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Abstract. Methane is the second most important anthro-

pogenic greenhouse gas in the Earth climate system but emis-

sion quantification of localized point sources has been proven

challenging, resulting in ambiguous regional budgets and

source category distributions. Although recent advancements

in airborne remote sensing instruments enable retrievals of

methane enhancements at an unprecedented resolution of 1–

5 m at regional scales, emission quantification of individual

sources can be limited by the lack of knowledge of local

wind speed. Here, we developed an algorithm that can esti-

mate flux rates solely from mapped methane plumes, avoid-

ing the need for ancillary information on wind speed. The al-

gorithm was trained on synthetic measurements using large

eddy simulations under a range of background wind speeds

of 1–10 m s−1 and source emission rates ranging from 10

to 1000 kg h−1. The surrogate measurements mimic plume

mapping performed by the next-generation Airborne Visi-

ble/Infrared Imaging Spectrometer (AVIRIS-NG) and pro-

vide an ensemble of 2-D snapshots of column methane en-

hancements at 5 m spatial resolution. We make use of the

integrated total methane enhancement in each plume, de-

noted as integrated methane enhancement (IME), and in-

vestigate how this IME relates to the actual methane flux

rate. Our analysis shows that the IME corresponds to the

flux rate nonlinearly and is strongly dependent on the back-

ground wind speed over the plume. We demonstrate that the

plume width, defined based on the plume angular distribu-

tion around its main axis, provides information on the associ-

ated background wind speed. This allows us to invert source

flux rate based solely on the IME and the plume shape itself.

On average, the error estimate based on randomly generated

plumes is approximately 30 % for an individual estimate and

less than 10 % for an aggregation of 30 plumes. A validation

against a natural gas controlled-release experiment agrees to

within 32 %, supporting the basis for the applicability of this

technique to quantifying point sources over large geographi-

cal areas in airborne field campaigns and future space-based

observations.

1 Introduction

Methane is the second most important anthropogenic green-

house gas in Earth’s atmosphere, with additional indirect im-

pacts as it affects both tropospheric ozone and stratospheric

water vapor. Despite its significance, our understanding of

global and regional CH4 budgets has remained inadequate

due to the fact that the strength and distribution of CH4

emissions from various source types are not well-constrained

(Houweling et al., 2017; Turner et al., 2017). Estimates of

CH4 emissions from point sources (e.g., at facility scale) are

particularly uncertain, since space-based observations lack

sufficiently fine spatial resolutions while in situ measure-

ments are too sparse and mostly representative of large-scale

background concentrations. Improved estimates of the CH4

emissions at this point-source scale are critical in guiding

emission mitigation efforts.
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Recent developments in airborne imaging spectroscopy

techniques to quantify CH4 plumes have opened the way

for CH4 measurements at a sufficiently high spatial resolu-

tion needed to differentiate various local sources within re-

gional scales (Frankenberg et al., 2016; Hulley et al., 2016;

Thompson et al., 2015; Thorpe et al., 2016a, 2017; Tratt et

al., 2014). A recent airborne campaign in the Four Corners

region retrieved column methane enhancements at a resolu-

tion of 3 m (Frankenberg et al., 2016), enabling the obser-

vation of the plume shape in the direct vicinity of the point

source. During the campaign, many plumes of various sizes

ranging from a few tens of meters to hundreds of meters were

detected across the region, with the majority of their source

emission rates between 10 and 1000 kg (CH4) h−1 (Franken-

berg et al., 2016). This allows for an effective way to re-

motely identify and locate CH4 emissions from point sources

such as pipeline leaks or oil and gas facilities. The retrievals

provide the quantification of a column enhancement (e.g., in

molecule cm−2 above background), which can be integrated

across the entire methane plume to derive the total amount of

methane within the plume, denoted as integrated methane en-

hancement (IME, either in molecule or mass units, Franken-

berg et al., 2016). In addition, the instrument observes the

fine structure of the plume at an unprecedented spatial reso-

lution. However, the flux inversion from the observed plumes

to the actual emission rate at the source remains complicated

due to the dependence on tropospheric boundary layer con-

ditions such as wind speed and atmospheric stability during

the overpass. To interpret the relationship between the ob-

served plumes and flux rates, previous studies have relied

on Gaussian plume inversion models (Krings et al., 2011,

2013; Rayner et al., 2014; Nassar et al., 2017; Schwandner

et al., 2017) or an airborne in situ approach using a mass

balance calculation based on the enhancement downwind of

the source (Cambaliza et al., 2015; Conley et al., 2016; Gor-

don et al., 2015; Jacob et al., 2016; Lavoie et al., 2015).

Frankenberg et al. (2016) used a simple linear scaling be-

tween the IME and flux rate, which allowed for a straight-

forward derivation of fluxes from the observed IME given

an averaged wind speed across a large region for the cam-

paign over several days. Varon et al. (2018) estimated the

flux rate as the IME divided by the residence time of methane

in the plume calculated based on the effective length of the

plume from its area and the effective wind speed inferred

from 10 m wind speed by in situ measurement or meteoro-

logical reanalysis data. All of these methods rely on knowl-

edge of local wind speed, which is acquired through either

in situ wind measurements or the estimation from meteoro-

logical forecast or reanalysis data. The former can be costly

and time consuming without prior knowledge of source lo-

cations, while the latter can be inaccurate due to the rapid

changes of a local plume over a much shorter temporal and

spatial scale (minutes, hundreds of meters) than the typical

atmospheric reanalysis products (a-few-hourly average, tens

of kilometers).

