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Abstract

Human gait is a spatio-temporal phenomenon and typifies
the motion characteristics of an individual. The gait of a
person is easily recognizable when extracted from a side-
view of the person. Accordingly, gait-recognition algo-
rithmswork best when presented with imageswhere the per-
son walks parallel to the camera (i.e. the image plane).
However, it is not realistic to expect that this assumption
will be valid in most real-life scenarios. Hence it is impor-
tant to devel op methods whereby the side-view can be gen-
erated from any other arbitrary view in a simple, yet accu-
rate, manner. That isthe main theme of this paper. e show
that if the person isfar enough fromthe camera, it is possi-
bleto synthesize a side view (referred to as canonical view)
from any other arbitrary view using a single camera. Two
methods are proposed for doing this: i) by using the per-
spective projection model, and ii) by using the optical flow
based structure from motion equations. A simple camera
calibration schemefor this method isalso proposed. Exam-
ples of synthesized views are presented. Preliminary testing
with gait recognition algorithms gives encouraging results.
A by-product of this method is a simple algorithm for syn-
thesizing novel views of a planar scene.

1 Introduction

Human identification forms an important component of vi-
sual surveillance. In many such applications established
non-invasive biometrics such as face or iris may not be
available at sufficient resolution to be used for recognition.
A biometric that can address some of these shortcomings
is "gait”, which is motivated by the fact that humans ex-
hibit the capability of recognizing people even from impov-
erished displays of gait [1], indicating the presence of iden-
tity information. Gait can be detected and measured evenin
low resolution video and can also be used with IR imagery
[2, 3,4, 5]. Thegait of apersonisbest reflected when he/she
presents a side view (referred to in this paper as a canoni-
cal view) to the camera. Hence, most gait recognition algo-
rithms rely on the availability of the side view of the sub-

ject. The situation is analogousto face recognition where it
isuseful to have frontal views of the person’sface.

In realistic surveillance scenarios, however, it is unrea-
sonable to assume that a subject would always present a
side-view to the camera and hence, gait recognition algo-
rithms need to work in a situation where the person walks
at an arbitrary angle to the camera.There are two effects of
achangein viewing direction. Oneis simply the foreshort-
ening or lengthening that occurs as the person walks away
or towards the camera. The second is the change in the ap-
parent stride length. The most general solution to this prob-
lemwouldinvolve estimating a3D model of the personfrom
which the required canonical view can be generated. This
problem requires the solution of the structure from motion
(SfM) or stereo reconstruction problems [6, 7], which are
known to be hard. To circumvent the problems associated
with the estimation of 3D models, several approaches have
been proposed for the gait recognition problem. Bobick and
Johnson [8] use linear regression to map static parameters
across views. In [9], Shakhnarovich et al. compute an im-
age based visual hull from a set of monocular views which
is then used to render virtual views for tracking and recog-
nition. In this paper, we propose an alternative approach
that can work with only a single camera and can synthesize
canonical views of high quality in a way that uses the 3D
structure only implicitly. These synthesized views can then
be used for gait recognition. The order of computation is
O(mn), where m and n are the dimensions of the bounding
box around the person.

Consider a person walking along a straight line which
subtends an angle # with the image plane (AC in Figure 1).
If the distance, 7, of the person from the camera is much
larger than the width, A Z, of the person, then it is reason-

ableto replacethe scaling factor ZDJIW for perspectivepro-

jection by an average scaling factor ZLD In other words, for
objectsfar enough from the camera, we can approximate the
actual 3D object asbeing represented by aplanar object. As-
sumethat we are given avideo of apersonwalking at afixed
anglef (Figure 1). We show that by tracking the direction of
motion, «, inthevideo sequence, wecan accurately estimate
theangled inthe 3D world. Thiscan bedoneistwoways: @)



PROJECTION

PLANE
(X1,Y1,21) B

p
N A%/

(x1y1)

Z1>>f

Figure 1: Imaging Geometry

by using the perspective projection matrix, or b) by using the
optical flow based SfM equations. We also show that asim-
ple, yet precise, camera calibration scheme can be designed
for this problem. Under the assumption of planarity, using
theangled and the calibration parameters, we can synthesize
side-viewsor canonical views of the person, which can then
be passed on to the gait recognition algorithms. Since the
planar approximation is reasonable for many surveillance
scenarioswherethe distance between the cameraand people
islarge, thisis apractical approach for synthesizing canon-
ical views required by many gait recognition algorithms. A
by-product of the above methodisasimplealgorithmto syn-
thesize novel views of a planar scene.

