
Towards Adaptive Residual Network Training: A Neural-ODE Perspective

Chengyu Dong 1 Liyuan Liu 2 Zichao Li 1 Jingbo Shang 1

Abstract

In pursuit of resource-economical machine learn-

ing, attempts have been made to dynamically ad-

just computation workloads in different training

stages, i.e., starting with a shallow network and

gradually increasing the model depth (and compu-

tation workloads) during training. However, there

is neither guarantee nor guidance on designing

such network grow, due to the lack of its theoret-

ical underpinnings. In this work, to explore the

theory behind, we conduct theoretical analyses

from an ordinary differential equation perspective.

Specifically, we illustrate the dynamics of network

growth and propose a novel performance measure

specific to the depth increase. Illuminated by our

analyses, we move towards theoretically sound

growing operations and schedulers, giving rise

to an adaptive training algorithm for residual net-

works, LipGrow, which automatically increases

network depth thus accelerates training. In our

experiments, it achieves comparable performance

while reducing ∼ 50% of training time.

1. Introduction

Residual networks have been advancing the state of the art

with deeper and deeper models (He et al., 2016a;b; Devlin

et al., 2019; Liu et al., 2020). The increasingly heavy train-

ing cost is impeding efficient iterations in both research and

industrial applications, thus ensuing as a major challenge.

To accelerate the training, various strategies have been pro-

posed (Chen et al., 2015; Huang et al., 2016; Chang et al.,

2017; Istrate et al., 2018) but mostly are heuristic.

In this paper, we present adaptive residual network train-

ing, which starts from optimizing a shallow network, and

gradually increases the depth as the training proceeds. The

network growing scheme in a residual architecture setting

1University of California, San Diego 2University of Illi-
nois at Urbana-Champaign. Correspondence to: Jingbo Shang
<jshang@eng.ucsd.edu>.

Proceedings of the 37
th International Conference on Machine

Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

is not new (Chang et al., 2017; Wen et al., 2019), but the

dynamics of growing is poorly understood. In particular, the

following questions, of our major interests but not exhaus-

tively enumerated, remain unclear: (1) Why the functions in

a shallow network can be successfully inherited by a deeper

network? In other words, why the network growing can be

feasible in the first place? (2) How the increasing depth and

continual optimization simultaneously affect the growing

performance? (3) What consequences will different transfor-

mations of the network make? (4) When is an appropriate

timing to grow the network?

In this work, we conduct theoretical analyses to explore

the dynamics of network grow, and make a step forward to

clarify these intriguing questions. Specifically, we view a

network with N residual blocks as an ordinary differential

equation (ODE) solver with N time steps. Inspired by the

global truncation error and embedded error introduced in

classic ODE theory (Ascher & Petzold, 1998), we align a

finite and discrete residual network with the optimal ODE

solution, and with a deeper network respectively, in order

to bound the growing performance both globally and lo-

cally. Analyses of the bounds shed insights on the design of

effective growing operator and scheduler.

In light of our analysis, we propose LipGrow, an adaptive

training algorithm for residual networks. After each epoch,

it calculates the Lipschitz constant of the residual blocks

and then decides whether it is the right timing to increase the

depth. Such process is completely automated and requires

no excessive and meticulous parameter tuning. In our exper-

iments on the CIFAR-10, CIFAR-100, and Tiny-ImageNet,

LipGrow1 reduces ∼ 50% of training time, while achieving

competitive or even better accuracy.

In summary, our major contributions are:

• We conduct theoretical analyses on the dynamics of net-

work growing, describe a novel performance measure,

and clarify the reason that such growing can be feasible.

• We propose an effective adaptive training algorithm for

residual networks, LipGrow, in light of our analyses;

• We empirically verified that LipGrow leads to about 50%
training time reduction while retaining the competitive or

even better performance.

1https://github.com/shwinshaker/LipGrow

https://github.com/shwinshaker/LipGrow

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

2. Network Grow in Neural ODE Perspective

Aiming to reduce the computation workload for model train-

ing, network grow adjusts the network structure while trying

to retain the performance of the final model. Although it

could be straightforward to design the structure transforma-

tion, analyzing the corresponding performance change is

challenging. Specifically, it requires us to describe the rela-

tionship between models before and after the transformation,

while these models have not only different parameters but

also different architectures.

Fortunately, the neural ODE perspective, as introduced be-

low, implies the existence of an “optimal" network, which

can be interpreted as a functional limit that finite residual

networks can converge to. Such convergence coincides with

the network sequence produced by the grow, and allows us

to conduct rigorous analysis and propose adaptive residual

network training. Furthermore, the performance metric can

now be defined in the functional space, allowing direct anal-

yses of the effect of functional transformation induced by

the grow, and functional state of the network engendered by

the optimization.

In this section, we first briefly review the neural ODE per-

spective, whereby the picture of network grow is exhibited.

2.1. Neural ODE

The residual network can be constructed as

z
(N)
n+1 = z

(N)
n + h(N)f (N)

n (z(N)
n), (1)

where N denotes the depth of the residual network, n ∈
{0, ..., N − 1} is the index of the residual block, h(N) is a

fixed step size, z represents the feature map, f
(N)
n represents

the n-th residual block function.

Equation 1 resembles the Euler method for solving an ordi-

nary differential equation (ODE) (Haber & Ruthotto, 2017;

Weinan, 2017). Here f
(N)
n (·) is only defined at discrete time

points t
(N)
n = ts + (te − ts)(n/N), where ts and te are the

start and end time respectively. But we can always employ

a relaxation and define the residual functions continuously

along the time dimension (specific construction is elabo-

rated in the Appendix). We formulate the yielded ODE as

dz(N)(t)

dt
= f (N)(t, z(N)(t)). (2)

The learning objective can be defined as

ε(f (N)) = Ex∼DΦ(F
(N)(x),y(x)),

where Φ is a smooth criterion function. We wish to find an

appropriate solution f∗(N), such that

f∗(N) = argmin
f(N)

ε(f (N)).

h h h

t

…

ts te

f(t)

Figure 1: Convergence of a sequence of residual networks. A
residual network can be viewed as a cascade of residual functions
exerted at discrete time points evenly spaced at a step size of h.
As the depth approaches infinity, it converges to a functional limit
that is smoothly defined in the time dimension.

