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ABSTRACT
In higher education, predictive analytics can provide action-
able insights to diverse stakeholders such as administrators,
instructors, and students. Separate feature sets are typi-
cally used for different prediction tasks, e.g., student activ-
ity logs for predicting in-course performance and registrar
data for predicting long-term college success. However, lit-
tle is known about the overall utility of different data sources
across prediction tasks and the fairness of their predictions
with respect to different subpopulations. Using data from
over 2,000 college students at a large public university, we
examined the utility of institutional data, learning manage-
ment system (LMS) data, and survey data for accurately
and fairly predicting short-term and long-term student suc-
cess. We found that institutional data and LMS data both
have decent predictive power, but survey data shows very
little predictive utility. Combining institutional data with
LMS data leads to even higher accuracy than using either
alone. In terms of fairness, using institutional data con-
sistently underestimates historically disadvantaged student
subpopulations more than their peers, whereas LMS data
tend to overestimate some of these groups more often. Com-
bining the two data sources does not fully neutralize the bi-
ases and still leads to high rates of underestimation among
disadvantaged groups. Moreover, algorithmic biases affect
not only demographic minorities but also students with ac-
quired disadvantages. These analyses serve to inform more
cost-effective and equitable use of student data for predictive
analytics applications in higher education.
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1. INTRODUCTION
The most common application of learning analytics in higher
education is using predictive modeling to understand criti-
cal factors contributing to student success, or to identify
students who need support in a timely manner. Predictive
analytics have been used within a course [2] or while using
tutoring software [38]. They have also been used to op-
timize student success in the longer term, for example to
predict graduation rates [3] or to make course recommen-
dations [26]. Different data sources can be used to build
these predictive models, with varying trade-offs. For exam-
ple, when making predictions at the course level, log data
from learning management systems (LMS) are often used.
These systems allow for automated and scalable recording
of hundreds of learner actions in every single minute, but
they require robust and efficient data management systems.
When making longer-term predictions, on the other hand,
institutions can use data typically stored in student informa-
tion systems (SIS), including prior academic history, stan-
dardized test scores, and demographic information. While
this data source might be readily available to college admin-
istrators, it might be more difficult to access, due to ethical
concerns or logistic barriers, for individual instructors or re-
searchers trying to build such models for particular use cases.
In some cases, both data sources are further combined with
assessments or surveys that measure students’ metacognitive
abilities or other non-cognitive attributes that might predict
college success [35]. However, collecting and managing these
data is often costly for institutions if they are not already
doing so. Given all these trade-offs, it is necessary to exam-
ine the utility of different student data sources for building
predictive analytics-based solutions to guide instructors, ad-
ministrators and education policy makers on the costs and
benefits of utilizing different data sources.

To date, research that systematically compares data sources
and predictions is underrepresented in the literature [14].
To respond to this call for research, this study evaluates the
usefulness of three common student data sources for two
representative prediction tasks. These three data sources,
including institutional data, LMS data, and survey data,
are all widely used across research settings and have been
shown to predict various measures of college success. Given
the different use cases of short-term and long-term predic-
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tions as discussed above, we construct two success measures:
individual course grades (short-term success) and yearly av-
erage GPA (long-term success). The usefulness of each data
source is determined by its contribution to overall predic-
tion accuracy and to prediction fairness across student sub-
populations. The focus on fairness arises from the concern
that predictive models trained on the entire student pop-
ulation may perform systematically worse on selected sub-
populations than other others, which may have unintended
negative effects for vulnerable students [6]. For instance, if
models are less confident in identifying struggling students
among an already underrepresented group, this bias may
eventually amplify existing achievement gaps.

In short, our research aims to identify what combinations
of student data (a) more accurately predict different success
measures; and (b) more fairly predict these measures. The
remainder of this paper is organized as follows: Section 2
summarizes the related work on college success prediction
and fairness of predictive models; Section 3 describes the
data and methods we use to construct and evaluate predic-
tion models; Section 4 presents the results from various pre-
dictions; Section 5 reflects on the findings and discusses the
practical implications for stakeholders; Section 6 concludes
the study with limitations and future work.

