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Abstract

One-stage object detectors are trained by optimiz-

ing classification-loss and localization-loss simultaneously,

with the former suffering much from extreme foreground-

background class imbalance issue due to the large num-

ber of anchors. This paper alleviates this issue by propos-

ing a novel framework to replace the classification task in

one-stage detectors with a ranking task, and adopting the

Average-Precision loss (AP-loss) for the ranking problem.

Due to its non-differentiability and non-convexity, the AP-

loss cannot be optimized directly. For this purpose, we

develop a novel optimization algorithm, which seamlessly

combines the error-driven update scheme in perceptron

learning and backpropagation algorithm in deep networks.

We verify good convergence property of the proposed algo-

rithm theoretically and empirically. Experimental results

demonstrate notable performance improvement in state-of-

the-art one-stage detectors based on AP-loss over different

kinds of classification-losses on various benchmarks, with-

out changing the network architectures.

1. Introduction

Object detection needs to localize and recognize the ob-

jects simultaneously from the large backgrounds, which re-

mains challenging due to the imbalance between foreground

and background. Deep learning based detection solutions

usually adopt a multi-task architecture, which handles clas-

sification task and localization task with different loss func-

tions. The classification task aims to recognize the object

in a given box, while the localization task aims to predict

the precise bounding box of the object. Two-stage detec-

tors [24, 7, 2, 14] first generates a limited number of ob-

ject box proposals, so that the detection problem can be

solved by adopting classification task on those proposals.

However, the circumstance is different for one-stage detec-

tors, which need to predict the object class directly from the

densely pre-designed candidate boxes. The large number
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Figure 1: Dashed red boxes are the ground truth object boxes. The

orange filled boxes and other blank boxes are anchors with posi-

tive and negative ground truth labels, repectively. (a) shows that

the detection performance is poor but the classification accuracy

is still high due to large number of true negatives. (b) shows the

ranking metric AP can better reflect the actual condition as it does

not suffer from the large number of true negatives.

of boxes yield the imbalance between foreground and back-

ground which makes the optimization of classification task

easily biased and thus impacts the detection performance.

It is observed that the classification metric could be very

high for a trivial solution which predicts negative label for

almost all candidate boxes, while the detection performance

is poor. Figure 1a illustrates one such example.

To tackle this issue in one-stage object detectors, some

works introduce new classification losses such as balanced

loss [22], Focal Loss [15], as well as tailored training

method such as Online Hard Example Mining (OHEM) [18,

29]. These losses model each sample (anchor box) in-

dependently, and attempt to re-weight the foreground and

background samples in classification losses to cater for the

imbalance condition; this is done without considering the

relationship among different samples. The designed bal-

ance weights are hand-crafted hyper-parameters, which do

not generalize well across datasets. We argue that the gap

between classification task and detection task hinder the

performance of one-stage detectors. In this paper, instead

of modifying the classification loss, we propose to replace
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Figure 2: Overall framework of the proposed approach. We replace the classification-task in one-stage detectors with a ranking task, where

the ranking procedure produces the primary terms of AP-loss and the corresponding label vector. The optimization algorithm is based on

an error-driven learning scheme combined with backpropagation. The localization-task branch is not shown here due to no modification.

classification task with ranking task in one-stage detectors,

where the associated ranking loss explicitly models sample

relationship, and is invariant to the ratio of positive and neg-

ative samples. As shown in Figure 1b, we adopt Average

Precision (AP) as our target loss which is inherently more

consistent with the evaluation metric for object detection.

However, it is non-trivial to directly optimize the AP-loss

due to the non-differentiability and non-decomposability, so

that standard gradient descent methods are not amenable

for this case. There are three aspects of studies for this is-

sue. First, AP based loss is studied within structured SVM

models [34, 19], which restricts in linear SVM model so

that the performance is limited. Second, a structured hinge

loss [20] is proposed to optimize the upper bound of AP-

loss instead of the loss itself. Third, approximate gradient

methods [31, 9] are proposed for optimizing the AP-loss,

which are less efficient and easy to fall into local optimum

even for the case of linear models due to the non-convexity

and non-quasiconvexity of the AP-loss. Therefore, it is still

an open problem for the optimization of the AP-loss.

In this paper, we address this challenge by replacing the

classification task in one-stage detectors with a ranking task,

so that we handle the class imbalance problem with a rank-

ing based loss named AP-loss. Furthermore, we propose

a novel error-driven learning algorithm to effectively op-

timize the non-differentiable AP based objective function.