2 Theory

2.1 Imaging Geometry

The imaging setup is shown in Figure 1. The coordinate
frame is attached rigidly to a camera with the origin at the
center of perspective projection and the z-axis perpendicu-
lar to the image plane. Assume that the person walks with
atrandational velocity V = [v,,0,v,]” alongtheline AC.
Theline AB isparallel totheimage plane XY and thisisthe
direction of the canonical view which needs to be synthe-
sized. The angle between the straight line AB and AC, i.e.
6, represents a rotation about the vertical axis we hence we
shall call this the azimuth angle. We will use the notation
that [X, Y, Z] denotes the coordinates of a point in 3D and
[z, y] its projection on the image plane.

2.2 Estimating the Azimuth Angle from
Video Sequence

We present two ways of estimating the angle 6 from the
video sequence.

Per spective Projection Approach

We assume that the person iswalking along the straight line
ACinFigurel. Under exact perspective projection, straight
lines map to straight lines. Thus the direction of motion
in the 3D world corresponds to a straight line in the im-
age plane, which can be estimated by tracking some points
which move approximately rigidly as the person walks.
Consider the equation of the 3D linewhich is at a height £
from the ground plane and parallel toiit, i.e.

7 =Tan(HX + Zy,Y = k. QD

Under perspective projectionthislinetransformsto (see Ap-
pendix)

_kf Tan(f)
=7, k 7 x, 2
wherez = fZD+T§n(6')X Y= fZD+T§n(6' ~ and f denotes

the focal length of the camera. Thusif the slope of the line
intheimageplane, viz. T'an(«), isknown, then given K =
— Zio the azimuth angle  can be computed as

Tan(f) = %Tcm( ). (3)
K can be obtained as a part of the calibration procedure.
Notethat using the orthographic projection model will result
ingiving astraight liney = £ which does not reflect the az-
imuth angle variation in the image plane. Thus our method
will not work under orthographic projection assumptions.

Optical Flow Based SfM Approach

Assume that the motion between two consecutive framesin
the video sequence is small. Using the optical flow based
SfM equations, let p(z, y) and ¢(z, y) represent the horizon-
tal and vertical velocity fields of apoint (z, y) in theimage
plane. Since we consider straight line motion along AC, p
and q are related to the 3D object motion and scene depth
by [10]

plz,y) = (z—frp)h(z,y) (4)
g(=z,y) = yh(z,y), ©)
where h(z,y) = vz/z(l‘,y) is the scaled inverse scene

depthand z; = Cot(d) = 1=,y; = * isthefocus of
expansion (FOE). When v, = 0 but v, ;é 0, we see that
# = 0, i.e. the canonical direction of walk, AB. Also, in this
case ¢(z,y) = 0. For the case when the person walks at an
azimuth angle § # 0, dividing (4) by (5) we obtain,

Cot(a(z,y)) = c(x,y) — m(y, f)Cot(0),  (6)

where Cot(a(z,y)) = pzy)  For afixed point in the im-
age (e.q. centr0|d of the%weao%) in the (6), we have

Cot(a) = C — MCot(0). (7



e(z,y) and m(z,y) can be obtained from calibration data.
By considering one particular point in a number of images,
we can robustly estimate # from «.

Equation (3) was derived under the perspective projec-
tion model, while equation (7) was derived using perspec-
tive projection and optical flow. Hence the differencein the
two equations. However, both give numerically close re-
sults as explained in Section 3.

