sensitivity of learned repre-

sentations to multiple aspects of item relationships can help

achieve improved compatibility prediction. In this work, we

present a unified framework for learning fashion compati-

bility that is jointly conditioned to type, context and style

when learning item representations. Our contributions can

be summarized as follows:

• We scale the FITB task for compatibility prediction.
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Stress testing existing methods using this variant mo-

tivates the need for a robust compatibility framework.

• We introduce a type-conditioned graph autoencoder

(TC-GAE) to learn a compatibility measure condi-

tioned on type and context.

• We introduce an attentive autoencoder (SAE) that

learns a style measure of compatibility through an out-

fit level style representation.

• We present a reinforcement learning-based search

strategy that integrates these multiple modalities: type,

context, and style, to learn a unified measure of com-

patibility.

The related work is presented in Section 2 and task pre-

liminaries are summarized in Section 3. The scaled FITB

evaluation in Section 4 is used to motivate the method-

ology which is detailed in Section 5. The experiments

and results are presented in Section 6 and 7 respectively.

Extensive comparisons with existing methods on standard

datasets highlight the superior performance of the proposed

method.

2. Related Work

The present work aligns with existing literature in fash-

ion compatibility prediction and style extraction using im-

ages. Our work also finds similarity with search-based tech-

niques for learning composite transformation functions.

Visual Fashion Compatibility Prediction To approach

the task of compatibility prediction, [23] learn a compati-

bility metric on top of CNN extracted visual features, and

apply their method to pairs of products such that the learned

distance in the embedding space is interpreted as compat-

ibility. Their approach is improved by Veit et al. [37],

who instead of using pre-computed features for the im-

ages, use an end-to-end siamese network to predict com-

patibility between pairs of images. A similar end-to-end

approach [17] shows that jointly learning the feature ex-

tractor and the recommender system leads to better results.

Recent state of the art methods seeks to incorporate item-

item relationships for compatibility learning. [13] attempts

to learn item representations by focusing on item context,

other items that it appears alongside in outfits. To achieve

the same, they consider a fashion outfit to be an ordered se-

quence of products using a bidirectional LSTM on top of the

CNN-extracted features from the images and semantic in-

formation extracted from text in the embedding space. This

method was improved by adding a new style embedding for

the full outfit [26]. Vasileva et al. [36] also use textual in-

formation to improve the product embeddings, along with

using conditional similarity networks [37] to produce type

conditioned embeddings and learn a metric for compatibil-

ity. To efficiently model item-item type relationships, this

approach projects each product embedding to a new space,

depending on the type of the item pairs being compared.

However, outfits are often characterized by more complex

relationships that may not be fully encapsulated by visual-

izing an outfit as an ordered sequence or a combination of

pairs of items.

More recently, [9, 8] visualize outfits as an unordered se-

quence and utilize graph neural networks to efficiently en-

capsulate item context. [9] proposes to represent an outfit

using a type-level graph where each node represents a type

and each edge represents the interaction between two types.

Accordingly, each outfit can be represented as a sub-graph

by putting the items into their corresponding types of nodes.

A node-wise graph neural network is introduced to model

node interactions and learn node representations. [8] uses

an item-level graph to represent clothing items and their

pairwise compatibility relationships. In the graph, each ver-

tex represents a clothing item and edges connect pairwise

of items that are compatible.

In this work, we introduce TC-GAE, a type-conditioned

graph autoencoder to jointly model context and type when

learning compatibility.

Style Extraction In context of fashion, an outfit, when vi-

sualized as a whole, has its own style. The ability to effec-

tively model the same can be a particularly valuable modal-

ity for recommendations. Preliminary attempts to incorpo-

rate style in fashion compatibility have been largely focused

on using text data [13, 36] which is difficult to obtain and

may not be a good representative of the visual style. Lever-

aging visual cues for style can yield more robust representa-

tions. Takegi et al. [33] introduced a supervised framework

to encode visual style. However, the subjectivity of formu-

lation along with the absence of labeled data makes a su-

pervised approach to the problem particularly challenging.

Consequently, Hsiao et al. [16] presented an unsupervised

methodology for style extraction of outfits. Another recent

unsupervised approach was introduced in [5] that leveraged

an aspect extraction method to train an autoencoder for style

representation.

To incorporate sensitivity to outfit style in learning com-

patibility, we introduce SAE, an attention-based style au-

toencoder network.