More specifically, some extra transformations are added to

the score output of one-stage detector to obtain the AP-loss,

which includes a linear transformation that transforms the

scores to pairwise differences, and a non-linear and non-

differentiable “activation function” that transform the pair-

wise differences to the primary terms of the AP-loss. Then

the AP-loss can be obtained by the dot product between

the primary terms and the label vector. It is worth noting

that the difficulty for using gradient method on the AP-loss

lies in passing gradients through the non-differentiable ac-

tivation function. Inspired by the perceptron learning algo-

rithm [25], we adopt an error-driven learning scheme to di-

rectly pass the update signal through the non-differentiable

activation function. Different from gradient method, our

learning scheme gives each variable an update signal pro-

portional to the error it makes. Then, we adopt the back-

propagation algorithm to transfer the update signal to the

weights of neural network. We theoretically and experimen-

tally prove that the proposed optimization algorithm does

not suffer from the non-differentiability and non-convexity

of the objective function. The main contributions of this

paper are summarized as below:

• We propose a novel framework in one-stage object de-

tectors which adopts the ranking loss to handle the

class imbalance issue.

• We propose an error-driven learning algorithm that can

efficiently optimize the non-differentiable and non-

convex AP-based objective function with both theoret-

ical and experimental verifications.

• We show notable performance improvement with the

proposed method on state-of-the-art one-stage detec-

tors over different kinds of classification-losses with-

out changing the model architecture.

2. Related Work

One-stage detectors: In object detection, the one-stage ap-

proaches have relatively simpler architecture and higher ef-

ficiency than two-stage approaches. OverFeat [27] is one

of the first CNN-based one-stage detectors. Thereafter, dif-

ferent designs of one-stage detectors are proposed, includ-

ing SSD [18], YOLO [22], DSSD [6] and DSOD [28, 13].

These methods demonstrate good processing efficiency as

one-stage detectors, but generally yield lower accuracy than

two-stage detectors. Recently, RetinaNet [15] and Re-

fineDet [35] narrow down the performance gap (especially

on the challenging COCO benchmark [16]) between one-

stage approaches and two-stage approaches with some in-

novative designs. As commonly known, the performance
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of one-stage detectors benefits much from densely designed

anchors, which introduce extreme imbalance between fore-

ground and background samples. To address this challenge,

methods like OHEM [18, 29] and Focal Loss [15] have been

proposed to reduce the loss weight for easy samples. How-

ever, there are two hurdles that are still open to discussion.

Firstly, hand-crafted hyper-parameters for weight balance

do not generalize well across datasets. Secondly, the rela-

tionship among sample anchors is far from well modeled.

AP as a loss for Object Detection: Average Precision

(AP) is widely used as the evaluation metric in many

tasks such as object detection [5] and information re-

trieval [26]. However, AP is far from a good and com-

mon choice as an optimization goal in object detection due

to its non-differentiability and non-convexity. Some meth-

ods have been proposed to optimize the AP-loss in object

detection, such as AP-loss in the linear structured SVM

model [34, 19], structured hinge loss as upper bound of the

AP-loss [20], approximate gradient methods [31, 9], rein-

forcement learning to fine-tune a pre-trained object detec-

tor with AP based metric [21]. Although these methods

give valuable results in optimizing the AP-loss, their per-

formances are still limited due to the intrinsic limitations.

In details, the proposed approach differs from them in 4

aspects. (1) Our approach can be used for any differen-

tiable linear or non-linear models such as neural networks,

while [34, 19] only work for linear SVM model. (2) Our

approach directly optimizes the AP-loss, while [20] intro-

duces notable loss gap after relaxation. (3) Our approach

dose not approximate the gradient and dose not suffer from

the non-convexity of objective function as in [31, 9]. (4)

Our approach can train the detectors in an end-to-end way,

while [21] cannot.

Perceptron Learning Algorithm: The core of our opti-

mization algorithm is the “error-driven update” which is

generalized from the perceptron learning algorithm [25],

and helps overcome the difficulty of the non-differentiable

objective functions. The perceptron is a simple artificial

neuron using the Heaviside step function as the activa-

tion function. The learning algorithm was first invented

by Frank Rosenblatt [25]. As the Heaviside step function

in perceptron is non-differentiable, it is not amenable for

gradient method. Instead of using a surrogate loss like

cross-entropy, the perceptron learning algorithm employs

an error-driven update scheme directly on the weights of

neurons. This algorithm is guaranteed to converge in finite

steps if the training data is linearly separable. Further works

like [11, 1, 32] have studied and improved the stability and

robustness of the perceptron learning algorithm.