The network function F (N) is connected to the ODE by

F (N)(x) ≡ z
(N)(te) = z

(N)(ts)+

∫ te

ts

f (N)(t, z(N)(t))dt.

2.2. Optimal ODE

As the depth of the ResNet goes to infinity, we assume it

approaches a continuous limit, which has been analyzed

in previous works. Specifically, Avelin & Nyström (2019)

prove that a ResNet with shared weights across blocks con-

verges to an autonomous ODE. Müller (2019) prove that the

continuous ODE can be approximated by a ResNet with fi-

nite depth. Lu et al. (2020) provides a new continuous limit

that guarantees the optimality of minimizers. In a network

grow scheme, the behaviour of the minimizer as the depth

increases is of particular interest. Thorpe & van Gennip

(2018) prove that, under specific regularity conditions, a

sequence of minimizers of finite ResNets converges to a

continuous limit, which itself minimizes ε(f (∞)).

Theorem 1 (Convergence of a sequence of minimizers). Let

f∗(N) be the minimizer of ε(f (N)), and {f∗(N)}N∈N be a

sequence of such minimizers. If

sup
N

(

∥

∥

∥
f
∗(N)
0

∥

∥

∥

2

+N
∑

n

∥

∥

∥
f∗(N)
n − f

∗(N)
n+1

∥

∥

∥

2
)

< +∞,

then

lim
N→∞

f∗(N)(t) = f∗(t), ∀ t,

and f∗ is the minimizer of ε(f (∞)).

We now refer to the minimizer of a residual network in the

continuous limit as the optimal ODE. Theorem 1 shows the

convergence of discrete residual functions to the optimal

ODE, as illustrated in Figure 1. An important implication

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

of such convergence is that, the minimizers of two deep

residual networks are not too far from each other, which

demonstrates the feasibility of effective network grows.

Note that the regularity condition here requires adjacent

residual blocks to be similar, which is not trivial as the

depth goes to infinity. An effective network grow ought to

adhere to such regularity to benefit from the convergence.

2.3. Growing Performance Evaluation

The optimal ODE reasonably bounds the performance of

a network in a residual architecture given the maximized

capacity 2. Note that the optimal ODE is not necessarily

identical to the Bayesian optimal model as the input-output

relation may not exactly follow an ODE and the global op-

timal may be impossible to find by any realistic optimizer.

Therefore, to investigate the performance of a residual net-

work with finite depth, it is reasonable to align it with the

optimal ODE. The learning objective can be rewritten as

ε̃(f (N)) = Ex∼DΦ(F
(N)(x),F∗(x)),

where the outputs are compared to the optimal ODE instead

of the true labels.

Given Φ as a smooth l-Lipschitz criterion function, it is

more convenient to investigate such difference in the feature

map space with any norm ‖ · ‖. Strictly speaking, since

Φ(F (N)(x),F∗(x)) ≤ l · ‖F (N)(x)−F∗(x)‖,

the learning objective can be alternatively defined as

e(N) ≡ Ex∼D‖F
(N)(x)−F∗(x)‖.

Here, we refer e(N) as the global error to be minimized.

2.4. Co-optimization of Parameter and Depth

We now wish to properly bound the global error. A deep

network is a cascade of function blocks. With identical

inputs, the global error is an accumulation of the functional

difference induced in each block.

Theorem 2 (Upper Bound of Global Error). Assume the

maximum L∞ distance (denoted as ‖ · ‖∞) between f (N)

and f∗ is bounded. Namely,

sup
t

∥

∥

∥
f∗(t)− f (N)(t)

∥

∥

∥

∞
= C(N,∗),

then the global error is bounded by

e(N) ≤
exp [L (f∗) (te − ts)]− 1

L (f∗)

[

M(z∗)

2
h(N) + C(N,∗)

]

,

(3)

2In an augmented sense. Practical realizations of continuous
ODE (Neural ODE), and discretized ODE (ResNet) always include
leading layers which lift the dimension (Dupont et al., 2019).

20324456688092

Depth

0.04

0.05

0.06

0.06

0.07

ResNet

Error rate (train)
Error rate (test)

20324456688092

Depth

0.05

0.06

0.06

0.07

0.07

0.07

PreAct-ResNet

Error rate (train)
Error rate (test)

0.10

0.10

0.11

0.11

0.11

0.11

0.12

0.12

0.12

0.10

0.10

0.11

0.12

0.12

Figure 2: Relationship between Step Size and the Performance of
ResNet and Pre-Activation ResNet on the CIFAR-10 dataset.

where M(z∗) = supt ‖z
∗′′(t)‖, and L(f∗) is the maximum

Lipschitz constant of f∗.

The functional difference term included in the theorem val-

idates our above intuition. A residual block in a finite net-

work is an impulse exerted at a specific time point that

approximates the cumulative effect of the optimal ODE

within a time interval. The approximation error is caused by

the relative functional difference and accumulatively leads

to the output difference considering all residual blocks.

Another interesting finding is that the global error is linearly

correlated with the step size. The fact that h(N) ∝ 1/N im-

mediately implies that the model performance consistently

improves as the network becomes deeper. This justifies

the crucial impact of depth in residual network learning.