Learning Unified Representations To learn a unified

measure of compatibility, we use an automated search tech-

nique to discover composite functions in order to integrate

context, type and style modalities for compatibility mea-

sure prediction. We use deep reinforcement learning based

search mechanisms that have been used for discovering neu-

ral optimization methods [6], neural activation functions

[29] and neural architecture designs [41]. For example, [41]

uses a recurrent neural network to generate the model de-

scriptions of neural networks and train this RNN with re-

inforcement learning to maximize the expected accuracy

of the generated architectures on a validation set. We fol-
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low a similar approach and use an RNN to generate func-

tions (to be used for element-wise transformation of fea-

ture embeddings) and use reinforcement learning to train

the RNN to maximize the accuracy of compatible item se-

lection. We verify the effectiveness of our approach by con-

ducting an empirical evaluation with the discovered trans-

formation function.

3. Preliminaries

In this section, we introduce the datasets used and base-

lines we perform comparisons against. We conclude the

section by detailing standard evaluation tasks used to com-

pare performance of models for compatibility prediction.

Datasets We conduct experiments on two standard

datasets, Maryland Polyvore and UIUC Polyvore. Mary-

land Polyvore dataset was introduced by Han et al [13]. It

consists of 21,889 outfits containing 164,379 items, which

is split into three non-overlapping sets - 17316 for train-

ing, 1,497 for validation and 3,076 for testing. The UIUC

Polyvore dataset was introduced by Vasileva et al. [36].

The dataset is split into two versions - disjoint and non-

disjoint. The disjoint version is more “difficult” as no gar-

ment appears in more than one of the train-val-test splits. In

this work, we have only used the disjoint UIUC Polyvore

dataset. It has a total of 32,140 outfits containing 175,485

items and is split into two non-overlapping sets, 16,995 for

training, 15,145 for validation and testing. Both datasets

include rich multi-modal information about fashion images

such as text descriptions, associated tags, and type infor-

mation. However, we use only the type-information. For

UIUC Polyvore, we use the type taxonomy as defined in

[36]. While Polyvore Maryland provides fine-grained cate-

gories, we use the 14 coarse types defined in [36].

Baselines We compare our approach with recent state-of-

the-art methods including [13, 36, 8]. [13] focuses on the

utilization of item context when learning representations

and models an outfit as an ordered sequence using Bidi-

rectional LSTMs. In contrast, [8] models an outfit as an

unordered sequence and uses a graph neural network-based

framework to incorporate item context. [36] uses condi-

tional similarity networks to learn type conditioned item

representations. We leverage implementations of [13], [8],

and [36] which are available at [39], [11], and [25] respec-

tively.

Evaluation Tasks To evaluate learned representations,

[13] introduced the task of fill-in-the-blank (FITB) in fash-

ion recommendation. In this task, given a set of fashion

items and a blank, the aim is to find the most compatible

item from the candidate set to fill in the blank. One FITB

question is defined for each test outfit. Each question con-

sists of a set of products that form a partial outfit, and a set

of possible choices c1, ..., cM that includes a correct answer

and M − 1 randomly chosen products, often from different

categories. And the task is evaluated by measuring whether

or not the correct item was selected from the list of choices.

Vasileva et al. [36] proposed a resampled FITB evaluation

where the incorrect options are sampled from the same cate-

gory as the correct option. A sample FITB evaluation ques-

tion is presented in Figure 1.

Figure 1. The Fill-in-the-blank Evaluation Task (taken from [8])

4. Scaled FITB Task

When evaluating using the FITB task, existing state-of-

the-art methods report performance by freezing the number

of candidate choices to 4, in each question, for both origi-

nal and resampled strategies. In FITB original, where can-

didates are sampled randomly from all classes, few options

may be trivially eliminated. Even when using the resampled

strategy, the likelihood of encountering the hard negatives is

low when searching over a small number of candidates. Ad-

ditionally, real-world fashion recommendation applications

would routinely require selection of the next-best item from

a larger set of candidate choices.

To stress-test robustness of representations learnt by ex-

isting methods, we scale the FITB task by linearly increas-

ing number of candidate choices. We evaluate all the base-

lines under consideration, [13] (Bi-LSTM, green curve),

[36] (Type-Aware, orange curve) and [8] (Context-Aware,

blue curve) by linearly scaling number of candidate choices

from 4 to 10. Figure 2 and 3 present performance on the

Maryland Polyvore dataset using these scaled variants of the

original and resampled FITB tasks respectively. For future

correspondence, we will call these configurations as Scaled

FITB-Original and Scaled FITB-Resampled.