3. Method

We aim to replace the classification task with AP-loss

based ranking task in one-stage detectors such as Reti-

k

(a) (b)

Figure 3: Comparison of label assignments. The dashed red box is

the ground truth box with class k. (a) In traditional classification

task of one-stage detectors, the anchor is assigned a foreground

label k. (b) In our ranking task framework, the anchor replicates

K times, and we assign the k-th anchor to label 1, others 0.

naNet [15]. Figure 2 shows the two key components of our

approach, i.e., the ranking procedure and the error-driven

optimization algorithm. Below, we will first present how

AP-loss is derived from traditional score output. Then, we

will introduce the error-driven optimization algorithm. Fi-

nally, we also present the theoretical analyses of the pro-

posed optimization algorithm and outline the training de-

tails. Note that all changes are made on the loss part of the

classification branch without changing the backbone model

and localization branch.

3.1. Ranking Task and AP­Loss

3.1.1 Ranking Task

In traditional one-stage detectors, given input image I ,

suppose the pre-defined boxes (also called anchors) set

is B, each box bi ∈ B will be assigned a label ti ∈
{−1, 0, 1, . . . ,K} based on ground truth and the IoU strat-

egy [7, 24], where label 1 ∼ K means the object class ID,

label “0” means background and label “−1” means ignored

boxes. During training and testing phase, the detector out-

puts a score-vector (s0i , · · · , s
K
i ) for each box bi.

In our framework, instead of one box with K + 1 di-

mensional score predictions, we replicate each box bi for K
times to obtain bik where k = 1, · · · ,K, and the k-th box is

responsible for the k-th class. Each box bik will be assigned

a label tik ∈ {−1, 0, 1} through the same IoU strategy (la-

bel −1 for not counted into the ranking loss). Therefore, in

the training and testing phase, the detector will predict only

one scalar score sik for each box bik. Figure 3 illustrates

our label formulation and the difference to traditional case.

The ranking task dictates that every positive boxes

should be ranked higher than all the negative boxes w.r.t

their scores. Note that AP of our ranking result is com-

puted over the scores from all classes. This is slightly differ-

ent from the evaluation metric meanAP for object detection

systems, which computes AP for each class and obtains the

average value. We compute AP this way because the score

distribution should be unified for all classes while ranking

each class separately cannot achieve this goal.
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3.1.2 AP-Loss

For simplicity, we still use B to denote the anchor box set

after replication, and bi to denote the i-th anchor box with-

out the replication subscript. Each box bi thus corresponds

to one scalar score si and one binary label ti. Some trans-

formations are required to formulate a ranking loss as il-

lustrated in Figure 2. First, the difference transformation

transfers the score si to the difference form

∀i, j, xij = −(s(bi;θ)− s(bj ;θ)) = −(si − sj) (1)

where s(bi;θ) is a CNN based score function with weights

θ for box bi. The ranking label transformation transfers

labels ti to the corresponding pairwise ordering form

∀i, j, yij = 1ti=1,tj=0 (2)

where 1 is a indicator function which equals to 1 only if the

subscript condition holds (i.e., ti = 1, tj = 0), otherwise 0.

Then, we define an vector-valued activation function L(·)
to produce the primary terms of the AP-loss as

Lij(x) =
H(xij)

1 +
∑

k∈P∪N ,k 6=i H(xik)
= Lij (3)

where H(·) is the Heaviside step function:

H(x) =

{

0 x < 0

1 x ≥ 0
(4)

A ranking is denoted as proper ranking when there are no

two samples scored equally (i.e., ∀i 6= j, si 6= sj). With-

out loss of generality, we will treat all rankings as a proper

ranking by breaking ties arbitrarily. Now, we can formulate

the AP-loss LAP as

LAP = 1− AP = 1−
1

|P|

∑

i∈P

rank+(i)

rank(i)

= 1−
1

|P|

∑

i∈P

1 +
∑

j∈P,j 6=i H(xij)

1 +
∑

j∈P,j 6=i H(xij) +
∑

j∈N H(xij)

=
1

|P|

∑

i∈P

∑

j∈N

Lij =
1

|P|

∑

i,j

Lij · yij =
1

|P|
〈L(x),y〉

(5)

where rank(i) and rank+(i) denote the ranking position

of score si among all valid samples and positive samples

respectively, P = {i|ti = 1}, N = {i|ti = 0}, |P| is the

size of set P , L and y are vector form for all Lij and yij
respectively, 〈, 〉 means dot-product of two input vectors.