In this work, we aim to improve our understanding of

how the inferred emission rates change under different atmo-

spheric conditions, e.g., the errors due to a lack of accurate

wind measurements. To investigate this relationship and as-

sociated errors, we used large eddy simulations (LESs, Math-

eou and Bowman, 2016) to simulate the plume dynamics

at high spatial resolution (5 m) with prescribed source rates

under various background wind speeds and typical surface

latent and sensible heat fluxes. Using 3-D LES model out-

put for each snapshot, we simulated synthetic 2-D airborne

measurements by applying the respective averaging kernels.

Based on these synthetic measurements, we developed an al-

gorithm to deduce the wind speed from the plume’s spatial

distribution and investigate the degree to which the flux rate

can be inverted from only the remotely sensed CH4 retrievals.

This allowed us to perform an end-to-end test of errors in in-

verted methane fluxes in both the absence and presence of

ancillary information on the actual wind speed (Sect. 6.3).

This work was inspired by the use of IME to quantify

methane single-point sources from field campaigns using air-

borne instruments. These plumes generally are of small-to-

medium sizes (< 2 km). The concept, nevertheless, can be

applicable to larger sources as well as toward measurement

of localized sources from space in the coming decade for

satellite retrievals at a much finer spatial resolution (Thorpe

et al., 2016b).

Section 2 illustrates the plume observations and the instru-

ment specifications. Section 3 will give a brief overview of

Gaussian plume modeling. The setup of the LES and appli-

cation of instrument operators to simulate airborne measure-

ments are described in Sects. 4 and 5 respectively. Section 6

shows simulated plumes under different atmospheric scenar-

ios and the relationship between observed IME and actual

emission rates. The error analysis of flux inversion based on

the IME method is also provided. The final section provides

a discussion and conclusion.

2 Plume observations and instrument specifications

Figure 1 shows examples of observed methane plumes us-

ing the next-generation Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS-NG) and the Hyperspectral Thermal

Emission Spectrometer (HyTES) during the Four Corners

flight campaign (Frankenberg et al., 2016). The iterative

maximum a posteriori differential optical absorption spec-

troscopy (IMAP-DOAS) method (Thompson et al., 2015)

and clutter matched filter (CMF) were used to retrieve the

scenes from AVIRIS-NG and HyTES respectively. In this

case, the aircraft repeatedly flew over a coal mine venting

shaft, with approximately 10 min revisit time. Evidently, the

plume is changing in time and exhibits fine-scaled features

due to atmospheric turbulence. Quantifying the source rate

from detected plumes using atmospheric simulations to un-

derstand their behavior and variations in space and time is
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Figure 1. Methane plume over a venting shaft in the Four Corners region, observed from four individual AVIRIS-NG airborne instrument

overpasses (2.8 m spatial resolution) 7–9 min apart on 22 April 2015 between 16:19:02 and 16:45:06 UTC (a–d) compared with observations

from HyTES overpasses (2.3 m spatial resolution) in the similar interval between 16:17:16 and 16:47:17 UTC (e–h). The background is from

©Google Earth imagery.
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Figure 2. Column averaging kernels for two instruments, AVIRIS-

NG (in blue) and HyTES (in orange), as a function of height. The

altitude on the z axis is given above ground level. In the thermal

case (HyTES) the flight altitude is an important factor for the CAK.

The CAK of HyTES was computed for an altitude of about 3 km.

For the shortwave range, however, the CAK of AVIRIS-NG is not

impacted significantly by flight altitude.

the main subject of this work. In order to compare our simu-

lations with actual observations, we need to take the mea-

surement characteristics of the remote sensing instrument

into account. This relates to both measurement precision,

which determines detection thresholds which mark and de-

fine the detected plume, as well as vertical sensitivity, which

affects what parts of the plume structure can actually be ob-

served. Depending on the techniques being used, both can

vary widely.

The left column in Fig. 1 shows scenes that are retrieved

from the AVIRIS-NG instrument, which measures reflected

solar radiation between 0.35 and 2.5 µm at 5 nm resolution

and sampling (Hamlin et al., 2011; Thompson et al., 2015).

To first order, it has a uniform vertical sensitivity (averag-

ing kernel) of 1 at each height (see Fig. 2). Another instru-

ment that was used in the Four Corners campaign is HyTES,

which enables the detection of CH4 plumes due to its absorp-

tions in the thermal infrared around 7.65 µm (Hulley et al.,

2016). Its varying sensitivity in the vertical can be calculated

as the derivative of the retrieved total column amount with

respect to the change in a particular layer. These vertical sen-

sitivities are formally called column averaging kernels. They

inform us on how well methane deviations from the prior at

each height can be measured, which determines whether they

will be visible in retrieved column enhancements. Mathemat-

ically, we can express this relationship as

E(i,j) =
∑

k

(1x1y1h) · C (i,j,k) · CAK(k), (1)

where E(i,j) is the observed total column enhancement

(mass or molecules) at the horizontal grid cell (i,j). 1x,1y,

and 1h are grid sizes in î, ĵ , and k̂ respectively; C is the con-

centration (mass or molecules per volume); and CAK(k) de-

notes the column averaging kernel evaluated at level k. Tech-

nically, the CAK can also be a function of location (i,j), but

for the purpose of producing synthetic measurements from

our simulations in this work, we apply the CAK only as a

function of height.