[8] (blue curve) achieves highest performance on both

FITB configurations, which highlights the benefit of captur-

ing item context when learning item representations. How-

ever, [8] shows the highest rate of fall with its performance

decreasing by almost 50% on both evaluation configura-

tions when the number of candidates increase from 4 to

10. The performance of [13] (green curve), which mod-

els an outfit as an ordered sequence to capture item context

in representations, falls drastically when switching to re-

sampled FITB evaluation along with increasing number of

candidates. While [36] (orange curve), which focuses on

type conditioning, does not achieve absolute best accuracy,

it’s performance is similar in both original and resampled

FITB tasks with a relatively small rate of fall in accuracy as

the number of candidates increase.

Our observations necessitate the need for a compatibility

prediction framework that respects both item context and
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type in order to learn robust representations. Additionally,

we posit that style can be a useful modality as well when

learning representations for compatibility prediction.

In the next section, we describe our efforts towards a uni-

fied framework for compatibility learning that is sensitive to

context, type, and style.

Figure 2. Performance of baseline methods on the Scaled FITB-

Original task on Maryland Polyvore dataset.

Figure 3. Performance of baseline methods on the Scaled FITB-

Resampled task on Maryland Polyvore dataset.

5. Methodology

In this section, we detail our efforts towards a unified

framework conditioned on type, context and style. First,

we present TC-GAE, a type-conditioned graph autoencoder

network to incorporate type and context. Next, we intro-

duce, SAE, an attentive autoencoder to model style. Finally,

we present a reinforcement learning-based search strategy

to integrate measures from TC-GAE and SAE to output a

final measure of compatibility.

5.1. Type Conditioned Graph Autoencoder

Building on [8], TC-GAE uses an item-level graph rep-

resentation where vertices are catalog items and edges con-

nect pairs of items that belong to the same outfit.

Let G = (V,E) be an undirected graph with N nodes

where edge(i, j) ∈ E connect pairs of nodes i, j ∈ V .

Each node in the graph is represented with a vector of

features, ~xi ∈ RF , and X = { ~x0, ~x1, ....., ~xN−1} is a

RN×F matrix that contains features for all nodes. Each

node i in the graph has category information ci. Using the

training metadata, we calculate the co-occurence frequency

Countci,cj of categories ci and cj . Then, the graph G is

represented by a weighted adjacency matrix A ∈ RN×N ,

where Ai,j = Countci,cj , if an edge exists between nodes

i and j, and Ai,j = 0 otherwise. The particular impact of

using this co-occurence weighted adjacency matrix is dis-

cussed in Section 7.1.2.

In this framework, the encoder get as input an incomplete

graph and produces embedding for each node. Then, the

node embeddings are used by the decoder to predict missing

edges in the graph. The implementation setup is presented

in detail in the training paragraph. The network architecture

is summarized in Figure 4.

Encoder For a node i in the graph, the encoder trans-

forms its initial feature ~xi into a latent representation ~hi.

~xi contains information about the particular node item and

is computed using technique discussed in Section 6. We

want the encoded representation of each node, ~hi, to cap-

ture information not only about itself, but also about its

context, which is defined by its neighbors ~Ni, where ~Ni =
{j ∈ V |Ai,j 6= 0}. Hence, the encoding is formulated as
~hi = fenc(~xi, ~Ni). The encoder fenc is implemented as a

deep Graph Convolutional Network [19] with multiple hid-

den layers. At layer l + 1, the hidden state H l+1 is repre-

sented as,

H(l+1) = ReLU

(

S
∑

s=0

ÃsH
(l)
Θ

(l)
s

)

where A is the type-co-occurence weighted adjacency

matrix, Ãs is the normalized s-th step adjacency matrix (see

[8]), S is the context depth and Θ
(l) contains the trainable

parameter for layer l. For our experiments, we set S = 1 to

consider only immediate neighbours.