2.3 Coordinate Transfor mation to Canonical
View

Having obtained the angle 6, we need to synthesize the
canonical view. Let 7 denotethedistance of the object from
the image plane. If the dimensions of the object are small
compared to 7, thenthe variationin 8, df = 0. This essen-
tially correspondsto assuming a planar approximation to the
object. Let[Xy, Y}, Z4] denotethe coordinatesof any point
on the person whoiswalking at an angle > 0 totheimage
plane (as shown in the Figure 1). Then

Xo X
[Y0]:3(6)~[Y9 ] €S)
Z Za
where
Cos(f) 0 Sin(9)
R(f) = 0 1 0 . (9)
—Sin(#) 0 Cos(9)

Denoting the corresponding image plane coordinates as
[zg,ys] and [z, yo]’ (for § = 0) and using the perspective
transformation, we can obtain the equations for [zg, yo]’ as
(see Appendix)

zgCos(f) — fSin(6)
—z9Sin(f) + fCos(0)

_ Yo
w = T GnE) £ [Cos(d) (10)

Ig

where x v
r = f—and y=f—.
VA z

Equation (10) is particularly attractive since it does not in-
volve the 3D depth; rather it is a direct transformation of
the 2D image plane coordinates in the non-canonical view
to get the image plane coordinates in the canonical one.
Thusknowing the azimuth angle # we can obtain asynthetic
canonical view using (10) and a suitable texture mapping
rule.

Synthesisof Arbitrary Planar Views

The extension of the above method to synthesize arbitrary
planar views is straight-forward. Suppose we are given a

video segquence of aperson walking at anangle . Thiscan
be estimated from the direction of motion of the person in
the video sequence (as explained above). Once thisis done
we can synthesize the view at an angle 6, by applying the
transformation of (10) withd = 8, — 6. Thus, for planar
scenes, we are able to generate synthetic views purely from
thevideo data. Thisisimportant for many applicationsother
than gait recognition, such as multimedia.

24 Application to Gait Recognition

Approachesin computer vision to the gait recognition prob-
lem can be broadly classified as being either model-based
or model-free. Methods which assume a priori models [3,
11, 12] match the 2-D image sequences to the model data.
In[3], the authors proposed a method where several ellipses
arefitted to different parts of the binarized silhouette of the
person and the parameters of these ellipses such as loca
tion of its centroid, eccentricity etc. are used as afeature to
represent the gait of a person. Recognition is achieved by
template matching. Model-free methods [4] establish cor-
respondence between successive framesbased upon the pre-
diction or estimation of featuresrelated to position, vel ocity,
shape, textureand color. In[2, 13], the sum of thewhite pix-
elsalong each row of the boxed silhouetteimage, referred to
asthewidth vector, hasbeen used asafeature. Wenow show
that it is possible to obtain the transformed width vector in
the canonical view directly from images obtained at an ar-
bitrary view. Let T' : [zg, ya] — [0, yo] as represented in
(10) and J(z, y) denote the image intensity at (z, y). Also,
let 7, represent the synthesized image at angle 6 and Wy ()
the width vector for aparticular row, y, in theimage. Given
the azimuth angle we can synthesize the width vector in the
canonical view as

Wo(y) é Z fo(‘l‘m yo)
= >

ze:(ve,y6)=T~1(z0,90)

I(fﬁe,ye))v (11)
(12)

where I(z,y) = 1if J(z,y) # 0and I(z,y) = 0, other-
wise.

3 Obtaining Camera Calibration Pa-
rameters

Using Equations (3), (6) and (10) requires a knowledge of
the parameters f, K, C' and M, which are essentially the
camera calibration parameters for this problem. In order to
compute f, weused acalibration grid marked with 20 points



Figure 3: Tracked points in the video sequence and the best fit
straight lines.

as shown in Figure 2. We placed the grid at 3 different az-
imuth angles § = 15, 30, 45 and obtained the point corre-
spondencesby hand. The pointsarerelated by (10). Werep-
resent the three angles by ¢; € {15,30, 45} and the coordi-
nates of theith point by [, vs,] and [z§, 5]’ Using these
points we form a cost function .J( f) as shown in Equation
(13). We solve this nonlinear regression using the Gauss-
Newton method to obtain f* = argmin, J(f), where