2. RELATED WORK

2.1 Predicting College Success Using Student

Characteristics
Although college is a complicated ecosystem with numerous
factors shaping student outcomes, prior research has iden-
tified several groups of student characteristics across insti-
tutional data, LMS data, and survey data that consistently
predict commonly used measures of success.

2.1.1 Personal Background - Institutional Data
Student success in higher education is often stratified by
students’ demographic, socioeconomic and academic back-
ground prior to college experience. For example, college
graduation rates substantially differ by students’ race/ethnicity.
National data indicates that Hispanic students are 15% less
likely to graduate college within six years than their white
counterparts, and this gap is 25% between black and white
students [33]. Such inequalities are particularly pronounced
in STEM fields, where even more underrepresented students
drop out of their college careers [1]. Also, student perfor-
mance prior to entering college (e.g., on standardized tests)
has often been found to strongly predict college performance
across different subpopulations [9]. These overall trends sug-
gest that what happens before college remains predictive of
student success in higher education settings. Of course, this
could be due to a variety of factors, such student background
being correlated with patterns of historical and institution-
alized oppression as well as other barriers that students from
different backgrounds might face both before and during col-
lege.

2.1.2 Learning Behavior - LMS Data
In contrast to latent psychological states, learning behav-
ior is a more extrinsic and observable predictor of academic
success [7]. Behavioral patterns capture variations in col-
lege experience that may be orthogonal to students’ incom-

ing characteristics, allowing for insights into the mechanism
of academic success at a day-to-day granularity. With the
prevalence of digital learning platforms, learning behavior
can be authentically recorded in the form of clickstream
data. These time-stamped data record learner’s interactions
with LMSs. This allows researchers to create measures that
look into the “black box” of study behaviors [5]. For exam-
ple, how students allocate their study time is a consistent
predictor of performance. Those who have more regular en-
gagement patterns and who space out their study effort (in-
stead of cramming) are more likely to be high-achieving [27].
Similarly, students who strategically regulate their learning
effort (e.g., starting from exercise-oriented tactics and mov-
ing to other tactics based on encountered challenges) per-
form equally well but with less effort, compared to simply
hard-working students [23].

2.1.3 Non-Cognitive Abilities - Survey Data
There is emerging evidence that non-cognitive factors, such
as personality traits, task values and self-efficacy, are as-
sociated with positive academic outcomes even after con-
trolling for cognitive factors measured by intelligence tests
as well as various background characteristics [8]. Among
these factors, researchers seem to have reached consensus
that self-regulated learning skills are essential because un-
like in K-12 schooling, college students have the flexibility
as well as responsibility to actively and constantly moni-
tor, reflect on, and adjust their motivation, cognition, and
study behavior [37]. To better describe and measure a stu-
dent’s ability to regulate their learning process, [29] divided
it into three subcomponents with two cognitive components
(the use of cognitive strategies and the use of metacogni-
tive strategies) and one non-cognitive component (resource
management, including skills of time and study environment
management, effort regulation, peer learning, and help seek-
ing). A systematic literature review focused on online learn-
ing contexts found consistent evidence that resource man-
agement skills, especially time management skills and effort
regulation skills, are predictive of performance [10]. While
new technologies are creating novel measurement tools for
these intangible qualities, the “ground truth” mostly comes
from validated surveys.

2.2 Comparison of Different Data Sources
Previous work has examined combining various data sources
for predictive analytics in higher education. For example,
[2] combined institutional data, course performance data
and LMS data to predict students’ within-course success.
However, there has been little work comparing the impact
of various data sources on student success. [3] compared
the impact of different types of institutional variables, in-
cluding demographic variables, prior academic achievement,
student majors, and academic achievement in college courses
on predicting graduation and re-enrollment rates. [36] com-
pared the impact of virtual learning environment (VLE)
data, course assessment data, and a demographic variable
on predicting whether a student’s performance will drop in
a course and whether a student will pass or fail a course.
They generally found that using VLE data in conjunction
with assessment data was seemingly better than using ei-
ther alone. In what is perhaps the closest study to ours,
[35] compared the impact of learning behavioral features,
student background, and non-cognitive features measured
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by a socio-emotional skill assessment on predicting within-
course success.Our study differs from theirs in that we look
at long-term outcomes as well as short-term outcomes, we
analyze the fairness of predictive models, and we fit models
that span across several courses.