Note that x,y,L ∈ R
d, where d = (|P|+ |N |)2.

Finally, the optimization problem can be written as:

min
θ

LAP (θ) = 1− AP(θ) =
1

|P|
〈L(x(θ)),y〉 (6)

where θ denotes the weights of detector model. As the acti-

vation function L(·) is non-differentiable, a novel optimiza-

tion/learning scheme is required instead of the standard gra-

dient descent method.

Besides the AP metric, other ranking based metric can

also be used to design the ranking loss for our framework.

One example is the AUC-loss [12] which measures the area

under ROC curve for ranking purpose, and has a slightly

different “activation function” as

L
′
ij(x) =

H(xij)

|N |
(7)

As AP is consistent with the evaluation metric of the ob-

ject detection task, we argue that AP-loss is intuitively more

suitable than AUC-loss for this task, and will provide em-

pirical study in our experiments.

3.2. Optimization Algorithm

3.2.1 Error-Driven Update

Recalling the perceptron learning algorithm, the update for

input variable is “error-driven”, which means the update is

directly derived from the difference between desired output

and current output. We adopt this idea and further general-

ize it to accommodate the case of activation function with

vector-valued input and output. Suppose xij is the input and

Lij is the current output, the update for xij is thus

∆xij = L
∗
ij − Lij (8)

where L∗
ij is the desired output. Note that the AP-loss

achieves its minimum possible value 0 when each term

Lij · yij = 0. There are two cases. If yij = 1, we should

set the desired output L∗
ij = 0. If yij = 0, we do not care

the update and set it to 0, since it does not contribute to the

AP-loss. Consequently, the update can be simplified as

∆xij = −Lij · yij (9)

3.2.2 Backpropagation

We now have the desired vector-form update ∆x, and then

will find an update for model weights ∆θ which will pro-

duce most appropriate movement for x. We use dot-product

to measure the similarity of successive movements, and reg-

ularize the change of weights (i.e. ∆θ) with L2-norm based

penalty term. The optimization problem can be written as:

argmin
∆θ

{−〈∆x,x(θ(n) +∆θ)− x(θ(n))〉+ λ‖∆θ‖22} (10)

where θ(n) denotes the model weights at the n-th step. With

that, the first-order expansion of x(θ) is given by:

x(θ) = x(θ(n))+
∂x(θ(n))

∂θ
· (θ−θ

(n))+o(‖θ−θ
(n)‖) (11)

where ∂x(θ(n))/∂θ is the Jacobian matrix of vector-valued

function x(θ) at θ(n). Ignoring the high-order infinitesimal,

we obtain the step-wise minimization process:

θ
(n+1) − θ

(n) = argmin
∆θ

{−〈∆x,
∂x(θ(n))

∂θ
∆θ〉+ λ‖∆θ‖22}

(12)
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The optimal solution can be obtained by finding the station-

ary point. Then, the form of optimal ∆θ is consistent with

the chain rule of derivative, which means, it can be directly

implemented by setting the gradient of xij to −∆xij (c.f.

Equation 9) and proceeding with backpropagation. Hence

the gradient for score si can be obtained by backward prop-

agating the gradient through the difference transformation:

gi = −
∑

j,k

∆xjk ·
∂xjk

∂si
=

∑

j

∆xij −
∑

j

∆xji

=
∑

j

Lji · yji −
∑

j

Lij · yij

(13)

3.3. Analyses

Convergence: To better understand the characteristics of

the AP-loss, we first provide a theoretical analysis on the

convergence of the optimization algorithm, which is gener-

alized from the convergence property of the original percep-

tron learning algorithm.

Proposition 1 The AP-loss optimizing algorithm is guar-

anteed to converge in finite steps if below conditions hold:

(1) the learning model is linear;

(2) the training data is linearly separable.

The proof of this proposition is provided in Appendix-1 of

supplementary. Although convergence is somewhat weak

due to the need of strong conditions, it is non-trivial since

the AP-loss function is not convex or quasiconvex even for

the case of linear model and linearly separable data, so that

gradient descent based algorithm may still fail to converge

on a smoothed AP-loss function even under such strong

conditions. One such example is presented in Appendix-2

of supplementary. It means that, under such conditions, our

algorithm still optimizes better than the approximate gradi-

ent descent algorithm for AP-loss. Furthermore, with some

mild modifications, even though the training data is not sep-

arable, the accumulated AP-loss can also be bounded pro-

portionally by the best performance of the learning model.