We empirically verify this correlation on the CIFAR-10

dataset in Figure 2. Note that for pre-activation ResNet (He

et al., 2016b), both the training and test error linearly cor-

relates with stepsize. On the other hand, for the original

ResNet (He et al., 2016a), the correlation is less significant,

since it applies an additional non-linear transformation af-

ter the addition of residual thus not strictly subject to the

discrete ODE formula in Equation 1.

Theorem 2 demonstrates that the global error is an appropri-

ate evaluation metric for the network growing performance.

The effect of capacity augmentation, as revealed by the step

size, and the effect of parameter optimization, as revealed

by the functional error, are disentangled in the upper bound,

which implies the co-optimization nature of the network

growing. It sheds lights to effective growing method design.

3. Towards Effective and Automated Grow

Inspired by our analysis before, we propose to conduct

adaptive training in an automated manner.

3.1. Generic Adaptive Training

Algorithm 1 presents a generic adaptive training setup. In

each epoch, the model is first updated in the conventional

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

training manner. After that, if the growing scheduler S
decides to increase the depth of the network, the growing

operator G will initialize a deeper network based on the

current network for continual training. Following this setup,

the adaptive training algorithm design is nailed down to

specific choices of S and G.

Algorithm 1 Generic Adaptive Training

Require: Growing scheduler S, Growing operator G,

Dataset D, Optimizer (w. loss) A.

1: while within training budget do

2: for x,y ∈ D do

3: f := A(f,x,y) (Conventional Parameter Update)

4: if S(f) then

5: f := G(f) (Increase the Depth of the Network)

6: end if

7: end for

8: end while

Return: Final network f

In our problem, for a desired deep model, we are interested

in maximizing its performance through adaptive training,

or equivalently minimizing the training cost while the per-

formance is comparable. Therefore, it is different from

Neural Architecture Search, which aims at selecting the

final architecture.

3.2. How to Grow – Minimize Functional Difference

The specific initialization method in the growing operator

G is important to ensure an effective training. In the broad

topic of network transformation, multiple strategies are em-

ployed, including identity initialization (Chen et al., 2015)

or its generalized version known as network morphism (Wei

et al., 2016; Jin et al., 2018), random initialization (Wen

et al., 2019), initialization with partial training (Istrate et al.,

2018), and duplication (Chang et al., 2017).

In terms of the performance of the final model, and for resid-

ual network particularly, the bound of global error provided

by Theorem 2 implies that it is important to investigate the

functional difference induced by the initialization. Specifi-

cally, the residual functions of a deeper network f (N+) after

growing differ from the optimal ODE by

C(N+,∗) = sup
t

‖f∗(t)− f (N+)(t)‖∞.

Towards minimizing such functional difference, we propose

a simple cloning method, which clones the residual blocks

of the previous network to the new network. However, the

residual functions in a finite depth network are defined at

a set of discrete time points. Directly cloning from the

corresponding time points may only be trivial since the sets

of time points in two networks are not necessarily aligned.

The best choice is then cloning from the nearest time points,

namely for every desired time point t+ ∈ {t
(N+)
n } in the

new network, a non-trivial time point t ∈ {t
(N)
n } is found in

the previous network such that t ≡ χ(t+) = argmint |t−
t+|, and the corresponding residual function is cloned as

f (N+)(t+) := f (N)(χ(t+)).

Now the functional difference can be bounded, since

C(N+,∗) ≤ C∗t + C(N,∗),

where the second term C(N,∗) is the functional difference

carried over from the previous network, which only depends

on the optimizer A, and should be close to 0 if the opti-

mization of the previous network is effective. The first term

C∗t ≡ supt ‖f
∗(t) − f∗(χ(t))‖∞ should also be close to

0, if the network is sufficiently deep. Therefore it can be

concluded, as the network becomes increasingly deep, the

residual functions of the network after growth are guaran-

teed to be close to the optimal ODE.

Such cloning method also maintains the regularity condition

in Theorem 2. Since all of the residual functions are cloned

from previous network, the sum of the differences between

adjacent residual functions will at most be equal, which

ensures efficient continual optimization after the grow given

relative close network minimizers.

The deficiency of other initialization methods can be quali-

tatively analyzed in the same way (See Appendix).

3.3. When to Grow – Bound Temporal Error

In this section, we explore to determine a proper timing of

the grow. Theorem 2 bounds the performance of a network

w.r.t. the optimal ODE, which disentangles the effects of

capacity increase and parameter optimization, however, it is

not a practical guide to the grow schedule since the optimal

ODE is never known beforehand. In fact, in a growing

scheme, the only known network is the one that is currently

being optimized. It is necessary to bound the performance

of a future network F (N+) w.r.t. the current network F (N),

where N+ > N . It can be formulated as

e(N
+) ≤ e(N) + e(N,N+),

where

e(N,N+) ≡ Ex∼D‖F
(N+)(x)−F (N)(x)‖.

e(N,N+) is the error introduced in the outputs due to the

grow, which we refer as temporal error.

Theorem 3 (Upper Bound of Temporal Error). Assume the

maximum L∞ distance (denoted as ‖ · ‖∞) between f (N)

and f (N+) is bounded. Namely,

sup
t

∥

∥

∥
f (N)(t)− f (N+)(t)

∥

∥

∥

∞
= C(N,N+), (4)

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

then the temporal error is bounded by

e(N,N+) ≤
exp

[

L(f (N))(te − ts)
]

− 1

L(f (N))
·
[

C(N,N+)+

(5)

0.25 ·M(f (N+)) · L(f (N)) · h(N)
]

,

where M(f (N)) = supt ‖f
(N)(t)‖∞, and L(f (N)) is the

maximum Lipschitz constant of f (N).