2.3 Fairness of Predictive Analytics in Educa-

tion
In recent years, the fairness and biases of machine learn-
ing algorithms and systems have developed into a focused
research area in the general machine learning research com-
munity1. Research efforts encompass developing statistical
measures of fairness, evaluating existing algorithms/systems,
and correcting for biases in algorithmic pipelines, among
others. As fairness is a concept rooted in a variety of disci-
plines, it has been a consensus that there is no single “cor-
rect” definition of fairness. Rather, what is fair is highly
dependent on the specific application scenarios [6]. As such,
contextualizing the fairness research in different fields is crit-
ical to improving real-world applications.

In earlier education research, there has been a focus on het-
erogeneous effects across student subpopulations in the con-
texts of testing [34], observational studies [39] and program
evaluation [31]. These earlier perspectives resonate with the
current theme of fairness, but as the adoption of predictive
analytics systems in education for high-stakes purposes has
a comparatively shorter history, formalized research on fair-
ness in such contexts has been somewhat limited. Among
the handful of empirical papers that have directly evaluated
this aspect of predictive analytics in education, [13] showed
through a simulation study that misspecified student models
in intelligent tutoring systems could leave “slow” learners at
lower mastery levels than“faster” learners; [16] examined the
ROC curves from MOOC dropout prediction models, and
identified significant gaps between gender groups through
slicing analysis; and [19] used college application materials
to predict on-time graduation and, employing the same slic-
ing analysis, concluded that their model could make fair
predictions across five sociodemographic groups.

As [6] points out, while the biases of predictive systems may
be attributed to unfair algorithms, they can also arise from
biased data which “reflect historical prejudices against cer-
tain social groups, prevailing cultural stereotypes, and ex-
isting demographic inequalities”. Therefore, unlike the pre-
vious studies described above, this paper examines fairness
as an attribute of data sources rather than of algorithms.
We look at fairness with respect to between-groups differ-
ences in three metrics: accuracy, false positive rate, and
false negative rate. These metrics are among the many fair-
ness metrics that have been proposed in the literature [6].
For example, having an equal false negative rate between
subgroups has been called “equality of opportunity” in the
context of giving everyone an equal opportunity to receive
a positive intervention (e.g., being part of the university’s
honor roll for having a high GPA) [17].

3. DATA AND METHODS

3.1 Data Sources

1https://facctconference.org/

Following Section 2.1, this study compares the three widely
available data sources in higher education settings: institu-
tional data, Canvas LMS log data, and survey data. Specif-
ically, we drew the sample of all students who enrolled and
received final grades in ten fully online, introductory STEM
courses taught from 2016 to 2018 at a large, public research
university in the United States. Six of the courses were
in public health while the remaining four were distributed
across biology, chemistry and physics. These courses were
the subject of a large research project, where our research
team administered a series of standard survey questions about
students’ motivation, self-regulation and other psychological
constructs before, during and/or after each course. There-
fore, we had valid survey data across multiple courses. Also,
looking at online courses ensured that LMS data can pro-
vide holistic representations of learning behavior. A total of
2,244 students were in the original dataset, and after data
cleaning as described below in Section 3.2, the final sam-
ple size was 2,093. Traditionally underrepresented groups in
STEM fields made up a large portion of the sample: 72%
were female, 48% came from low-income families, 54% were
first generation college students, 33% were underrepresented
minorities (URM)2, and 13% were transfer students.

3.2 Features and Outcomes
From each of the three data sources, we constructed a sep-
arate feature set in line with the literature. Table 1 gives a
summary of these features. Institutional features included
student demographics and academic achievement prior to
college. Click features were derived from the LMS data and
only included general measures of behavioral engagement to
accommodate the variances in course design. Specifically, for
each student in each course, we calculated the total number
of clicks and total time spent over the first half of the course
period. Time spent was calculated as the time lapse between
adjacent click events. For the last click event of a student
(with no subsequent event) or exceptionally lengthy lapses,
we set a heuristic value of 90 seconds. The click counts
and time spent were also broken down by categories, which
were defined based on the URLs that click events pointed
to, including “portal”, “tasks”, “content”, “communication”,
“performance” and “miscellaneous.” Restricting to the first
half of course period speaks to the scenario of early identi-
fication of at-risk students for instructors. Survey features
included four constructs of self-regulated learning skills and
self-efficacy [29] from pre-course surveys launched during the
first week of these courses. The completion rates of these
surveys ranged from 65% to 93% across the ten courses. All
survey items were adapted from Motivated Strategies for
Learning Questionnaire (MSLQ), a popular questionnaire to
measure self-regulation skills in online learning [30]. Each
of the four constructs was measured by the average of cor-
responding survey items (Table 2).

