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Towards a Well-diversified Risk Measure:

A DARE Approach

1 Introduction

Value-at-Risk (VaR) measures the potential loss of a given portfolio over a specified holding

period at a specified confidence level, which is commonly fixed at .5%, 1% or 5%. The Basel

Committee on Banking Supervision (1996) at the Bank for International Settlements imposes

on financial institutions, such as banks and investment firms, to get required adequate capital

based on VaR estimates. Losses in most banks’ trading book during the financial crisis

have been significantly higher than the minimum capital requirements under the former

Pillar 1 market risk rules because VaR was underestimated. It leads to the revision of

Basel II market risk framework (2009). A stressed VaR requirement taking into account

an observation period relating to significant losses was thus introduced. Although VaR

became the standard measure of market risk, it has been criticized for reporting only a

Quantile, and thus disregarding all the precise nature of outcomes beyond the threshold. In

addition, VaR is not a subadditive risk measure. This property concerns the main idea of risk

diversification: the aggregated risk of a portfolio should not be greater than the individual

risk of its constituent parts (Artzner et al., 1999; Acerbi and Tasche, 2002). The Expected

Shortfall (ES) is a risk measure that precisely overcomes this weakness, also giving more

accurate information of what the tail of the return distribution is made of. Indeed, the ES is

defined as the conditional expectation of the return given that it falls below the VaR (Yamai

and Yoshiba, 2002; Artzner et al., 1999; Pflug, 2000).

Based on these definitions of VaR and ES, many estimation methods coexist nowadays.

However, none of these methods seems adapted to every market configurations. Besides,

no one passes all validation tests proposed in the literature (Hurlin and Tokpavi, 2008).

The risk associated to the choice of the extreme risk model is therefore important. In
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theory and practice, assessing model risk is a true challenge. While validation procedures for

pricing models have traditionally focused on implementation and accuracy, the increasingly

important role of models in trading and risk management is such that model misspecification

(i.e. the “model risk”) has become a major risk which cannot be ignored in a validation

procedure. It is therefore important to quantify “model uncertainty” and incorporate in

order to achieve a robust risk management framework. Moreover, the Basel Committee

published in July 2009 a recommendation to Banks to assess and quantify “model Risk” in

order to produce adequate reserves. Considering the economic impact of the quality of these

risk measures for the banks capital constraints, it seems crucial to limit the risk model. The

objective of this paper is to provide a complete framework to aggregate different Quantile

and Expectile models (Hansen, 2008), to provide more diversified VaR and ES measures,

thus limiting the model risk in a similar way that has been followed for the volatility in a

multi-model approach (Visser, 2008).

A recent development in the VaR literature concerns the Conditional AutoRegressive

Value-at-Risk (CAViaR) class of models (Engle and Manganelli, 2004), Multi-Quantile CAViaR

(Kim et al., 2008) and Quantile GARCH (QGARCH) model (Koenker and Xiao, 2009).

These general approaches to the VaR estimation has a strong appeal insofar as they pro-

vide an extensive modeling framework and do not rely on strong distributional assumptions.

However, only VaR estimation has been investigated until now, and a similar work on the

corresponding ES should be done.

Following Taylor (2008a and 2008b), Gouriéroux and Jasiak (2008) and Kuan et al.

(2009), we present in this paper a new modeling approach that defines estimations for both

VaR and ES. The approach involves the use of Asymmetric Least Squares (ALS) regression,

whose solution is called an “Expectile”. This name was given by Newey and Powell (1987)

who note that the ALS solution is determined by the properties of the expectation of ex-

ceedances beyond the solution. We use in the following this result to estimate the ES. It

has also been shown that there exists a one-to-one mapping from Expectiles to Quantiles.

Indeed, Efron (1991) proposes the α-Quantile to be estimated by the Expectile for which the

proportion of in-sample observations lying below the Expectile is equal to α. This idea can

also be used to estimate the VaR and the ES from Expectiles as shown later on. Aggregat-

ing different Quantile and Expectile models, we finally propose in this article a new class of
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models for the conditional VaR and ES modeling: the Dynamic AutoRegressive Expectiles

(DARE, in short), aiming to provide more diversified extreme risk measures.

The paper is organized as follows. In section 2, we briefly review the main literature

about VaR and ES measures and estimation models. In the third section, we describe how

Expectiles can be used to estimate VaR and ES, then we introduce the DARE approach. We

shortly present and summarize in the fourth section the main and recent backtest procedures

for VaR and ES models. According to these validation tests, we provide empirical results

obtained on the French Stock Market, related to the accuracy of the proposed method

compared to traditional ones. We finally illustrate the impact of several conditional weighting

functions to the risk models aggregated into the DARE approach, in order to dynamically

select the more appropriated Quantile models for extremal risk measure estimation. The

last section concludes.

2 Main Extreme Market Risk Models

Risk management has become in these past few years a central object of interest for

researchers, market practitioners and regulators. It involves the computations and follow-

ups of some risk measures that can be viewed as single statistics of asset/portfolio returns.

We shall first herein focus on extreme risk definitions and estimation methods. We hereafter

introduce and define the VaR and the ES risk measures, focusing on the way they allow us to

disentangle the behavior of tails. Then, we review the main estimation approaches of these

extreme risk measures, which are traditionally classified into three categories: parametric,

non-parametric and semi-parametric methods (Engle and Manganelli, 1999).

2.1 Extreme Risk Measure Definitions

The VaR is well known as being one of the benchmark measure for market risk. It is precisely

defined as the potential loss a portfolio may suffer from, at a given confidence level over a

fixed holding period, such as at time t:

Prob[rt < −V aRα,t] = 1 − α, (1)
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where rt is the random variable of asset returns, Prob [.] stands for the unconditional prob-

ability, and α is the confidence level for the VaR computation.

The Value-at-Risk of a return distribution can thus be viewed as an α-Quantile, such as:

q1−α(.) = −V aRα(.) (2)

where q1−α(.) is the Quantile Function.

This Quantile Function has to be an increasing function of the risk level α. Quantile esti-

mators have also to fulfill the monotonicity property with α. Thus, a well specified quantile

model is expected to provide estimators that behave like true quantiles and to increase for

any value of parameters and conditioning variables according to the risk level α. Quantile

Functions have other properties as given in the following examples. If qα(.) is a Quantile

Function associated to α defined on [0, 1] , and a is a positive constant, then:

q∗α(.) = −q1−α(.) and q∗∗α (.) = qαa(.), (3)

are also Quantile Functions.

If q
(k)
(.) (.) are several Quantile Functions with identical real domains, with k = [1, ..., n] and

ak are positive constants, then:

q∗∗∗α (.) =
n∑

k=1

ak q(k)
α (.), (4)

is also a Quantile Function.

These properties can be used to derive new Quantile Functions from other ones.

Although the VaR can be mentioned as a reference and is imposed by regulators, criticisms

have been formulated against its generalized use (Beder, 1995; Cheridito and Stadje, 2009).

For instance, VaR does not enable us to answer the question: “what is the magnitude of the

loss when the VaR limit is exceeded?” Another issue, pointed out by Artzner et al. (1999),

concerns the “non-coherence” property of this risk measure; it fails indeed to respect the

subadditivity property, i.e. the VaR of a combined portfolio can be larger than the sum

of the VaRs of its components (diversification principle). Prause (1999) also argues that,

when bankruptcy in a stake, we should be more interested the distribution of the Maximum

Expected Loss. From this point of view, some authors suggest to use other risk measures

than the VaR, in order to get a better characterization of extreme events, especially for

non-linear portfolio returns.
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Another risk measure has therefore recently appeared in the literature, named the Expected

Shortfall (ES), that is the value of the expected loss at a given confidence level. Contrary

to VaR, this measure satisfies the subadditivity property mentioned above, and provides

information about the magnitude of the loss when the VaR is exceeded. More formally,

following the definition by Acerbi and Tasche (2002), the ES can be written as such (with

the previous notations):

ESα,t = −E [rt|rt ≤ −V aRα,t] . (5)

If we consider that at time t the distribution of rt is known, we have:

ESα,t = −(1 − α)−1

∫ −V aRα,t

−∞

rtft(rt)drt, (6)

where ft(.) is the Probability Density Function of rt at time t.

Thus, VaR and ES can be generically written such as:





V aRα,t = µt + F−1

1−α,t(r
∗
t )σt

ESα,t = µt +
{
(1 − α)−1ft[F

−1
1−α,t(r

∗
t )]

}
σt,

(7)

where µt and σt are respectively the expected return and standard deviation at time t,

ft(.) and Ft(.) are, respectively, some specific Probability Densities and related Cumulative

Distribution Functions evaluated at time t, and r∗t is the standardized return.

In the relation (7), the key for the calculation of empirical estimates of VaR and ES is

in the estimation of the distribution function of the returns. The next subsection gives the

mainly common alternatives presented in the literature.

2.2 Estimation Methods

Several approaches are used to estimate extreme market risk measures as Value-at-Risk

and Expected Shortfall. The choice will depend upon the kind of portfolio, the availability

of computational resources and time constraints. The main approaches are traditionally

classified into three categories: non-parametric, parametric and semi-parametric methods

(Engle and Manganelli, 1999; Jorion, 2006; Nieto and Ruiz, 2008).
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2.2.1 Non-parametric Approach of Extreme Risk Measure

The most widely used non-parametric method to estimate a predetermined Quantile is

based on the so-called historical approach. It only requires mild distributional assumptions

and it implies the estimation of the VaR as the Quantile of the empirical distribution of past

historical returns from a dynamic moving window of the most recent period. The empirical

VaR can be written such as (with the previous notations):

V̂ aRα,t = F̂−1
1−α,t(rt), (8)

where F̂−1
1−α,t(.) is the Quantile Function associated to the probability 1 − α, estimated at

time t on past returns.