Decoder The decoder is trained to predict the probability

of two nodes in the graph being connected. In TC-GAE, the

decoder function is formulated to be type respecting when

comparing two nodes (items). For two nodes i, j with latent

representations ~hi,~hj and types ci, cj respectively, the edge

probability p predicted by the decoder is defined as,

p = σ
(∣

∣

∣

~hi − ~hj

∣

∣

∣
~ωT
ci,cj

+ bci,cj

)

Here | · | is absolute value operator, and ~ωci,cj ∈ R
F ′

and

bci,cj ∈ R are learnable parameters where F ′ is the di-

mension of the hidden state embedding. σ(·) is the sig-

moid function that maps a scalar value to a valid probability

∈ (0, 1).

Training The model is trained to predict compatibility

among the products with A being the adjacency matrix

for the graph of items. For training, after every Nrandom

epochs, we randomly remove a subset of edges and ran-

domly sample a set of negative edges E− to generate an in-

complete adjacency matrix A. The set of edges removed is

denoted by E+, as they represent positive edges, i.e., pairs
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Figure 4. The left figure shows the TC-GAE architecture. In the figure, h1, h2, and h3 are the node representations. The edges in TC-GAE

are weighted and the width in the graph is proportional to weightage in the adjacency matrix. The directional red arrows depict message

passing from neighbors in an item’s context. The figure on right is the enlarged view of TC-GAE decoder.

of nodes (i, j) such that Ai,j 6= 0 and E− is the set of neg-

ative edges which represent pairs of nodes (i, j) that are not

connected, i.e., products that are not compatible. The model

is trained to predict the edges Etrain = (E+, E−) that con-

tains both positive and negative edges (we keep the classes

balanced). Therefore, given the incomplete adjacency ma-

trix A and the initial features for each node X , the decoder

predicts the edges defined in Etrain, and the model is op-

timized by minimizing the cross entropy loss between the

predictions and their ground truth values, which is 1 for the

edges in E+ and 0 for the edges in E−.

5.2. SAE: Attentive Style Autoencoder

Previous methods such as [13, 36] attempted to learn

style representations through meta-data such as text descrip-

tions, which are often noisy, incomplete and difficult to ob-

tain. We introduce an attentive autoencoder to learn an outfit

style representation using visual cues only. We leverage the

TC-GAE decoder to attend over outfit items when learn-

ing the style representation. Next we detail our approach

for learning outfit style which is similar to [27] with certain

differences.

Consider an outfit O of with No number of items. First,

for each item i ∈ O, the latent node embedding ~hi is trans-

formed into a node style embedding, yi, such that

yi = Ws · ~hi

where Ws is a learnable style transformation matrix. Next,

the outfit style attention of each item, αi, is computed as

αi =
edi

∑

j∈O
edj

where,

di =
1

No − 1

∑

j∈O\i

σ
(
∣

∣

∣

~hi − ~hj

∣

∣

∣
~ωT
ci,cj

+ bci,cj

)

The style vector zO for an outfit O is defined as,

zO =

No
∑

i=1

αiyi (1)

where yi is the item style embedding and αi is outfit atten-

tion for item i.

Now, through the process of compressing and recon-

structing the style vector, we aim to obtain a basis of styles

observed in a variety of outfits. Assuming such a basis ex-

ists, then outfits can be represented as a linear combination

of elements of the basis. For example, given a style basis

that has two elements, casual and formal, outfits can be la-

beled as casual, formal, or their mixture.

We use p ∈ R
κ to denote the following mixture ratio

pO = softmax
(

Wz · z
O + bz

)

where Wz and bz are the weight matrix and bias vector used

to map a style vector to a mixture ratio. Since p is assumed

to be a mixture ratio, the softmax function is applied so that

each element of p is non-negative and the sum of the ele-

ments is 1. Also, κ represents the number of elements of

the style basis.

Next, the style vector zO for outfit O is reconstructed as

rO = WT
p · pO

where Wp is a style-embedding matrix and rO is the recon-

structed style vector. The training objective for the autoen-

coder is formulated as a reconstruction triplet loss and an

orthoganalization loss which are defined as

LR(r
o, zo, z′) = max (0,mr − d(ro, zo) + d (ro, z′))

LO (Wp) =
∥

∥WpnW
T
pn − I

∥

∥

Ltrain = LR + LO

where d(r, z) is the cosine similarity of vector representa-

tions r, z ,Wpn is normalized Wp and I is the identity ma-

trix. Here, z′ is the style vector for a outfit different than

outfit O.
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When evaluating style compatibility using FITB task

with M options, M +1 style mixture ratios (vector of prob-

abilities) are computed for the partial (input) outfit and for

the M complete outfits formed by introducing each candi-

date option to the partial outfit. The compatibility score for

each of the M candidates items is defined as inverse of the

decrease in uncertainty of the outfit mixture ratio on adding

the candidate item to the outfit.