Figure 2 illustrates the difference between the column

averaging kernels that we use to model AVIRIS-NG and

HyTES synthetic measurements. The distinct column averag-

ing kernels of both instruments hold significant importance,

each with its advantages and disadvantages. The column

averaging kernel of AVIRIS-NG is approximately uniform

across all vertical levels, which implies that the retrieved col-

umn enhancement accurately reflects the actual column en-

hancement. On the other hand, the sensitivity of HyTES is

almost zero near the surface but increases with height, be-

coming even larger than 1 at a certain height. This means that

the instrument is almost blind to methane near the ground

but amplified the actual methane amount at certain heights

in the column. This distinction is evident in Fig. 1 where

the observed methane plume remains more consistent from

AVIRIS-NG scenes, whereas more variations appear in the

HyTES scenes potentially due to changes in plume vertical

structures. It should also be noted that the HyTES averaging

kernel strongly depends on the temperature profile as well

as the surface temperature, which can vary within and be-

tween scenes. In contrast, averaging kernels using shortwave

reflected light are less variable.

3 Gaussian plume modeling and its limitations

The simplest way to simulate plumes is Gaussian plume

modeling, which assumes a steady and uniform wind U

along the x axis and orthogonal spreading of the plume

in crosswind (y axis) and vertical (z axis) directions. The

spreading of the plume depends on the dispersion functions

σy(x) and σz(x). The dispersion functions depend on the at-

mospheric stability (Pasquill, 1961). For instance, convective

conditions favor vertical dispersion, whereas in a stable at-

mosphere the plume primarily disperses in the horizontal di-

rections (Briggs, 1973; Matheou and Bowman, 2016; Sut-

ton, 1931). The three-dimensional Gaussian plume equation

is given by (Matheou and Bowman, 2016)

C(x,y,z) = 1

2πσy(x)σz(x)
· Q

U
· exp

[

−y2

2σ 2
y (x)

] ∞
∑

m=0
(

exp

[

− (z − 2mzi)
2

2σ 2
z (x)

]

+ exp

[

− (z + 2mzi)
2

2σ 2
z (x)

])

, (2)

where C(x,y,z) is the (equilibrium) concentration at each

point in the three-dimensional space within the atmospheric

boundary layer with inversion height zi . The model assumes

a reflective boundary condition where the parameter m mul-

tiplied by zi indicates the height at which the reflection oc-
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curs and the summation over this parameter m represents the

equivalent concentration within 0 to zi . Q is the source flux

rate at the origin. The variances σy(x) and σz(x) are given

by empirical relations based on atmospheric stability follow-

ing the Pasquill classification (Matheou and Bowman, 2016;

Pasquill, 1961).

By integrating Eq. (2) in the z direction, the methane col-

umn enhancement can be modeled in analytical form as

C̄(x,y) = 1√
2πσy(x)

· Q

U
· exp

[

−y2

2σ 2
y (x)

]

. (3)

Based on this model, we can vary the source rate, wind speed,

and stability category to simulate the 2-D integrated concen-

tration field. We then apply a device detection threshold to

illustrate how the synthetic Gaussian plume column enhance-

ment may change under distinct atmospheric conditions. Ex-

amples of the simulated Gaussian plumes with a flux rate

of 300 kg h−1 are shown in Fig. 3. The left column of Fig. 3

shows the Gaussian plumes under different wind speeds for a

fixed stability category, while the right column demonstrates

those under a fixed wind speed at 4 m s−1 but different sta-

bility regimes.

The wind speed U influences the column enhancement,

which, based on Eq. (1), is proportional to the ratio Q/U .

Thus, the Gaussian plume model suggests a strong depen-

dence of the IME on wind speed, which in turn does not ex-

plicitly affect the shape of the plume. One way of quantify-

ing a plume shape is using an aspect ratio in the x–y plane. In

the Gaussian plume model, the aspect ratio of the plume only

changes when the stability switches from one category to an-

other. Thus, the wind speed is only implicitly linked to the

shape of the plumes by affecting the stability categories and

changing the crosswind variances (as can be seen in Eq. 3).

The stability categories in this model, nonetheless, are

based on empirical formulae. In reality, the wind speed can

influence the shape and distribution of the plumes more di-

rectly through advection of the tracer along the flow. The

actual plume observations from the Four Corners campaign

(Fig. 1) demonstrate that the plumes are of turbulent nature

– at times being discontinuous – and cannot be modeled as

Gaussian when only one plume snapshot in time is recorded.

Therefore, we utilize an LES model, which yields a realistic

realization of the turbulent flow and the methane plume, to

quantify the effect of wind speed on the plume structure.

4 Large eddy simulation setup

Realistic modeling of CH4 plumes is a prerequisite for

this study. We use LES to model the time-resolved three-

dimensional CH4 distribution in the boundary layer un-

der different atmospheric conditions at resolutions currently

available from aircraft measurements (1–5 m). The LES

model setup for the simulation of plumes emanating from

point sources is as described in Matheou and Bowman

(2016). Further details of the model formulation, including

the turbulence parameterization, are in Matheou and Chung

(2014). A methane surface point source with a specific emis-

sion rate in a cloud-free convective atmospheric boundary

layer is simulated. The buoyancy of methane is currently be-

ing ignored – a good approximation for the present methane

concentrations away from the source.

