Towards Adjoint and Directional Derivatives in FMI utilizing
ADOL-C within OpenModelica

Willi Braun!

Kshitij Kulshreshtha®? Riidiger Franke?

1

Andrea Walther? Bernhard Bachmann

'FH Bielefeld University of Applied Science, {wbraun, bernhard.bachmann}@fh-bielefeld.de
2Universitit Paderborn, kshitij@math.upb.de, andrea.walther@uni-paderborn.de
3ABB AG, Mannheim, ruediger. franke@de.abb.com

Abstract

Algorithmic differentiation has proven to be an efficient
method for evaluating derivative information for imple-
mentations of mathematical functions. In the context of
the Functional Mockup Interface (FMI) the reverse mode
of algorithmic differentiation shows immense promise.

FMI is increasingly used for model-based applications,
such as parameter estimation or optimal control. The pa-
per motivates the exploitation of algorithmic differentia-
tion and proposes an extension of FMI for the evaluation
of adjoint directional derivatives.

Attempts to interface algorithmic differentiation li-
braries with Modelica tools have been made. Instead of
generating code for the target language which is instru-
mented with algorithmic differentiation library API and
then compiled, in this new approach the intermediate rep-
resentation used by the library is generated directly. This
avoids compilation of the target language that often takes a
large fraction of the overall simulation time. It also avoids
model execution in order to create such an internal rep-
resentation at runtime. The initial results are presented
here.

Keywords: OpenModelica, ADOL-C, Derivatives, Jaco-
bian

1 Introduction

Algorithmic differentiation (Griewank and Walther, 2008)
is a technique to compute derivatives of functions ex-
pressed as computer programs efficiently, and accurately
upto machine precision (Griewank et al., 2012). Ruge
et al. (2014) first investigated the use of the algorith-
mic differentiation tool ADOL-C (Walther and Griewank,
2012) in conjunction with OpenModelica (Fritzson et al.,
2006). ADOL-C is designed for the C++ programming
language and uses operator overloading to create an inter-
nal representation of the computation, called a trace, when
a program instrumented with the datatype adouble is exe-
cuted. In Ruge et al. (2014) such instrumented code writ-
ten in C++ was generated in addition to the usual model
code for the C-Runtime and was compiled and linked with
the ADOL-C library in addition to the C-Runtime Library
of OpenModelica.

In this work we endeavoured to generate the trace for

the use by the ADOL-C library to compute derivatives di-
rectly from within the OpenModelica compiler. Since the
compiler has all the required information about the com-
putation of the model it can present this information in the
manner we need, without having to generate C++ code
and executing it. On the other hand the ADOL-C library
did not have any other mechanism for creation the inter-
nal data structures associated with a trace, other than ex-
ecuting C++ code instrumented with the datatype adouble.
The challenge was therefore two-fold: firstly to teach the
ADOL-C library to accept a trace in another format, and
secondly to generate this format from the OpenModelica
compiler while processing the model.

This paper is organized as follows: Section 2 outlines
the motivation for the exploitation of algorithmic differ-
entiation in FMI. Further more it presents a proposal for
an extension of FMI offering the evaluation of adjoint di-
rectional derivatives. The needed details of algorithmic
differentiation as well as the implementation of ADOL-C
are described in section 3. Whereas section 4 focuses on
the implementation work in OpenModelica. Finally, the
first results are shown in section 5.

2 Adjoint directional derivatives in
FMI

FMI emerged as a new standard resulting from the ITEA2
project MODELISAR, in 2010. The standard is a response
to the industrial need to connect different environments for
modeling, simulation and control system design. Com-
monly, different tools are used for different applications,
whereas simulation analysis at the system integration level
requires tools to be connected. FMI provides the means to
perform such integrated simulation analysis.

FMI specifies an XML format for model interface in-
formation and a C API for model execution. The XML
format, specified by an XML schema, contains informa-
tion about model variables, including names, units and
types, as well as model meta data. The C API, on the other
hand, contains C functions for data management, e.g., set-
ting and retrieving parameter values, and evaluation of the
model equations. The implementation of the C API may
be provided in source code format, or more commonly as
a compiled dynamically linked library.