It can be observed that the temporal error depends on the

functional difference, which can be further bound by

C(N,N+) ≤ C(N,N+←N) + C(N+,N+←N),

where C(N,N+←N) ≡ supt ‖f
(N)(t) − f (N+←N)(t)‖∞,

which is the relative functional error introduced by the

growth and should be 0 when using our cloning initializa-

tion; C(N+,N+←N) ≡ supt ‖f
(N+)(t) − f (N+←N)(t)‖∞,

which is introduced by the optimizer after the growth. and

F (N+←N) is the network right after the growth.

Our cloning initialization does introduce part of the temporal

error due to the accumulated difference between correspond-

ing feature maps, which is controlled by the maximum Lips-

chitz constant L(f (N)). Theorem 3 shows that the bound of

the temporal error monotonously correlated with L(f (N)).
Intuitively, the temporal error measures the stability of the

network functionality w.r.t. the growing transformation. A

large Lipschitz constant weakens the stability as it amplifies

the error propagating through the network, although it does

benefit the expressivity of the network. Empirical evidence

of the correlation between growing performance and the

Lipschitz constant is presented in Appendix.

In summary, the Lipschitz constant serves as an important

indicator of the performance in a network grow scheme. The

growing scheduler can be designed to control the Lipschitz

constant such that it will not become too large.

4. LipGrow

Here, we elaborate the implementation details of LipGrow,

which is summarized in Algorithm 2.

4.1. Cloning Initialization as Growing Operator

To initialize a residual network with depth N+ from a net-

work with depth N , the mapping χ is first captured by a

one-dimensional nearest neighbour search, which can be

easily calculated. Specifically, χ(t
(N+)
n+) = t

(N)
n , where

n = ⌊N(t
(N+)
n+ − ts)/(te − ts) + 1/2⌋. The corresponding

residual blocks are then cloned. The first residual block in

each subnetwork will only be cloned to its counterpart in

the new network, since it contains a downsampling layer.

Other residual blocks that are assigned to the first residual

block will be cloned from the block right behind it.

Implicit Step Size. To ensure a roughly constant mag-

nitude of the sum of the residuals, we have to scale the

step size after the growth. To avoid significant modifi-

cation to the model architecture, we propose to scale the

weights and bias of conv and bn layers by N/N+, af-

ter the block cloning. Typically, layers are constructed

as conv-bn-relu-conv-bn-relu in a basic residual

block.

This implementation is equivalent to introducing an explicit

step size and scaling the residual output of each block, as

long as the activation function is ReLU. Note that based

on this way, nothing needs to be changed for the architec-

ture setting, which eases the adaptation to existing models.

Moreover, we observe that this way is slightly better than

introducing explicit step size in our experiments. Note that,

within a block the scaling effect of previous layers will be

cancelled out by subsequent batch normalization due to the

standard deviation term. But intuitively we desire an equal

scaling of all weights. Implementations thus may vary for

specific layer orders.

Choice of N+. In practice, the total number of training

epochs is typically around a few hundreds. The number

of growths is thus limited if the network needs to be suffi-

ciently optimized in each stage. To facilitate the efficiency

of the training and balance the optimization of each residual

function, we choose the depth to be doubled in each grow

and thus the number of blocks exponentially increase during

the adaptive training. In this case, our initialization degener-

ates to the interpolation introduced by Chang et al. (2017),

where every residual block will have a clone after it.

4.2. Lipschitz Tolerated Growing Scheduler

In our scenario, Lipschitz constant serves as an upper bound

for the growing risk. In numerical analysis, the typical

way to control such a risk is referring to an user-defined

tolerance. Inspired by this idea, we define a risk tolerance as

rtol. Each time the scaled Lipschitz (see below) exceeds rtol,

the grow will be triggered. Consequently, network depth

will be increased, and the stepsize will be scaled.

Since the magnitudes of Lipschitz constants at different

depths are distinct, we will scale the Lipschitz by the value

obtained at the first epoch of training. After growing, the

scaling basis will be reset since the depth changes. We

average the Lipschitz across blocks, and use a smoothing

window of 10 epochs to reduce noise. A certain number of

epochs 3 will be reserved for the final model if the desired

depth is not reached yet (sometimes the Lipschitz is low all

3
30 epochs for a total of 164 epochs (CIFAR-like); 20 epochs

for a total of 90 epochs (ImageNet-like)

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

Algorithm 2 Our LipGrow Algorithm

Require: Dataset D, Optimizer (w. loss) A, Tolerance rtol.

1: L0 = L(F) (Calculate the Lipschitz constant of F)

2: while within training budget do

3: for x,y ∈ D do

4: F = A(F ,x,y) (Conventional Parameter Up-

date)

5: if L(F)/L0 > rtol then

6: F := Clone(F) (Initialize a Deeper Network w.

Cloning)

7: L0 = L(F) (Calculate the Lipschitz constant

of F)

8: end if

9: end for

10: end while

Return: Final network F

the time, and we grow very late to maximize the efficiency).

4.3. Efficient Calculation of Lipschitz

We first show how to calculate the Lipschitz constant of

residual networks and then discuss its overhead.

A residual network contains a few residual blocks, and each

residual block have a few layers. As these layers are com-

posed sequentially, the Lipschitz constant of the composed

function is simply the multiplication of the Lipschitz con-

stant of its every component. Since a residual block contains

(1) convolutional layers, (2) activation layer, typically ReLU,

and (3) batch normalization, here, we show the calculations

of these three types as follows.

Convolutional Layers. Convolutional layers are essentially

linear operations, whose Lipschitz constants should be ap-

proached by their operator norms.

Lip(fconv) = max
X,X 6=0

‖WfX‖

‖X‖
(6)

Exact calculation of operator norm involves SVD and

Fourier transformation (Sedghi et al., 2018), but it will intro-

duce 10 times overhead in our experiments. The precision is

after all not our major concern. Therefore, we perform the

power iteration method (Yoshida & Miyato, 2017; Tsuzuku

et al., 2018; Gouk et al., 2018) to estimate the operator norm

approximately.