More details are presented in Appendix-3 of supplementary.

Consistency: Besides convergence, We observed that the

proposed optimization algorithm is inherently consistent

with widely used classification-loss functions.

Observation 1 When the activation function L(·) takes the

form of softmax function and loss-augmented step function,

our optimization algorithm can be expressed as the gradi-

ent descent algorithm on cross-entropy loss and hinge loss

respectively.

The detailed analysis of this observation is presented in

Appendix-4 of supplementary. We argue that the observed

consistency is on the basis of the “error-driven” property.

As is known, the gradients of those widely used loss func-

tions are proportional to their prediction errors, where the

Algorithm 1 Minibatch training for Interpolated AP

Input: All scores {si} and corresponding labels {ti} in a minibatch

Output: Gradient of input {gi}
1: ∀i, gi ← 0
2: MaxPrec← 0
3: P ← {i | ti = 1}, N ← {i | ti = 0}
4: O ← argsort({si | i ∈ P}) ⊲ Indexes of scores sorted in

ascending order

5: for i ∈ O do

6: Compute xij = sj − si for all j ∈ P ∪N and Lij for all j ∈ N
⊲ According to Equation 3 and Equation 14

7: Prec← 1−
∑

j∈N Lij

8: if Prec ≥ MaxPrec then

9: MaxPrec← Prec

10: else ⊲ Interpolation

11: ∀j ∈ N , Lij ← Lij · (1−MaxPrec)/(1− Prec)
12: end if

13: gi ← −
∑

j∈N Lij ⊲ According to Equation 13

14: ∀j ∈ N , gj ← gj + Lij ⊲ According to Equation 13

15: end for

16: ∀i, gi ← gi/|P| ⊲ Normalization

prediction here refers to the output of activation function.

In other words, their activation functions have a nice prop-

erty: the vector field of prediction errors is conservative,

allowing it being the gradient of some surrogate loss func-

tion. However, our activation function does not have this

property, which makes our optimization not able to express

as gradient descent with any surrogate loss function.

3.4. Details of Training Algorithm

Minibatch Training The minibatch training strategy is

widely used in deep learning frameworks [8, 18, 15] as it ac-

counts for more stability than the case with batch size equal

to 1. The mini-batch training helps our optimization algo-

rithm quite a lot for escaping the so-called “score-shift” sce-

nario. The AP-loss can be computed both from a batch of

images and from a single image with multiple anchor boxes.

Consider an extreme case: our detector can predict perfect

ranking in both image I1 and image I2, but the lowest score

in image I1 is even greater than the highest score in im-

age I2. There are “score-shift” between two images so that

the detection performance is poor when computing AP-loss

per-image. Aggregating scores over images in a mini-batch

can avoid such problem, so that the minibatch training is

crucial for good convergence and good performance.

Piecewise Step function During early stage of training,

scores si are very close to each other (i.e. almost all in-

puts to Heaviside step function H(x) are near zero), so that

a small change of input will cause a big output difference,

which destabilizes the updating process. To tackle this is-

sue, we replace H(x) with a piecewise step function:

f(x) =















0 , x < −δ

x

2δ
+ 0.5 , −δ ≤ x ≤ δ

1 , δ < x

(14)
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Batch Size AP AP50 AP75

1 52.4 80.2 56.7

2 53.0 81.7 57.8

4 52.8 82.2 58.0

8 53.1 82.3 58.1

(a) Varying batch size

δ AP AP50 AP75

0.25 50.2 80.7 53.6

0.5 51.3 81.6 55.4

1 53.1 82.3 58.1

2 52.8 82.6 57.2

(b) Varying δ for piecewise step function

Interpolated AP AP50 AP75

No 52.6 82.2 57.1

Yes 53.1 82.3 58.1

(c) Interpolated vs. not interpolated

Table 1: Ablation experiments. Models are tested on VOC2007 test set.

3 2 1 0 1 2 30.0

0.5

1.0
Heaviside Step Function
=0.25
=0.5
=1
=2

Figure 4: Heaviside step function and piecewise step function.