DOI
10.3384/ecp17132363

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

363

Towards Adjoint and Directional Derivatives in FMI utilizing ADOL-C within OpenModelica

Starting from version 2.0, the Functional Mock-up In-
terface (FMI) is well suited to hook Modelica models to
numerical solvers for model-based applications, such as
parameter estimation or optimal control (Franke et al.,
2015). This way numerical routines can focus on the solu-
tion process, while FMI abstracts implementation details
of the model. It is likely that such applications of FMI will
increase. FMI should provide appropriate model deriva-
tives.

Consider the solution of a least squares problem for pa-
rameter estimation as example. A general model has the
form
h (anown » Vrest)) (1)
h: RnKnown x RnRest N RnUnknown.

Vunknown

The task is to obtain nKnown parameters such that a sum
of squared residuals for nUnknown model outputs y and

k=1,...,K given data points y; is minimized:
S 2
R= Z ||yk _h(vknawnavrest,k)n — min . ()
k=1 Vinown
The solution must fulfill the necessary condition
JdR
= zeros(nKnown) = 3)
avknnwn
< Oh(Vinown; Vrest k)
-2 [yk - h(anowna Vrest,k)] anawn =
k=1 Vknown

The solution process, for instance applying Newton’s
method, involves the successive computation of (3), in-
cluding model derivatives.

The existing API of FMI 2.0 provides the function
fmi2GetDirectionalDerivative to obtain a column of the Jaco-
bian matrix dh(Viuown, Vrest)/ @ Vinown O @ linear combina-
tion of columns of the Jacobian matrix. One computation
of directional derivatives gives:

oh (Vinowns Vrest)
d Viknown

AVinknown = AVigown- “4)

The signature of the API function is:

fmiStatus fmi2GetDirectionalDerivative (
fmiComponent c,
const fmi2ValueReference vUnknown_ref[],
size_t nUnknown,
const fmi2ValueReference vKnown_ref[],
size_t nKnown,
const fmi2Real dvKnown[],
fmi2Real dvUnknown|[])

The computation of (3) requires K x nKnown calls to
fmi2GetDirectionalDerivative . This is inefficient if multiple
parameters shall be estimated (nKnown > 1).

This is why the FMI interface should be extended with
a new function fmi2GetAdjointDerivative, along with a ca-
pability flag providesAdjointDerivatives . The new function

computes:

dh (anawn » Vrest)

T
9) AVinknown- (5)
Vknown

AViown = (

It has the signature:

fmiStatus fmi2GetAdjointDerivative (
fmi2Component c,
const fmi2ValueReference vUnknown_ref[],
size_t nUnknown,
const fmi2ValueReference vKnown_ref[],
size_t nKnown,
const fmi2Real dvUnknown|[],
fmi2Real dvKnown[])

The new function allows to obtain one row of the Jaco-
bian matrix, or a linear combination of rows of the Ja-
cobian matrix, with only one model evaluation in reverse
mode of algorithmic differentiation. The computation of
(3) becomes significantly more efficient. Only K calls to
fmi2GetAdjointDerivative are needed, one call for each data
point k and arbitray numbers of nKnown parameters or
nUnknown model outputs, when passing the values of the
residuals as seeds

(6)

AVunknown,k =Yk — h(anownv Vrest,k)-

3 Algorithmic differentiation using
ADOL-C

In order to apply algorithmic differentiation (AD) on a
program we model the program structure as a sequence of
instructions, which perform specific mathematical func-
tions. This is called an evaluation procedure in Griewank
and Walther (2008). The evaluation procedure can be then
evaluated forwards or reverse to compute the derivatives
in the so called forward mode and reverse mode of AD.
Griewank and Walther (2008, Chapter 3 and 4) describe
this process in great detail and give bounds on the com-
pexity and memory requirements. The main import of the
complexity analysis is that the reverse mode is very well
suited to compute gradient vectors for functions in much
less complexity than they can be computed otherwise, ei-
ther numerically or symbolically. The same applies to
computing rows of the Jacobian matrix.

ADOL-C implements the AD process by overloading
the operators and mathematical functions in the C++ pro-
gramming language for a special datatype adouble. Such
supported operations are called elementary operations.
Each of these overloaded operators and functions when
executed records the elementary operation currently be-
ing performed, the locations of the operands in work-
ing memory, and the locations of the results in working
memory. This record is created normally on runtime,
when a program, instrumented with the ADOL-C headers,
datatypes and some instructions on when to begin and end
the recording, is executed. ADOL-C is then able to use
this record, called a trace, to evaluate function values, first

364

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132363

Session 6: Poster Session

and higher order derivatives in forward and reverse mode
at any given point of evaluation. The trace can be made
persistent even after the program has terminated. Tradi-
tionally this trace is stored in binary format as raw data
in three different files, one for the list of operations, one
for the list of operand locations, and one for storing any
constant values that might occur. The organisation of the
trace is as follows. For each operation a character to rep-
resent it is stored. Based on what the operation actually is,
it will requires a number of operands, which are stored as
unsigned integer locations inside a data buffer, followed
by the location, where the result of the operation will be
stored. In some operations a constant may be involved,
this value is stored as is.