The main difficulty only concerns the width of considered window for the measure practi-

cal computation: a few observations only will lead to an important sampling error, whereas

too many observations will slow down the reaction of estimates to changes in the true dis-

tribution of financial returns.

Other methods allocate dynamically decreasing weights to the past sample of returns

exponentially (the sum being equal to one). Past returns are then ordered in ascending

order from the lowest return and the weights are aggregated to reach the given confidence

rate; the conditional Quantile estimate is set as the return that corresponds to the final

weight used in the previous summation. The forecast is then built from an Exponentially

Weighted Average of past observations. If the distribution of returns is moving quickly over

time, a relatively fast exponential decay is needed to ensure a reactive adaptation. These

exponential smoothing methods are simple and common approaches in practice.

These non-parametric approaches only take into consideration realized past returns on a

predefined data sample. These approaches can not model tail returns that have never been

realized.

2.2.2 Parametric Approach of Extreme Risk Measure

The parametric approach assumes that returns follow a specific probability distribution,

as for example a Normal or a t-Student law. The parameters of the relevant distribution are

specified and the risk measure is deduced thanks to the Quantile of the estimated distribution.

Consequently, the risk measure mainly depends on the parameter estimation and on the shape
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of the chosen distribution. Assuming that Ft(.) is the Cumulative Distribution Function

(CDF) of returns at time t, the estimated VaR can be written such as:

V̂ aRα,t = µ̂t + F−1
1−α,t(r

∗
t |θ̂t) σ̂t, (9)

where θ̂t = (σ̂t, µ̂t, ...) represents the vector of the estimation of the ditribution parameters

at time t, rt is the return and r∗t is the standardized return.

When modeling asset returns, the Normal distribution remains often used. Assuming at

time t a Gaussian Cumulative Distribution Function of returns Φt(.), the specific CDF in

equation (9) is replaced by Φt(.). However, Normal distribution suffers from numerous draw-

backs. Actually, the Normal distribution has thinner tails than the empirical distribution

of returns. Moreover it may be misleading to estimate VaR or ES assuming normally dis-

tributed innovations in a model where financial return series are heteroskedastic. Using the

t-distribution, the Normal Inverse Gaussian (Barndorff-Nielsen, 1998; Venter and de Jongh,

2002), or applying Extreme Value Theory (EVT, see Embrechts et al., 1997) are other pos-

sibilities to avoid these problems and are presented below (see also Bali, 2003; Longin, 2000;

Danielsson and de Vries, 2000; Bekiros and Georgoutsos, 2005; Martins-Filho and Yao, 2006;

Tolikas, 2008).

In an EVT framework, let us suppose that rt represents the return at time t and rs =

max(r1, r2, . . . , rs) is the maxima for the variable rt on the subsample s. Thus, rs represents

the highest returns on blocks of data, or (alternatively) peaks over a fixed threshold on a

subsample s. According to the Generalized Extreme Value (GEV) or to the Generalized

Pareto Distribution (GPD), the maxima variable Cumulative Distribution Functions have

formal expressions recalled hereafter (Embrechts et al ., 1997).

For the GEV family, the Cumulative Distribution Function, Ft(.), can be written at time

t, such as (with the previous notations):

Ft(rs|νt, θt, ξt) =





exp

{
−

[
1 + ξt(rs − νt)θ

−1
t

]−1/ξt

}
if ξt �= 0

exp
{
− exp

[
−(rs − νt)θ

−1
t

]}
otherwise,

(10)

with [1 + ξt (rs − νt) θt
−1] ≥ 0, where νt ∈ R, θt ∈ R∗

+ and ξt ∈ R are, respectively, location,

scale and shape parameters at time t.
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For the GPD family, the Cumulative Distribution Function Ft(.) can be written at time

t, such as (with the previous notations):

Ft(rs|νt, θt, ξt) =





1 −

[
1 + ξt(rs − νt)θ

−1
t

]−1/ξt
if ξt �= 0

1 − exp
[
−(rs − νt)θ

−1
t

]
otherwise.

(11)

Finally, following Bali (2003), the estimated VaR can be written such as:

V̂ aRα,t = ν̂t + F̂−1
1−α,t(r

∗
s) θ̂t, (12)

where F̂−1
1−α,t(r

∗
s) is the Inverse Standardized Empirical Extreme Value Cumulative Distribu-

tion Function given by F̂−1
1−α,t(r

∗
s) = F̂−1

1−α,t(rs|0, 1, ξ) for the (1 − α) Quantile, with r∗s being

the centered standardized extremal return denoted rs.

For VaR estimations, it has been shown that Normal Inverse Gaussian (NIG) based approach

can be more robust than the EVT method (Barndorff-Nielsen, 1998). The EVT method

(Embrechts et al., 1997) seems however more adapted in large samples and if the NIG

distribution does not adequately fit the returns. In the case of symmetric distributions, the

t-based approach suits well and is comparable to the NIG-based approach. When focusing

on Expected Shortfall, the NIG-based approach can be preferred to the EVT method when

the available sample is small (Venter and de Jongh, 2002).

However, the mentioned parametric approaches are affected by the assumed return prob-

ability distribution specification, which does not provide a perfect representation of the main

stylized items of financial series. The alternative is to more focus on the return character-

istics without applying the filter of a pre-determined hypothesis on the return densities as

presented in the following sub-section.

2.2.3 Semi-parametric Approach of Extreme Risk Measure

Semi-parametric estimation methods combine the two previous approaches. Expansion-

based and Quantile Regression-type approaches belong to this family. Three types of semi-

parametric methods are presented below.
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We first present the Cornish-Fisher approach (1937) based on statistical series expansions

of the returns Probability Density Function around a reference density, which relies on higher-

order moments of the estimated distribution. Assuming for example an underlying non-

Gaussian distribution of the returns (but not too different from the Gaussian one), the

terms of the statistical series expansions aim to adjust the Gaussian reference distribution

by including the skewness and excess kurtosis of the returns, in order to be as close as

possible of the true underlying distribution.

Formally, the Probability Density Function at time t denoted ft (.) is given such as (with the

previous notations):

ft (rt) = ψt (rt) φ (rt) + ǫt, (13)

with:

ψt (rt) =

{
1 +

γ1 [ft (rt)]

3!
P2 (rt) +

γ2 [ft (rt)]

4!
P3 (rt) + 10

γ1 [ft (rt)]
2

36
P6 (rt)

}
,

where φ(.) is the standard Normal Probability Density Function, γ1 is the skewness Pearson

coefficient, γ2 is the excess kurtosis Pearson coefficient, ǫt is the residual of the expansion

and Pi (rt) = (−1)i φ (rt)
−1

[
∂iφ(rt)

∂ri
t

]
the Hermite polynomial of order i.

Thus, at time t, the α-Quantile denoted qα,t(.), is then:

qα,t(rt) = Φ−1 (α) + γ1[ft(rt)]
3!

P2Φ
−1 (α) + γ2[ft(rt)]

4!
P3Φ

−1 (α)

−γ1[ft(rt)]
2

36

{
2 [Φ−1 (α)]

3 − 5Φ−1 (α)
}

,
(14)

where Φ(.) is the standard normal Probability Density Function.

The Cornish-Fisher VaR (Favre and Galeano, 2002), using the principle of a statistical

series expansion for the estimation of an α-Quantile, is written such as (with the previous

notations):

V̂ aRα,t = µ̂t + q̂1−α,t(rt) σ̂t, (15)

where σ̂t and µ̂t are respectively the estimations of the returns standard deviation and of the

expected return at time t.

The RiskMetrics (1996) model is here considered as a second semi-parametric approach.

It assumes that asset returns follow a standard Normal distribution, with a time-varying

volatility that is estimated by the Exponential Weighted Moving Average method (which
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corresponds to a so-called Integrated GARCH model), obtained by using historical data

such as:

σ̂2
t = λ σ̂2

t−1 + (1 − λ) r2
t−1, (16)

where σ̂2
t is the estimation of the returns variance at time t and λ is an ad hoc smoothing

parameter associated to the RiskMetrics model (arbitrary fixed to .94).

Adapting this framework, many other volatility estimation methods, belonging for exam-

ple to the GARCH family, have been already tested in the literature (Engle and Rangel, 2008;

Brownlees and Gallo, 2010). These approaches are also called Conditional Normal methods

as we use a Normal distribution to describe the returns associated to a variance estimated

by conditional methods. This approach can be adapted to other distribution assumptions.

A third semi-parametric approach presented in the paper is based on Quantile Regression

methods. Quantile regression estimation methods need mild distributional assumptions.

Conditional AutoRegressive VaR (CAViaR) introduced by Engle and Manganelli (2004) and

Quantile GARCH (QGARCH) model (Koenker and Xiao, 2009) is one of them. Koenker and

Xiao (2009) propose a Quantile regression estimation of GARCH Models. Quantile regression

provides a convenient approach of estimating conditional Quantiles. It has the important

virtue of robustness to distributional assumptions and makes no prior presumption about

the symmetry of the innovation process.