(Best viewed in color)

The piecewise step functions with different δ are shown in

Figure 4. When δ approaches +0, the piecewise step func-

tion approaches the original step function. Note that f(·)
is only different from H(·) near zero point. We argue that

the precise form of the piecewise step function is not cru-

cial. Other monotonic and symmetric smooth functions that

only differs from H(·) near zero point could be equally ef-

fective. The choice of δ relates closely to the weight decay

hyper-parameter in CNN optimization. Intuitively, parame-

ter δ controls the width of decision boundary between pos-

itive and negative samples. Smaller δ enforces a narrower

decision boundary, which causes the weights to shrink cor-

respondingly (similar effect to that caused by the weight

decay). Further details are presented in the experiments.

Interpolated AP The interpolated AP [26] is widely

adopted by many object detection benchmarks like PAS-

CAL VOC [5] and MS COCO [16]. The common justifi-

cation for interpolating the precision-recall curve [5] is “to

reduce the impact of ’wiggles’ in the precision-recall curve,

caused by small variations in the ranking of examples”. Un-

der the same consideration, we adopt the interpolated AP in-

stead of the original version. Specifically, the interpolation

is applied on Lij to make the precision at the k-th smallest

positive sample monotonically increasing with k where the

precision is (1 −
∑

j∈N Lij) in which i is the index of the

k-th smallest positive sample. It is worth noting that the in-

terpolated AP is a smooth approximation of the actual AP

so that it is a practical choice to help to stabilize the gra-

dient and to reduce the impact of ’wiggles’ in the update

signals. The details of the interpolated AP based algorithm

is summarized in Algorithm 1.

4. Experiments

4.1. Experimental Settings

We evaluate the proposed method on the state-of-the-art

one-stage detector RetinaNet [15]. The implementation de-

tails are the same as in [15] unless explicitly stated. Our ex-

periments are performed on two benchmark datasets: PAS-

CAL VOC [5] and MS COCO [16]. The PASCAL VOC

dataset has 20 classes, with VOC2007 containing 9,963 im-

ages for train/val/test and VOC2012 containing 11,530 for

train/val. The MS COCO dataset has 80 classes, contain-

ing 123,287 images for train/val. We implement our codes

with the MXNET framework, and conduct experiments on

a workstation with two NVidia TitanX GPUs.

PASCAL VOC: When evaluated on the VOC2007 test

set, models are trained on the VOC2007 and VOC2012

trainval sets. When evaluated on the VOC2012 test

set, models are trained on the VOC2007 and VOC2012

trainval sets plus the VOC2007 test set. Similar to

the evaluation metrics used in the MS COCO benchmark,

we also report the AP averaged over multiple IoU thresh-

olds of 0.50 : 0.05 : 0.95. We set δ = 1 in Equation 14. We

use ResNet [8] as the backbone model which is pre-trained

on the ImageNet-1k classification dataset [4]. At each level

of FPN [14], the anchors have 2 sub-octave scales (2k/2, for

k ≤ 1) and 3 aspect ratios [0.5, 1, 2]. We fix the batch nor-

malization layers to be frozen in training phase. We adopt

the minibatch training on 2 GPUs with 8 images per GPU.

All evaluated models are trained for 160 epochs with an ini-

tial learning rate of 0.001 which is then divided by 10 at 110

epochs and again at 140 epochs. Weight decay of 0.0001

and momentum of 0.9 are used. We adopt the same data

augmentation strategies as [18], while do not use any data

augmentation during testing phase. In training phase, the

input image is fixed to 512×512, while in testing phase, we

maintain the original aspect ratio and resize the image to

ensure the shorter side with 600 pixels. We apply the non-

maximum suppression with IoU of 0.5 for each class.

MS COCO: All models are trained on the widely used

trainval35k set (80k train images and 35k subset of val

images), and tested on minival set (5k subset of val im-

ages) or test-dev set. We train the networks for 100

epochs with an initial learning rate of 0.001 which is then

divided by 10 at 60 epochs and again at 80 epochs. Other

details are similar to that for PASCAL VOC.

4.2. Ablation Study

We first investigate the impact of our design settings of

the proposed framework. We fix the ResNet-50 as back-

bone and conduct several controlled experiments on PAS-
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Training Loss
PASCAL VOC COCO

AP AP50 AP75 AP AP50 AP75

CE-Loss + OHEM 49.1 81.5 51.5 30.8 50.9 32.6

Focal Loss 51.3 80.9 55.3 33.9 55.0 35.7

AUC-Loss 49.3 79.7 51.8 25.5 44.9 26.0

AP-Loss 53.1 82.3 58.1 35.0 57.2 36.6

Table 2: Comparison through different training losses. Models are

tested on VOC2007 test and COCO minival sets. The metric

AP is averaged over multiple IoU thresholds of 0.50 : 0.05 : 0.95.