In the work of Ruge et al. (2014) the Modelica mod-
els were translated into C++ code instrumented with the
ADOL-C headers and datatypes, using a mechanism sim-
ilar to the generation of C code for the model in Open-
Modelica. The drawback was that compilation linking and
one-time execution of this C++ code was quite slow due
to the use of operator overloading, compared to the gen-
erated C code. It was suggested, that since OpenModelica
was already analysing the model in great detail, could we
not create the trace of the model directly instead of gener-
ating C++ code.

// define independent

{ op:assign_ind loc:0 }

{ op:assign_ind loc:1 }

// operations

{ op:mult_d_a loc:0 loc:4 val:—0.25 }
op:div_a_a loc:1 loc:0 loc:5 }
op:plus_a_a loc:4 loc:5 loc:6 }
op:plus_d_a loc:6 loc:3 val:3.0 }
op:log_op loc:0 loc:4 }
op:mult_d_a loc:4 loc:5 val:—3.0 }
op:plus_a_a loc:1 loc:5 loc:2 }

// define depenpendent

{ op:assign_dep loc:2 }

{ op:assign_dep loc:3 }

// death_not
{ op:death_not

— o —— o —

loc:0 loc:8 }

Figure 1. An example of a texual trace for ADOL-C

OpenModelica is able to generate textual information
rather than binary. Therefore the first step required for
creating a trace directly was to allow a textual represen-
tation of the trace and that ADOL-C understands such a
textual representation. A simple ASCII representation of
the operations, locations and constants was devised with
some delimiters to make parsing easier. Each elemen-
tary operation supported by ADOL-C is given a textual
name stored with the keyword "op:". The locations of
all the operands inside the work buffer in decimal nota-
tion follow this and then the location of the result in the
work buffer, each of these using the keyword "1oc:". At
the end any required constant for the particular operation
is given in decimal floating point notation using the key-

word "val:". Braces separate one such record from an-
other. This textual representation is a natural extension of
the binary representation for ADOL-C traces, which has
long been a part of the ADOL-C public API. An ADOL-C
driver function can now be used to convert any traditional
binary trace to this textual representation and store it in a
file. This format will be made a part of the public API of
ADOL-C in the next feature release. An example of a file
containing such a textual trace is shown in Figure 1.

A driver was added to ADOL-C to be able to read and
parse a text file in ASCII notation with the above infor-
mation using regular expressions to match the format de-
scribed above and convert it to the traditional binary nota-
tion at runtime. Anything not matching the defined regular
expressions is considered a comment and ignored.

4 Generation of Operation Lists

In the first step of the compilation process in Modelica
tool, a model is transformed by the front-end into a flat
representation, consisting essentially of lists of variables,
functions, equations and algorithms. In this phase, a basic
structural analysis of the differential-algebraic equations
(DAE) is performed to detect the states and discrete vari-
ables and eliminate alias variables. The basic step of a
Modelica compiler is to causalize the DAE and transform
into ordinary differential equations (ODE). Then the target
code is generated from the optimized system in order to
perform the simulation. For the simulation the generated
code needs to be compiled by the target language compiler
and linked with the simulation runtime library. The default
target language of the OpenModelica Compiler (OMC) is
C and the GNU C compiler is used as default C com-
piler. In order to generate operation lists by OMC, which
are readable by ADOL-C, the code generation module of
OMC has been extended by a new target, the ADOL-C tar-
get. Basically the operation lists are generated by travers-
ing the equation expressions and for every mathematical
operation creating the corresponding ADOL-C operation.
This is straight forward for assignments thus the OMC
has transformed all equations into assignments due to the
causalization. The implicit equations of the strong con-
nected components require special treatment (Griewank
and Walther, 2008). Furthermore, the OpenModelica sim-
ulation runtime is linked with the ADOL-C library in order
to enable the usage of the ADOL-C capability during the
simulation process. At the current status of the implemen-
tation we evaluate the sparse Jacobian for the integration
process. One main advantage over the former approach is
that the compilation of the target language can be avoided
by processing the operation lists directly.