~ . @b Cos(8;) — fSin(6;)\
/= Z,Ze; (mo B ffCos(Hj) + méjSin(@»))

+ (yo N f—xgjsm(ej) T fcos(ej)) - 13

Next, we consider the estimation of X, C' and M. In or-
der to do this, we captured videos of a person walking at
8 = 0,15,30,45,60. We tracked the position of arigid
point on the person followed by amedian filtering of the tra-
jectory. The resulting tracks are shown for the different fs
in the Figure (3). To each of these tracks we fit a line us-
ing the least squares criterion. These are the solid linesin
Figure (3), with slopes T'an(«a(#)). Thetop lineisthe case
when § = 0. Thelinesfor # = 15 isthe one immediately
below this line and so on. As may be expected, larger az-
imuth angles lead to larger image plane angles. The upper
right corner where the lines intersect approximately, corre-
sponds to the point from where the subjects start walking.
These straight lines are the projections of the straight lines
(onefor each angle) traced out by the motion of the tracked
rigid point in the 3D world. For the calibration procedure,
we know the angle § which traces out the straight line at the
angle «. Given the corresponding values of « and 6, we can
estimate K from (3).

Similarly,wecanobtaine(z, y) andm(z, y) in(6). LetC
and M be the corresponding representationsfor a particular
point (z, y). Thedirection of motion of thisline, Cot(a) =
fl—’, is constant, since it moves along a straight line. Hence
a robust estimate of « can be obtained by considering the

Figure 4: Calibration curves for Cot(§) vs. Cot(«). The dots
represent the true values, the solid line represents the calibration
curve using (3) and the dashed and dotted line represents the cali-
bration curve using ((7).

motion of this point over a number of frames of the video
seguence, i.e. the dope of the straight lines in Figure (3).
Thus C' and M can be determined from (7) by considering
all the corresponding values of « and 6.

Figure 4 plots the true values of « and 6, as well as the
tworegression lines(3) and (7) obtained from the calibration
procedure. Even though (3) and (7) were derived under dif-
ferent physical models, the straight linesin boththe casesare
good approximationsof thetruedata. Themain sourceof er-
ror isdueto the assumption of straight line motion of apoint,
which is never precisely true in practice. Also, the effect of
changing the image coordinate system can be taken into ac-
count easily by making the appropriate modificationsin the
perspective projection equations [6], at the cost of increas-
ing the number of intrinsic camera parameters that need to
be estimated during the calibration procedure.

Given a test video, we can estimate the value of « in a
way similar to that shown in Figure 3. Thereafter, the value
of 8 can beread off directly fromthecalibration linesin Fig-
ure 4. The choice of which of the two lines should be used
is left to the discretion of the user, who can determine that
depending upon the validity of the assumptions in the par-
ticular case.

4 Experimental Results

In this section, we present results of our method for synthe-
sizing canonical views of people from videos of them walk-
ing along arbitrary directions. We use the canonical views
for gait recognition. The experimentsare onasmall number
of people and conducted with the motivation of presenting a
proof of concept for our algorithm. Detailed gait recognition
experimentsis the focus of future work.

Our database consists of 12 people, who walk along
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Figure 2: Calibration grid placed at (a) 0 (b) 15 (c) 30 and (d) 45 degrees.

straight lines at different values of azimuth angle § =
0,15, 30,45 and 60 degrees. For theinitial calibration, we
consider one person walking at all the above angles. Back-
ground subtraction as discussed in [14] isfirst applied to all
the image sequences, one for each angle. To remove spu-
rious noise, a standard 3 x 3 low-pass filter is applied to
the resultant motion image. A bounding box is then placed
around the part of the motion imagethat maximally contains
the moving person. The size of the box is chosen to accom-
modate the extreme cases of individuals in the database as
regards height and girth. Further operations are carried out
onthis‘box’. The upper left corner of thebox wastracked in
thevideo. Thisisapproximately the sameastrackingarigid
point on the persons body. The angle « is obtained from the
median filtered tracks in the image plane. Since § isknown
for the calibration procedure, K, C' and M were computed
using the method described in Section 3.