The atmospheric boundary layer is initialized with a

mixed layer inversion free troposphere with an initial in-

version height zi = 800 m. The initial potential tempera-

ture and specific humidity in the mixed layer are θ = 298 K

and qt = 6.6 g kg−1. The lapse rate is 1θ/1z = 0.12 Km−1.

The flow in the boundary layer is driven by a constant

geostrophic wind in the x direction, ug. Different values of

the geostrophic wind from 1 to 10 m s−1 are used. The sur-

face sensible and latent heat fluxes are 400 and 40 W m−2.

These values are based on typical field campaign data. Addi-

tional simulations with other sensible and latent heat fluxes

are also performed later in Sect. 6.4. Surface momentum

fluxes are estimated using Monin–Obukhov similarity theory

(MOST).

The model domain is 10.24 × 2.56 × 1.5 km3 in the x,

y, and z direction, and the grid resolution is uniform and

isotropic 1x = 1y = 1h = 5 m. The model computational

time step is 1 s. Following 1 h of model spin-up, where fully

developed three-dimensional turbulence is established in the

boundary layer, the three-dimensional concentration at each

location at 1 min intervals (snapshots are written out at ev-

ery minute) is used to construct the synthetic observations.

Furthermore, the 10 and 2 m wind speeds are extracted from

the model output to compare with the large-scale geostrophic

wind value in each run.

5 Synthetic measurement

With the output from the LES simulations, we can create

synthetic measurement of a plume instance that would en-

able simulation of observations from any instrument. The

procedure is that we apply vertical integration as described

by Eq. (1) to the 3-D concentration at a given time step,

using the column averaging kernel of the instrument of in-

terest. We apply the column averaging kernel of AVIRIS-

NG as well as that of HyTES to produce synthetic mea-

surements for these instruments. The detection thresholds

of the AVIRIS-NG and HyTES instruments can potentially

be dependent on the surface properties such as surface re-

flectance and surface temperature respectively. However,

given the typical scale of the plumes of our interest, we

assume an average uniform detection threshold across the

scene. Here, we use a constant threshold of 500 ppm m−1 (or

about 1.341018 molecules cm−2), which is a common value

for AVIRIS-NG. As for HyTES, we used the same threshold

to exemplify the differences due to averaging kernels only, as

www.atmos-meas-tech.net/12/6667/2019/ Atmos. Meas. Tech., 12, 6667–6681, 2019
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Figure 3. (a–c) Gaussian plumes under wind speeds of 1, 4, and 10 m s−1 respectively, with Pasquill stability type A meaning very unstable.

(d–f) Gaussian plumes under a wind speed of 4 m s−1 in the stability type A (very unstable), B (unstable), and C (slightly unstable). All

cases are with a flux rate of 300 kg h−1 and detection threshold set to 500 ppm m−1. The IME is calculated over the entire scene and is in

kilograms. The wind speed shown in this Gaussian model is at plume levels.

opposed to thresholds. This allows us to understand to what

extent each instrument can detect CH4 plumes under various

wind speeds.

6 Results

The output from the LES run provides a more realistic sim-

ulation, compared to the Gaussian model, of the plume dy-

namics as shown in Fig. 4 for AVIRIS-NG synthetic mea-

surements. The left column of Fig. 4 shows single snap-

shots of the plume, while the right column shows the time-

averaged plume snapshots over 60 time steps, spanning a du-

ration of 60 sequential minutes in total, under distinct back-

ground wind speeds but with a constant flux rate. Based on

this simulation, we see that the plume varies rapidly in shape

and orientation from snapshot to snapshot due to turbulence.

The temporal averages in the right column also still exhibit

some structure as we only averaged 60 individual snapshots.

Overall, the simulated plumes from the LES closely resemble

actual plumes from remotely sensed observation as shown in

Fig. 1. The instantaneous plumes exhibit non-Gaussian be-

havior; sometimes the plume can even be discontinuous as

eddies can rupture the plume structure. However, we found

that the total enhancement across the scene (the IME) re-

mains rather constant over time for a given wind speed and

flux rate, making it a reliable variable for performing the flux

inversion of the source. In addition, we also found that the

plumes have distinct features in both magnitude and spatial

characteristics for different wind speeds, which are evident in

the plume snapshots as well as their ensemble means shown

in Fig. 4.

Figure 5 illustrates the differences between the synthetic

measurements for AVIRIS-NG and HyTES over the same

plume for three different wind speed conditions. Because

the column averaging kernel of the HyTES is close to zero

near the ground, the synthetic measurements for HyTES miss

parts of the plume near the surface and detect only the parts

of the plume that have risen high enough. This is consistent

Atmos. Meas. Tech., 12, 6667–6681, 2019 www.atmos-meas-tech.net/12/6667/2019/
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Figure 4. (a–c) Snapshots of simulated plumes under wind speeds of 1, 4, and 10 m s−1 respectively. (d–f) Time-averaged plumes from 60

time steps under the geostrophic wind speeds of 1, 4, and 10 m s−1 respectively. All with a flux rate of 300 kg h−1 and detection threshold

set to 500 ppm m−1. All are based on AVIRIS-NG averaging kernels. The IME is calculated over the entire scene and is in kilograms. Note

that the temporal averages do not reach a true ensemble average as sample sizes are finite (i.e., the average still exhibits fine structure).

with the averaging kernels shown in Fig. 2. This is espe-

cially apparent for the case of high wind speed where the

majority of the CH4 is advected horizontally, resulting in a

plume remaining near the ground. The result in Fig. 5 is in

accord with the comparison between the observed AVIRIS-

NG and HyTES scenes in Fig. 1 during the first overpass.