Engle and Manganelli (2004) directly define the dynamics of risk by the mean of an

AutoRegressive model involving the lagged-VaR and the lagged value of the endogenous

variable, in a model named CAViaR. They present four CAViaR specifications: a model

with a symmetric absolute value, an asymmetric slope, an Indirect GARCH(1,1) and an

adaptive form, denoted respectively: V aRSAV
α,t (rt−1, β), V aRAS

α,t (rt−1, β), V aRIG
α,t (rt−1, β),

V aRA
α,t (rt−1, β) and properly defined below.

Symmetric Absolute Value CAViaR

The Symmetric Absolute Value CAViaR specification is defined such as (with the previous

notations):

V aRSAV
α,t (rt−1, β) = β1 + β2 × V aRSAV

α,t−1 (rt−1, β) + β3 × |rt−1| , (17)
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where βi, with i = [1, ..., 3], are CAViaR model parameters and rt is the risky asset return

at time t.

In this CAViaR specification, the VaR reacts symmetrically to positive or negative returns.

Asymmetric Slope CAViaR

The Asymmetric Slope CAViaR can be written such as (with the previous notations):

V aRAS
α,t (rt−1, β) = β1 + β2 × V aRAS

α,t−1 (rt−1, β) + β3 × max (0, rt−1)

+β4 × [−min (0, rt−1)] .
(18)

The Asymmetric Slope specification can thus model the asymmetric leverage effect, which

is the tendency for volatility to be greater following a negative return than a positive return

of equal size.

Indirect GARCH(1,1) CAViaR

The Indirect GARCH(1,1) CAViaR is defined such as (with the previous notations):

V aRIG
α,t (rt−1, β) = β1 + β2 ×

[
V aRIG

α,t−1 (rt−1, β)
]2

+ β3 × r2
t−1. (19)

We notice that the Indirect GARCH(1,1) CAViaR model is correctly specified if the under-

lying data are generated by a GARCH(1,1) model with an Independently and Identically

Distributed residual.

Adaptive CAViaR

The Adaptive CAViaR can be expressed such as (with the previous notations):

V aRA
α,t (rt−1, β) = V aRA

α,t−1 (rt−1, β) − α

+β1

[
1 + exp

{
.5 ×

[
rt−1 − V aRA

α,t−1 (rt−1, β)
] } ]−1

.
(20)

The intuition associated to the Adaptive specification is the following: as long as the daily

return is not inferior to the VaR estimation, it can increase by a small amount; on the

contrary, when the past value is exceeded, it has to decrease. Thus, this model is adapted to

larger and larger falls of the risky asset, since it adapts itself to past errors and reduces the

probability that the VaR is consecutively under estimated, but it does not guarantee that

the VaR is not over-estimated.
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Discussing the general CAViaR model without the autoregressive component, the con-

ditional Quantile Function is well defined if parameters can also be considered as Quantile

Functions. In fact, CAViaR models weight different baseline Quantile Functions at each

date and it can be therefore considered as Quantile Functions. Adding a non-negative au-

toregressive component of VaR, the CAViaR conditional Quantile Function becomes a linear

combination of Quantile Functions weighted by non-negative coefficients. Thus, CAViaR

model satisfies the properties of a Quantile Function, even if the indirect GARCH(1,1) or

adaptive specifications do not satisfy the monotonicity property. CAViaR model parameters

are estimated by using the Quantile regression minimization (denotes QR Sum) presented

by Koenker and Bassett (1978):

β̂∗ = ArgMin
�β∈Rn

{
T∑

t=1

{[
α − 1I{rt<−V̂ aRα,t(rt−1,�β)}

] [
rt + V̂ aRα,t

(
rt−1, β̂

)] }}
, (21)

with V̂ aRα,t

(
rt−1, β̂

)
is the VaR estimation according to CAViaR models (see equations 17

to 20), β̂ is a vector of estimated parameters, 1I{·} is the indicator function and T is the size

of the data set.

When the Quantile model is linear, this minimization can be formulated as a linear

program for which the dual problem is conveniently solved. Koenker and Bassett (1978)

show that the resulting Quantile estimator, V̂ aRα,t, essentially partitions the rt observations

so that the proportion less than the corresponding Quantile estimate is α.

The procedure proposed by Engle and Manganelli (2004) to estimate their CAViaR mod-

els is to generate vectors of parameters from a uniform random number generator between

zero and one, or between minus one and zero (depending on the appropriate sign of the

parameters). For each of the vectors, the QR Sum is then evaluated. The ten vectors that

produced the lowest values for the function are used as initial values in a quasi-Newton al-

gorithm. The QR Sum is calculated for each of the ten resulting vectors, and the one which

produces the lowest value of the QR Sum is chosen as the final parameter vector.

CAViaR models only provide a model for the Quantile, but computing by the corre-

sponding ES is not straightforward. The ES can be conveniently computed using conditional

Expectile models. Following Taylor (2008a), we use CAViaR models to build Conditional

AutoRegressive Expectile (CARE) models (Kuan et al., 2009), replacing the conditional

VaR by the conditional Expectile in equations (17), (18), (19) and (20). We estimate CARE
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models parameters using the same procedure as for CAViaR models, except that the QR

sum is replaced by the Asymmetric Least Square Sum (see equation 23). The τ -Expectile,

for which the proportion α of in-sample observations below the Expectile, is the estimator

of the α-Quantile (Efron, 1991; Granger and Sin, 2000).

3 The DARE Approach

We propose in this section a way to aggregate well specified Expectiles and Quantile

models for obtaining a good estimation of Quantiles based risk measures such as VaR and

ES.

We now focus on these two main points to answer this issue. On the one hand, we have

to provide a unified framework which enables us to aggregate Quantile estimation methods,

involving the introduction hereafter of the DARE approach. On the other hand, we need to

evaluate whether Quantiles based on risk measures are well specified. Our evaluation criteria

are the VaR and ES tests developed in the literature. This section briefly reminds the defin-

ition of Expectiles, and their uses to estimate ES and VaR with Conditional AutoRegressive

Expectile class of models. Then, we introduce our DARE methodology to aggregate CARE

model with a unified Quantile estimation method (the tests used to evaluate these methods

are presented in the next section).

VaR and Expected Shortfall can be estimated with Expectiles calculated through the

minimization of the following optimization program:

µ̂∗
τ,t = ArgMin

�µτ,t∈R

{
E

[∣∣τ − 1I{rt<�µτ,t}

∣∣ (rt − µ̂τ,t)
2]} , (22)

where the τ -Expectile of rt is estimated by the parameter µ̂τ,t and |.| is the absolute value

operator.

The τ -Expectile is thus the solution to the minimization of asymmetrically weighted mean

squared errors. Due to the quadratic loss function, Expectiles are sensitive to extreme values

of the distribution. As such, τ will be referred to as an index of prudentiality. Similar to the

definition of VaR, the τ -Expectile is understood as the maximal potential loss within a given

holding period under a specific prudentiality level. Expectile can be distinguished from ES
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because the latter is determined by a conditional downside mean, which depends only on

the tail event and hence is much larger (more conservative) than corresponding Expectile

and Quantile. Taking into account the magnitude of potential losses, the Expectile may be

a better measure for tail risk.

Parameters of a conditional model for Expectiles can be estimated by using the Asymmet-

ric Least Square (ALS) regression, which is the least square analogue for Quantile regression,

such as:

β̂∗ = ArgMin
�β∈Rn

{
T∑

t=1

{∣∣∣τ − 1I{rt<�µτ,t(rt−1;�β)}
∣∣∣×

[
rt − µ̂τ,t

(
rt−1; β̂

)]2
}}

, (23)

where µ̂τ,t is the estimation of µτ,t and β̂ is the estimated parameter vector of a specific

Expectile conditional model.

Expectile can therefore be interpreted as a flexible VaR for the underlying return distribution.

One should choose a smaller (larger) α for VaR if the left tail of the return distribution were

known to be thicker (thinner). Yet, the shape of a return distribution is rarely known in

practice, and α is typically set by regulators and/or the management level.

We can use Expectiles as Quantile estimators, knowing that there is a corresponding

α-Quantile for each τ -Expectile (see Efron, 1991; Jones, 1994; Abdous and Remillard, 1995;

Yao and Tong, 1996), such as (with the previous notations):

τ =
α × (−V aRα,t) −

∫ −V aRα,t

−∞
rt dft(rt)

µt − 2
∫ −V aRα,t

−∞
rt df(rt) + (1 − 2α) × (V aRα,t)

, (24)

where µt is the returns expected return at time t and ft(.) is the return Probability Density

Function at time t.

An Expectile at a given τ corresponds to Quantiles with different α under distinct distribu-

tions, and hence represents different risk exposures in terms of the probability (frequency) of

tail losses. Using Expectile to estimate risk measures, the confidence level α is not a priori

determined, but the parameter τ can be estimated so as the α-Quantile and the τ -Expectile

perfectly match.

Taylor (2008a and 2008b) and Kuan et al. (2009) clearly explain the link between the

Expectile and Expected Shortfall, that leads to (with the previous notations):

ESα,t =
[
1 + τ (1 − 2τ)−1 α−1

]
× µτ,t (rt; β) . (25)
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Thus, the conditional Expected Shortfall for a given value of α is proportional to the condi-

tional γ-Quantile model, which is estimated by the τ -Expectile.