For the video of an unknown person in the database the
above image processing operations are repeated to compute
the image plane angle «. Using the calibration line shown
in Figure 4, the azimuth angle § was obtained. Using this
value of § and the value of f obtained as a part of the cal-
ibration procedure, the view of the person was synthesized
using the (10). Some of the synthesis results are shown in
Figure 5, along with the images from the original video se-
guences. Notethat the height of the synthesized silhouetteis
almost constant similar to the true zero azimuth case shown
in Figure 5(a). It isalso instructiveto look at the width pro-
file (defined asthe number of pixelsin each row betweenthe
extremities of the binarized silhouette) of one person plot-
ted as a function of time as shown in Figure 6. The lower
halves of these width plots correspond to the leg regions. In
Figure 6 both the foreshortening and the effect of viewing
direction on the leg-swings can be observed. In particular
it can be seen that the leg swing as observed from a non-
canonical view issmaller than what it would be from the ex-
act side-view. Usage of such an unnormalized gait sequence
for recognition will give poor results. Our method provides
a systematic way of handling both these effects as can be
seen from the width vector of the synthesizedimagesin Fig-
ures 6(c) and (d).

For the case when § = 45 we find that in the torso re-
gion, the reconstructed silhouette is broader than the orig-
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Figure5: (a) representsdifferent stances of aperson walking par-
allel to the camera; (b) (d) and (f) represent different stances of a
person walking at angles 15, 30 and 45 degrees to the camera; (c)
(e) and (g) represent side-views synthesized from original videos
where the person walks at angles of 15, 30 and 45 degrees to the
camera.
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Figure 6: Width profileasafunction of timefor (a) Canonica View (§ = 0);(b) Unnormalized sequencefor § = 45;(c) and (d) Synthesized

non-canonical Viewsfor § = 30 and 8 = 45 respectively.

inal. The reason for thisis the limitation of the planarity
assumption for the torso region. For non-canonical views,
parts of the torso unseen in the canonical view, appear. To
appreciatethis better, consider that we approximatethetorso
as arectangular block. In the canonical view, just one face
of thisblock isvisible. For non-canonical views parts of the
other faces of this block are visible too. The synthesis al-
gorithm, which interprets this as a plane, renders a broader
reproduction of the torso part. Notice however that this ef-
fect is somewhat lesser in the leg portions of the silhou-
ette. As can be seen from the Figure 6, the lower parts are
clearly distinguishable and similar for the different angles,
though the upper halves of the plots become more and more
noisy as the value of 4 increases. In order to study the per-
formance of gait recognition on the synthesized images we
used a rather simple variant of the baseline gait recognition
algorithm [15]. Our gallery consists of people walking at
f = 0, i.e. the canonical view. The probes are video se-
guenceswhere peoplewalk at arbitrary anglesd. Wetake N
contiguous boxed images of a person i in the gallery when
he/she is walking at an azimuth § = 0. For every image
of the probe j transformed to the zero azimuth from the az-
imuth ,;, we compute the similarity matrix $%= = s« (3, j),
where

M;
s (i,5) =" maxcorr(By= 7, Aly), (14
k=1

and Bf= refers to the kth image in the sequence synthe-

sized from 6, for the probe j. A%, = {A%, ..., A%} isthe
set of N contiguousimagesfor the zero azimuth for gallery
person i, and

o N At B«
maxcorr(BE*7 | A'y) = max um( ’,n : .).
M Num(4]U BE)

Besides taking the usual binary correlation in (14), we also
computed the similarity matrices for just the lower half of
the bounding box. Thisisapproximately equivalent to con-
sidering just the leg portion of the body. This is motivated
by the fact that the planarity assumption is more strictly ad-
hered toin theleg portion than in the torso. Gait recognition
performance can be improved further by fusing other static
cues about the person, such as height. We fuse height infor-
mation with the leg dynamics by scaling each entry s(z, j)
of the similarity matrix by the corresponding height ratio,
max(%—%, 2— Zifl).

