A Model for Active Perception in
Situated Multi-agent Systems

Danny Weyns, Elke Steegmans and Tom Holvoet

AgentWise, DistriNet, Department of Computer Science,
K.U.Leuven, B-3001 Heverlee, Belgium
{danny.weyns,elke.steegmans, tom.holvoet}@cs.kuleuven.ac.be
www.cs.kuleuven.ac.be/~ danny/home.html

Abstract. In this paper we present a generic model for active perception
in situated multi-agent systems. Active perception enables an agent to
direct its perception at the most relevant aspects in the environment
according to its current task. The model decomposes perception into
three functionalities: sensing, interpreting and filtering.

Sensing takes place at the agent-environment interface and maps the
state of the environment to a representation. This mapping depends
on two factors. First the sensing agent can select a set of foci. Focus
selection enables an agent to sense specific types of data in the envir-
onment. Second, the representation of the state is composed according
to a set of perceptual laws. Perceptual laws enforce domain specific con-
straints on perception. Whereas physical sensing naturally incorporates
such constraints, in software multi-agent systems the constraints have to
be modeled explicitely.

The second functionality is interpreting. Agents interpret representations
by means of descriptions. Descriptions are blueprints that map repres-
entations onto percepts. Percepts are expressions that can be understood
by the internal machinery of the agent.

The third functionality of perception is filtering. By selecting a set of
filters an agent is able to improve its perception by restricting the per-
ceived data according to specific context relevant selection criteria.

1 Introduction

Although most researchers in the multi-agent community agree on the fact that
environment is an essential part of any multi-agent system (MAS), most of them
neglect to integrate environment as a primary abstraction in MAS. In fact most
of the proposed models or tools for MAS reduce the concept of environment to
a passive message delivering system, see e.g. [8][28][24][3].

Researchers working in the context of situated MASs' traditionally emphas-
ize the importance of the environment and provide an explicit model for it, see
e.g. [23][14][13][7][30]. In situated MASs, the environment embeds the agents

1 Alternative descriptions are behavior-based agents [4], adaptive autonomous agents
[11] or hysteretic agents [9][7].

and other domain objects, each on an individual position. Depending on the
modeled domain, the environment can have very different topologies, such as
grids, environments with non-discrete coordinates or arbitrary graph structures.
In the approach of situated MASs, agents and environment constitute comple-
mentary parts of a multi-agent world that can mutually affect each other. As
such an environment itself is active. It has its own processes that can change its
state, independent of the actions of the embedded agents [15]. By modeling the
environment explicitly, the notion of situatedness of agents gets a much richer
meaning. Situatedness places an agent in a context in which it is dynamically
related to other agents and objects. It is in this context that an agent is able to
perceive his environment and in which it can (inter)act.

In this paper we study perception of agents in situated MASs. Perception
is the ability of an agent to sense his near environment, resulting in a percept
of the environment. Percepts describe the sensed environment in the form of
expressions that can be understood by the agent. Agents use percepts to update
their knowledge about the world or use it directly for decision making. Although
perception is very common for any MAS, relatively little structured research
work has been done to develop theories and generic models for perception. This
is especially the case for software MASs where all aspects of perception must be
modeled explicitely. The lack of attention for perception in MASs was already
raised by P. Maes in the mid nineties. In the overview paper [11], Maes indicated
the problem of the "narrow-minded view on the relationship between perception
and action”, pointing to the poor support for active or goal-driven perception?.
Due to the poor theoretical foundations for perception in software agent sys-
tems, most of the designers of MASs take or (1) a simplistic approach to model
perception, e.g. perception is based on a fixed perceptual range as in [17] or [10];
or (2) use an ad hoc approach typically bounded to the domain at hand, e.g.
noise is added to sensor input (according to the properties of the domain) in a
hard coded way, see e.g. [16]. This results in MASs that do not (or inadequately)
take into consideration the consequences of 'real’ perception; or the solutions are
inflexible and hardly reuseable in other domains.

We propose a generic model for active perception in situated MASs. The
model is generic in the sense that (1) it is independent of any domain or specific
topology of the environment; (2) it offers reusable core abstractions for active
perception in situated MASs, and (3) it offers support to model domain specific
properties of perception.

