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Abstract: Deep learning models yield remarkable results in skin lesions analysis. However, these
models require considerable amounts of data, while accessibility to the images with annotated skin
lesions is often limited, and the classes are often imbalanced. Data augmentation is one way to
alleviate the lack of labeled data and class imbalance. This paper proposes a new data augmentation
method based on image fusion technique to construct large dataset on all existing tones. The
fusion method consists of a pulse-coupled neural network fusion strategy in a non-subsampled
shearlet transform domain and consists of three steps: decomposition, fusion, and reconstruction.
The dermoscopic dataset is obtained by combining ISIC2019 and ISIC2020 Challenge datasets. A
comparative study with current algorithms was performed to access the effectiveness of the proposed
one. The first experiment results indicate that the proposed algorithm best preserves the lesion
dermoscopic structure and skin tones features. The second experiment, which consisted of training
a convolutional neural network model with the augmented dataset, indicates a more significant
increase in accuracy by 15.69%, and 15.38% respectively for tanned, and brown skin categories. The
model precision, recall, and F1-score have also been increased. The obtained results indicate that the
proposed augmentation method is suitable for dermoscopic images and can be used as a solution to
the lack of dark skin images in the dataset.

Keywords: data augmentation; pulse-coupled neural network; nonsubsampled shearlet transform;
convolutional neural network

1. Introduction

Advances in neural network architecture, computation power, and access to big data
have favored the application of computer vision to many tasks. Esteva et al. in [1] have
demonstrated the effectiveness of convolutional neural networks (CNN) in computer vision
tasks such as skin lesion classification. CNNs identify and extract useful and best features to
classify images. Research has shown that training deep models with millions of parameters
requires relatively large-scale datasets to reach high accuracy. It is then according to [2], a
generally accepted notion that larger dataset improves classification performance.

However, assembling huge datasets can quickly become tricky due to the manual work
required to collect and label the data. Building big medical image datasets is especially
tricky due to the rarity of diseases, patient privacy [3], requirement of medical experts for
labeling, and the high cost of medical imaging acquisition systems. These obstacles have led
to the creation of several data augmentation methods such as color space transformations,
geometric transformations, kernel filters, mixing images, and random erasing [4]. More
complex augmentation methods based on generative models and image fusion strategy
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have recently been developed for medical image classification, but these methods are not
all adapted to all task [5].

This paper proposes a novel image augmentation algorithm that combines the struc-
ture of a dermoscopic image with the color appearance of another to construct augmented
images considering all the existing tones. The algorithm is based on a pulse-coupled neural
network fusion strategy in a nonsubsampled shearlet transform domain.

The remainder of the paper is structured as follows. Section 2 is a comprehensive
review of deep-learning-based data augmentation techniques and image fusion methods.
Section 3 presents the proposed approach, followed by experimental results and discussion
in Section 4. The article ends with the conclusion and future perspectives.

2. Literature Review
2.1. Data Augmentation Methods

In the literature, there are two categories of data augmentation. The first category is
based on basic image manipulations, and the other category is based on deep learning.

Data augmentations from basic image manipulations commonly consist of image
rotation, reflection, scaling (zoom in/out), shearing, histogram equalization, enhancing
contrast or brightness, white balancing, sharpening, and blurring [6]. Those easy-to-
understand methods have been proven to be fast, reproducible, and reliable and their
implementation code is relatively easy and available to download for the most known deep
learning frameworks, and thus more popular [7].

The literature distinguishes two forms of deep-learning-based data augmentation:
convolutional-layer-based methods and generative adversarial networks (GANs) based
methods. Hui et al. in [8] proposed a deep-learning-based method named Densefuse. The
method combines convolutional layers and a dense block as encoder to extract deep features
and convolutional layers as decoder to reconstruct the final fused image. Addition strategy
and l1-norm strategy are used to combine features. The results indicate the effectiveness of
the proposed architecture for infrared and visible image fusion tasks. Zhang et al. in [9]
proposed a method named IFCNN. This method framework consists of feature selection
with convolutional layers, fusion rule, and features reconstruction with convolutional
layers. Th results demonstrate good generalization potential. Subbiah Parvathy et al.
in [10] proposed a deep learning concepts based method that optimizes the threshold of
fusion rules in shearlet transform. The proposed method has high efficiency for different
input images.