As for outcomes, we defined two success measures. Short-
term success was defined as a binary indicator of whether
a student’s final course grade was above the class median.
Predicting this within-course outcome aligns with the needs
of instructors to recognize struggling students in a timely
manner [15]. Similarly, long-term success was defined as

2This includes African American, Hispanic, and Native
American students.
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Table 1: Features derived from the three data sources

Institutional Click Survey

Female Total clicks Effort regulation
Transfer Total clicks by category Time management

Low income Total time Environment management
First-gen Total time by category Self-efficacy
URM (All above for the first 5 weeks)

SAT total score
High school GPA

Table 2: Details of survey features. Each feature was calculated as the average of its associated items.

Feature Items (5-point Likert scale)

Effort regulation

I often feel so lazy or bored when I study that I quit before I finish what I planned to do (reverse coded).
I work hard to do well in courses even if I don’t like what I am doing.
When coursework is difficult, I give up or only study the easy parts (reverse coded).
Even when course materials are dull and uninteresting, I manage to keep working until I finish.

Time management
I keep a record of what my assignments are and when they are due.
I plan my work in advance so that I could turn in my assignments on time.

Environment management
I usually work in a place where I can read and work on assignments without distractions.
I can ignore distractions around me when I study.

Self-efficacy
I’m certain I can master the skills taught in this course.
I’m certain I can figure out how to learn even the most difficult course material.
I can do almost all the work in class if I don’t give up.

whether a student’s average GPA in the year that followed
the course was above the median of their classmates in that
course. Predicting this longer-term outcome is of interest to
academic advisors and institutional policymakers because
it can help them make appropriate policy changes early in
students’ academic careers to increase student success and
graduation rates [22]. We used class medians to construct
these outcomes instead of certain grade thresholds in order
to better compare short-term and long-term results.

We examined all possible combinations of the three feature
sets (23 − 1 = 7) regarding their ability to predict the two
success measures. Therefore, a total of 14 binary classi-
fication problems were formulated. To fairly compare the
prediction performance of these feature sets, students with
missing values on more than 25% of all the individual fea-
tures in Table 1 were dropped, which accounted for the de-
crease in sample size from 2,244 to 2,093. All continuous
numerical features were standardized by centering to the me-
dian and scaling according to the interquartile range (IQR)
to better handle outliers. For the remaining missing values,
we performed multivariate imputation, i.e., modeling each
feature with missing values as a function of other features.

3.3 Predictive Models
For each classification problem, we employed three common
classification algorithms: logistic regression, support vector
machines (SVM), and random forests. Course-level leave-
one-group-out cross validation was used. In other words,
the algorithm looped through the ten courses, and in each
iteration used one course as the test set for the model trained
on the remaining nine courses. Predicted values for each
course were then put together from the ten iterations to
evaluate the overall prediction performance. As our focus
was the predictive power of different feature sets instead of
models, we chose the classifier that produced the highest
F-score for each combination of feature set and outcome.

Because we used median splits to construct outcomes, class
imbalance was not a concern and therefore no resampling
was performed. The entire predictive modeling process was
implemented using the scikit-learn Python library [28].

3.4 Evaluation
We evaluated the prediction results via three metrics. Ac-
curacy measures the overall predictive power of the fea-
tures used. False positive rate (FPR) reflects the probability
of missing out “at-risk” students or “overplacing” students.
False negative rate (FNR), on the other hand, captures the
chances of “underplacing” students [32]. These metrics can
shed light on potential consequences of using certain data
source(s) in different applications. From there, we can com-
pare the utility of different data sources in a holistic manner.