CAL VOC2007 test set (and COCO minival if stated)

for this ablation study.

4.2.1 Comparison on Different Parameter Settings

Here we study the impact of the practical modifications in-

troduced in Section 3.4. All results are shown in Table 1.

Minibatch Training: First, we study the mini-batch train-

ing, and report detector results at different batch-size in Ta-

ble 1a. It shows that larger batch-size (i.e. 8) outperforms

all the other smaller batch-size. This verifies our previous

hypothesis that large minibatch training helps to eliminate

the “score-shift” from different images, and thus stabilizes

the AP-loss through robust gradient calculation. Hence,

batch-size = 8 is used in our further studies.

Piecewise Step Function: Second, we study the piecewise

step function, and report detector performance on the piece-

wise step function with different δ in Table 1b. As men-

tioned before, we argue that the choice of δ is trivial and

is dependent on other network hyper-parameters such as

weight decay. Smaller δ makes the function sharper, which

yields unstable training at initial phase. Larger δ makes the

function deviate from the properties of the original AP-loss,

which also worsens the performance. δ = 1 is a good choice

we used in our further studies.

Interpolated AP: Third, we study the impact of interpo-

lated AP in our optimization algorithm, and list the results

in Table 1c. Marginal benefits are observed for interpolated

AP over standard AP, so we use interpolated AP in all the

following studies.

4.2.2 Comparison on Different Losses

We evaluate with different losses on RetinaNet [15]. Re-

sults are shown in Table 2. We compare traditional classi-

fication based losses like focal loss [15] and cross entropy

loss (CE-loss) with OHEM [18] to the ranking based losses

like AUC-loss and AP-loss. Although focal loss is signif-

icantly better than CE-loss with OHEM on COCO dataset,

it is interesting that focal-loss does not perform better than

CE-loss at AP50 on PASCAL VOC. This is likely because

the hyper-parameters of focal loss are designed to suit the

imbalance condition on COCO dataset which is not suitable

for PASCAL VOC, so that focal loss cannot generalize well
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Figure 5: (a) Detection accuracy (mAP) on VOC2007 test

set. (b) Convergence curves of different AP-loss optimizations on

VOC2007 trainval set. (Best viewed in color)

to PASCAL VOC without tuning its hyper-parameters. The

proposed AP-loss performs much better than all the other

losses on both two datasets, which demonstrates its effec-

tiveness and stronger generalization ability on handling the

imbalance issue. It is worth noting that AUC-loss performs

much worse than AP-loss, which may be due to the fact that

AUC has equal penalty for each misordered pair while AP

imposes greater penalty for the misordering at higher po-

sitions in the predicted ranking. It is obvious that object

detection evaluation concerns more on objects with higher

confidence, which is why AP provides a better loss measure.

Furthermore, an assessment of the detection performance at

different training iterations, as shown in Figure 5a, outlines

the superiority of the AP-loss for snapshot time points.

4.2.3 Comparison on Different Optimization Methods

We also compare our optimization method with the approx-

imate gradient method [31, 9] and structured hinge loss

method [20]. Both [31, 9] approximate the AP-loss with

a smooth expectation and envelope function, respectively.

Following their guidance, we replace the step function in

AP-loss with a sigmoid function to constrain the gradient to

neither zero nor undefined, while still keep the shape similar

to the original function. Same as [9], we adopt the log space

objective function, i.e. log(AP + ǫ), to allow the model to

quickly escape from the initial state. We train the detector

on VOC2007 trainval set and turn off the bounding box

regression task. The convergence curves shown in Figure 5b

reveal some essential observations. It can be seen that AP-

loss optimized by approximate gradient method does not

even converge, likely because its non-convexity and non-

quasiconvexity fail on a direct gradient descent method.

Meanwhile, AP-loss optimized by the structured hinge loss

method [20] converges slowly and stabilizes near 0.8, which

is significantly worse than the asymptotic limit of AP-loss

optimized by our error-driven update scheme. We believe

that this method does not optimize the AP-loss directly but

rather an upper bound of it, which is controlled by a dis-

criminant function [20]. In ranking task, this discriminant

function is hand-picked and has an AUC-like form, which

may cause variability in optimization.
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Figure 6: Some detection examples. Top: Baseline results by RetinaNet with focal loss. Bottom: Our results with AP-loss.