GAN-based data augmentation originally proposed by Goodfellow et al. brought a
breakthrough in the synthetic data generation research field. A GAN framework consists
of two separate networks called the discriminator and generator, training competitively.
According to Bowles et al. in [11], GANs generate additional information from a dataset.
The intended task of the discriminator is to distinguish synthesized samples from original
ones, whereas the generator is tasked with generating realistic images that can fool the
discriminator. Since then, GANs were introduced in 2014 [12] and various works on GAN
extensions such as DCGANs, CycleGANs, and progressively growing GANs [13] were
published in 2015, 2017, and 2018, respectively. In medical image analysis, GANs are
widely used for image reconstruction [7,14,15], segmentation [16], classification [17,18],
detection [19], registration, and image synthesis such as brain MRI image [20,21], liver
lesion [22], and skin lesion synthesis [23,24].

Zhiwei Qin et al. [25] proposed a style-based GANs model. The model modifies the
structure of style control and noise input in the original generator, adjusts both the generator
and discriminator to efficiently synthesize 256 × 256 skin lesion images. By adding the
synthesized 800 melanoma images to the training set, the accuracy, sensitivity, specificity,
average precision, and balanced multiclass accuracy of the classifier were improved by
1.6%, 24.4%, 3.6%, 23.2%, and 5.6% respectively. Alceu Bissoto and al. in [24] proposed
an image-to-image translation model named pix2pixHD. Instead of generating the image
from noise (usual procedure with GANs), the model synthesizes new images from a
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semantic label map (segmentation mask) and an instance map (an image where each pixel
belongs to a class). Synthetic images generated contain features that characterize a lesion as
malignant or benign. Even more, synthetic images contain relevant features that improve
the classification network by an average of 1.3 percentage points and keep the network
more stable. Kora Venu et al. in [26] generated X-ray images for the underrepresented class
using a deep convolutional generative adversarial network (DCGAN). Experiments results
show an improvement of a CNN classifier trained with the augmented data.

In conclusion, Table 1 presents the strengths and the limitations of deep-learning-based
methods. As presented, several works applied deep-learning-based data augmentation to
correct the class imbalance, by generating realistic images. However, although the gener-
ated images by GANs are realistic, there is a problem of partial collapse mode [27,28]. Mode
collapse refers to scenarios in which the generator produces multiple images containing
the same color or texture themes, which favors duplicates in generated images.

Table 1. Summary of medical fusion methods and deep-learning-based data-augmentation methods.

Categories Techniques, Reference and Year Strengths and Limatations

Fusion methods

- DWT and dual-channel PCNN [29]-(2015)
- NSCT and sparse representation [30]-(2018)
- Shearlet transforms and matching regional
spectrum [31]-(2019)
- NSST and coupled neural P systems [32]- (2020)
- Two-scale decomposition and sparse
representation [10]-(2020)
- NSCT and PCNN guided filtering and WSEML
[33]-(2021)
- NSCT and successive integrating average filter
and median filter [34]-(2021)
- NSCT, interval-gradient-filtering and sparse
representation [35]-(2021)
- DWT_PSO [36]-(2021)

Strengths
- Decomposition includes texture and
edge features
- Low information loss
- Shift-invariant: NSST and NSCT
- Easy to implement
- No training
- Fast computation

Limitations
- Depend on decomposition level
- Some decomposition methods are
noise sensitive
- Subjective fusion strategy
- Low generalization

Deep-learning-based methods

- GAN [24]-(2018)
- Densefuse [8]-(2019)
- IFCNN [9]-(2020)
- GAN [25]-(2020)
- Optimal shearlet and deep learning [10]-(2020)
- DCGAN [26]-(2021)

Strengths
- Generates realistic images
- Good generalization ability for
different tasks
- Low information loss
- Low noise sensitivity

Limitations
- Requires training data
- Requires training
- High power computation
- Mode collapse
- Time-consuming

2.2. Images Fusion Methods

Image fusion generates an informative image via the integration of images obtained
from multiple source images in the same scene. The input source images in an image fusion
system can be acquired either from various kinds of imaging sensors or from one sensor
with different optical parameter settings. An efficient image fusion can preserve relevant
features by extracting all important information from the images without producing any
inconsistencies in the output image [37]. Image fusion techniques have been widely used
in computer vision, surveillance, medical imaging, and remote sensing. According to the
literature, there are two main branches of image fusion, namely the spatial domain method
and the transform domain method [5]. Spatial domain methods consist in merging the
source images without transformation by choosing the pixels regions or blocks. Transform
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domain fusion techniques consist of three steps: source images domain transformation,
a fusion of corresponding transform coefficients, and finally inverse transformation to
produce the fused image.