We further evaluated each data source’s contribution to the
fairness of prediction results. Fairness was conceptualized as
the performance parity across student subpopulations when
the prediction was performed on the entire student sample.
Specifically, we focused on an array of historically disad-
vantaged subpopulations and compared each of them with
a corresponding reference group on the three metrics. For
example, we compared the accuracy, FPR and FNR within
Latinx students with those within white students. Figure 1a
and 1b plot the group size and outcome distribution of these
selected groups, where the last group under each category
was the reference group.

Statistically, we computed the following disparity metrics
for each disadvantaged group g:

acc disparity = accref/accg (1)

fpr disparity = fprg/fprref (2)

fnr disparity = fnrg/fnrref (3)
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(a) Short-term success (b) Long-term success

Figure 1: Outcome distribution within different student subpopulations. Short-term success: whether a student’s final course
grade was above the class median. Long-term success: whether a student’s average GPA in the following academic year was
above the class median.

and separately tested whether each of this disparities was
significantly larger than 1 using one-sided two proportion
z-test. The larger these ratios were, the more this student
group was “discriminated against” by the prediction model.
We used the less flexible one-sided test because of the con-
sistent evidence that traditionally underrepresented groups
experience more inequities than their counterparts in aca-
demic settings [1]. All these ratios combined would charac-
terize the comparative utility of different data sources for
fair predictions of college success.

4. PREDICTIVE UTILITY OF DIFFERENT

DATA SOURCES

4.1 Overall Prediction Performance
Table 3 presents the prediction results on our full student
sample across different feature and outcome combinations.
In each column, the best-performing model is in bold to in-
dicate which feature set(s) best predicted the corresponding
outcome in the column header in terms of the given metric.
Among the final sample of 2,093 students, 1,062 (50.7%)
had short-term and 1,048 (50.1%) had long-term outcomes
above their class median3. These numbers serve as the näıve
baselines of prediction accuracy where all the students were
simply predicted to be in the upper half (majority class).

3The slight deviation from 50% was due to the drop of stu-
dents with too much missing information on predictors, as
described in Section 3.2.

When the three data sources were used separately, institu-
tional features and click features both achieved an overall
accuracy of around 0.6 for either short-term or long-term
outcomes, which was significantly higher than the baseline
(p < 0.001 for all four cases). Specifically, institutional
features appeared to be slightly more predictive of short-
term success and click features predicted long-term success
a little better, but neither of these comparisons was sta-
tistically significant. On the contrary, survey features had
much weaker predictive utility because they predicted both
outcomes with significantly lower accuracy than the worse
of the other two features (p < 0.001 for short term and
p = 0.005 for long term). When these feature sets were
combined in different ways, we mostly saw improvement in
the overall accuracy. The combination of institutional and
LMS data led to the most noticeable accuracy increase in
predicting both outcomes (∆ = 0.052, p < 0.001 for short
term and ∆ = 0.037, p = 0.014 for long term), evidencing
complementary signals of student success in these two data
sources. Survey data provided limited marginal utility as
adding survey features to other feature sets never led to a
statistically significant increase in accuracy and sometimes
even had negative effects. However, the highest accuracy
in predicting the short-term outcome was achieved when all
three feature sets were used together.

Given the tradeoff between false positives and false nega-
tives, overall best-performing feature sets did not necessarily
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Table 3: Prediction performance on the entire student sample (N = 2, 093). The best result in each column was in bold.
Short: predicting whether a student’s final course grade was above the class median; long: predicting whether a student’s
average GPA in the following academic year was above the class median.

Feature
Accuracy FPR FNR

Short Long Short Long Short Long
Institutional 0.618 0.599 0.467 0.412 0.299 0.389
Click 0.602 0.613 0.485 0.385 0.313 0.389
Survey 0.534 0.557 0.599 0.385 0.336 0.502
Institutional+Click 0.670 0.650 0.351 0.330 0.310 0.370
Institutional+Survey 0.633 0.608 0.398 0.397 0.337 0.386
Click+Survey 0.609 0.604 0.431 0.457 0.353 0.335
Institutional+Click+Survey 0.675 0.638 0.348 0.402 0.303 0.323