5.3. Learning Unified Representations

Consider an FITB task with an input (partial) outfit of K

elements and M candidate options. TC-GAE is used to pre-

dict a compatibility score of each of the M options by av-

eraging pairwise decoder similarity of candidate with each

item from the input (partial) outfit. Also, as described pre-

viously, the style autoencoder, SAE, also predicts a compat-

ibility score. Next, in this section, we present a reinforce-

ment learning based strategy to learn a unified measure of

compatibility. Leveraging work in RL based search mech-

anisms [6, 29, 41], we learn a transformation function that

weight scores from the two compatibility measures to out-

put a final compatibility score.

As shown in Figure 5, the function is constructed by re-

peatedly composing the “core unit”. A core unit first se-

lects two operands (op1 and op2), then two unary functions

(u1 and u2) to apply on the operands and finally a binary

function b that combines the outputs of the two unary func-

tions. The resulting b(u1(op1), u2(op2)) then becomes an

operand that can be selected in the next group of predic-

tions. Every prediction is carried out by a softmax classifier

and then fed into the next time step as input.

Given the search space, the goal of the search algorithm

is to find effective choices for the unary and binary func-

tions. We use an RNN controller [41]. At each timestep, the

controller predicts a single component of the function. The

prediction is fed back to the controller in the next timestep,

and this process is repeated until every component of the

function is predicted. Once a candidate function has been

generated by the search algorithm, the unified compatibility

score is estimated and corresponding FITB accuracy is used

as a reward signal to train the RNN Controller.

6. Experimental Setup

The TC-GAE and SAE networks are trained using an

NVIDIA Titan-X GPU with 12 GB memory. The RNN

controller used to learn the composite scoring function is

trained on a CPU machine with 64 GB RAM.

We trained TC-GAE for 4,000 iterations (with early

stopping), using Adam [18] optimizer, and a learning rate

of 0.001. We experiment with input visual features (xi)

from two different models: a) ResNet-50 [15] pretrained

on ImageNet [30] b) StyleNet [32]. For each item, the

ResNet-50 model generates a visual feature of 2048-dim

while StyleNet model generates a visual feature of 128-

dim. The TC-GAE encoder model consists of 3 graph con-

volutional layers. For quantitative results reported in Sec-

tion 7.1, the dimensions of the hidden states are [350, 350,

350] when using ResNet-50 features and [128, 128, 128] for

StyleNet features. In Section 7.2, we present a discussion

to study the impact of dimensionality of the hidden states.

When training the RNN controller, only 2000 outfits are

used from the dataset. The operands, unary and binary func-

tions accessible to the controller are presented below:

• Operands using the compatibility scores from TC-

GAE and Attentive Style Autoencoder, x and y: x, y,

x+ y

• Unary functions: x, −x, x2, |x|, x3,
√

(|x|), ex, sinx,

cosx, sinhx, coshx, tanhx, erfx , tan−1 x, σ(x),
max (x, 0), min (x, 0), loge (1 + ex)

• Binary functions: x1 + x2, x1 − x2, x1 ∗ x2,

max(x1, x2), min(x1, x2), σ(x1) ∗ x2

7. Results and Discussions

In this section, we extensively evaluate the performance

of the proposed framework. On the Maryland Polyvore

dataset, we report performance comparisons against [8, 36,

13] and On the Polyvore UIUC-D dataset, we report com-

parisons against [8, 36]. For UIUC-D, comparisons are not

reported with [13] since the dataset was not used in the orig-

inal work.

First, we report comparative performance using the TC-

GAE network. Next, we study the additional impact of in-

corporating style using SAE.

7.1. Type­Conditioned Graph Autoencoder

In this section, we evaluate the quantitative performance

of TC-GAE on the Scaled FITB-Original and Scaled FITB-

Resampled evaluations. We also present discussions to an-

alyze the particular impact of various design constraints

adopted when training TC-GAE.