There are a variety of transforms that have been used for image fusion, such as those
based on sparse representation [38], discrete wavelet transform [29,36], curvelet transform,
contourlet transform, dual-tree complex wavelet transform, non-subsampled contourlet
transform [30], and shearlet transform [31]. There are also a variety of fusion strategies that
have been used for images fusion, such as sparse representation (SR) [30,35], enhanced
sparse representation [37], modified sum-modified Laplacian (SML) [30], coupled neural P
(CNP) systems [32], pulse coupled neural network (PCNN) [33], and PCNN variant [29].

The literature on medical image fusion is growing and methods combining decompo-
sition methods and fusion strategies have been proposed. Sarmad Maqsood et al. in [37]
proposed a method for computed tomography and magnetic resonance imaging images
fusion. In this method, they have used spatial gradient-based edge detection technique to
transform into detail layer and base layer each source image, an enhanced sparse represen-
tation approach as fusion strategy and have formed the fused image by linear integration
of final fused detail layer and fused base layer. Five metrics, entropy, spatial structural
similarity, mutual information, feature mutual information, and visual information fi-
delity, were used to confirm the superiority of the proposed method on other methods.
Yuanyuan Li et al. in [30] proposed a fusion technique based on non-subsampled contour
transformation (NSCT) and sparse representation (SR). NSCT is applied for the source
images decomposition to obtain the corresponding low pass and high pass coefficients. The
low pass and high pass coefficients are fused using SR and the sum-modified Laplacian
(SML), respectively. The final fused image is obtained by applying the inverse transform
on the fused coefficients. Experiments show that the proposed solutions achieve better
performance on structural similarity and detail preservation in fused images. Similarly, Li
Liangliang et al. in [34] applied NSCT for images decomposition and refine the fused image
based on energy of the gradient (EOG). Visual results and evaluation fusion metrics results
show a significant performance of the proposed technique. Xiaosong et al. in [35] proposed
an image fusion and denoising method that decomposes images into high-frequency layer,
low-frequency structure and low-frequency texture. They applied sparse representation,
absolute maximum, and neighborhood spatial frequency as fusion rules on the different
layers respectively to generate the fused layers. The fusion result is finally obtained by
reconstructing the three fused layers. The results show that the method responds well to
noisy image fusion problems. Bo Li et al. in [32] proposed a method based on coupled
neural P (CNP) systems in the NSST domain. They first compared the method to others
fusion methods and then compare the method to deep-learning-based fusion methods.
Experimental results have demonstrated the advantages of the proposed fusion method for
multimodality medical images fusion. Shehanaz, S. et al. in [36] proposed a multimodali-
ties fusion method based on discrete wavelet transform (DWT) for image decomposition
and using particle swarm optimization for optimal fusion of coefficients. Wang et al. [29]
proposed an image fusion method based on wavelet transformation. The method also
uses the discrete wavelet transform (DWT) to decompose the source images, then fuse
the coefficients with dual-channel pulse coupled neural network (PCNN) and applied
inverse DWT for fused image reconstruction. The effectiveness of the proposed method
was demonstrated by experimental comparisons of different fusion methods. Li et al.
in [33] combined PCNN and weighted sum of eight neighborhood-based modified Lapla-
cian (WSEML) integrating guided image filtering (GIF) fusion rules in non-subsampled
contourlet transform (NSCT) domain. The proposed method fused multimodal medical
images well.

In conclusion, according to the literature, there are several fusion methods, and
their efficiency depends on the decomposition method and the fusion strategy. Table 1
summarizes the strengths and limitations of the presented image fusion methods. The
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main advantages of fusion methods are that they preserve features, are easy to implement
and fast.