Moreover, the Quantile estimations can be linearly combined through the DAQ model

proposed by Gouriéroux and Jasiak (2008). This class of dynamic Quantile models is defined

by:

V aRα,t =
K∑

k=1

ak (rt−1, yt−1, βk) × V aR
(k)
α,t (βk) , (26)

where V aR
(k)
α,t(·) are path-independent Quantile Functions, with k = [1, 2, . . . , K] and ak(·)

are non-negative functions of past returns and of past exogenous variables denoted respec-

tively (rt−1) and (yt−1).

Thus, a DAQ model can use different Quantile Functions to model a given one. We can

also combine these functions into a multi-Quantile method (Kim et al., 2008) to increase the

accuracy of the conditional model. Actually, every Quantile Function can be extended to

define a simple class of parametric dynamic Quantile models.

The VaR and the ES can thus be expressed as a simple combination of Quantiles associated

to the same probability: 




V aRα,t
[1×1]

= W′
α,t

[1×K]

VaRα,t
[K×1]

ESα,t
[1×1]

= W′
α,t

[1×K]

ESα,t
[K×1]

,
(27)

with: 




Wα,t =
[

w1 w2 ... wK

]′

VaRα,t =
[

V aR
(1)
α,t V aR

(2)
α,t ... V aR

(K)
α,t

]′

ESα,t =
[

ES
(1)
α,t ES

(2)
α,t ... ES

(K)
α,t

]′

,

and: 




V aR
(k)
α,t = V aR

(k)
α,t (µτk

, βk)

ES
(k)
α,t = bkV aR

(k)
γk,t (µτk

, βk)

bk =
[
1 + τk (1 − 2τk)

−1 α−1
]

∑K
k=1wk = 1,

where V aR
(k)
θ,t (.) are a finite number of Quantile Functions associated with probability θ and

related to the model k, with k = [1, 2, ..., K].

The estimation of the α-Expected Shortfall can be found by linearly aggregating K Quan-

tile Functions and estimating the right correspondence between the probability α associated
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to the Expected Shortfall of each model (denoted ES
(k)
α ) and the probability γk associated

to each Quantile Functions (thanks to the τk-Expectile defined by the equation 22).

To clarify the concept of appropriate risk measures, some authors have described a num-

ber of properties that a risk measure might or might not have (Frittelli and Rosazza Gianin,

2002). Artzner et al. (1997 and 1999) call a risk measure coherent if it verifies the following

properties: first order stochastic monotonicity (more profit associated to more risk), posi-

tive homogeneity (if your exposition is doubled, the risk associated to your position is also

doubled), sub-additivity (diversification principle) and translation invariance (if you add a

proportion of cash in your portfolio, its risky asset exposition decreases and the risk differ-

ence is exactly due to the proportion of the added cash). The ES respects these criteria

(Acerbi, 2002). The notion of coherence has been subsequently relaxed. Indeed, the no-

tions of sub-additivity and positive homogeneity can be replaced by the notion of convexity.

The class of coherent risk measures is convex (Pflug, 2000; Föllmer and Schied, 2002). The

DARE approach can actually be interpreted as a linear aggregation of several ES coherent

risk measures. Given some known coherent risk measures, it is possible to generate a new

risk measure and it is proved that a convex combination of these coherent risk measures is

coherent as well (Acerbi, 2002).

Acerbi (2002) studies a space of coherent risk measures obtained as certain expansions

of coherent elementary basis measures. In this space, the concept of “risk aversion function”

(i.e. the weighting function) arises as the spectral representation of each risk measure in a

space of functions of confidence level probabilities. He gives necessary and sufficient condi-

tions on the weighting function to be a coherent measure (admissible risk spectrum criteria)

and provides for these measures their discrete versions on finite sets of K independent re-

alizations of a random variable, which are not only shown to be coherent measures for any

fixed K, but also consistent estimators of the risk measure class for large K.

Therefore, given K coherent risk measures, any convex linear combination is another

coherent risk measure, thus the DARE approach provides also a coherent risk measure con-

tained in the generated convex hull. A spectral risk measure can be actually interpreted as a

risk measure given as a weighted average of outcomes where bad outcomes are included with

larger weights. These weights can be assumed to be equiprobable, but they have at least to

be non negative, normalized (their sum has to be equal to one) and respect the monotonic-
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ity property. Thus, as long as the weighting function of the DARE approach respects risk

spectrum criteria, such as (with the previous notations):






∑K
k=1 wk = 1

wk ≥ 0

wi ≥ wj with 1 ≤ i ≤ j ≤ K.

(28)

This new space of coherent measures allows us to define a coherent spectral measure of risk.

According to equation (28), several conditional weighting functions can be applied to the

risk models aggregated into the DARE approach. To illustrate our DARE approach, we first

adapt a standard point of view, giving equal weights to each risk model. Then we try other

weighting function in order to dynamically select the more appropriate Quantile models for

the extremal risk measure estimation: the DARE weighting function can then be defined as

an increasing function of Quantile evaluation criteria (in the spirit of Hansen, 2008).

4 Backtesting Extreme Risk Measures

The DARE approach for extremal risk measure can be interpreted as a specific combination

of Quantiles. Appropriate validation tests can therefore be used to define the weighting

function associated to the DARE approach. Moreover, we have to compare this aggregation

approach with other traditional methods for computing extreme risk measures. A sharp de-

finition and interpretation of extreme risk measure tests is therefore of primary importance

in this study.

We present hereafter, the definitions, main intuitions and properties associated to main

Quantile evaluation tests developed in the literature and used in this article.

In the following section, we only give a summary of the tests. For more details, see Hen-

dricks (1996), Christoffersen (1998), Berkowitz and Brien (2002), Christoffersen and Pelletier

(2004), Ferreira and Lopez (2005), Haas (2005), Hurlin and Tokpavi (2008), Berkowitz et al.

(2011).

The tests used in the paper evaluate extreme risk measures according to the main char-

acteristics of VaR and ES. The first property that has to be checked to validate a Quantile

estimation is to observe whether the violation frequency is not significantly different to the

18



probability defining the Quantile estimation (Unconditional Coverage test; Kupiec, 1995).

Moreover, if the Quantile model is correct, then violations associated to the Quantile fore-

casting should be independently distributed (and not clustered), this criterion is tested by

Independence tests (Christoffersen, 1998). Both of these properties (violation frequency and

independence) are jointly tested thanks to Conditional Coverage test (Christoffersen, 1998).

These three traditional tests have been recently improved using the GMM framework (Can-

delon et al., 2011), subsampling bootstrap techniques (Escanciano and Olmo, 2010) and a

constrained randomization surrogate data technique (Schreiber, 1998). A surrogate data

method, explicitly keeping the time patterns for the data along a process of constrained ran-

domization, which is basically based on a re-shuffling of the original data. This procedure

thus allows us to generate new samples reproducing some of the time-series characteristics

of the original. In the case of returns, the series are known to exhibit both short-term

autocorrelation, regime shifts and possibly long memory features.

The amplitude of returns below the Quantile estimations can also be considered as a use-

ful evaluation criterion, it can be evaluated thanks to Exception Magnitude test (Berkowitz,

2001). In addition, if a Quantile model is correct, the past Quantile estimations should not

allow us to forecast future VaR violations, this property can be tested via the Dynamic

Quantile test (Engle and Manganelli, 2004). Under specific assumptions the correct proper-

ties of returns exceeding the Quantile estimation can be tested using Saddlepoint Technique

(Wong, 2008). We detail hereafter this traditional and recent test of extremal risk measures.

For most of these tests, the exception indicator variable associated to the ex post obser-

vation of a α-VaR violation at the time t, denoted It(α), is defined such as:

It(α) =





1 if rt < −V aRα,t−1

0 otherwise,
(29)

where rt is the return at time t and V aRα,t−1 is the one-period VaR computed for the α-

Quantile at time t − 1.

The problem of VaR validity can therefore be tested, knowing the violation sequence of

It(α), for t = [1, . . . , T ], for a given α-Quantile.
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4.1 Unconditional and Conditional Exception Tests

The most frequently backtests of VaR models, based on the exception indicator, are the

Unconditional and Conditional tests. These VaR tests cover Unconditional Coverage Test

(Kupiec, 1995), the Independence test and the Conditional Coverage test (Christoffersen,

1998). The Conditional Coverage test combines the Unconditional Coverage test and the

Independence test.

An Unconditional Coverage Test (Kupiec, 1995)

The Unconditional Coverage test of VaR estimates is a count of violations over the entire

period (an exception occurs when the ex post return is below the opposite of the ex ante

VaR): for a percentage of exceptions (i.e. coverage rate) of α-percent, the ex ante VaR is

correct if the observed violation frequency is equal to α-percent.

The Unconditional Coverage test of the exceptions (i.e. E[It(α)] = α) can be determined

by the following test statistic (Kupiec, 1995; Escanciano and Olmo, 2010), with the previous

notations:

K = T−1/2

T∑

t=1

[It(α) − α] , (30)

This statistic is asymptotically normal N(0, α(1 − α)) under the independence hypothesis.

Kupiec (1995) and Christoffersen (1998) show that if the VaR model is well specified

then the exceptions occurred, can also be modelled as independent draws from a binomial

distribution with a probability of occurrence equal to α-percent. The Likelihood Ratio

statistic is therefore:

LRuc = 2{log[α̂NI (1 − α̂T−NI )] − log[αNI (1 − αT−NI )]}, (31)

where T is the number of observations, NI = T × E [It(α)] is the number of exceptions and

α̂ = NI/T is the unconditional coverage.