This potentially indicates that the plume at this time remains

mostly near the ground, which may not always happen in the

same way for the coal mine venting shaft, which is emitting

above the ground surface. The insensitivity of HyTES near

the ground makes it complicated to locate the source accu-

rately, and there are additional uncertainties in the methane

retrievals associated with averaging kernels that vary with en-

vironmental conditions (Kuai et al., 2016). The advantage of

the HyTES instrument, on the other hand, is the fact that

in principle it can operate at night when there is no sun-

light, which is a prerequisite for the AVIRIS-NG instrument.

For AVIRIS-NG, the total column CH4 enhancement in each

pixel is also better constrained given the averaging kernel is

approximately one throughout the column. For these reasons,

we proceed to focus only on AVIRIS-NG results in the cur-

rent study, while we will study the information content of

joint measurements in the future.

Multiple LES runs from a combination of typical point-

source flux rates and wind speeds enable us to quantify the

relationship between the actual source rate and the resulting

IME for a given wind speed. This gives us the first step to in-

vert the flux rate. Furthermore, we show how different wind

speeds affect this relationship for the flux inversion. The out-

put from the LES gives us not only the IME but also the spa-

tial distribution of the plume snapshots that correspond to

a given pair of flux rate and wind speed. We analyze how

the morphology of the plumes is linked with the underlying

background wind speeds. This helps us understand how we

can use the remotely sensed airborne imagery of the plume

to predict the wind, and thus ultimately the flux rate, together

with its associated errors.

www.atmos-meas-tech.net/12/6667/2019/ Atmos. Meas. Tech., 12, 6667–6681, 2019



6674 S. Jongaramrungruang et al.: CH4 quantification from 2-D plume imagery

Figure 5. (a–c) Snapshots from simulated plumes under 1, 4, and 10 m s−1 respectively, when applying the AVIRIS-NG instrument column

averaging kernel. (d–f) Snapshots from the exact same plumes as in (a–c) respectively but applying the HyTES averaging kernel. The flux

rates are all 300 kg h−1 and the detection threshold is set to 500 ppm m−1. The IME is in kilograms.

In our analysis, we primarily refer to the wind speed in

each scene from our model runs by using the geostrophic

wind speed, as opposed to the instantaneous wind at 2 m

(U2) or 10 m (U10) above ground which is usually used in

literature. For reference, the average U10 across the horizon-

tal domain in our run ranges approximately from 0.4 to 0.7

of the background geostrophic wind speed in the run. The

main reason is that our output snapshots from each LES run

is written out every minute; thus we only have the infor-

mation of the U10 and the plume structure at every minute,

which can change rapidly in direction and magnitude. How-

ever, the overall structure of the plume at any given instance

could be influenced by the average wind cumulatively from

the past minute. The constraint on the output that we have

makes it ambiguous to choose what values of near-surface

winds should be applied when making the prediction of the

flux rate from the spatial structure of a plume snapshot. We

thus resort to using a background wind speed, which, in turn,

is one of the key governing drivers for U10 itself. While us-

ing the large-scale background wind speed might not be as

accurate as the ideal case of having continuous U10 output,

it provides a robust correlation with the overall pattern of the

plume (see Sect. 6.2). In other words, in the following, we

are using the shape of the plume to predict the value of back-

ground geostrophic wind speed that underlies the wind that

has driven CH4 from the point source into the detected plume

over that geographical location, and we use that background

wind speed to quantify the source rate.

6.1 Source flux rate and the IME

For each wind speed and flux rate, we have 60 snapshots of

methane plumes from the LES model output, with a tempo-

ral interval of 1 min. We can thus directly compute the mean

and the standard deviation of the IME across these snapshots.

Although the shape of a plume can vary strongly in time, the

IME is relatively stable, varying only within approximately

20 % among snapshots under the same wind speed and flux

rate. This emphasizes the benefit of using the IME to char-

acterize methane in the scene because the total sum of the

gas in the scene remains approximately the same regardless

Atmos. Meas. Tech., 12, 6667–6681, 2019 www.atmos-meas-tech.net/12/6667/2019/
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Figure 6. Mean and standard deviation of the IME associated with

a range of flux rates under various background wind speeds from 1

to 10 m s−1. The detection threshold is 500 ppm m−1.

of the advection of methane from one pixel to another with

time. This can potentially induce less uncertainty compared

to other mass balance approaches where the measurements

are commonly location dependent. The mean values corre-

sponding to various background wind speeds and flux rates

are plotted in Fig. 6. The uncertainties reflect the standard

deviations of the IME within all 60 temporal snapshots.