3. Proposed Method

This paper proposes a solution to correct skin tones imbalance observe in all skin
lesion datasets. The proposed method illustrated in Figure 1 is composed of two main parts.
The first part consists of source images decomposition and fused coefficients reconstruction
using non-subsampled shearlet transform (NSST) because NSST-based algorithms are shift
invariant and can eliminate edge effects efficiently. The second one performs coefficients
fusion using an updated pulse-coupled neural network (PCNN) for its simplicity, speed,
and efficiency.

Figure 1. Schematic diagram of proposed method.

3.1. Non-Subsampled Shearlet Transform (NSST)

NSST, as shown in Figure 2, is a multiscale decomposition used to efficiently represent
high and low-frequency information of source image [39]. Firstly, the source image is
decomposed into low-pass and high-pass bands using the non-subsampled Laplacian
pyramid (NLSP) transform. For each level of decomposition, the high-pass bands are
submitted to translation invariance shearlet filters and the low-pass bands are further
decomposed into low-pass and high-pass bands for the following level. Then inverse NSST
transform is applied by taking the sum of all shift-invariant shearlet filter responses at
the respective levels of decomposition, and inverse non-subsampled Laplacian pyramid
transform is finally applied to get the reconstructed image.

3.2. Pulse Coupled Neural Network (PCNN)

The PCNN introduced by Johnson, J.L. et al. [40] is a neuron based on the visual
cortex of small mammals as cats and is composed of three modules: the receptive field, the
modulation field, and the pulse generator [41].

PCNN is a two-dimensional M × N network, in which each neuron corresponds to
a specific pixel of the image. Figure 3 presents an original PCNN neuron. By an iterative
calculation combining these different modules, the following equations are used to activate
the neuron. The index (i, j) refers to a pixel location in image, (k, l) refers to neighborhood
pixels around a pixel, and n denotes the current iteration.
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Figure 2. NSST decomposition process.

Figure 3. Original PCNN neuron.

The receptive field described by Equations (1) and (3), consists of F and L channel. L,
the linking parameter receives local stimulus from surrounding neurons. On simplified
PCNN neuron F the feeding neuron receives external stimulus from I the input signal. On
original PCNN F is described by (2).

Fij(n) = Iij (1)

Fij(n) = e(−αF)Fij(n − 1) + VF ∑
kl

MijklYkl(n − 1) + Iij (2)

Lij(n) = e−αL Lij(n − 1) + VL ∑
kl

WijklYij(n − 1) (3)

The modulation field consists of U as presented in Equation (4). U the internal
activation modulates the information of the above module with β the linking strength.

Uij(n) = Fij(n)
(
1 + βLij(n)

)
(4)

Pulse generator is described in Equations (5) and (6). The output module compares
U with θ the dynamic threshold. If Uij is larger than θij, then the neuron is activated and
generate a pulse, which is characterized by Yij = 1, otherwise Yij = 0. The excitation time
of each neuron is denoting T represented in Equation (7).

Yij(n) =
{

1, i f Uij(n) ≥ θij(n)
0, else

(5)
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θij = e(−αθ)θij(n − 1) + VθYij(n − 1) (6)

Tij(n) = Tij(n − 1) + Yij(n) (7)

The weight matrices W and M are local interconnections and Vθ is a large impulse, VF
and VL are the magnitudes scaling terms. αF, αL and αθ are the time decayed constants
associated with F, L and θ respectively.

According to Equation (4), the parameter β highly influence the neuron internal
activation. The PCNN neuron has been improved by changing β as adaptive local value
instead of global value. As demonstrated in Equation (8), it consists in using a sigmoid
function to normalize between 0 and 1 the gradient magnitude G of 3 × 3 local region of
source images.

β(i,j) = 1/
(

1 + e−G(i,j)
)

(8)

The linking strength is therefore dynamically adjusted according to the magnitude
gradient. This modification allows the PCNN model to better preserve the image details in
the final image.

3.3. Detailed Algorithm

The schematic diagram of the proposed data augmentation method is shown in
Figure 1. The proposed algorithm can be summarized as the following steps in Algorithm 1.

Algorithm 1. Proposed fusion algorithm

Input: Dermoscopic images in dataset A and unaffected darker tones images in dataset B
Output: Fused image
Step 1: Image decomposition with NSST
Randomly select source images and decompose each source image into five levels with NSST, to
obtain (ALow,Ak,l

High) and (BLow,Bk,l
High). ALow and BLow are the low-frequency coefficients of A and

B. Ak,l
High and Bk,l

High represent the l-th high-frequency sub-band coefficients in the kth
decomposition layer of A and B.