With the hypothesis of α̂ = α, the Likelihood Ratio LRuc has an asymptotic distribution

such as:

LRuc ∼> χ2(1), (32)

where χ2(n) stands for the Chi-square distribution with n degree of freedom.
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Escanciano and Olmo (2010) alternatively approximate the critical values of the Uncon-

ditional test by using subsampling methodology. They show that the Unconditional VaR

backtest is affected by a model misspecification. Thus, they propose to use robust sub-

sampling techniques to approximate the true sampling distribution of this test. They have

shown that although the risk estimation can be diversified by choosing a large in-sample size

relative to out-of-sample and the risk associated to the model cannot be diversified using

subsampling.

The critical values of the test is computed with the assistance of the subsampling method-

ology. Resampling methods from iid sequences have been used extensively in the literature

on Quantile regression models ( e.g. Hahn, 1995; Horowitz, 1998; He and Hu, 2002). The

subsampling methodology to approximate the critical values of tests is based on K. Hence-

forth, we use GK(x) denotes the Cumulative Distribution Function of the test statistic given

by (with the previous notations):

GK(x) = Prob(K ≤ x), (33)

for any x ∈ IR.

Let Kb,t = K(rt, rt+1, · · · , rt+b−1), with t = [1, 2, · · · , T − b + 1], be the test statistic

computed with the subsample (rt, rt+1, · · · , rt+b−1) of size b. Hence, Escanciano and Olmo

(2010) approximate the sampling distribution GK(x) using the distribution of the values of

Kb,t computed over the (T−b+1) different consecutive subsamples of size b. This subsampling

distribution is defined by (with the previous notations):

GKb
(x) = (T − b + 1)−1

T−b+1∑

t=1

1I{Kb,t≤x}. (34)

The (1 − τ) − th sample Quantile of GKb
(x), is given by:

cKb,1−τ = Inf
x∈IR

{x| GKb
(x) ≥ 1 − τ} . (35)

We also complement the simple bootstrap results of Escanciano and Olmo (2010) for the

test using alternative resampling techniques (surrogate method, see Schreiber, 1998) aiming

to keep some of the return and volatility dependence structure. The surrogate method, on

contrario to the bootstrap method, explicitly keeps the time-patterns for the returns along
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a process of constrained randomization, which is basically based on a re-shuffling of the

original return data. The artificial series are generated by reproducing some of the main

time-series characteristics of the original one. We first randomly re-order, several times, the

original series of returns, in order to delete all potential time-structure dependences, while

keeping intact the unconditional distribution of the series and the VaR level. This means that

compared to the bootstrap method for which data can be drawn several times, each data is

only used once with the surrogate method. Secondly, on the new disorganized artificial series,

we implement random pairwise permutations until the characteristics of the new series are

similar to the original one (short-term autoregressivity, long memory, structural breaks,. . . ).

More precisely, we apply three tests in order to compare their characteristics to the ones

of the original series. A short-term autoregressivity test (measuring by the first autocor-

relation coefficient of returns and squared returns, see Ljung and Box, 1978 and McLeod

and Li, 1983), a long memory one (measuring by the scaling exponent obtained by the De-

trended Fluctuation Analysis, see Kantelhardt et al., 2001) and one for breaks (see Inclan

and Tiao, 1994). The final surrogate series dataset consists only of series which share the

same first autocorrelation coefficients for returns and squared returns (+/-10%), the same

scaling exponent (+/-10%) and the same number of detected breaks.

An Independence Test (Christoffersen, 1998)

The independence hypothesis is associated to the idea that if the VaR model is correct

then violations associated to VaR forecasting should be independently distributed, it is also

called independence of exceptions hypothesis. Actually, this test is to avoid clusters of VaR

violations. Thus, past VaR violations should not allow us to forecast future VaR violations.

This test detects the serial independence in the VaR forecast model. VaR violations

observed at two different dates for the same coverage rate must be independently distributed.

Christoffersen (1998) suggests that the process of It(α) violations is modelled with a Markov

chain with the following transition probabilities matrix:

Π =



 π00 π01

π10 π11



 , (36)

where πij = Prob [It(α) = j|It−1(α) = i], with j = {0, 1} and i = {0, 1}.
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The Likelihood Ratio for the test is:

LRind = 2[log L(π01, π11) − log L(π, π)], (37)

where:

L(π01, π11) = (1 − π01)
T00 πT01

01 (1 − π11)
T10 πT11

11 ,

and:

L(π, π) = (1 − π)T00+T10 πT01+T11 ,

with Tij the number of observations in the state j for the current period and at state i for

the previous period, π01 = T01/(T00 + T01), π11 = T11/(T10 + T11) and π = (T01 + T11)/T .

The function L(π01, π11) is thus the likelihood under the hypothesis of the first-order

Markov dependence, and L(π, π) is the likelihood under the hypothesis of independence

(π01 = π11 = π).

As shown in Christoffersen (1998), LRind has an asymptotic distribution such as (with the

previous notations):

LRind ∼> χ2(1). (38)

Since for Bernoulli random variables serial independence is equivalent to serial uncorrela-

tion, it is also possible to build a test based on the autocovariances (Candelon et al., 2011;

Escanciano and Olmo, 2010; Hurlin and Tokpavi, 2007 and 2008). The proper marginal test

of independence is based on (with the previous notations):

ζj = (T − j)−1/2

T∑

t=j+1

{It(α) − ET [It(α)]} {It−j(α) − ET [It−j(α)]} , (39)

with:

ET [It(α)] = (T − j)−1

{
T∑

t=j+1

It(α)

}
.

If Gζ(x) denotes the Cumulative Distribution Function of the test statistic, then (with the

previous notations):

Gζ(x) = Prob(ζ ≤ x), (40)

for any x ∈ IR.
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If ζb,t = ζ(rt, rt+1, · · · , rt+b−1), t = [1, 2, · · · , T − b + 1], be the test statistic computed

with the subsample (rt, rt+1, · · · , rt+b−1) of size b, the subsampling distribution (based on

bootstrap or surrogate method) is defined by (with the previous notations):

Gζb
(x) = (T − b + 1)−1

T−b+1∑

t=1

1I{ζb,t≤x}, (41)

and the (1 − τ)-th sample Quantile of Gζb
(x), cζb,1−τ , is given by:

cζb,1−τ = Inf
x∈IR

{x| Gζb
(x) ≥ 1 − τ} . (42)

A Conditional Coverage Test (Christoffersen, 1998)

The Conditional Coverage test, used hereafter, detects at the same time the Independence

and Unconditional Coverage tests. This test detects at the same time the serial independence

in the VaR forecast model and if the percentage of VaR forecasting violations can be judged

different of α-percent. This test of conditional coverage is proposed by Christoffersen (1998).

In this case, if the VaR estimates have a correct conditional coverage, the exception

variable must exhibit both correct unconditional coverage and serial independence. The

Conditional Coverage test (LRcc) is therefore a joint test of these properties and the relevant

statistic is (with the previous notations):

LRcc = LRuc + LRind. (43)

As shown by Christoffersen (1998), LRcc has an asymptotic i.i.d. distribution such as (with

the previous notations):

LRcc ∼> χ2(2). (44)

4.2 An Exception Magnitude Test (Berkowitz, 2001)

The main idea of this test is the magnitude of VaR forecasting violations (exceptions) should

be of primary interest to the various users of VaR models (Berkowitz, 2001; Ferreira and

Lopez, 2005). Actually, it is useful for investor to investigate the amplitude of returns below

the VaR.
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In the same way as the LRdist test, Berkowitz (2001) transforms the empirical series into

r̆t series. The r̆t values are then compared to the normal random variables with the desired

coverage level of the VaR estimates.

If the VaR model associated to the probability α generating the empirical Quantiles is

correct, the RG
t (α) series, defined by equation (45), should be identically distributed with

the unconditional mean and the standard deviation (0,1) such as:

RG
t (α) =





r̆t if r̆t < Φ−1(α)

0 otherwise,
(45)

where Φ(.) is the standard normal Cumulative Distribution Function.

Finally, the corresponding test statistic is (with the previous notations):

LRmag = 2[Lmag(µ, σ) − Lmag(0, 1)], (46)

where:

Lmag(µ, σ) =
∑T

t=1 log {1 − Φ[(Φ−1(α) − µ)σ−1]} 1I{RG
t (α)=0}

+
∑T

t=1{−(1/2) log(2πσ2) − (RG
t (α) − µ)2(2σ2)−1

− log[Φ((Φ−1(α) − µ)σ−1]}1{RG
t (α) �=0},

with 1I{.} the indicator function.

As shown in Berkowitz (2001), LRmag is thus asymptotically distributed such as (with

the previous notations):

LRmag ∼> χ2(2). (47)

4.3 A Multivariate Portmanteau Test (Hurlin and Tokpavi, 2007)

Hurlin and Tokpavi (2007) propose a multivariate portmanteau test of absence of autocorre-

lation of violations. The main idea consists in testing the validity of the VaR determination

model for a finite sample considering several percentage of violations (coverage rates). Thus,

this test exploits a larger information set than those generally used in tests of the Event Prob-

ability Forecast Evaluation category, without the drawbacks of tests based on the assessment

of return density.
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For this test, suppose ht(α) is associated to the value (1− α) in case of violations and α

otherwise:

ht(α) =





1 − α if rt < −V aRα,t−1

−α otherwise,
(48)

which can be written such as (with the previous notations):

ht(α) = It (α) − α. (49)

Let Π = {π1, . . . , πm} ⊂ [0, 1] be a discrete set of m different coverage rates. Let Ht =

[ht(π1), ht(π2), . . . , ht(πm)]′ the vector of dimension (m×1) grouping the violation sequences

associated to these m coverage rates at time t. The conditional efficiency hypothesis for the

vectorial process is then:

Cov(Ht, Ht−l) = E[Ht H ′
t−l]. (50)

The test consists in the joint nullity of the autocorrelations order 1 to T for the vector

Ht. Formally, we have:

H0 : E[ht(πi)ht−l(πj)] = 0, (51)

for the lag l, with l = [1, . . . , T ] and the coverage rates (πi, πj) ∈ Π.