The model we present fits in a generic model for situated MASs we have
described in previous work, see [26]. This generic model formally describes an
abstract architecture for situated MASs. On the one hand this architecture expli-
citely models the environment and the processing of actions that are invoked by
agents and other ongoing activities such as moving objects. On the other hand it
decomposes the behavior of agents into a set of functional modules. A simplified

2 The term active perception is introduced by Ruzena Bajcsy in [2].

model® of this functional decomposition of an agent’s behavior is depicted in
Fig. 1.

State { Agent;

Peroep‘rion‘

Decision —— Exec

—A . .
Memaorization

Influence

Environment

Fig. 1. Generic model for a situated agent

We touch briefly on the different modules, for more details see [26]. The
Perception module takes care for the agent’s perception of the environment,
i.e. it maps the local state of the environment onto a percept, denoted as p;.
The Memorization module enables an agent to register information, i.e. during
an update the agent uses the information of the most recent percept to adjust
its internal state. The Decision module is the heart of the agent architecture,
responsible for action selection. To decide about its next action, the Decision
module takes the agent’s most recent percept p;, the actual knowledge s; and
selects an operator o; for execution. The execution of this operator produces
an influence into the environment. The environment collects the influences of
simultaneously acting agents [27] and calculates according to a set of domain
specific laws the reaction, i.e. state changes in the environment as well as effects
on the acting agents (e.g. an agent receives an object passed by another agent).

In this paper we zoom in on the Perception module. Whereas perception is
modelled passively in the original model of [26], in this paper we extend the model
to active perception. Active perception enables an agent to direct its perception
at the most relevant aspects of the environment according to its current task,
facilitating better situation awareness and helps to keep processing of perceived
data under control.

The remainder of this paper is structured as follows. Section 2 presents the
model for active perception and illustrates it with a simple example. This sec-
tion fully explains the model but rather in an intuitive manner. Section 3 gives
a mathematical foundation for the model. We formally describe the model at

This simplified model boils down to the very basic model for MASs as described by
several authors in the literature, compare e.g. [21] or [29].

different levels of abstraction. Next, in section 4 we discuss related work. We
conclude and look to future work in the final section 5.

2 Model for Active Perception

In this section we present the model for active perception in situated MASs. We
start with a general description of the model. Subsequently, we illustrate the
model for a simple multi-agent application.

2.1 Description of the model

Fig. 2 gives a graphical overview of the model. The model decomposes active
perception into three functional modules: sensing, interpreting and filtering.

Filters

Fercepts

[—

Environment
interface

Fig. 2. Model for active perception

Sensing maps the state of the environment to a representation. We follow [1]
and define a representation as a structured assembly of symbols that refer back
to something in the environment, i.e. external to the agent. The mapping of state
to representation depends on two factors. First the agent can select a set of foci.
Each focus is characterized by its sensibility, but may have other properties too,
such as an operating range, a resolution etc. Focus selection enables an agent
to direct its perception, it allows him to sense the environment only for specific
types of information. E.g., in an ant-like MAS, one agent may be interested in
a ’visible’ perception of his environment, while another agent may be interested
in ’smelling’ pheromones. To sense the desired type of information both agents
have to select a different appropriate focus. Second, the representation of the
state is composed according to a set of perceptual laws. A perceptual law is an
expression that constraints the composition of a representation according to the
requirements of the modeled domain. As such, perceptual laws are an instrument
for the designer to model domain specific constraints on perception. Contrary to
physical sensing that incorporates such constraints naturally, in software multi-
agent systems we have to model the constraints explicitely. Examples are a
perceptual law that specifies how an area behind an obstacle is out of the scope

of a perceiving agent or a law that under certain conditions add some noise to
perception. Besides the modeling of domain specific sensing, perceptual laws also
permit the designer to introduce ’synthetic’ constraints on perception. E.g., for
reasons of efficiency one could introduce default limits for perception in order to
restrain the amount of information the agents have to process. It is important to
notice that the model supports parallel sensing of the environment. Since agents
can select different foci simultaneously, sensing typically results in a compound
representation of the environment. This property is important to enable agents
to sense their environment in a multi-mode integral manner.