The plot of the IME and flux rate at different wind speeds

reveals two noticeable findings: as expected, there is a sig-

nificant dependence of the relationship between the IME and

flux rate on wind speed; but there is also a nonlinearity,

which has been ignored in previous studies. The nonlinear-

ity can be explained from the fact that we impose a detec-

tion threshold to mask out the plume. In the absence of a

detection threshold, the scaling between flux rate and IME

would be perfectly linear, as was assumed in Frankenberg et

al. (2016). However, as the fraction of pixels with methane

enhancement below the detection threshold varies with flux

rate and wind speed, the truncated IME below the thresh-

old can induce a considerable nonlinearity. The stronger the

flux rate, the higher the number of pixels above the threshold

used to calculate the IME. Figure 7 illustrates this connec-

tion by showing the percentage of the total enhancement that

is missed because of specific thresholds. We use three differ-

ent flux rates (90, 180, 360 kg h−1) to illustrate the nonlin-

earity. We can see that when the flux rate drops by a factor

of 2, the missing amount does not necessarily decrease by the

same factor. How the IME is scaled up with the flux rate de-

pends on the spatial distribution of the plume: if the methane

is concentrated in a small area, then it is more likely that a

stronger flux rate will make the column enhancements ex-

ceed the threshold, as opposed to when the plume is more

dispersed, in which case some pixel enhancements will be

too diluted to be detected even at a strong flux rate. This is

Figure 7. Missing IME, shown as a percentage, for different

ppm m−1 threshold values. Each curve corresponds to a prescribed

source flux rate. The flux rates are incremented by a factor of 2.

the primary reason why the IME varies with the flux rate

with different degree of nonlinearity at different wind speeds

as found in Fig. 6. The background wind speed is the integral

component that drives the spatial distribution of the plume

and correlates the IME with the flux rate. This means that in

order to achieve a reliable flux inversion, both the IME and

the effective wind speed over the scene of the point source

must be known.

The key question in our study is the following: can we pre-

dict the underlying background wind speed associated with

the observed plume by its spatial characteristics rather than

by relying on ground measurements or reanalysis data? This

is investigated in the following section.

6.2 Wind speed and plume morphology

As can be seen in Fig. 4, the spatial distribution of the plumes

varies under different wind speeds. Visually, the shape of

simulated CH4 plumes provides qualitative intuition on the

origin, wind direction, and relative strength of the back-

ground wind speed. At a higher wind speed, plumes tend to

be more elongated, whereas at a lower wind speed, plumes

tend to be more spread out around the origin. We quantify

the characteristics of the plume by first constructing an an-

gular mass distribution for each snapshot: we count the mass

within the angular bin size of 0.5◦ sweeping across the scene

with the center at the origin. We then find the angle at which

the mass of methane splits into a 50 % ratio and define that

as the main axis of that plume snapshot. The plume snapshot

is then rotated such that its main axis aligns with the x co-

ordinate. We can then plot the angular distribution across the

plume as well as the Cartesian distribution along the plume,

as illustrated in Fig. 8, for every single snapshot. This proce-

dure allows us to find the ensemble-averaged plume distribu-

tions for a particular wind speed where the ensemble mem-
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Figure 8. A rotated plume snapshot from a run of 4 m s−1 back-

ground wind speed and 300 kg h−1 flux rate with its angular distri-

bution of IME across the plume (right) and its Cartesian distribution

of IME along the plume (top). The two black lines denote an angu-

lar bin of 0.5◦ that sweeps through the 2-D plume to construct the

angular distribution.

bers consist of the rotated snapshots from all available time

outputs in the model runs at various flux rates in the range of

our interest, 10–1000 kg h−1.

Figure 9 shows that the angular distributions of the plume

can be distinguishable under different wind speeds. Evi-

dently, the angular distribution of the plume at highest wind

speed of 10 m s−1 is narrower than the rest on average, and

the angular spreading becomes increasingly wider for lower

wind speeds. Motivated by this finding based on the average

distribution, we quantified the relationship between the angu-

lar spreading of the plume and the wind speed. For each snap-

shot, we calculated the cone width of the plume defined as the

angles between the 10th and the 90th percentiles from its an-

gular mass distribution. The mean and the standard deviation

of the cone width corresponding to a given wind speed were

then computed from an ensemble of 60 temporal snapshots

and various flux rates. The result of this analysis is plotted

in Fig. 10 and shows a monotonically decreasing cone width

with respect to wind speed. Our choice of parameterization

in Fig. 10 is an exponential fit, which adequately captures

the present relationship without overfitting. This result illus-

trates that the cone width is a metric that can differentiate

wind speeds based on using only the spatial distribution of

the plume. This finding, together with the variation of IME

with flux rate (Fig. 6), can therefore provide flux inversion

without the need for ground measurements. The next section

describes steps for estimating the flux rates and their associ-

ated uncertainties.

Figure 9. Ensemble-averaged angular distributions of the plume,

averaging over all available time steps at various flux rates. Differ-

ent colors represent different wind speeds. Each distribution is nor-

malized by its maximum value. The vertical bars represent 1 stan-

dard deviation of the normalized IME at a given angle across all

snapshots.

6.3 Flux inversion and error analysis

Based on the IME and plume morphology of any given scene,

we can estimate the flux rate. First, according to Fig. 6, for a

given value of the IME observed in the scene, we can find

what the possible range of fluxes is for each wind speed

from the lower and upper estimate of 1 standard deviation.

We can then parameterize this relationship between the flux

rate and the wind speed for this particular value of the IME.