For the test, Hurlin and Tokpavi (2007) use a multivariate Portmanteau statistics (Hosk-

ing, 1980). If Ωl is the matrix of empirical covariances associated to vector Ht such as (with

the previous notations):

Ωl =
T∑

t=l+1

Ht H ′
t−l, (52)

for the set of lag l = [1, . . . , T ].

The statistic for the test, Qm(T ), is given by:

Qm(T ) = T 2

T∑

l=1

(T − l)−1Diag(Ω
′

lΩ
−1
0 ΩlΩ

−1
0 )

′

1. (53)

As shown in Hurlin and Tokpavi (2007), under the null hypothesis of absence of auto-

correlation in the vector Ht, Qm(T ) is thus asymptotically distributed such as (with the

previous notations):

Qm(T ) ∼> χ2(Tm2). (54)

26



4.4 Generalized Method of Moment Duration-based Tests (Can-

delon et al., 2011)

The Generalized Method of Moment (GMM) Duration-based tests, proposed by Candelon

et al. (2011), analyze previous VaR forecast tests (Unconditional, Independence and Condi-

tional Coverage Test) as an expression of simple moment conditions, within the well-known

GMM framework, these tests extend the framework proposed by Bontemps and Meddahi

(2005), and Bontemps (2008).

The GMM Duration Unconditional, Independence and Conditional Coverage tests objec-

tive are to choose appropriated moments to respectively verify whether: the VaR observed

violation frequency is equal to α-percent, violations associated to the VaR forecasting are

independently distributed (testing the hypothesis that duration follows a geometric distrib-

ution) and whether the “Exception” and Independence criteria are both respected.

The Generalized Method of Moment (GMM) Duration-based Tests proposed by Candelon

et al. (2011) consist in using a GMM framework in order to test if durations of VaR violations

are geometrically distributed. This test analyses previous VaR forecast tests (Unconditional,

Independence and Conditional Coverage Test) as an expression of simple moment conditions,

within the well-known GMM framework, it extends the framework proposed by Bontemps

and Meddahi (2005) and Bontemps (2008).

The objective is to choose the appropriated moments to know whether their empirical ex-

pectations are close to 0 or not.

The Generalized Method of Moment (GMM) Duration-based Tests proposed by Cande-

lon et al. (2011) analyses VaR forecast tests as an expression of simple moment conditions,

which can be tested within the well-known GMM framework. This test extends the frame-

work proposed by Bontemps and Meddahi (2005) and Bontemps (2008), and consists in

using a GMM framework in order to test if durations of VaR violations are geometrically

distributed. The objective is to choose the appropriated moments to know whether their

empirical expectations are close to 0 or not.

A GMM Duration-based Conditional Coverage Test (Candelon et al., 2011)

This test analyzes Conditional Coverage VaR forecast test as an expression of simple

moment conditions, within the well-known GMM framework. The objective is to choose the
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appropriate moments to know whether their empirical expectations are close to 0 or not.

For a given model and a fixed coverage rate α, we consider a sequence of NI durations,

denoted dα,i for i = [1, · · · , NI ], observed between two successive violations associated to the

α% VaR forecasts:

d∗
α,i = tαi − tαi−1, (55)

with tαi is the date of the ith violation for the level α.

Under the conditional coverage assumption, the duration d∗
α,i, for i = [1, · · · , NI ], are

i.i.d. and has a geometrical distribution with a success probability equals to the coverage

rate α.

Candelon et al. (2011) define a sequence of moment conditions. M(d∗
α,i) is a (p×1) vector,

whose p components are the orthonormal polynomials corresponding to the duration at the

level α. p is the number of moment conditions (p > 1). These polynomials are a particular

case of the Meixner orthonormal polynomials associated to a Pascal (negative Binomial)

distribution. The components of M(d∗
α,i) are denoted Mj(d

∗
α,i) such as, for j = [1, . . . , p]:

Mj+1(d
∗
α,i) =

[
(1 − α)(2j + 1) + α(j − d∗

α,i + 1)
] [

(j + 1)(1 − α)1/2
]−1

×Mj(d
∗
α,i) − j(j + 1)−1Mj−1(d

∗
α,i),

(56)

with M1(d
∗
α,i) = 0 and M0(d

∗
α,i) = 1.

The null hypothesis of Conditional Coverage (CC) test can be expressed as:





H0 : E[Mj(d

∗
α,i)] = 0

H1 : E[Mj(d
∗
α,i)] �= 0.

(57)

As shown in Candelon et al. (2011), Mj(d
α
i ) is thus asymptotically distributed such as

(with the previous notations):

(
N−1/2

N∑

i=1

Mj(d
∗
α,i)

)2

d−→
N→∞

χ2(1), (58)

for j = [1, . . . , p].

In an i.i.d. context, these moments are asymptotically independent with a unit variance

and the Conditional Coverage (CC) test statistic is (with the previous notations):

JCC(p) =

(
N−1/2

N∑

i=1

M(d∗
α,i)

)′ (
N−1/2

N∑

i=1

M(d∗
α,i)

)
d−→

N→∞
χ2(p), (59)
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with p ∈ IN, the number of orthonormal polynomials used as moment conditions.

A GMM Duration-based Unconditional Coverage Test (Candelon et al., 2011)

This test analyzes Unconditional Coverage VaR forecast test as an expression of simple

moment conditions, within the well-known GMM framework. The objective is to choose

appropriate moments to know whether their empirical expectations are close to 0 or not.

A GMM Duration-based Unconditional Coverage test is obtained as a special case of the

conditional test by considering only the first orthonormal polynomial. This means, when

M(d∗
α,i) = M1(d

∗
α,i). The statistic for Unconditional Coverage (UC) test, denoted JUC , is

equivalent to JCC(p) with p = 1 (with the previous notations):

JUC =

(
N−1/2

N∑

i=1

M1(d
∗
α,i)

)
d−→

N→∞
χ2(1). (60)

A GMM Duration-based Independence Test (Candelon et al., 2011)

Candelon et al. (2011) propose a separate test for the independence hypothesis. It

consists in testing the hypothesis of a geometric distribution (implying the absence of de-

pendence) with a success probability equal to π; where parameter π can be either fixed a

priori, or estimated. It is not necessarily equal to the coverage rate α.

The statistic for Independence (Ind) test, denoted JInd, is defined such as (with the

previous notations):

JInd(p) =

(
N−1/2

N∑

i=1

M(dπ,i)

)′ (
N−1/2

N∑

i=1

M(dπ,i)

)
d−→

N→∞
χ2(p), (61)

where M(dπ,i) denotes a (p× 1) vector whose components are the orthonormal polynomials

Mj(dπ,i) for j = [1, . . . , p], evaluated for a success probability equals to π.

4.5 A Dynamic Quantile Test (Engle and Manganelli, 2004)

The Dynamic Quantile (DQ) test is proposed by Engle and Manganelli (2004). This test is

associated to the idea that if the VaR model is correct then past VaR violations should not

allow us to forecast future VaR violations. Indeed, this model should produce a sequence of

unbiased and uncorrelated indicator variables ht(α). On the contrary to most of previous
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tests, this test is valid using small VaR sample.

Consider the following linear regression model:

ht(α) = δ0 +
L∑

l=1

δlht−l(α) + δL+1V aRα,t−1 + ǫt, (62)

where ht(α) is associated to the value (1 − α) in case of violations and (−α) otherwise and

the δl, with l = [0, . . . , L + 1], are real coefficients.

Under the null hypothesis, all coefficients in the regression (62) of the exception indicator

variables on its past values and on current VaR estimate, as well as the intercepts are zero.

The null hypothesis test of conditional efficiency corresponds to testing the joint nullity of

coefficients δl.

4.6 A Saddlepoint Technique for an Expected Shortfall Test (Wong,

2008)

The main intuition of the Saddlepoint Technique test for ES (Wong, 2008) is to approximate

the tail of the density of the return. So that, under fairly general conditions and under a

standard normal null hypothesis, a full expansion can locally approximate the density of the

Expected Shortfall (Daniels, 1954), which can be compared to the observed value.

Actually, Edgeworth expansions are frequently used to approximate distributions that

lack a convenient closed-form solution but for which moments are available. It is widely

recognized that this classic technique works well in the center of a distribution, but can

perform very badly in the tails. Indeed, it often produces negative values for densities in the

tails. Saddlepoint expansion can be understood as a refinement of Edgeworth expansion on

the tails.

Wong (2008) proposes the Saddlepoint Technique (Daniels, 1954 and 1987; Lugannani and

Rice, 1980) to derive the small sample asymptotic distribution for the sample Expected

Shortfall (ES) under a standard normal null hypothesis.