The second functionality of active perception is interpreting. Interpreting
maps a representation to a percept. To interpret a representation, agents use
descriptions. Descriptions are blueprints that enable agents to extract percepts
from representations. Percepts describe the sensed environment in the form of
expressions that can be understood by the internal machinery of the agent. Con-
sider e.g. a representation that contains a number of similar objects in a certain
area. The agent that interprets this representation may use one description to in-
terpret the distinguished objects and another description to interpret the group
of objects as a cluster.

The third and final functionality of active perception is filtering. By selecting
a set of filters an agent is able to select only those data items of a percept that
match specific selection criteria. Each filter imposes conditions on the elements
of a percept. These conditions determine whether the elements of a percept can
pass the filter or not. E.g., an agent that has selected a focus to visually perceive
its environment and who is currently interested in only the agents within his
perceptual range can select a appropriate filter that matches only agents for his
percept.

2.2 Example application

To illustrate the model for active perception, consider the simple file searching
system in a peer-to-peer (P2P) network, depicted in Fig. 3. The idea of this
application is to let mobile agents act on behalf of users and browse a shared
distributed file system to find requested files. Each user is situated in a particular
node (its base) and can send out different agents to work for him. We assume a
fixed network structure, however the available bandwidth on the links between
nodes depends on the current load. Agents can observe the environment, but only
to a limited extent. In general, we assume a perceptual range of 2 hops from the
agent’s current position, however agents are not able to perceive the content of
nodes along heavy loaded links, i.e. links with an actual bandwidth less then
5 KB/s. An agent can sense different types of information in the environment.
First, he can sense ”visible” information, i.e. agents («, 8), nodes (4, B, ..., Z),
bandwidth on heavy loaded links (bold units marked on links in KB/s), bases
(Ba,Bg) and files (T1, T> and T3). Second, agents can sense ”signals”. Each
base emits such a signal. The intensity of the signal decreases with every hop.
Sensing the signal of its base enables an agent to ”climb up” the gradient, i.e.
move towards its base or alternatively ”climb down”, i.e. move away from it. In

Pheromone intensity 1.5

Fig. 3. Example application

Fig. 3 we indicated the intensity of the signal of base B, by means of integers
marked in the nodes and signals of base Bg by means of integers with accent-
marks. Finally, agents can ”smell” pheromones. An agent can drop a file-specific
pheromone in the environment when he returns back to his base with a copy of
a file. Such pheromone trail can not only help the agent later on when he needs
a new copy of the file, it can also help other agents to find their way to that file.
Pheromones tend to evaporate, thereby limiting their influence over time. This
is an important property to avoid that agents are misled when a file disappears
at a certain node. In the example there are currently pheromone trails to each
of the files, e.g. for T the trail reaches out along the nodes U —Y — X — W.

To sense a particular type of information the agent has to select an appropri-
ate focus. Let us first consider agent a who is looking for file 77 and actually is
interested in smelling pheromones to guide his search (see Fig. 3). Therefore the
agent selects the focus smell. According to the perceptual laws agent « is able
to sense pheromones in the nodes W, X and E. Node C is currently unreachable
since the link K — C' is to heavy loaded. Since agent « is interested in 7 he
further can select a filter that matches pheromones of only 77. This result in a
perception with pheromones for the target file 7 in nodes W and X with values
respectively 4 and 3. This information clearly suffice for agent a to move along
the pheromone trail W — X towards file T;.

Let us now look at agent 3. Suppose that this agent returns to its base with
a copy of file T3. To find his way back home, agent 3 selects the focus receive.
According to the perceptual laws the agent senses signals in the nodes A, B, C, D
and J. Nodes K and E are unreachable due to overloaded links. With a filter

that matches the signal for base Bg this results in a perception with signals in
nodes C' and D with values respectively 1’ and 2’. This suffices for agent § to
climb up the gradient along node D towards its base.