ReLU. Its Lipschitz constant is 1 (Tsuzuku et al., 2018).

Batch Normalization. Batch normalization performs the

following linear transformation

fBN(xi) := γi
xi − µi
√

σ2
i + ǫ

+ βi.

Therefore the Lipschitz constant is simply calculated

as (Tsuzuku et al., 2018)

Lip(fBN) = max
i

|γi|
√

σ2
i + ǫ

.

Overhead. The majority of the overhead is introduced by

the iteration method for convolutional layers. In our im-

plementation, we run 100 iterations4 for every convolution

filter in every epoch. Such overhead is negligible compared

to the total training time (Gouk et al., 2018).

In our experiments, we observe that the empirical overhead

for each epoch is only a few seconds, as shown in Table 1.

It is worth mentioning that the overhead is only related to

the number and dimension of convolution filters, and is not

relevant to the dataset size.

4.4. Adaptive Learning Rate Scheduler

To incorporate adaptive growing, the learning rate scheduler

needs some special design. In Chang et al. (2017), cosine

annealing scheduler with restarts (Loshchilov & Hutter,

2016) is adopted to facilitate multi-depth training, where the

restart epochs are aligned with the manually selected epochs

when the depth is increased. However, since we never know

the growing epochs beforehand in our adaptive scenario, we

propose a variant as follows.

Adaptive Cosine Annealing Learning Rate Scheduler.

After each growth, the cycle in a standard cosine learning

rate scheduler is reset as the number of epochs left, namely

η = ηmin +
1

2
(ηmax − ηmin)

(

1 + cos

(

Tcur − Tgrow

Ttot − Tgrow

π

))

,

where ηmin and ηmax are the minimum and maximum learn-

ing rates, respectively. Tcur is the current epoch, Ttot is the

total epochs, and Tgrow refers to the epoch of the last growth.

At the beginning of the training, Tgrow = 0.

Experiments are conducted comparing our proposed sched-

uler, cosine annealing and cosine annealing with restarts in

Appendix. Generally they all have similar performance.

5. Experiments

We conduct experiments on three benchmark datasets,

CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) 5, and

Tiny-ImageNet6. We follow their standard train, validation,

and test splits in our experiments.

4One can greatly reduce the number of iterations if the overhead
is really a concern. As mentioned in (Yoshida & Miyato, 2017), 1
iteration is often sufficient.

5www.cs.toronto.edu/~kriz/cifar.html
6www.kaggle.com/c/tiny-imagenet

www.cs.toronto.edu/~kriz/cifar.html
www.kaggle.com/c/tiny-imagenet

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

Table 1: Overhead Caused by Lipschitz Constant Calculations.

Convolution Filters 18 24 30 36 42 48 54 60 66 72

Overhead(secs)/Epoch 0.4 0.6 0.7 0.9 0.9 1.0 1.1 1.4 1.5 1.7

Table 2: Evaluation Results on the CIFAR datasets.

Method Final Model
CIFAR-10 CIFAR-100

Val Test PPE (×10
6) Val Test PPE (×10

6)

Vanilla

ResNet-14 91.57± 0.10 91.57± 0.25 0.18 67.39± 0.31 67.50± 0.74 0.18

ResNet-20 92.50± 0.26 92.22± 0.62 0.27 68.68± 0.45 69.75± 0.13 0.26

ResNet-50 93.23± 0.24 93.59± 0.30 0.76 70.86± 0.60 71.40± 0.58 0.76

ResNet-74 93.25± 0.15 93.76± 0.26 1.15 72.61± 0.38 73.16± 0.40 1.15

LipGrow
ResNet-50 92.89± 0.26 92.99± 0.33 0.33± 0.02 70.63± 0.26 71.70± 0.67 0.41± 0.03

ResNet-74 93.53± 0.31 93.46± 0.69 0.54± 0.06 72.47± 0.18 72.75± 0.59 0.54± 0.01

Table 3: Evaluation Results on the Tiny-ImageNet dataset.

Method
Tiny ImageNet (ResNet-66 model)

Val Test PPE (×10
6)

Vanilla 50.13± 0.77 48.18± 0.21 48.90

LipGrow 50.54± 0.16 48.87± 0.40 25.54± 0.66

5.1. Compared Methods

We mainly compare LipGrow with the vanilla-ResNets (re-

ferred as Vanilla), which are trained from scratch without

adjusting its depth (i.e., it directly trains a deep residual

network from scratch). More experiments are conducted

to compare LipGrow with a hand-tuned growing scheduler

(referred as Hand-Tuned) in Section 5.5.

5.2. Experimental Settings

For the CIFAR datasets, we employ the ResNet model,

which consists of 3 subnetworks7, while for the Tiny-

ImageNet dataset, we use the one consisting of 4 subnet-

works. Accordingly, we experimented ResNet-12, ResNet-

20, ResNet-50 and ResNet-74 on the CIFAR10 and CI-

FAR100 datasets, and ResNet-66 on the Tiny-ImageNet

dataset.

All models on the CIFAR datasets are trained for 164 epochs,

and evaluated on a single Nvidia GeForce GTX 1080 Ti

GPU. All models on the Tiny-ImageNet dataset are trained

for 90 epochs, and evaluated on a single Nvidia Quadro

RTX 8000 GPU. We use a batch size of 128 for training,

and 100 for validation. Weight decay and momentum are

set to be 2 × 10−4 and 0.9, respectively. All statistics in

experiments are based on 3 runs.

Towards a fair comparison with our method, we apply our

proposed learning rate scheduler as well as implicit initial-

7A subnetwork denotes a cascade of layers in a residual network
where the output activations are of the same dimension.