7.1.1 Quantitative Results

For the scope of our analysis, we consider 4, 5, 6, 7 and

10 candidate options. We report performance for TC-GAE

trained using both ResNet-50 features (reported as TC-GAE

(R)) and StyleNet features (reported as TC-GAE (S)). While

[8] originally used only ResNet-50 features, we additionally

perform experiments using StyleNet [26] features. We first

present results on the Scaled FITB-Original evaluation and

then on the Scaled FITB-Resampled evaluation.

Scaled FITB Original In this configuration, the FITB

candidate options are sampled randomly from different

categories. Results on Maryland Polyvore and Polyvore

UIUC-D datasets are reported in Table 1 and Table 2 respec-

tively. On both datasets, the best performance is achieved
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Figure 5. The left figure (taken from [29]) shows an example composite function structure. The function is composed of multiple repetitions

of the “core unit”, which consists of two inputs, two unary functions, and one binary function. Unary functions take in a single scalar input

and return a single scalar output. Binary functions take in two scalar inputs and return a single scalar output. The figure in right shows an

overview of the search mechanism.

by TC-GAE with an average improvement of 3% over the

next best network. The gain increases with the number of

candidate options which highlights improved robustness of

the representations. For instance, on the UIUC-D dataset

(Table 2), the gain increased from 3.13% with 5 candidate

options to 5.70% with 10 candidates. In most cases, us-

ing ResNet-50 features results in better performance that

StyleNet for both TC-GAE and [8].

Method Number of Options

4 5 6 7 10

TC-GAE (R) 93.59 78.57 69.47 64.04 53.31

TC-GAE (S) 94.47 71.19 60.89 52.79 38.98

[8] (R) 95.32 76.49 67.49 60.6 49.02

[8] (S) 96.7 67.17 54.19 45.55 33.49

[36] 57.7 50.6 46.8 44.3 36.4

[13] 73.6 69.08 64.66 60.92 54.29

Table 1. Scaled FITB-Original on the Maryland Polyvore Dataset.

Method Number of Options

4 5 6 7 10

TC-GAE (R) 91.31 78.77 71.33 65.7 55.45

TC-GAE (S) 88.15 62.85 52.38 45.90 33.57

[8] (R) 85.79 75.64 67.21 61.48 49.75

[8] (S) 89.58 60.77 49.94 42.43 30.33

[36] 55.8 50.9 46.8 43.6 36.09

Table 2. Scaled FITB-Original on Polyvore UIUC-D Dataset

Scaled FITB Resampled In this configuration, FITB op-

tions are sampled from the same category (type) as the cor-

rect solution. Results for Maryland Polyvore and Polyvore

UIUC-D datasets are reported in Table 3 and Table 4 respec-

tively. On both datasets, the best performance is obtained by

TC-GAE with the improvement being more pronounced as

the number of options increase. For instance, on Maryland

dataset (Table 3) the gain for TC-GAE (R) over the next best

model increases from 5.74% with 6 options to 7.24% with

10 options. Also, better gains in the resampled evaluation,

when options are from same category, than in original eval-

uation further validates the hypothesis of jointly modeling

type with context. Even here, in most cases, using ResNet-

50 features results in better performance than StyleNet for

both TC-GAE and [8].

Method Number of )ptions

4 5 6 7 10

TC-GAE (R) 93.4 74.18 61.92 56.43 44.74

TC-GAE (S) 94.87 67.85 57.02 49.46 39.11

[8](R) 89.67 67.32 56.19 49.06 37.5

[8](S) 96.74 65.18 51.66 43.4 31.51

[36] 55.2 49.2 43.98 42.3 36.2

[13] 36.68 33.49 29.5 26.5 20.9

Table 3. Scaled FITB-Resampled on Maryland Polyvore dataset.

Method Number of Options

4 5 6 7 10

TC-GAE (R) 91.11 75.27 66.41 59.81 47.84

TC-GAE (S) 86.88 63.49 52.15 45.18 33.57

[8] (R) 88.59 72.44 62.49 56.08 44.562

[8] (S) 89.92 62.49 49.67 42.43 30.33

[36] 57.5 51.8 47.6 43.95 36.1

Table 4. Scaled FITB-Resampled on Polyvore UIUC-D dataset

7.1.2 Discussion

Next, we present ablation studies to analyze the impact of a

few TC-GAE design constraints namely the type-weighted

adjacency matrix and the dimensionality of the encoder hid-

den state.