3 Formal description of the model

In this section we give a formal description of the model for active perception.
The formal notation we use is based on set theory. This notation is in accordance
with the formalism used in [26]. We start from a graphical overview of the model
and then introduce a number of definitions. Afterwards we discuss each module of
the model in detail. Finally we reconsider the example discussed in the previous
section based on the formal model.

3.1 Introduction

Fig. 4 depicts a detailed overview of the model for active perception.

r Perception, R
‘ Sensing [—
ectsion
[FiltterSelection —
\ I
| Filters |
\ Fiov ||
\ FilterSelect |
! \
A 5
&
T ! o5 \
j
s n ¥ |
r s
e J‘— Sense; ! ! g Fiﬂ—}—» Pi
] \
| Filtering
- 4 b /)
Environment Agent a;

Fig. 4. Detailed model for active perception

In this model each module of the high level model described in Fig. 2 is
decomposed into a number of primitive components. This decomposition allows
us to precisely describe the subsequent phases of perception. Before we zoom in
on each module, we introduce a number of general definitions:

Ag ={ai,...,a;...,a,}: the set of agents in the MAS

y; € Y: the identity of a; with Y = {y1,...,yn} the set of unique
identities, one for each agent in the MAS

Id: Ag — Y is a function that returns an agent’s identity, i.e. Id(a;) = y;

o € X: the actual state of the environment, with X' the set of all possible

states of the environment

L: the set of perceptual laws modeling the constraints on perception of
the domain

A € A: a set of perceptual laws, with A = 2¥ the set of all possible
subsets of perceptual laws

T = {t1,...,t,}: the set of foci to sense the environment of the MAS

R: the set of all perceptible representations of the environment

X ={z1,...,2y}: the set of descriptions available in the MAS to
enable agents to interpret representations

P: the set of all percepts of the environment in the MAS

F ={f1,..., fw}: the set of filters for percepts available in the MAS

3.2 Model in detail

First we zoom in on sensing. Based on the general definition of foci T', we intro-
duce a number of definitions with respect to agent specific sensing:

T; € 2T the set of foci available for a;

©;: the set of all subsets of foci for a;, i.e. ©; = 2T

sp € Se,: a focus selector of a;, with Sg, the set of all possible foci
selectors of a;

07 € ©7: a subset of foci selected with sy and @ C ©; all possible
combinations of foci that can be selected by a;

r? € R{: a representation of the environment sensed by a; through the
selected foci 05; Rf C 2% is the set of all representations that
can be selected by a; through its available foci selectors @7

Let us now look at focus selection. Foct is a function that returns the set of foci
available for a; and is typed as follows:

Foci: Y — 27T
Foci(y;) =T;

To direct its perception, an agent can select a particular subset of foci from this
repository:

FocusSelect : 2T x Sg, — o7
FocusSelect(T;, sg) = 67

FocusSelection integrates the Foci function with FocusSelect and is typed as
follows:

FocusSelection : (Y — 27) x Sg, — O/
FocusSelection(Foci(y;),sg) = 607

Thus FocusSelection selects a set of foci 6 from the repository T; = Foci(y;)
according to the focus selector sy selected by a;.
The Sense; function produces representations and is typed as follows:

Sense; : ¥ x Ax 0f = R}
Sense;(o, A, 0f) = rf

The sense function takes the current state of the environment o and a set of foci
67 and produces, according to a set of perceptual laws A, a representation r; for
a;. Perceptual laws are defined as 3-tuples:

l; € L: < focus,conditions,ef fects >

focus is a name that refers to the type of information an agent is interested
in. conditions can be state representations or other boolean expressions with
variables and values. Every term in conditions must hold to apply the ef fects,
otherwise no effect at all is induced by the law. ef fects is a set of formulas that
express how the law affects the composition of the representation. We discuss a
concrete law in the example at the end of this section.

Integrating FocusSelection with the Sense; function allows us to describe
the integral sensing function:

Sensing; : ¥ x A x (Y = 2T) x So, = ©7) — R
Sensing;(o, A, FocusSelection(Foci(y;), sp)) = 7§

Sensing; produces a representation r{ for an agent a; according to a set of
applicable laws for perception A given the current state of the environment o
and a subset of foci selected from the agent’s repository T; = Foci(y;) with a
focus selector sg.