0 25 50 75 100 125 150 175

Wall time (mins)

0.0

0.2

0.4

0.6

0.8

Er
ro

r r
at

e

Vanilla (val)
Vanilla (train)

LipGrow (val)
LipGrow (train)

Figure 3: Training and Validation Error Rates w.r.t. Wall Training
Time. The model is ResNet-74 trained on the CIFAR-10. We
compare our LipGrow with vanilla training. All timings are based
on a single Nvidia GeForce GTX 1080 Ti GPU.

ization to both Vanilla and Hand-Tuned.

In our adaptive growing strategy, the tolerance rtol is the

only hyper-parameter that needs to be tuned. It is typically

chosen around 1.4, with only a marginal dependence on

dataset8. Further experiments are conducted to explore

the sensitivity of rtol. According to our experiments, this

tolerance value is largely universal (detailed discussions are

included in the appendix).

5.3. Evaluation Results

In addition to the validation and test accuracy, towards effi-

ciency evaluation, we introduce the parameters per epoch

(PPE) metric. It is defined as the number of model pa-

rameters per epoch. For example, a fixed model of 1M

parameters will result in 1M PPE. This is one of the fairest

metrics reflecting the computation load (memory and pro-

cessor) yet independent to hardware settings and utilization,

since we desire to train a model with as few parameters as

8
1.4 for CIFAR and 1.3 for Tiny-Imagenet

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

20 40 60 80 100

Epoch of the 1st Growth

0.080

0.085

0.090

0.095

M
in

 E
rr

or
 R

at
e

(v
al

)

0.302

0.304

0.306

0.308

0.310

0.312CIFAR-10
CIFAR-100

Figure 4: Grid Search vs. LipGrow in finding epochs for the
first growth. Dashed lines refer to the minimum final error rate
achieved by the corresponding scheduler. Solid lines describe the
first epochs found by LipGrow (mean and std for 3 runs). X-axis
is the epoch index of the growing timing of different growing
schedulers. The model is ResNet-50 trained on the CIFAR-10 and
CIFAR-100 datasets.

possible within a fixed budget of training epochs.

Results are presented in Tables 2 and 3. The model in the

table denotes the final depth after grow. Each network will

be grown for exactly 2 times, and each time the depth will be

doubled. Therefore the growing path can be easily inferred

by N = 2m(N0 − 2)+ 2, where N0 is the initial depth, and

m is the number of grows.

LipGrow can reach comparable validation and test accuracy

as Vanilla, while reducing the computation load by more

than 50%. Moreover, LipGrow allows an automatic choice

of the growing epochs, thus saving vast time to explore

proper decisions, which may not be less computationally

heavy than training a deep network from scratch. Section 5.5

offers more comparisons with Hand-Tuned.

To reflect the real-world training time, we visualize the

learning curve w.r.t. the wall clock time of training in Fig-

ure 3, given the same computational environment. LipGrow

demonstrates significant training speedup, while achieving

similar performance in the end. This observation is consis-

tent with our PPE measurements in Tables 2 and 3, which

further verifies the effectiveness of our proposed method.

5.4. Effectiveness of LipGrow Growing Scheduler

To explore the effectiveness of LipGrow growing sched-

uler, we did grid search to evaluate the growing timing

decided by LipGrow. Specifically, we conduct experiments

with ResNet-50 on CIFAR-10 and CIFAR-100 and first run

LipGrow multiple times and record both its first growing

time and the final performance. Then, we conduct grid

search on the growing time and record the corresponding

final performance. The results are visualized in Figure 4.

The first growth epochs chosen by LipGrow are nearly the

optimal epochs based on the grid search results, although it

could be some local optimal. Specifically, on CIFAR-10, the

growing timing decided by LipGrow is near optimal, while

on CIFAR-100, the growing timing decided by LipGrow

nears a local optimal and fails to reach a better timing. This

behavior is reasonable as LipGrow decides the growing on-

the-fly, which leads to better training efficiency (i.e., it does

not require to conduct training multiple times for growing

scheduler tuning). It also shows that the growth epochs cho-

sen by LipGrow across different runs are relatively stable.

5.5. Adaptive vs. Hand-Tuned

In the end, we compare LipGrow with Hand-Tuned grow-

ing scheduler. Specifically, we first sample a set of differ-

ent growing schedulers, evaluate the model performance

trained with these sampled schedulers, and visualize their

required training cost (i.e., PPE) and best accuracy in Fig-

ure 5. Besides, we also list the Hand-Tuned scheduler rec-

ommended by Chang et al. (2017), which achieves a better

performance with more training cost. It is worth mentioning

that, all these compared methods require a trial-and-error

approach, which contradicts to the goal of adaptive training

(i.e., cost of tuning growing scheduler is enough to train

with a static depth). As depth balances model performance

and training cost, choosing a growing scheduler can be

viewed as a multi-objective optimization problem and all

points achieving Pareto-efficiency are Pareto-optimal (i.e.,

no other scheduler can achieve better performance with less

training cost). Specifically, although LipGrow and Hand-

Tuned achieve comparable performance (i.e., LipGrow is

more efficient while Hand-Tuned performs better), LipGrow

achieves Pareto-optimal and Hand-Tuned can be further im-

proved. It verifies the potential of deciding growing timing

in a greedy manner and the effectiveness of LipGrow.

Figure 5: Validation Accuracy on CIFAR10 vs. Required PPE
based on Different Choices of the Growing Epochs. Pareto-optimal
schedulers (balancing cost and performance) are marked as star.
Specifically, LipGrow achieves Pareto-optimal and Hand-Tuned
can be further improved.

6. Related work

Here, we review the literature of three related topics.

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

Dynamic System View of Residual Network. Deep

residual network can be viewed as a discretized ODE (Haber

& Ruthotto, 2017; Weinan, 2017; Ruthotto & Haber, 2018).