Step 2: Fusion strategy
The low-frequency sub-band contains texture structure and background of source images. The
fused low-frequency coefficients are obtained as follows:

L(x, y) = aALow + bBLow (9)

where a and b denote weighted coefficients.
High-frequency sub-bands contain information about details in images. The fused high-frequency
sub-bands are obtained by computing the following operations on each pixel of each
high-frequency sub-bands.
1. Normalize between 0 and 1 high-frequency coefficients;
2. Initialize Lij[0], Uij[0], Tij[0] and Yij[0] to 0 and θij[0] to 1 to accelerate neurons activation;
3. Stimulate the PCNN respectively with the normalized coefficients;
4. Compute Fij[n], Lij[n], Uij[n], Yij[n], Tij[n], θij[n] and β until the neuron is activated (equal to 1);
5. Fuse high-frequency sub-bands coefficients as follows:

Fk,l(i, j) =

{
Ak,l

High(i, j), i f Tij,A ≥ Tij,B

Bk,l
High(i, j), else

(10)

where F denotes the fused sub-bands coefficients. If Tij,A is larger than Tij,B, then the pixel located
at (i, j) in the sub-image from A has more remarkable characteristics than the corresponding pixel
in the same place of the sub-image from B. Thus, the former is chosen as the pixel in the fused
sub-band. Conversely, the latter will be selected.

Step 3: Image reconstruction with inverse NSST



Computers 2022, 11, 44 8 of 15

4. Experimental Results and Discussion
4.1. Dataset

The dataset contained two source images: source A and source B. Source A images
were dermoscopic images of melanomas and nevus obtained by combining the ISIC2019
and ISIC2020 Challenge datasets [42–44]. Source B images were RGB images of darker skin
tones. Some of the source images used in the experiments are shown in Figure 4.

Figure 4. (a) Source A dermoscopic features of melanoma in very light skin [42–44]. (b) Source B
healthy brown skin image. (c) Dermoscopic features of melanocytic nevus in tanned skin [42–44].
(d) Dermoscopic features of melanocytic nevus in brown skin [42–44].

To quantify the skin tone categories present in source A dataset, skin images were
segmented to extract non diseased regions and the individual typological angle (ITA)
metric [45] was used to characterize the skin tone of that region. ITA is an objective classi-
fication tool computed from images. The pixels from the nonaffected part are converted
to CIELab-space to obtain the luminance L of each pixel and b the amount of yellow in
each pixel. The mean ITA value is in degrees and is calculated using Equation (11) [45].
As presented in Table 2, ITA values classify skin tones into six categories: very light, light,
intermediate, tanned, brown, and dark.

ITA = arctan
(

L − 50
b

)
× 180o

π
(11)

Table 2. Skin color categories based on the individual typology angle (ITA◦) [31].

ITA Range Skin Tone Category

>55◦ Very Light
>41◦ and ≤55◦ Light
>28◦ and ≤41◦ Intermediate
>10◦ and ≤28◦ Tanned

>−30◦ and ≤10◦ Brown
≤−30 Dark

In Table 1, source A images are categorized into six groups: very light (1901 images),
light (8956 images), intermediate (471 images), tanned (51 images), brown (13 images),
and undefined (46 images). The results show that darker tones are underrepresented with
94.92% of lighter tone images (very light and light categories) compared to 4.68% darker
tone images (intermediate, tanned, brown, and dark categories). Matthew Groh et al.
in [46] also reveal the imbalance of skin types in the Fitzpatrick 17k dataset and in datasets
in general.
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4.2. Experimental Setup

The proposed method was compared to other fusion approaches to certify its effi-
ciency and superiority. The comparative study was performed with color transfer (CT) [47]
method, wavelet and sparse representation-based method (DWT_SR) [37], wavelet and
color transfer-based method (DWT_CT), sparse representation, and sum-modified Lapla-
cian in NSCT domain-based method (NSCT_SR_SML) [30] and the proposed
method (NSST_PCNN).