Next we take a closer look at interpreting. To support agent specific inter-
pretation, we introduce the following definitions:

X; € 2% the set of descriptions available for a;
pi € P;: a percept of a;, with P; C 2F the set of all possible percepts
that can be interpreted by a; from R}
First we type the Descriptions function:
Descriptions : Y — 2%
Descriptions(y;) = X;
The Descriptions function returns the repository of descriptions X; available
for agent a;. Descriptions enable an agent to Interpret representations:
Interpret : RS x 2% — P,
Interpret(r{, X;) = p;
The integral Interpreting function is typed as follows:
Interpreting : R x (Y — 2%) - P,
Interpreting(r?, Descriptions(y;)) = p;
The Interpreting function interprets a representation r; through the the repos-
itory of descriptions X; = Descriptions(y;) of a;, resulting in a percept p;.
Next we zoom in on the filtering function. Based on the general definition

of filters F', we introduce a number of definitions with respect to agent specific
filtering:

F; € 27 the set of filters available for a;

®;: the set of all subset of filters for a;, i.e. #; = 2%

54 € Sg,: a filter selector of a;, with Sg, the set of all possible filter
selectors of a;

¢F € F: a subset of filters selected with s4 and @7 C &; all possible
combinations of filters that can be selected by a;

pi € P?: a percept selected by a; through filtering with ¢7; P/ is the set
of all percepts that can be selected through &7, thus P$ C P;

K3

First we look at filter selection. F'ilters is a function that returns the set of filters
available for a; with the following typing:

Filters: Y — 2F
Filters(y;) = F;

To select specific data from a percept, an agent can select a appropriate subset
of filters from this repository:

FilterSelect : 28 x S, — &7
FilterSelect(F;, s¢) = ¢;

FilterSelection integrates the Flilters function with FilterSelect and is typed
as follows:

FilterSelection : (Y — 2F) x Sg, — &7
FilterSelection(Filters(y;),s¢) = &f

Thus FiltersSelection select a set of filters ¢ from the repository F; = Filters(y;)
according to the filter selector sy selected by a;.

Finally we come to the Filter function that performs the filtering. Filter is
typed as follows:

Filter : P; x &7 — P}
Filter(p;, ¢f) = pf

Filter selects from a percept p; only the data that matches the criteria of the
selected filters ¢3.
Integration of FilterSelection with Filter yields the integral Fiiltering function
and is typed as follows:

Filtering : P; x (Y — 2F) x S, = &) — Pf

(3

Filtering(p;, FilterSelection(Filters(y;), s¢)) = DS

The filtering module takes a percept p; and restricts it to p{ according to a set
of filters selected by a; from its repository of filters F; = Filters(y;) through
selector sg.

To conclude this section we can describe an overall function for active per-
ception, indicated by Perception; and typed as follows:

Perception; : ¥ x A x Sg, X S, = P;°
Perception; (o, A, s, S¢) = Df

The Perception; function abstracts from the internal architecture of the percep-
tion module and describes active perception as a blackbox. Perception; takes
the current state of the environment ¢ and produces a percept p for agent a;
according to the selectors sg and sg4 selected by that agent and the valid laws A
for perception of the multi-agent application.

Alternatively we can describe active perception as a sequence of the func-
tions Sensing;, Interpreting and Filtering. For convenience, we introduce an
operator < to express a sequence of functions. < has the following semantics:

f<g:AXxB—->Q<QxD->T
fla,b) =q < g(q,d) =t

Applied to active perception we get, the following sequence of functions:

Sensing; < Interpreting < Filtering :

I x Ax (Y —=21) x S, = 0f) = R}
<R x (Y —=2P)—> P
<P x (Y = 2F)x S, = &7) = P

Sensing;(o, A, FocusSelection(Foci(y;), sg)) = rf
< Interpreting(ri, Descriptions(y;)) = p;
< Filtering(p;, FilterSelection(Filters(y;), s¢)) = p}

Putting it to words: to perceive the environment an agent senses its neighborhood
through a set of selected foci. According to the current state of the environment
and a set of valid laws this results in a representation. This representation is
interpreted by the agent with a set of descriptions resulting in a percept. This
percept is further restricted through a set of selected filters that express context
relevant selection criteria.