Let rt be the portfolio return, suppose that rt has a standard normal distribution with a

Cumulative Distribution Function (CDF) and a Probability Density Function (PDF) denoted

respectively by Φ(.) and φ(.). Define a random variable Rt such that for a given portfolio
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return r:

Prob(Rt ≤ r) = Prob(rt ≤ r|rt ≤ −V aR
Φ(rt)
α,t ),

= Prob(rt ≤ r)/Prob(rt ≤ −V aR
Φ(rt)
α,t ),

(63)

where r ≤ −V aR
Φ(rt)
α,t , V aR

Φ(rt)
α,t = −Φ−1(α), and V aRΦ(rt) being VaR level specifically

assuming a Gaussian distribution of the returns.

Thus Rt refers to the portfolio return conditional on rt ≤ −V aR
Φ(rt)
α,t and the theoretical

Expected Shortfall of rt at confidence level 1 − α is given by −E(Rt). Given a sample

{R1, R2, . . . , RT} of exceedances below −V aR
Φ(rt)
α,t , the estimated Expected Shortfall can be

written such as:

ESα,T = −T−1

T∑

t=1

Rt. (64)

The PDF of Rt is given by f(Rt) = α−1φ(rt) and the corresponding CDF by F (Rt) =

α−1Φ(rt), where Rt ∈] −∞,−V aR
Φ(rt)
α,t ]. Therefore, the Moment Generating Function of Rt

is then given by:

M(Rt) = α−1exp(R2
t /2) × Φ(−V aRα,t − Rt), (65)

and its derivatives with respect to Rt are given by:





M (1)(Rt) = Rt × M(Rt) − exp(−V aRα,t × Rt) × α−1φ(−V aRα,t)

M (2)(Rt) = Rt × M (1)(Rt) + M(Rt) − exp(−V aRα,t × Rt) × (−V aRα,t)

×α−1φ(−V aRα,t)
...

M (n)(Rt) = Rt × M (n−1)(Rt) + (n − 1)M (n−2)(Rt) − exp(−V aRα,t × Rt)

×(−V aRα,t)
n−1 × α−1φ(−V aRα,t),

(66)

where M (n) is the order n Moment Generating Function derivative.

In order to define the null and the alternative hypothesis of the test, we need to define the

mean and variance of Rt. Posing Rt = 0 in M (1)(Rt) and M (2)(Rt), it will respectively give

E(Rt) and E(R2
t ). The variance is then given by: M (2)(0)− [M (1)(0)]2. Assuming a Gaussian

distribution, the mean of Rt, which is the opposite of ESα,T , is then given by (Wong, 2008):

µ
Φ(Rt)
t = −α−1φ(−V aR

Φ(rt)
α,T ), (67)

and can thus be expressed such as:

µ
Φ(Rt)
t = −

(
α
√

2π
)−1

exp[−(V aR
Φ(rt)
α,T )2/2]. (68)
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Its variance is:

σ2
Rt

= 1 + α−1V aR
Φ(rt)
α,T φ(−V aR

Φ(rt)
α,T ) − (µ

Φ(Rt)
t )2,

= 1 +
(
α
√

2π
)−1

V aR
Φ(rt)
α,T exp[−(V aR

Φ(rt)
α,T )2/2] − (µ

Φ(Rt)
t )2.

(69)

Following the central limit theorem,
√

Tσ−1
Rt

(µ̂
G(Rt)
t − µ

Φ(Rt)
t ) is asymptotically standard

normal, with µ̂
G(Rt)
t the mean of Rt. This asymptotic result is hardly valid for sample sizes

one would encounter in practice. For this reason, Wong (2008) uses the Lugannani and Rice

(1980) formula derived by the saddlepoint technique in order to provide an accurate method

to compute under the null hypothesis the required p-value for the backtest of ES. The null

and alternative hypotheses can be thus written as:





H0 : ESα,T = −α−1φ(−V aR

Φ(rt)
α,T )

H1 : ESα,T > −α−1φ(−V aR
Φ(rt)
α,T ).

(70)

The p-value of the previous hypothesis test is given by the Lugannani and Rice (1980)

formula as:

p-value = Prob(µ̂
G(Rt)
t ≤ µ̂t), (71)

where µ̂t is the mean of observed return exceedances below the −V aRα,t.

The p-value is determined by the tail probability of being less than or equal to the

observed sample mean of rt, denoted µ̂t given by:

Prob(µ̂
G(Rt)
t ≤ µ̂t) =





Φ(ς) − φ(ς)

[
1
η
− 1

ς
+ O(T−3/2)

]
for µ̂t < −V aRα,t

1 for µ̂t ≥ −V aRα,t,
(72)

with η = ̟
√

TK(2)(̟), ς = ̟|̟|−1
√

2T [̟µ̂t − K(̟)], O(.) describes the limiting order

function and K(̟) the Cumulant Generating Function of ̟ defined by (with the previous

notations):

K(̟) = ln[M(̟)], (73)

where ̟ is the estimated saddlepoint with the equality K(1)(̟) = µ̂t being satisfied and:

K(1)(̟) = M (1)(̟)/M(̟). (74)
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5 Gauging the DARE Risk Measure Accuracy

For investigating the efficiency of the DARE approach for VaR and Expected Shortfall

computations, we apply the method to the French Stock Market data and compare it to

established methods. We use daily prices from 9th July 1987 until 18th March 2009 of the

CAC40 Index. This period delivers 5,659 daily returns. We use a moving window of four

years (1,044 daily returns) to re-estimate dynamically parameters for the various methods.

Forecasted VaR and ES were computed for each method for the final 4,615 days (about 18

years). This comparison considers daily estimation of the 95% and 99% conditional VaR

and ES. These Quantiles were chosen because they are commonly considered and controlled

by financial firms and regulators. In the first part of this analysis we use an naive equally

weighted DARE Approach, giving the same weights to CARE models (denoted EW DARE).

Then we illustrate the use of optimized weighting function according to the DARE ap-

proach. The optimization is based on the forecast combination of the Mallows Model Av-

eraging method (Mallows, 1973; Hansen, 2008). The goal is to obtain the set of weights

that minimizes the in-sample Mean-Squared Error (MSE) over the set of feasible forecast

combinations. We thus select forecast weights by minimizing a Mallows criterion, which is

an asymptotically unbiased estimate of the MSE.

Formally, let wk be a weight assigned to the kth forecast, with k = [1, 2, . . . , K]; K approxi-

mating models and associated forecasts. Define the vectors W = (w1, w2, . . . , wK) of weights

and VaRα,t = (V aR
(1)
α,t, V aR

(2)
α,t, . . . , V aR

(K)
α,t ) of α-VaR at time t. The combination forecast

of the coverage rate (αW
t ) is (with the previous notations):

α̂W
t+1 = E[ÎW

t+1(α)], (75)

where the exception indicator variable associated to the ex post observation of a forecast

α-VaR violation at the time t + 1 is defined such as:

IW
t+1(α) =





1 if rt+1 < −W′ VaRα,t

0 otherwise.
(76)

Hansen (2008) proposes to select the weights by minimizing the Penalized Sum of Squared

Residuals (PSSR, known as the Mallows criterion), such as:

Ct(W) = (α − α̂W
t )2 + 2K

K∑

k=1

wks
2
k, (77)

33



where s2
k = (t − K)−1(α − α̂W

t )2 is an estimate of error variance for a model k.

As described in Timmermann (2006), it may be prudent to minimize relation (77) subject

to the convexity constraints (such as: 0 ≤ wk ≤ 1) and additivity constraint (i.e.:
∑K

k=1 wk =

1). The definition of the Mallows weight vector is then:

Ŵ∗ = ArgMin
wk∈[0;1],

�K
k=1 wk=1

{Ct(W)} . (78)

This optimization procedure will be used hereafter for the computation of the so-called

“Hansen-Mallows Optimized-weight DARE-VaR for Value-at-Risk” and “Hansen-Mallows

Optimized-weight DARE-ES for Expected Shortfall”.

Although there are many VaR estimation methods in use, we restrict our comparison in

the following to commonly used benchmark methods. We first consider the most widely used

non-parametric method: the historical approach. It requires no distributional assumptions

and estimates the VaR as the Quantile of the empirical distribution of historical returns from

a moving window.

Parametric approaches, which are then estimated, assume a particular shape of return

distribution as Gaussian or t-Student distribution. We respectively consider the Normal,

the RiskMetrics, the GARCH(1,1) VaR and ES. All these parametric methods also assume

a Gaussian distribution by using various conditional volatility forecasts: respectively the

empirical volatility, the RiskMetrics correlation method based on an Exponential Moving

Average estimation, GARCH(1,1) model (the use of the (1,1) specification was based on the

general popularity of this order for GARCH models). We also estimate VaR and ES with the

NIG and the Student’s-t distribution optimizing parameters by using maximum likelihood.

- Please insert Figures 1 and 2 somewhere here -

CAViaR models are presented as benchmark dynamic methods. They are estimated by

using the Engle and Manganelli’s procedure (2004) (see section 2). We finally compute the

DARE approach by aggregating CARE models based on CAViaR models.

As mentioned in the previous section, the DARE approach can be used to estimate the VaR

and ES. The relation between VaR and ES in the DARE approach is defined by the equation

(25). To be sure to have a good estimation of ES using the DARE approach we have first

34



to test VaR based on it. We check first whether the VaR using the DARE approach is well

specified (see table 1), then we check that the aggregation to compute the ES gives satisfying

results (see table 2).

- Please insert Table 1 somewhere here -

Table 1 presents the main test results of VaR validation described in the literature (see

the previous section for a detailed description of these tests). For each method and for

two different levels of probability (95% and 99%) defining extreme risk measures, this table

presents the probability of failing to reject the null hypothesis of a “good” VaR measure,

according to the properties studied for each specific test.