An example for the case of the observed IME of 50 kg is

demonstrated in Fig. 11. Secondly, based on the spatial dis-

tribution of the plume in the scene, we can follow the pro-

cedure to construct the angular mass distribution. Based on

Fig. 10, using an angular width measured from the plume,

we can predict the wind speed from the fitted curve. The as-

sociated uncertainties of the wind speed are approximated

by the lower and upper estimate of 1 standard deviation. We

assume that, by projecting a value of plume width onto the

corresponding range of wind speeds within 1 standard devia-

tion range, we obtain uncertainties for predicted wind speed

that approximately represent 1 standard deviation error for

the wind speed distribution. The wind speed and its uncer-

tainty can hence be translated into the estimate of the mean

flux rate as well as the corresponding uncertainties from the

relationship of the flux rate and wind speed, as in Fig. 11.

With this approach, we selected 90 random snapshots with

random prescribed flux rates and wind speeds. We predict the

flux rate from the IME and the spatial distribution of each of

plume scene and compare it to its actual prescribed value,

as shown in Fig. 12. The average of the percentage differ-

ences (in absolute terms) between the predicted value and the

actual value for single-point-source predictions is approxi-
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Figure 10. Relationship between the wind speed and the associated

cone width averaged over snapshots and flux rates. The dotted black

curve represents the best fit by an exponential function. The shaded

area represents 1 standard deviation from the mean plume angular

width for each wind speed.

Figure 11. Relationship between flux rate and wind speed for 50 kg

IME. The shaded area represents 1 standard deviation from the

mean flux rate at each given wind speed.

mately 30 %. The χ2 value from the predictions in Fig. 12

is 3.84, suggesting that the error variance may tend to be

slightly underestimated for an individual-point-source pre-

diction.

Nevertheless, the results shown in Fig. 12 demonstrate that

this method permits estimation of total emission flux rate.

Most importantly, accounting for nonlinearities and vari-

able wind speed helps to avoid systematic biases. Thus, the

method employed here can minimize systematic errors that

could be induced by assumptions on wind speed. To verify

this point, we performed an aggregation analysis by boot-

strapping 30 plumes out of 500 plumes of various flux rates

and wind speeds, with 3000 repetitions. The sample size of

Figure 12. Comparison between the prescribed flux rate in the

model run and the predicted flux rate based on our method of us-

ing the IME and the angular width of plume in a given scene. The

error bar represents uncertainties associated with the prediction of

an individual point source.

30 is chosen arbitrarily but is large enough to represent a sit-

uation for the estimation of total fluxes from a region. The

comparison between the predicted and the actual total flux

aggregated over 30 plumes is shown in Fig. 13. The pre-

dictions lie close to the actual aggregated fluxes, as demon-

strated by the concentration of points near the one-to-one line

in Fig. 13, implying that there are no significant systematic

biases in our method. The mean of absolute differences from

all these aggregates is 5.1 % with a standard deviation of

3.9 %, while the average of all differences (negative and pos-

itive) results in 2.9 % with the standard deviation of 5.9 %.

To further demonstrate the validity of this method, we

applied it to a controlled-release experiment from a natural

gas pipeline located at Victorville, CA (34.8◦, −117.3◦), on

11 October, 2017, with a flux rate of 89 ± 4 kg h−1. Based

on a sample of the actual AVIRIS-NG scene over the source

location (Fig. 15), we calculated the IME and constructed

the angular distribution of the plume to obtain its width to

deduce the wind speed. The geostrophic wind speed is pre-

dicted to be 3.3 ± 1.2 m s−1, compared to the surface sonic

wind at the source measured at 1.6 m s−1. This is consistent

given that geostrophic wind is typically about 1.4–2.5 times

higher than the surface wind speed in the LES output. We

used this deduced wind speed to predict the flux rate and its

associated error as described at the beginning of this section.

The value that we predict is 118±30 kg h−1, consistent with

the actual release flux within the error estimate.

Furthermore, we applied our method to multiple overflight

AVIRIS-NG scenes from Fig. 1. The fitted flux rates are

within a consistent range: 1275, 1033, 1397, and 926 kg h−1

respectively. The mean of these estimates is thus 1158 kg h−1

and the standard deviation is 187 kg h−1.
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Figure 13. Comparison between the predicted and the actual total

flux of 30 plumes from 3000 bootstrap rounds.

Figure 14. An observed AVIRIS-NG scene in a controlled-release

experiment from a natural gas pipeline located at Victorville, CA

(34.8◦, −117.3◦), on 11 October 2017 with the flux rate of 89 ±
4 kg h−1.

6.4 Sensitivity analysis for different heat fluxes

In our LES simulations for this study, we primarily set the

sensible and latent heat fluxes to the typical condition dur-

ing the Four Corners field campaign. Changing the condi-

tion of these surface heat fluxes can potentially affect the

vertical structure of the simulated plumes and the dynam-

ics of the plumes in time. Nevertheless, our method involves

the column-integrated enhancement and hence is not signif-

icantly impacted by the surface heat fluxes. To verify this

point, we performed the sensitivity analysis by running ad-

ditional LES experiments with a different combination of

sensible and latent heat fluxes (SH and LH respectively):

Figure 15. Relationship between the IME and flux rate under differ-

ent sensible and latent heat fluxes of 200 and 400 W m−2 (blue), and

220 and 220 W m−2 (orange), compared to the original simulation

sensible and latent heat fluxes of 400 and 40 W m−2 (green). All

cases are under the wind speed of 4 m s−1. The detection threshold

was 500 ppm m−1.