3.3 Example revisited

To conclude this section, we revisit the example discussed in section 2.2. We
represent state as a formula of the form p(cy,...,c.), where p is a predicate
and ¢; are values. The laws that constrain the perception of the agents in the
example are defined as follows:

l1 =< smell, {at(a;, pos), dist(loc, pos) <= 2, bandwidth(pos,loc) > 5},
{add : pherom(loc, distance, file_name, intensity)} >

o =< receive, {at(a;, pos), dist(loc, pos) <=2, bandwidth(pos,loc) > 5},
{add : signal(loc, distance, base_name,intensity)} >

I, expresses that for a focus smell selected by an agent a; all pheromones
pherom on a location loc are included (add) in the representation that can be
sensed by the agent at a distance dist of maximal 2 hops of its current position
pos, assuming that the available bandwidth along the path from pos to loc is at
least 5 KB/s. [y expresses in a similar way how percepts are constrainted when
agents sense, through a focus receive, signals emitted by the bases.

We limit the illustration of the formal model to only the perception of agent
a in the example*. If we apply [for agent o in Fig. 3, this agent gets the
following representation:

rf = {pherom(E,2,Ts,3), pherom(W,1,Ty,4),
pherom(X,2,T1,3), pherom(X,2,Ts,3)}

According to the example, agent a; is only interested in smelling pheromones of
T, and therefore he selects the following filter:

f1 = pherom(_, _, Ty,)

Filter f; selects all pheromones from a percept that matches T} as file_name.
Applying filtering with f; results in the following percept:

i = {pherom(W,1,Ty,4),pherom(X,2,T1,3)}

Based on this information it is quite simple for agent a; to continue its search
for 71 by moving to the neighbor node W.

4 Related work

Most of the research on perception is done in the context of robotics, however
work is also done in the context of software agents. Two research tracks are
identified in the work on perception: the passive approaches to perception and
the active approaches to perception. The generic perception model proposed in
this paper is situated in the active approaches track.

In the context of robotics, the RoboCup Soccer Server [19] is a well known
example. Three kinds of sensors are supported in its sensor model: the aural
sensor, the visual sensor and the body sensor. These sensors correspond to foci
in the generic model for active perception proposed in this paper. The CMUnited
agents [12] of the RoboCup Soccer Server are capable of doing perception, cog-
nition and action. In this agent architecture, the sensor information is used as
input for the interpreter. Filtering functionality is not explicitly present in the
architecture, but is included in the step after interpretation in which the state
is used to select the behavior. The functionality for perception available in Rob-
0oCup Soccer maps quite well to our model, however this functionality is bounded
to the specific application of the Soccer Simulator while we presented a generic
model for active perception in situated MASs, independent of any particular
application.

The VAP T’ system as described in [5] describes interaction protocols to
control vision systems with an example worked out in the robotics domain. They
define a number of agents cooperating for performing a perception: a camera-
control agent, a 2D-description agent, an interpretation agent and a mmi (man
machine interface) agent. In the active perception model proposed in this paper,

* For simplicity, we abstract from interpretation, i.e. we use the same set of expressions
for representations and percepts.

the sequence of steps for doing perception is similar, but are all part of one
agent. While sensing in the VAP T’ systems happens through a real camera, our
model is intended for software agent systems and therefore explicitely models
foci (for sensing) as well as perceptual laws to enforce domain specific constrains
on perception.

In the context of software agents, a number of models and specific techniques
for perception are proposed, most of them focusing on specific properties of
perception. An example of such a specific property is [18] that describes how
reliability and temporality of perception can be taken into account.

L. Ronnie [20] makes a distinction between perception management and
sensor management. Perception management is defined as the generic concept of
data fusion (i.e. acquiring percepts to serve information needs) without paying
particular attention to details of concrete sensor devices. Sensor management on
the other hand is connected with the reconfiguration of sensor devices. Sensor
management is comparable to the sensing functionality in our model, while per-
ception management is comparable to the interpreting and filtering functionality.