have the lowest error rates. Among the three cases using a
single data source, institutional features had both the low-
est FPR and the lowest FNR for the short-term outcome
(p = 0.402 for FPR and p < 0.001 for FNR compared to
the second lowest). The same features also tied with click
features for the lowest FNR in predicting the long-term out-
come, while the latter led to the lowest FPR in the long
term (tied with survey features). Combining these two data
sources significantly lowered FPR (∆ = −0.116, p < 0.001
for the short term and ∆ = −0.055, p = 0.009 for the long
term) but not FNR. As for survey data, the patterns of error
rates were more complicated than of overall accuracy. When
used alone, survey features mostly led to higher error rates
than the other two feature sets, except for FPR in the long
term. On the other hand, adding survey features to other
feature sets largely decreased FNR for long-term and FPR
for short-term success predictions despite the fact that these
metrics were exceptionally high in the case of using survey
data alone.

4.2 Fairness of Predictions
Following Section 3.4, we computed and tested the extent
to which each disadvantaged student subpopulation suffered
discriminatory predictions (i.e., algorithmic bias) compared
to their reference group under each combination of feature
set and outcome. Figure 2a and 2b illustrate these results for
short-term and long-term success prediction, respectively.
Each cell colors a bias against a certain student subpopu-
lation in a specific model. Darker cells suggest larger bi-
ases and crossed out cells represent those that were statis-
tically significant (p < 0.05) after correcting for multiple
testing within each background attribute. Subpopulations
with fewer than 10 students were omitted as the error rates
were less reliable.

Overall, there was no feature set that was entirely free from
biased predictions. Across both outcomes, institutional fea-
tures consistently led to higher FNR within various disad-
vantaged student subpopulations than within their peers.
In other words, these students were more likely to be under-
estimated by the prediction model. This finding resonates
with previous research that being aware of protected at-
tributes (e.g., ethnicity) might induce identity-based biases
in predictive analytics [6]. Adding other features to institu-
tional ones alleviated some of these biases only in a marginal
sense. That is, inclusion of institutional features seemed to
largely determine the discriminatory behaviors of the model.
Identity-blind LMS data was a fairer data source as the num-

ber of discriminated subpopulations was smaller. Compared
to their reference groups, click features on their own signifi-
cantly overestimated female students for both outcomes and
Asian, Hispanic and first-generation college students for the
long-term outcome. Survey data turned out to be neither
accurate nor fair. When used alone, survey features led to
significant biases against certain subpopulations across all
metrics and outcomes. When combined with other feature
sets, they did little to offset existing biases in most cases,
except when they were used together with click features to
predict long-term success. However, this latter case may
suggest that survey data had equally low predictive utility
for long-term success across different student subgroups.

The plots also allowed for insights into the extent to which
different student subpopulations were exposed to algorith-
mic biases across different scenarios. Ethnic minorities, stu-
dents from low-income families and first-generation college
students were more prone to underestimation. Female stu-
dents were more likely to be overestimated than male stu-
dents especially in the long term. Moreover, international
students and students with lower high school GPAs suffered
both more underestimation and less accurate predictions
compared to their peers. Note that unlike other variables in
the plots, high school GPA is an acquired attribute. Hence,
our evidence of algorithmic bias implied that a student can
be stigmatized due not only to their demographic attributes
but to their past (academic) experience as well.

4.2.1 A Closer Look into Institutional Data
Reflecting on the consistent biases against disadvantaged
student subpopulations when using institutional data, we
also tested if removing a specific institutional feature (e.g.,
gender) would eliminate the bias against the corresponding
disadvantaged group (e.g., female). Surprisingly, all the re-
sults looked qualitatively similar regardless of which feature
we removed. This suggested the intersectionality of minor-
ity identities, i.e., a student from one disadvantaged group
tended to have another disadvantaged characteristic as well.
As such, simply removing individual background variables
would not necessarily make the predictions fairer.