Six objective image evaluation metrics were adopted for quantitative evaluation:
gradient-based fusion performance QG [48] to evaluate the amount of edge information
that is transferred from sources images to the fused image; QS [34], QC [48], and QY [38] to
evaluate similarities between saliency maps and structural information of the fused image
and sources images; and the Chen–Blum metric QCB [38], which is a human perception
inspired fusion metric to evaluate the human visualization performance of fused images.

Additionally, the augmented dataset and the real dataset were used separately to
train two Gabor-based convolutional neural network [49] inspired models. A comparative
study was performed on the accuracy, precision, recall, and F1 score of each model for the
different skin tones to assess the effectiveness of the proposed data augmentation method
on skin lesion classification for underrepresenting skin tones.

Experiments were conducted by MATLAB R2020b with an Apple M1 chip, eight cores
and 16GB memory. A five-level NSST decomposition was performed in source images.
For PCNN, the number of iterations was set to 100 and the parameters W were set as

W =
0, 707 1 0, 707

1 0 1
0, 707 1 0, 707

.

4.3. Results and Discussion
4.3.1. Visual and Qualitative Evaluation

A visual quality comparison of three fused images using six different methods is
displayed in Figure 5. Figure 5(a1)–(a3) indicates dermoscopic features in very light and
light skin tones. Images obtained by CT, DWT_SR, DWT_CT, NSCT_SR_SML, and proposed
method NSST_PCNN respectively are displayed in Figure 5(b1)–(f3).

The result obtained by NSCT_SR_SML was unnatural. Compared with DWT_SR,
the proposed method combined input images effectively and preserved distinctly der-
moscopic structures such as pigment networks, amorphous structureless areas (blotches),
and dots and globules between the dermoscopic images, as seen in Figure 5(a1)–(a3) and
the generated images Figure 5(f1)–(f3). Compared to CT and DWT_CT, the proposed
method achieved better performance on skin tone preservation. Visually, the pigmentation
of Figure 5(a1)–(a3) lesions was different for the fused images in Figure 5(f1)–(f3) but,
according to [50], the result is real as skin lesions on dark skin are characterized by central
hyperpigmentation and a dark brown peripheral network.

Although visual evaluation results show that the dermoscopic structures were pre-
served, it should be noted that visual evaluation is a subjective method. Table 3 lists the
results of five objective evaluation metrics applied on different methods. QG, QS, QC, QY
metrics assess the amount of transferred edge information and similarities between fused
and source images, the highest values of the metrics are 1. The proposed method, compared
to other methods, exceeded on average in QG, QS, and QCB metrics. This performance was
followed by those of the DWT_CT and DWT_SR methods, which showed better results for
the QC and QY metrics respectively. It can then be indicated that result images obtained
by the proposed method better preserved details and similarity with source images. Fur-
thermore, human visualization performance metric QCB values support the pigmentation
difference observed on visual evaluation. The fused images were not just duplicates of skin
lesions images.
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Table 3. Evaluation metrics results of different methods.

Obtained Images Methods QG QS QC QY QCB

b1 CT 0.7390 0.8080 0.7910 0.7820 0.5470
c1 DWT_SR 0.4990 0.6750 0.8330 0.5630 0.5530
d1 DWT_CT 0.6600 0.7700 0.8400 0.7170 0.5050
e1 NSCT_SR_SML 0.4440 0.5780 0.6410 0.4190 0.4450
f1 NSST_PCNN 0.8060 0.8390 0.8810 0.8240 0.6190

b2 CT 0.7730 0.9430 0.8900 0.9140 0.6310
c2 DWT_SR 0.6660 0.7560 0.8170 0.7900 0.6280
d2 DWT_CT 0.7540 0.7280 0.9320 0.9050 0.6130
e2 NSCT_SR_SML 0.4920 0.6200 0.8640 0.5050 0.4690
f2 NSST_PCNN 0.8030 0.8800 0.9680 0.9750 0.6580

b3 CT 0.4500 0.8380 0.7530 0.7610 0.4840
c3 DWT_SR 0.5930 0.8090 0.8020 0.7320 0.4590
d3 DWT_CT 0.6900 0.7930 0.7430 0.7570 0.5000
e3 NSCT_SR_SML 0.4880 0.7390 0.4280 0.5330 0.4800
f3 NSST_PCNN 0.7690 0.8470 0.8090 0.8450 0.5740

All images

CT 0.5760 0.8350 0.7640 0.7810 0.5260
DWT_SR 0.5080 0.7190 0.7910 0.8440 0.5190
DWT_CT 0.6360 0.7360 0.8380 0.6570 0.5120

NSCT_SR_SML 0.3970 0.6180 0.5970 0.4480 0.4370
NSST_PCNN 0.7150 0.8280 0.7700 0.7550 0.5890

Table 4 shows the average time taken by each algorithm to generate an image. The
results indicate that the proposed method had a longer execution time than most methods.
This high value can be explained by the fact that the linking strength is adaptive, which
increases the computation time.