We conclude that most of the research done on perception is focussed on
performing perception in a specific application or on one specific property of
perception. However from a software engineering point of view, it is important
to define generic models for perception. Such models can serve as conceptual
frameworks to build infrastructure for perception in different application do-
mains. Besides a reusable core, a generic model should also offer abstractions
that allow the designer to model the domain specific properties of perception in
a flexible way. The model for active perception proposed in this paper intends
to contribute in this way.

5 Conclusions and Future Work

In this paper we proposed a generic model for active perception in situated
multi-agent systems. The model decomposes active perception into a succession
of three functionalities: sensing, interpreting and filtering. The genericity of the
model is based on two complementary features. On the one hand, the model
offers a reusable framework to deal with active perception in situated multi-
agent systems. On the other hand, laws, foci filters are abstractions that enable
the designer to model domain specific properties of perception. Perceptual laws
constrain the perception of agents according to the modelled domain, while foci
and filters enable agents to direct their perception at the most relevant aspects in
the environment. To make an analogy with biological perception: focus selection
can be viewed as choosing a particular sense to observe the environment, while
filter selection is comparable to the direction of attention, both driven by the
current interests.

Active perception facilitates better situation awareness of the agents and
helps to keep processing of perceived data under control. However, these poten-
tial advantages do not come for free. Active perception requires the designer to
identify the appropriate selection criteria for agents that provide useful inform-

ation. This points to a close relationship between an agent’s behavior and its
perception. Therefore we have started to integrate the generic model for active
perception with the agent’s decision functionality and we will be working on this
in the future.

So far we have applied the model for active perception only in a couple of
study applications, including the PacketWorld [25] and a simple P2P file man-
agement system [22]. Currently our research group is involved in a project with
the Egemin company [6]. In one part of this cooperation we investige how the
multi-agent paradigm can be applied to Automated Guided Vehicle warehouse
systems. This is a promising, complex real-world application, well suited to verify
our model for situated agents in general and the model for active perception in
particular.

References

1. D. ANDLER, Introduction auz sciences cognitives, ISBN 97-82070325-771, Galli-
mard, Paris, France, 1992.

2. R. Bajcsy, Active Perception versus Passive Perception, in Proceedings of 3th
Workshop on Computer Vision, Representations and Control, Bellair, MI, 1985.

3. F.BELLIFEMINE, A. PoGGr AND G. RIMASSA, Jade, A FIPA-compliant Agent
Framework, in CSELT Internal Technical Report; also published in Proceedings
of PAAM’99, pp.97-108, London, UK, 1999.

4. R. A. BROOKS, Intelligence Without Representation, in Artificial Intelligence
Journal (47), pp. 139-159, 1991.

5. Y. DEMAZEAU, O. BoISSIER AND J.-L. KONING, Using Interaction Protocols to
Control Vision Systems, in Proceedings of the 1994 IEEE International Conference
on Systems, Man and Cybernetics, San Antonio, Texas, 1994.

6. EGEMIN, Creative Technology for Total and Innovative Industrial Automation Solu-
tions, http://www.egemin.com/home.html

7. J. FERBER, Multi-Agent Systems, An Introduction to Distributed Artificial Intelli-
gence, Addison-Wesley, ISBN 0-201-36048-9, Great Britain, 1999.

8. FIPA, Foundation for Intelligent Physical Agents, http://www.fipa.org/.

9. M. R. GENESERETH AND N. NILSSON, Logical Foundations of Artificial Intelli-
gence, Morgan Kaufmann, San Mateo, CA, 1987.

10. D. HALES, Group Reputation Supports Beneficent Norms, Journal of Artificial
Societies and Social Simulation vol. 5, no. 4, 2002.

11. P. MAES, Modeling Adaptive Autonomous Agents, in Artificial Life Journal, 1 (1-2)
pp- 135-162, MIT Press, Cambridge, MA, 1994.

12. I. NoDpA AND P. STONE, The RoboCup Soccer Serer and CM United Clients: Imple-
mented Infrastructure for MAS Research, in Journal of Autonomous Agents and
Multi-Agent Systems, vol.7(1-2), 2003.