5. DISCUSSIONS

5.1 Reflections on the Results
Our results shed light on the predictive validity of different
sources of student data on college success. Our overall re-
sults agree well with those of [35], where features from an
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(a) Short-term success

(b) Long-term success

Figure 2: Illustration of prediction fairness. Each cell represents the algorithmic bias against a historically disadvantaged
student subpopulation (compared to the corresponding reference group) in the specific scenario. Crosses represent statistically
significant biases (p < 0.05) after correcting for multiple testing. Short-term success: whether a student’s final course grade
was above the class median. Long-term success: whether a student’s average GPA in the following academic year was above
the class median.

assessment of socio-emotional skills were least predictive of
course success, which is similar to the ineffectiveness of our
survey data. On the other hand, they found that models
using institutional variables and clickstream features per-
formed better and comparably to one another, as we did.
They also discovered that combining clickstream behaviors
with socio-emotional skills outperformed institutional data
alone, which we also saw with the FNR for the long-term
outcome. Interestingly, they did not find additional pre-
dictive utility of higher-level behaviors (sequential features)
from clickstream data, which we did not further investigate.

The limited ability of pre-course survey data to accurately
predict either short-term or long-term success may suggest
that self-reported measures of self-regulated learning are not
key factors of online learning processes or performance. How-
ever, as suggested by previous research [12], it may also sug-
gest that students tend to overestimate their use of learning
strategies in online courses. This is likely because students
make estimations of their future behaviors based on mem-
ories of similar past events that are usually unreliable [21].

Thus, more research is needed to understand how to help
students provide valid data of their learning skills as well as
other psychological attributes in surveys [25].

When it comes to fairness, several interesting trends emerge.
First, predictions using institutional data, which had the
lowest FNR overall, were actually discriminatory when it
comes to FNR for both outcomes. In particular, institu-
tional data discriminated against students from underrepre-
sented minority groups, low-income students, first-generation
college students, and students with low high school GPA.
This suggests that these models tend to disproportionately
label students from these subpopulations as having below-
median performance. In order to achieve higher overall ac-
curacy, these models appear to be using a heuristic of clas-
sifying students as above or below median based on the ma-
jority class within the subpopulations that they belong to
(see Figure 1). Therefore, one of the main sources of un-
fairness may just be the original class imbalance in different
student subpopulations. When this imbalance results from
historical inequities, the model will simply replicate those
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inequities and produce unfair predictions.

On the other hand, we found that using click features tended
to be fair with respect to FNR, but instead somewhat dis-
criminatory with respect to FPR, for several student sub-
populations. Contrary to the discrimination brought by in-
stitutional features, this form of discrimination could occur
just because the model is blind to individual background.
More specifically, students coming from different backgrounds
may on average exhibit similar learning behaviors, but their
likelihood to succeed might differ due to factors that corre-
late with their socio-economic status. Since the click fea-
tures do not have access to students’ background informa-
tion, they may predict that students from disadvantaged
backgrounds are likely to succeed at a disproportionately
high rate.

One specific and possibly counterintuitive trend is seen when
it comes to gender biases. While none of the feature sets dis-
criminated against female students in terms of FNR, almost
all of the feature sets discriminated against them in terms of
FPR for at least one of the two outcomes. In fact, female stu-
dents tend to have higher GPA than their male peers in the
dataset (see Figure 1). This reinforces the inference that for
institutional features, the models classify students into the
majority class of their subpopulations in order to maximize
accuracy. On the other hand, the fact that using only LMS
and/or survey data is also biased against female students in
terms of FPR might be due to something else. This sug-
gests that female students might (a) exhibit different click
behaviors and survey responses from men, which tend to be
predictive of better performance; or (b) have different base-
line levels of engagement (e.g., likelihood of clicking on LMS
pages) independent of their likelihood of success. If the for-
mer is true, click behaviors and/or survey responses could
act as a weak proxy for gender, even though gender is not
encoded in these features.

5.2 Practical Implications
In general, prediction errors are inevitable, but it is impor-
tant to be aware of and minimize potential misplacement
that may result in severe negative consequences. Below, we
discuss three major scenarios where prediction models are
used for educational decision making and the implications
of our findings in these cases.

First, higher education has a long history of screening appli-
cants for desirable educational opportunities such as merit-
based scholarships, where the award is based on the predic-
tion of student future performance. In this case, underes-
timating student performance may limit their educational
development. While institutional data is one of the most
widely used data sources for these purposes, our results sug-
gest that institutional data alone might be more likely to
underestimate achievement of students from disadvantaged
background as compared to their peers. Moreover, these
systematic biases do not go away easily even when other
common data sources are added. Therefore, it is important
for policymakers to cautiously employ predictive analytics
for selecting students since it may result in unfair exclusion
of already disadvantaged students from critical educational
opportunities and access to social mobility through educa-
tion [18].