To this end, various perspectives and methods from nu-

merical analysis are employed to improve the architec-

ture (Lu et al., 2017; Ciccone et al., 2018), reduce training

time (Chang et al., 2017), reduce memory overload (Chen

et al., 2018), enable inversability (Chang et al., 2018),

and adapt to other models (e.g., recurrent neural net-

works (Chang et al., 2019), Transformers (Lu et al., 2019)).

In particular, Chen et al. (2018) explicitly parameterize time

in the residual architecture and use ODE solver to perform

transformations. This modification can adaptively trade off

precision for efficiency by controlling the number of evalua-

tions. Nevertheless, applications to practical learning tasks

will be limited since the blackbox ODE solver and typical

downsample layers are mutually incompatible, which re-

quires a completely new design of the model architecture.

In contrast, our adaptive method views the trade-off in situ,

thus can be seamlessly applied to state-of-the-art models.

Network Grow and Neural Architecture Search.

Adaption of network architecture under specific situations is

of constant interest. Early work has already proven the diffi-

culty of training very deep neural networks (Glorot & Ben-

gio, 2010). To circumvent this problem and improve training

stability, easy shallow networks are often first trained, and

then merged into deep networks (Simonyan & Zisserman,

2014). DropIn (Smith et al., 2016) further explores this

idea by incrementally including new layers, making the

train of deeper network possible and achieve better perfor-

mance. As a counterpart, Huang et al. (2016) suggests to

randomly disable network blocks during training, which

can be interpreted as a DropOut on the network level. This

trick significantly reduces the training time and improves

the performance at the same time, though careful hyper-

parameter engineering is required. Multi-level residual net-

work (Chang et al., 2017) is the closest one linked to our

work, which explores the possibility of augmenting network

depth in a dynamic system of view, whereas proper time

to the perform the augmentation is unknown beforehand.

AutoGrow (Wen et al., 2019) attempts to automate the dis-

cover of proper depth to achieve near-optimal performance

on different datasets. Several growing strategies are tested,

yet the preferred one is a manually-tuned periodic setting.

Network Morphism (Wei et al., 2016; 2017) is another line

of work that manages to transform a layer to multiple lay-

ers with the represented function intact. Net2net (Chen

et al., 2015) is a successful application of this idea to knowl-

edge transfer. Nevertheless, when applied to optimization

procedure, it is unclear whether network morphism can pre-

serve general optimization flow. Degraded performance is

reported when comes to practical training (Wen et al., 2019).

Similar ideas can also be discovered in many network ar-

chitectures, including progressive growing of GAN (Karras

et al., 2017), Adaptive Computation Time (Graves, 2016;

Jernite et al., 2016) for RNN, etc. Neural architecture search

(NAS) (Stanley & Miikkulainen, 2002; Zoph & Le, 2016)

is also a generic way to conduct architecture optimization.

Typically it aims to improve the inference performance at

the cost of more expensive training, while our proposed

LipGrow aims to accelerate training.

Lipschitz Constant in Deep Neural Networks. Lips-

chitz constant is widely discussed in learning theory, es-

pecially for deep learning which often incorporates a large

composition of functions. Towards Lipschitz continuity,

general stability is often a major concern, which involves

adversarial robustness (Cisse et al., 2017), generalizabil-

ity (Bartlett et al., 2017), stability of GAN (Qi, 2019), hype-

parameter insensitivity (Gouk et al., 2018), to name a few.

Specific to residual networks, Behrmann et al. (2018) en-

force the Lipschitz constraint so as to extend ResNet to the

generative model. This work offers a similar view of ResNet

as an ODE discretization.

7. Conclusions and Future Work

In this paper, we study the depth of residual networks and

explore to increase it during training in an adaptive way, so

that we can reduce the total training time while retaining

the model capacity and performance. From a neural ODE

perspective, we discuss the global error with respect to the

optimal ODE, and elucidate the contributions of capacity

augmentation and parameter optimization in a network grow

scheme. We also present the temporal error as the signal of

network growth to control the growing risk. Thereby we pro-

pose LipGrow, leveraging the theoretical analyses to guide

the network growth. Extensive experiments demonstrate

that LipGrow can achieve better or comparable performance

while reducing ∼ 50% of training time.

For future work, potential improvements of our algorithm

can be explored. For example, although the decision of

LipGrow is based on theoretical derivation, it is still a greedy

algorithm focusing on the temporal risk and can be trapped

in the local optimal. Thus, it would be beneficial to defin-

ing an unified objective incorporating both the performance

measure and training cost, upon which an algorithm that

maximizes the performance yield bounded by pre-specified

training budgets is possible. Last but not least, theoretical

guidance presented in our work can be extended to other

practical applications involving functional transformation

such as Neural Architecture Search and network pruning.

Hopefully we can step towards better understanding of the

current heuristics in AutoML community, and provides the-

oretically sound suggestions to optimize the performance.

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

References

Ascher, U. M. and Petzold, L. R. Computer methods for

ordinary differential equations and differential-algebraic

equations, volume 61. Siam, 1998.

Avelin, B. and Nyström, K. Neural odes as the deep limit

of resnets with constant weights, 2019.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-

normalized margin bounds for neural networks. In Ad-

vances in Neural Information Processing Systems, pp.

6240–6249, 2017.

Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D.,

and Jacobsen, J.-H. Invertible residual networks. arXiv

preprint arXiv:1811.00995, 2018.

Chang, B., Meng, L., Haber, E., Tung, F., and Begert, D.

Multi-level residual networks from dynamical systems

view. ArXiv, abs/1710.10348, 2017.

Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D.,

and Holtham, E. Reversible architectures for arbitrarily

deep residual neural networks. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

Chang, B., Chen, M., Haber, E., and Chi, E. H. Antisym-

metricrnn: A dynamical system view on recurrent neural

networks. arXiv preprint arXiv:1902.09689, 2019.