Method Backbone Multi-Scale
VOC07 VOC12 COCO

AP50 AP50 AP AP50 AP75 APS APM APL

YOLOv2 [23] DarkNet-19 ✗ 78.6 73.4 21.6 44.0 19.2 5.0 22.4 35.5

DSOD300 [28] DS/64-192-48-1 ✗ 77.7 76.3 29.3 47.3 30.6 9.4 31.5 47.0

SSD512 [18] VGG-16 ✗ 79.8 78.5 28.8 48.5 30.3 - - -

SSD513 [6] ResNet-101 ✗ 80.6 79.4 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [6] ResNet-101 ✗ 81.5 80.0 33.2 53.3 35.2 13.0 35.4 51.1

DES512 [36] VGG-16 ✗ 81.7 80.3 32.8 53.2 34.6 13.9 36.0 47.6

RFBNet512 [17] VGG-16 ✗ 82.2 - 33.8 54.2 35.9 16.2 37.1 47.4

PFPNet-R512 [10] VGG-16 ✗ 82.3 80.3 35.2 57.6 37.9 18.7 38.6 45.9

RefineDet512 [35] VGG-16 ✗ 81.8 80.1 33.0 54.5 35.5 16.3 36.3 44.3

RefineDet512 [35] ResNet-101 ✗ - - 36.4 57.5 39.5 16.6 39.9 51.4

RetinaNet500 [15] ResNet-101 ✗ - - 34.4 53.1 36.8 14.7 38.5 49.1

RetinaNet500+AP-Loss (ours) ResNet-101 ✗ 83.9 83.1 37.4 58.6 40.5 17.3 40.8 51.9

PFPNet-R512 [10] VGG-16 ✓ 84.1 83.7 39.4 61.5 42.6 25.3 42.3 48.8

RefineDet512 [35] VGG-16 ✓ 83.8 83.5 37.6 58.7 40.8 22.7 40.3 48.3

RefineDet512 [35] ResNet-101 ✓ - - 41.8 62.9 45.7 25.6 45.1 54.1

RetinaNet500+AP-Loss (ours) ResNet-101 ✓ 84.9 84.5 42.1 63.5 46.4 25.6 45.0 53.9

Table 3: Detection results on VOC2007 test, VOC 2012 test and COCO test-dev sets.

4.3. Benchmark Results

With the settings selected in ablation study, we con-

duct experiments to compare the proposed detector to state-

of-the-art one-stage detectors on three widely used bench-

mark, i.e. VOC2007 test, VOC2012 test and COCO

test-dev sets. We use ResNet-101 as backbone net-

works instead of ResNet-50 in ablation study. We use an

image scale of 500 pixels for testing. Table 3 lists the

benchmark results comparing to recent state-of-the-art one-

stage detectors such as SSD [18], YOLOv2 [23], DSSD [6],

DSOD [28], DES [36], RetinaNet [15], RefineDet [35], PF-

PNet [10], RFBNet [17]. Compared to the baseline model

RetinaNet500 [15], our detector achieves a 3.0% improve-

ment (37.4% vs. 34.4%) on COCO dataset. Figure 6 il-

lustrates some detection results by the RetinaNet with focal

loss and our AP-loss. Besides, our detector outperforms all

the other methods for both single-scale and multi-scale tests

in all the three benchmarks. We should emphasize that this

verifies the great effectiveness of our AP-loss since our de-

tector achieves such a great performance gain just by replac-

ing the focal-loss with our AP-loss in RetinaNet without

whistle and bells, without using advanced techniques like

deformable convolution [3], SNIP [30], group normaliza-

tion [33], etc. The performance could be further improved

with these kinds of techniques and other possible tricks.

Our detector has the same detection speed (i.e., ∼11 fps
on one NVidia TitanX GPU) as RetinaNet500 [15] since it

does not change the network architecture for inference.

5. Conclusion

In this paper, we address the class imbalance issue in

one-stage object detectors by replacing the classification

sub-task with a ranking sub-task, and proposing to solve

the ranking task with AP-Loss. Due to non-differentiability

and non-convexity of the AP-loss, we propose a novel al-

gorithm to optimize it based on error-driven update scheme

from perceptron learning. We provide a grounded theoret-

ical analysis of the proposed optimization algorithm. Ex-

perimental results show that our approach can significantly

improve the state-of-the-art one-stage detectors.
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