Impact of Weighted Adjacency Matrix When training

TC-GAE encoder to capture item context in representations,

we weight the adjacency matrix with the type co-occurrence

counts for the items. To analyze the impact of this type

conditioning, we contrast the performance with when TC-

GAE is trained using a binary (unweighted) adjacency ma-

trix. To further validate the impact of type-conditioning in

the encoder, we also train the graph network in [8] with

the weighted adjacency matrix. We conduct experiments on

the Polyvore Maryland dataset. Results for Scaled FITB-

Original evaluation presented in Table 5 indicate that using

the type-weighted adjacency matrix results in better perfor-

mance for both networks.

Impact of Encoder Hidden States Dimension The GCN

encoder in the proposed TC-GAE is composed of three hid-
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Figure 6. Qualitative Analysis of SAE: Sample outfits from two style clusters in the Maryland Polyvore dataset. The intensity of green for

each item represents the attention weight of the item in determining the style of the outfit it belongs to.

Method Number of Options

4 5 6 7 10

TC-GAE (UW) 91.35 77.08 68.10 62.52 53.09

TC-GAE (W) 93.59 78.57 69.47 64.04 53.31

[8] (UW) 95.32 76.49 67.49 60.6 49.02

[8] (W) 95.74 77.6 67.23 61.9 48.8

Table 5. Performance comparison on training TC-GAE and [8]

with (W) and without (UW) the type-weighted adjacency matrix

on the Maryland Polyvore dataset.

den layers. In this study, we analyze the impact of varying

dimensionality of these hidden layers. Owing to the com-

putational complexity associated with training graph neu-

ral networks, finding an optimal dimensionality of the hid-

den states can be useful. Table 6 summarize performance

on Scaled FITB-Original evaluation task when training on

Maryland Polyvore dataset using StyleNet features.

Size Number of Options

4 5 6 7 10

128, 128, 128 94.87 67.85 57.02 49.46 39.11

128, 96, 80 94.22 67.59 56.69 49.32 38.84

96, 80, 64 93.33 66.27 55.57 48.6 38.51

80, 80, 80 92.41 66.79 55.37 47.87 39.2

48, 48, 48 84.57 63.33 52.25 46.56 36.37

Table 6. Effect of size of hidden states in TC-GAE encoder on

Scaled FITB-Original evaluation (Maryland Polyvore Dataset).

7.2. Style Extraction

Following extensive analysis of the TC-GAE network,

now we study the impact of SAE, the style extraction net-

work. First, we qualitatively analyse the learned style rep-

resentations. Next, we quantify the benefit of using style as

an additional component of compatibility.

7.2.1 Qualitative Analysis

As an initial experiment, we trained SAE on the Maryland

Polyvore dataset. To evaluate quality of the learned style

representations, the learned mixture ratios for outfits in the

dataset were used to bin the outfits into 6 distinct clusters

(found empirically). Figure 6 includes sample outfits from

Method Number of Options

4 5 6 7 10

TC-GAE 93.59 78.57 69.47 64.04 53.31

TC-GAE + SAE 94.20 79.15 69.95 65.02 53.88

Table 7. Incorporating style as a compatibility measure results in

improved performance on the Scaled FITB evaluation task.

two of the learned style clusters (Style F and Style B). The

corresponding attention weights for each item in an outfit

are presented via intensity of green color in their respective

bars.

7.2.2 Learning Unified Representations

As presented in Section 5, compatibility measures are ob-

tained independently using both TC-GAE and SAE. These

are then unified using a learnt composite scoring function

to obtain a final compatibility score. When training on the

Maryland Polyvore dataset, the learnt compatibility mea-

sure for each item is defined as

score = ey − relu(e(−|y−sin(x)|))

where, x is the TC-GAE item compatibility score and y is

the style compatibility score for each item using SAE. Table

7 presents performance on the Scaled FITB-Original eval-

uation using the learnt scoring function. As highlighted by

the results, using the unified measure conditioned on both

TC-GAE and SAE results in improved performance even

with increasing number of candidates .

8. Conclusion

In this study, we focus on the task of fashion compatibil-

ity learning. When learning item representations for com-

patibility prediction, existing methods prioritize sensitivity

to item type or context. We stress-test these methods using

a scaled FITB task. Following our observations, we intro-

duce a framework to learn compatibility measures condi-

tioned on type, context and style. Finally, we also present a

reinforcement learning-based search strategy that integrates

these modalities to learn a robust compatibility measure.

Extensive empirical analysis highlights the superiority of

the proposed technique over existing methods.
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