In community college settings, institutional data has also
been used to evaluate students’ readiness for college-level
courses and assign students into remediation [32], as well
as to understand the impact of remedial and preparatory
courses on subsequent college success [24]. Put in this sce-
nario, our results would suggest that students from histor-
ically disadvantaged subpopulations are more likely to be
misplaced into remediation than their counterparts when
they are actually capable of taking advanced courses. While
remedial courses are designed to help academically under-
prepared students, they also increase students’ cost and may
delay student progression towards their degree goal [4]. For
both this and the previous application scenarios, a potential
algorithmic solution might be setting separate thresholds for
different subpopulations to ensure fairness, as [20] suggested.

Finally, in the recent research and practice of online learn-
ing, LMS data have been commonly used to predict student
performance and identify at-risk students [36]. Students who
are identified as being at risk of low performance or dropout
will often be placed into light-touch or optional academic
support, such as receiving email reminders and tutoring ser-
vices [11]. In this context, it might be more concerning
to overestimate student performance and ignore students in
need than to underestimate student performance and place
them to educational resources that they could opt out of.
Our findings indicate that compared to males, female stu-
dents would be especially likely to experience overestimation
and therefore would not receive academic resources that they
need. In this case, incorporating institutional data into the
prediction might not be as problematic in order to leave no
student behind.

6. CONCLUSION
In this paper, we responded to the call for research to evalu-
ate and compare the utility of common student data sources
(i.e., institutional data, LMS data and survey data) for build-
ing predictive analytics applications in the context of higher
education [14]. We aimed to find out what data sources and
their combinations predicted short-term and long-term col-
lege success both accurately and fairly across different stu-
dent subpopulations. Our results suggest that overall, insti-
tutional data and LMS data on their own have decent pre-
dictive utility for either instructors’ or policymakers’ needs
to identify students in need. Using them together further
strengthens that predictive power. Survey data alone poorly
predicts student success and only marginally helps alleviate
some of the prediction errors in the presence of other data
sources. With regard to fairness, institutional data consis-
tently leads to higher false negative rate (underestimation)
within historically disadvantaged students subpopulations
than within their peers. LMS data, on the other hand, tends
to overestimate some of these disadvantaged groups (e.g., fe-
male students) more often than their counterparts and these
biases would be overridden by institutional data when the
latter is added. Survey data makes very limited contribution
to fair predictions. Interestingly, all sources of student data
tend to overestimate female students who perform better
than male students on average in our case. Also, students
with lower prior achievement are no less affected by under-
estimation than underrepresented demographic groups.

These results combined suggest that using multiple data
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sources in college success prediction is beneficial for insti-
tutional stakeholders from both technical and ethical per-
spectives. Specifically, given the infancy and decent pre-
dictive utility of LMS data, institutions should feel encour-
aged to invest in the infrastructure to store, manage and
analyze such data and integrate LMS-based behavioral mea-
sures into the routines of institutional research. On the other
hand, utilizing multiple data sources still cannot guarantee
fair predictions of college success especially for students who
have less competitive academic records and who are histor-
ically disadvantaged in higher education. Therefore, it is
advisable to combine the intelligence of experienced practi-
tioners and data-driven applications for decision-making in
the wild, in hopes of minimizing the risk that students are
unfairly excluded from their optimal pathways due to biased
algorithms or human judgement.

Our work has a few limitations which point to meaning-
ful future work. First, the scope of our feature sets was
limited and not representative of the full potential of differ-
ent data sources. For example, for survey features we only
used measures of self-regulation, but there are other psy-
chological constructs that play equally important roles in
learning processes. Therefore, our findings should be taken
as a proof of concept in terms of systematically evaluating
different data sources. Future work will extend the current
piece to more comprehensive data sources that institutions
have good control over [19, 3] and to broader feature sets
informed by existing research. Second, while we briefly re-
flected on the prediction results and practical implications,
we did not formally examine how the biases illustrated in
Figure 2 permeate through the predictive analytics pipeline.
Future work will examine this aspect more thoroughly, as
well as how to convey these sources of bias to stakeholders
for more prudent decision-making on student data usage.
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