The similarity matrices, yield as a by-product a quantita-
tive assessment of the quality of the synthesized images as

(15

for each = 6, and P persons. Thisisplotted asafunction
of § in Figure (7). The cumulative match characteristics[15]
areshownin Figure(9) for thefull body, legonly and leg and
height fusion cases. The rise of the solid curves (represent-
ing theleg dynamics, with or without height fusion) isfaster
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Figure 8: ROC curvesfor § = 15, 30 and 45 degrees for the case
of leg and height fusion.

than the dotted ones (representing full body). This means
that recognition performanceis better when only the leg dy-
namics, instead of the whole body, is used. The reason for
thisisthe incorrect broadening of the torso region. The per-
formancein the case where height information isfused with
leg dynamicsiseven better. Interestingly, [15] notesthat the
lower 20 % of the silhouette accounts for roughly 90% of
the recognition. Similarly [2] showed that the gait recogni-
tion in the case when the subject was carrying aball, viz. no
upper body dynamics, the recognition rateswere better. The
fact that the gait recognition results are encouraging upto an-
glesof 45 degreesallows usto hypothesizethat it ispossible
to do reasonable human identification using gait with only
two cameras (installed perpendicular to each other).

In order to study the efficiency of gait recognition with
synthesized views, we compute the Receiver Operating
Characteristic (ROC), which is a plot of the probability of
detection (i.e. correct recognition), pp, vs. the probability
of afalsealarm (i.e. false acceptance), pr, for azimuth an-
glesf = 15, 30 and 45 degrees. Theplotsare shownin Fig-
ure 8. The performance degradation with increasing 6 can
be understood from these plots. The ROC curves indicate
that the proper detection threshold should vary with 8, so
asto obtain a performance characteristic with smal pr and
largepp.

5 Conclusion and Future Work

In this paper, we have proposed a method for synthesizing
arbitrary views of planar objects, and applying the synthe-
sized views for gait recognition whenpeople are walking at
any arbitrary angle to the camera. Our method used a per-
spective projection model and an optical flow based struc-
ture from motion model for estimating the azimuth angle of
the original view from monocular video data. Thereafter, a
video segquence at the new view was synthesized. Theentire
process was done in 2D, though 3D structure of the scene
played an implicit role. A simple, yet accurate, camera cal-
ibration procedure was also proposed. Examples of synthe-
sized views are presented. Preliminary results of gait recog-
nition on a database of people wasreported using these syn-
thesized views. Development of appropriate gait recogni-
tion algorithmsfor people walking at arbitrary anglesis one
of our future research directions. Though the method has
been explained from the motivation of the gait recognition
problem, it hasimportant applicationsin other areastoo, like
multimedia and video processing. That, too, formsa part of
our future research into this problem.

Appendix

Proof of Equation (2):

Consider Equation (1) and the perspective projection model .
Then,

X X
v=I7=I5 ¥ Tan()X ' (16
Py R — (17)

A Zo + Tan(0)X

Dividing Equation (17) by (16) we get (except for the few
degenerate points where the denominator is zero),

Y k
== 18
- % (18)
Now consider Equation (16):
Zox + Tan(0) Xz = fX,
ie. Zox=—(Tan(f)z — /)X,
ie 2 = =Tl (19)

Substituting Equation (19) in (18), we get (2).

Proof of Equation (10):
Using Equations (8) and (9), we get
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Figure9: Cumulative Match Characteristicsfor Synthesized images (solid line representsthe full body used for matching, dash-dotted line

represents the case where only the leg is used for matching) for (a) 8 = 15 (b) # = 30 and (c) § = 45.

Xo = XgCos(0) + ZySin(0) (20
Yo = Y (21)
Zy = —XaSin(0) + ZgCos(0). (22
Under perspective projection,
_ X%
éL‘o—fZ—Oﬁl/o—fZO (23)
_Xe Y
IG_fZg’ye_fZQ. (24)
Substituting from (20), (21) and (22) in (23), we get
_, X4Cos(0) + Zg Sin(0)
0= TX, Sin(0) + ZsCos(0) (25)
Y
Yo : (26)

= X, 5in(0) + 2, Cos(0)’

Substituting for X, and Yy from (24) yields Equation(10).
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