Table 4. Execution time.

Methods CT DWT_SR DWT_CT NSCT_SR_SML NSST_PCNN

Times/s 0.6685 13.1643 6.9492 24.2362 23.9312

4.3.2. Impact of Data Augmentation in Skin Lesion Classification on All Existing Tones

First, a convolutional neural network inspired by the model proposed in [49] was
trained with 80% of the dataset and tested with 20% of the dataset. The accuracy, precision,
recall, and F1-score of Model 1 are reported in Table 5.

Table 5. Evaluation metrics results of model 1.

Metrics Very Light Light Intermediate Tanned Brown

Accuracy 0.9434 0.9480 0.9333 0.7255 0.7692
Precision 0.9091 0.9297 0.8900 0.7826 0.7500

Recall 0.9662 0.9557 0.9082 0.6667 1.0000
F1-score 0.9368 0.9425 0.8990 0.7200 0.8571

Second, the training model was reinforced with the augmented images and then tested
with the same 20% of the dataset. To verify the neural network’s generalization, the models
were tested with only real images. The accuracy, precision, recall, and F1-score of model 2
are reported in Table 6.
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Table 6. Evaluation metrics results of model 2.

Metrics Very Light Light Intermediate Tanned Brown

Accuracy 0.9518 0.9553 0.9500 0.8824 0.9231
Precision 0.9227 0.9365 0.9300 0.9130 0.9167

Recall 0.9713 0.9650 0.9208 0.8400 1.0000
F1-score 0.9464 0.9505 0.9254 0.8750 0.9565

Figure 6 shows the accuracy, precision, recall, and F1-score of models based on these
experiments. Compared to model 1, model 2’s accuracy increased by 2.22%, 0.73%, 1.67%,
15.69%, and 15.38% respectively for the very light, light, intermediate, tanned and brown
categories. The model precision also increased by 1.36%, 0.68%, 4.00%, 13.04%, and 16.67%
respectively on different categories. Similarly, for true positive recall and F1_score, the
results are more significant with a larger increase observed in medium-brown and dark-
brown tones. As for GAN-based models proposed by Zhiwei Qin et al. in [25] and Alceu
Bissoto and al. in [24], data augmentation improved the model, with the particularity that
the proposed data augmentation also corrected skin tone imbalance. Data augmentation
therefore favored the reinforcement and generalization of the classifier. Introducing new
images inspired by real images but which also contain other features, made it possible to
promote the generalization of the classifier.

Figure 6. Cont.
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Figure 6. Comparison of evaluation metrics results. (a) Accuracy, (b) precision, (c) recall and (d) F1-score.

5. Conclusions and Future Works

In this paper, a data augmentation method based on multiscale image decomposition
and PCNN fusion strategy is proposed as a solution to alleviate the lack of labeled der-
moscopic data in all existing skin tones. Compared to the existing methods, the proposed
method presented more informative dermoscopic structure and detail. Particularly, the
proposed method has the advantage of being suitable for dermoscopic images. Experiment
results also prove this method improved the performance and accuracy of a convolutional
neural network-based skin lesion classifier, even for under-represented skin tones. To
conclude, this work is innovative because the proposed method is simple, does not require
training, and effectively augments dermoscopic images.

A limitation of this method is the computation time. The high value can be explained
by the fact that the linking strength is adaptive, which increases the computation time.
Therefore, reducing the processing time of the algorithm is an improvement that can be
made in the future. Future work will also focus on applying the proposed algorithm in
other areas of medical imaging to test and improve the efficiency and generalization of the
algorithm. Finally, the development of these results should also focus on increasing the
skin lesion dataset and strengthening skin lesion classifiers on the darker tone categories.
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