For example, according to the “Exception Frequency” test (i.e. the Unconditional Cov-

erage test by Kupiec, 1995): the Historical, Gaussian, NIG, RiskMetrics and CAViaR Asym-

metric Slope models are not suitable for estimating the CAC 40 95% VaR at a 1% significance

level. Following the same argument, the Historical, Gaussian, NIG, RiskMetrics, Student,

Gaussian GARCH and CAViaR Asymmetric Slope models are not appropriate for estimating

the CAC40 99% VaR. The Unconditional test performed, using the GMM duration-based

method (Candelon et al., 2011), leads to the same conclusion.

We notice that when naively combining all methods (Naive Mean of VaR), this criterion

is then respected. Moreover, aggregating CAViaR methods based on CARE models in the

Naive Equal-weight DARE approach, allows us to respect this test (the hypothesis of a

“good” VaR cannot anymore be rejected).

We also observe that the Independence Violation criterion (i.e. the Independence test

by Christoffersen, 1998) is not rejected whatever the VaR method we choose to estimate the

95% VaR. However, this criterion is rejected for most of the methods used to estimate the

99% VaR at a significance level of 1% (i.e. Historical, Gaussian, Student, NIG, RiskMetrics

or CAViaR Adaptive). Only extreme non-expected returns seem to be dependent. Using

the subsampling approximation technique of Escanciano and Olmo (2010), the independent

criterion cannot be rejected on this data sample. The framework of the GMM duration

based test (Candelon et al., 2011), applied to the independence criterion, seems much more

powerful and leads to a more contrasted analysis: Historical, Gaussian, Student, NIG and
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Adaptive CAViaR are then considered to be inappropriate for VaR estimation methods at a

significance level of 1%.

The “Conditional/Unconditional” criterion (i.e. the Conditional Coverage test by Christof-

fersen, 1998) combines the “Independence Violation” and “Exception Frequency” criteria.

According to this test, the results are similar to those of the “Exception Frequency” Test.

The “Dynamic Quantile” test (Engle and Manganelli, 2004) is associated to the idea that

if the VaR model is correct then past VaR violations should not allow us to forecast future

VaR violations. This test is not so restrictive and it rejects only the Historical, Gaussian and

NIG VaR at 95% for a significance level of 1%. At the opposite, the “Exception Magnitude”

test (Berkowitz, 2001), that investigates the amplitude of returns below the VaR, is very

difficult to pass since it rejects most of the VaR estimation methods. VaR violations seem

therefore to be particularly important in size on our data sample.

No benchmark method can be considered as a “good” measure for every test even if

some measures are definitively not appropriate. Thus, according to these tests on this data

sample, the “worst” methods are the Historical and Normal VaR and the “best” measures

seem to be the Naive Equal-weight DARE approach for VaR, CAViaR Indirect GARCH(1,1)

and the naive aggregation (Naive Mean of VaR).

The aggregation of VaR approaches seem to be a more robust approach than the classical

VaR computations. Thus, naively mixing these different benchmark methods does not allow

us to respect all criteria, but test results are more stable to the variation of the probabil-

ity level associated to the VaR. Moreover, using the Naive Equal-weight DARE approach

respects most of these tests.

In the proposed Naive Equal-weight DARE approach, the VaR seems to be well speci-

fied. We also have checked with the same data set that their aggregation to compute the

conditional VaR gives satisfying results. The results are presented in table 2.

- Please insert Table 2 somewhere here -

These complementary tests corroborate the previous results. Table 2 allows us to illus-

trate that the naive aggregation of 99% ES delivers good and stable results according to
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the criteria tested. Moreover, it indicates that the risk model is very important for the

estimation of the ES associated to small probabilities (i.e. 99%). Actually, even a simple

naive aggregation leads to diversify the risk model and improve the extreme risk measure

estimation. The Naive Equal-weight DARE 99% ES gives the best results (according to the

criteria tested) and it is the most stable estimation (the stability was checked of performing

the same evaluation tests on several subsampling periods). The Naive Equal-weight DARE

approach for ES seems to be particularly attractive for extreme probabilities associated to

the ES.

- Please insert Table 3 and Table 4 somewhere here -

After having investigate the interest of the DARE approach using an equiprobable weights

for the CARE ES and VaR models, we illustrate the use of this approach with a dynamically

optimized weight function respecting the criteria exposed in section 3. In this illustration,

the weights were ex ante determined by the minimization of spread between the observed

and the theoretical level of risk (see Hansen, 2008). Then we have evaluated this DARE

Approach (denoted Hansen DARE) thanks to the tests exposed above. This dynamic DARE

approach is compared to the Naive Equal-weight DARE approach and the naive mean of

benchmark models. This approach gives comparable results than the Naive Equal-weight

DARE approach but seem better than the naive mean.

In conclusion, the DARE approach provides a unified framework to estimate extreme

risk measures. The DARE VaR and ES respect most of the Quantile evaluation tests for the

different levels of probability studied in this article. This approach can be used to compute

extreme measures associated to usual levels of probability. But as an aggregation, it allows

us to benefit from risk model diversification, which seems to be particularly efficient for the

estimation of extreme Quantiles (i.e. 99%).

6 Conclusion

In this paper, we present a new modeling approach for Value-at-Risk and Expected

Shortfall, called Dynamic AutoRegressive Expectiles (DARE). This approach is based on
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the aggregation of existing extremal risk models and allows us to diversify the risk model

associated to each model. Introducing conditional weighting functions to the risk models

aggregated into the DARE Approach allows us to select dynamically the more appropriate

Quantile models.

We show that the DARE methodology advantageously reveals an underlying structure in

data that can be used for risk measure computations. We also show, with different VaR and

ES specifications (Normal, Historical, RiskMetrics, t-Student, NIG, GARCH and CAViaR)

and various backtests (Conditional and Unconditional, Distributional Forecast, Duration-

based tests), that the DARE model is well adapted to the financial data. Indeed, the

aggregation of VaR approaches is more robust than the classical VaR and ES computations.

To illustrate the DARE approach, we have, first, supposed that the weights associated

to Quantile models are equally-weighted; we secondly show, with a grid of weights (defined

dynamically), that it was possible to improve the DARE approach estimator. However,

to exploit efficiently the aggregation of the Quantile models, it is necessary to define an

optimization criterion, which is independent from evaluation procedures. Determining and

comparing several weighting functions associated to the DARE approach can also be a natural

extension of this work.

Finally, the DARE approach, aggregating of several VaR measures, could have some

interest in further financial applications, such as stress test assessment or asset pricing.
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b
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c
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b
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c
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c
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d
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n
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c
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c
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d
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e
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Figure 1: 99% and 95% Value-at-Risk Forecasts

- 99% Value-at-Risk Level -
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- 95% Value-at-Risk Level -
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Note: DataStream; daily data from July 9th 1987 until March 18th 2009 of the CAC40 Index; computations
by the authors. This period contains 5,659 daily returns. We use a moving window of four years (1,044 daily
returns) to dynamically re-estimate parameters for the various methods. X-axis gives the Out-of-Sample
period and Y-axis gives the Negative returns, DARE-VaR, Historical-VaR and Normal-VaR.
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Figure 2: 99% and 95% Expected Shortfall Forecasts

- 99% Expected Shortfall Level -
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- 95% Expected Shortfall Level -
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Note: DataStream; daily data from July 9th 1987 until March 18th 2009 of the CAC40 Index; computations
by the authors. This period contains 5,659 daily returns. We use a moving window of four years (1,044 daily
returns) to dynamically re-estimate parameters for the various methods. X-axis gives the Out-of-Sample
period and Y-axis gives the Negative returns, DARE-VaR, Historical-VaR and Normal-VaR.
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Figure 3: 99% and 95% Value-at-Risk Forecasts

- 99% Value-at-Risk Level -
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- 95% Value-at-Risk Level -
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Note: DataStream; daily data from July 9th 1987 until March 18th 2009 of the CAC40 Index; computations
by the authors. This period contains 5,659 daily returns. We use a moving window of four years (1,044
daily returns) to dynamically re-estimate parameters for the various methods and another moving window
of four years (1,044 daily returns) to reestimate the optimized weighting function of the DARE approaches.
Forecasted VaR were computed for each method for the final 3,571 days (about 18 years). X-axis gives
the Out-of-Sample period and Y-axis gives the Negative returns, Hansen Optimized-weight DARE-VaR,
Historical-VaR and Normal-VaR.
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Figure 4: 99% and 95% Expected Shortfall Forecasts

- 99% Expected Shortfall Level -

07/95 06/96 05/97 04/98 03/99 01/00 12/00 11/01 10/02 09/03 08/04 07/05 06/06 05/07 04/08 03/09
−12.00%

−10.00%

−8.00% 

−6.00% 

−4.00% 

−2.00% 

  .00% 

 

 

- 95% Expected Shortfall Level -
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Note: DataStream; daily data from July 9th 1987 until March 18th 2009 of the CAC40 Index; computations
by the authors. This period contains 5,659 daily returns. We use a moving window of four years (1,044
daily returns) to dynamically re-estimate parameters for the various methods and another moving window
of four years (1,044 daily returns) to reestimate the optimized weighting function of the DARE approaches.
Forecasted ES were computed for each method for the final 3,571 days (about 18 years). X-axis gives
the Out-of-Sample period and Y-axis gives the Negative returns, Hansen Optimized-weight DARE-ES,
Historical-VaR and Normal-VaR.
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