Chen, T., Goodfellow, I., and Shlens, J. Net2net: Accelerat-

ing learning via knowledge transfer, 2015.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,

D. K. Neural ordinary differential equations. In Advances

in neural information processing systems, pp. 6571–6583,

2018.

Ciccone, M., Gallieri, M., Masci, J., Osendorfer, C., and

Gomez, F. Nais-net: Stable deep networks from non-

autonomous differential equations. In Advances in Neural

Information Processing Systems, pp. 3025–3035, 2018.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and

Usunier, N. Parseval networks: Improving robustness to

adversarial examples. In Proceedings of the 34th Interna-

tional Conference on Machine Learning-Volume 70, pp.

854–863. JMLR. org, 2017.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:

Pre-training of deep bidirectional transformers for lan-

guage understanding. In Proceedings of the 2019 Confer-

ence of the North American Chapter of the Association for

Computational Linguistics: Human Language Technolo-

gies, Volume 1 (Long and Short Papers), pp. 4171–4186,

2019.

Dupont, E., Doucet, A., and Teh, Y. W. Augmented neural

odes. In NeurIPS, 2019.

Glorot, X. and Bengio, Y. Understanding the difficulty

of training deep feedforward neural networks. In Pro-

ceedings of the thirteenth international conference on

artificial intelligence and statistics, pp. 249–256, 2010.

Gouk, H., Frank, E., Pfahringer, B., and Cree, M. Regulari-

sation of neural networks by enforcing lipschitz continu-

ity. arXiv preprint arXiv:1804.04368, 2018.

Graves, A. Adaptive computation time for recurrent neural

networks. arXiv preprint arXiv:1603.08983, 2016.

Haber, E. and Ruthotto, L. Stable architectures for deep

neural networks. Inverse Problems, 34(1):014004, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings

in deep residual networks. In European conference on

computer vision, pp. 630–645. Springer, 2016b.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger,

K. Q. Deep networks with stochastic depth. In European

conference on computer vision, pp. 646–661. Springer,

2016.

Istrate, R., Malossi, A. C. I., Bekas, C., and Nikolopoulos,

D. Incremental training of deep convolutional neural

networks. arXiv preprint arXiv:1803.10232, 2018.

Jernite, Y., Grave, E., Joulin, A., and Mikolov, T. Variable

computation in recurrent neural networks. arXiv preprint

arXiv:1611.06188, 2016.

Jin, H., Song, Q., and Hu, X. Auto-keras: Efficient neu-

ral architecture search with network morphism. arXiv

preprint arXiv:1806.10282, 2018.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-

sive growing of gans for improved quality, stability, and

variation. arXiv preprint arXiv:1710.10196, 2017.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers

of features from tiny images. Technical report, University

of Toronto, 2009.

Liu, L., Liu, X., Gao, J., Chen, W., and Han, J. Under-

standing the difficulty of training transformers. ArXiv,

abs/2004.08249, 2020.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-

dient descent with warm restarts. arXiv preprint

arXiv:1608.03983, 2016.

Towards Adaptive Residual Network Training: A Neural-ODE Perspective

Lu, Y., Zhong, A., Li, Q., and Dong, B. Beyond fi-

nite layer neural networks: Bridging deep architectures

and numerical differential equations. arXiv preprint

arXiv:1710.10121, 2017.

Lu, Y., Li, Z., He, D., Sun, Z., Dong, B., Qin, T., Wang, L.,

and Liu, T.-Y. Understanding and improving transformer

from a multi-particle dynamic system point of view. arXiv

preprint arXiv:1906.02762, 2019.

Lu, Y., Ma, C., Lu, Y., Lu, J., and Ying, L. A mean-field

analysis of deep resnet and beyond: Towards provable

optimization via overparameterization from depth, 2020.

Müller, J. On the space-time expressivity of resnets, 2019.

Qi, G.-J. Loss-sensitive generative adversarial networks on

lipschitz densities. International Journal of Computer

Vision, pp. 1–23, 2019.

Ruthotto, L. and Haber, E. Deep neural networks motivated

by partial differential equations. Journal of Mathematical

Imaging and Vision, pp. 1–13, 2018.

Sedghi, H., Gupta, V., and Long, P. M. The singular values

of convolutional layers. arXiv preprint arXiv:1805.10408,

2018.

Simonyan, K. and Zisserman, A. Very deep convolu-

tional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

Smith, L. N., Hand, E. M., and Doster, T. Gradual dropin of

layers to train very deep neural networks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 4763–4771, 2016.

Stanley, K. O. and Miikkulainen, R. Evolving neural net-

works through augmenting topologies. Evolutionary com-

putation, 10(2):99–127, 2002.

Thorpe, M. and van Gennip, Y. Deep limits of residual

neural networks, 2018.

Tsuzuku, Y., Sato, I., and Sugiyama, M. Lipschitz-margin

training: Scalable certification of perturbation invariance

for deep neural networks. In Advances in Neural Infor-

mation Processing Systems, pp. 6541–6550, 2018.

Wei, T., Wang, C., Rui, Y., and Chen, C. W. Network mor-

phism. In International Conference on Machine Learning,

pp. 564–572, 2016.

Wei, T., Wang, C., and Chen, C. W. Modularized morphing

of neural networks. arXiv preprint arXiv:1701.03281,

2017.

Weinan, E. A proposal on machine learning via dynamical

systems. Communications in Mathematics and Statistics,

5(1):1–11, 2017.

Wen, W., Yan, F., and Li, H. Autogrow: Automatic layer

growing in deep convolutional networks, 2019.

Yoshida, Y. and Miyato, T. Spectral norm regularization for

improving the generalizability of deep learning. arXiv

preprint arXiv:1705.10941, 2017.

Zoph, B. and Le, Q. V. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016.