(1) SH = LH (220 W m−2) and (2) SH (200 W m−2) < LH

(400 W m−2). These two additional scenarios contrast with

the typical condition that was previously used, i.e., SH

(400 W m−2) > LH (40 W m−2), and cover a common range

of surface heat flux conditions. The background wind speed

is kept the same as 4 m s−1. The results from our runs are

demonstrated in Fig. 15, where the relationship between the

IME and flux rate is found to be approximately the same, re-

maining within 1 standard deviation error from the original

scenario in the previous analyses. This implies that the uncer-

tainties associated with the change in these conditions will

not significantly impact our method and are captured well

with the range of errors we have analyzed.

7 Discussion and conclusion

In this study, we showed that Gaussian plume modeling

cannot be used for a meaningful comparison with observed

methane plumes from a point source. Thus, large eddy simu-

lations (LESs) were used to generate realistic synthetic mea-

surements of methane plumes under different background

wind speeds and source flux rates. This allowed a comparison

of the performances of two considered instruments, one mea-

suring in the shortwave infrared (AVIRIS-NG) and the other

in the thermal infrared (HyTES), resulting in widely differ-

ent vertical sensitivities towards methane enhancements. The

AVIRIS-NG was found to provide an unambiguous iden-

tification and quantification of the methane source as it is

sensitive to methane throughout the air column. While the

HyTES instrument has the potential for nighttime observa-

tions, variations in the integrated methane enhancements de-
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pended highly on vertical plume structure, rendering the in-

terpretation more challenging. While we attempt to make use

of the vertical information in the future, we focus this study

on results from the AVIRIS-NG synthetic plume measure-

ments. Using the IME method and a large ensemble, we de-

rived the relationship between the detected IME of a plume

and its source flux rate. This relationship is found to be

nonlinear because of the device detection threshold, which

causes a variable fraction of the true IME to fall below the

detection limit. In addition, the inversion of IME to an ac-

curate flux rate depends strongly on the wind speeds during

the measurements. This finding is expected and confirms the

significance of wind speeds on the methane point-source flux

estimations from remote sensing data. To study whether we

can gain additional information from the plume shape itself,

we performed an analysis on a large ensemble of plume snap-

shots from wide-ranging source flux rates and wind speeds.

We found that the angular width of the plume negatively cor-

relates with the wind speed, allowing us to constrain the ef-

fective wind speed from the shape itself. The angular width

is defined based on the plume angular distribution around its

main axis and is found to be effectively independent of the

source rates.

Using the relationship between the IME and the flux rates

for different wind speeds together with the connection be-

tween plume shape and the wind speed, we can disentan-

gle the source flux rate based on an observed snapshot of

the plume which provides both the IME and the spatial dis-

tribution. Our error analysis of this method applied on ran-

domly generated snapshots of various flux rates in the range

of 10–1000 kg h−1 showed an error of around 30 % on aver-

age for an individual point-source estimate. Given that point

sources are highly uncertain and also fluctuate in time, this

single measurement error appears acceptable. More impor-

tant than single measurement precision is accuracy for larger

ensemble averages, which informs regional emission esti-

mates. Thus, we also performed an error analysis for aggre-

gated flux estimates from 30 plumes. We used bootstrap sam-

pling and found the aggregation error estimate to be in the

range of less than 10 %. This provides a significant improve-

ment from other preexisting approaches that rely on wind

data, for which reliable meteorological reanalysis data might

not be available at high spatial resolution everywhere.

Furthermore, our method is validated by the application of

this method on an actual scene from a controlled-release ex-

periment from a natural gas pipeline in 2017, which demon-

strated an error of 32 % from the controlled flux rate of

89 kg h−1, a notable accuracy given the simplicity of our al-

gorithm that does not require wind speed data. This provides

added value in quantifying methane-point-source emissions

especially in locations where atmospheric reanalysis prod-

ucts and surface meteorological observations are not avail-

able.

It should be noted that altering the device detection thresh-

old level in our synthetic modeling to higher values does

impact the robustness of the correlation between the plume

width and the wind speed. In this study, we set the threshold

to 500 ppm m−1 to match the capabilities of the current in-

strumentations. Future instruments with improved gas sensi-

tivity (Thorpe et al., 2016b) will likely improve our ability to

estimate emission rates. Repeat overflights that result in mul-

tiple snapshots of the same source can also further reduce un-

certainties from transient variations of the plume due to tur-

bulence. Another aspect is that our current LES does not yet

model direct emission that could be released at height above

the ground. Incorporating this feature into our future analy-

sis may provide even more realistic methane plume simula-

tions. Despite these limitations, this current study is a first

step proving the potential of the method.

In this study, we have demonstrated the ability to esti-

mate flux rates of methane point sources based solely on the

remotely sensed column methane enhancement without the

need for ground measurements or weather reanalysis data.

This method could be applied to recent large-scale flight

campaigns to improve previous emission rate estimates. This

also has immediate implications for future AVIRIS-NG flight

campaigns, in particular over parts of the world lacking avail-

able wind data. The methodology described in this study

could also be applied to anticipated satellites that will pro-

vide methane measurements at finer spatial resolutions than

currently available. A path towards an improved understand-

ing of the regional methane budget as well as insights into

methane source distributions by categories is made possible.
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