13. J. ODELL, V. PARUNAK, M. FLEISCHER AND S. BRUECKNER, Modeling agents and
their Environment, in Proceedings of AOSE, Workshop at AAMAS, Bologna, Italy,
2002.

14. V. PARUNAK, S. BRUECKNER, J. SAUTER AND R. MATTHEWS, Distinguishing
Environmental and Agent Dynamics: A Case Study in Abstraction and Alternate
Modeling Technologies, in Proceedings of the ESAW Workshop at ECATI’00, Berlin,
Germany, 2000.

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

V. PARUNAK, ”"Go to the Ant”: Engineering Principles from Natural Agent Sys-
tems, in Annals of Operations Research 75 pp. 69-101, 1997.

H. PAsuLA, S. RUSSELL, M. OSTLAND AND Y. RiTtov, Tracking many objects with
many sensors, in Proceedings of IJCAI-99, Stockholm 1999.

M. E. PoOoLLACK AND M. RINGUETTE, Introducing the Tileworld: erperimentally
evaluating agent architectures, in Proceedings of 8th National Conference on Arti-
ficial Intelligence, AAAI Press, Menlo Park, Cam 1900.

J. L. PorLock, Taking Perception Seriously, in Proceedings of the First Inter-
national Conference on Autonomous Agents (Agents’97), ACM Press, New York,
1997.

RoBoCuP, homepage: http://www.robocup.org/; RoBOCUP SOCCER SERVER:
http://sserver.sourceforge.net/

L. RONNIE M. JOHANSSON AND N. XIONG, Perception Management: An Emerging
Concept for Information Fusion, Information Fusion, 2003.

S. RUSSELL AND P. NoORvIG, Artificial Intelligence: A Modern Approach, Prentice
Hall, 2003.

K. SCHELFTHOUT AND T. HOLVOET, A Pheromone-Based Coordination Mech-
anism Applied in Peer-to-Peer, Agents and Peer-to-Peer Computing, AAMAS’03
Workshop, Melbourne, Australia, 2003.

L. STEELS AND R. BROOKS, The artificial life route to artificial intelligence: Build-
ing Situated Embodied Agents, New Haven, Lawrence Erlbaum Ass, 1992.

K. Sycara, M. Paorucct, M. VAN VELSEN AND J. GIAMPAPAAND, The Retsina
MAS Infrastructure, TR, CMU-RI-TR-01-05, Robotics Institute, Carnegie Mellon
University, March, 2001.

D. WEYNSs AND T. HOLVOET, The Packet—-World as a Case to Investigate Sociality
in Multi-agent Systems, Demo presented at the Conference of Autonomous Agents
and Multi-Agent Systems, AAMAS 2002, Bolgona, 2002.

D. WEYNS AND T. HOLVOET, A Formal Model for Situated Multi-agent Systems,
in Formal Approaches for Multi-Agent Systems, Special Issue of Fundamenta In-
formaticae, Eds. B. Keplicz and R. Verbrugge, to appear, 2003.

D. WEYNs AND T. HOLVOET, Regional Synchronization for Situated Multi-agent
Systems, 3rd International/Central and Eastern European Conference on Multi-
Agent Systems, CEEMAS 2003, Prague, Czech Republic, in LNCS Vol. 2691, pp.
497- 511, 2003.

M. WoOLDRIDGE, N.R.. JENNINGS AND D. KINNY, The Gai Methodology for Agent-
Oriented Analysis and Design, Autonomous Agents and Multi-Agent Systems, 3,
pp. 285-312, Kluwer Academic Publishers, The Netherlands, 2000.

M. WOOLDRIDGE, An Introduction to MultiAgent Systems, ISBN 0-471-49691-X.
John Wiley and Sons, Ltd. England, 2002.

M. MAMEI, F. ZAMBONELLI, L. LEONARDI, Self-Organization in Multi Agent Sys-
tems: a Middleware Approach, in Proceedings of First International Workshop on
Engineering Self-Organizing Applications, pp. 1-10, AAMAS Workshops, 2003.