5 First Results

The first results to test the performance of the approach
presented here are based on benchmark models from the
ScalableTestSuite library (Casella, 2015). In the current
implementation status the sparse jacobian evaluation used

DOI
10.3384/ecp17132363

Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

365

Towards Adjoint and Directional Derivatives in FMI utilizing ADOL-C within OpenModelica

by the time integration method ida is used for evalua-
tion. In the tables 1 and 2 all numbers are produced
by using the model ScalableTestSuite.Elementary.SimpleODE.

Models.CascadedFirstOrder.

Table 1. Evaluation time of the Jacobian. Compare OMC sym-
bolic vs. ADOL-C

N ADOL-C OM Symbolic
100 | 0.000480442 | 0.000156783
200 | 0.000830835 | 0.000413299
400 0.00157551 | 0.000952923
800 0.00294508 0.00209405
1600 | 0.00676732 0.00536921

3200 0.0141433 0.012003
6400 0.0390204 0.0310391
12800 | 0.0771545 0.0756394
25600 | 0.1532143 0.1621433

In table 1 the time of one Jacobian evaluation is stated,
calculated by @@llime “where totalTime is the time that
is needed to evaluate the Jacobian over the entire simu-
lation horizon and N is the number of evaluations done.
One can see that the evaluation time for the given model
is quite equal between the generated symbolic Jacobian by
OMC and the evaluation by ADOL-C. Note that ADOL-C
is performing additional work (e.g. memory allocation
and colouring) in the first call.

Table 2. Generation performance of Jacobian. Compare OMC
symbolic vs. ADOL-C

ADOL-C OM Symbolic
N generate read generate | compile

100 | 0.00046 | 0.01475 | 0.015

200 | 0.00089 | 0.02879 | 0.032

400 | 0.00178 | 0.05794 | 0.059

800 | 0.00372 | 0.11320 | 0.119 0.03
1600 | 0.00860 | 0.22766 | 0.244 0.14
3200 | 0.01749 | 0.45620 | 0.523 0.38
6400 | 0.03702 | 0.91150 | 1.229 0.48
12800 | 0.07571 | 1.82352 | 2.569 1.01
25600 | 0.15910 | 3.60362 | 5.459 1.65

The performance of generating the appropriate Jaco-
bian is stated in table 2. These timings are divided in two
stages. For ADOL-C it is time for the generation of the
operation list, and the time to read them at runtime. For
the symbolic Jacobian generated by OMC it is the genera-
tion of directional derivative code and the additional time
to compile the generated C code. This result shows the
linear complexity of the new approach presented in this

paper.
6 Conclusion and Future work

This paper presents a new approach to generate a model
evaluation trace for algorithmic differentiation, where no

compilation of the model code is needed any more. The
advantage of this approach is not only good performance,
moreover it gives access to a feature-rich AD tool (e.g.
higher-derivative, reverse mode). Furthermore, an exten-
sion of FMI involving adjoint derivatives is proposed and
motivated by optimization-based applications, where such
derivatives are mandatory. The implementation of this ex-
tension can be achieved by the approach described here.
However, this requires some more implementation work,
since the current implementation does not yet support all
Modelica language features. The most important and chal-
lenging aspect is the treatment of implicit equations. In fu-
ture the authors will continue working on supporting more
language features with the approach described. Further,
the here proposed FMI extension will be implemented and
demonstrated with a complex example.

7 Acknowledgments

The presented work is part of the PARADOM project, that
is funded by the Federal Ministry of Education and Re-
search (BMBF) under the support code 01IH15002.

References

F. Casella. Simulation of large-scale models in Mod-
elica: State of the art and future perspectives. In
P. Fritzson and H. Elmgqvist, editors, Proceedings 11
International Modelica Conference, pages 459-468, Ver-
sailles, France, Sep 21-23 2015. The Modelica Association.
doi:10.3384/ecp15118459.

R. Franke, M. Walther, N. Worschech, W. Braun, and B. Bach-
mann. Model-based control with FMI and a C++ runtime for
Modelica. In Proceedings of the 11th International Modelica
Conference. Modelica Association, Paris, France, Sep. 2015.

P. Fritzson, P. Aronsson, H. Lundvall, K. Nystrom, A. Pop,
L. Saldamli, and D. Broman. Openmodelica - a free
open-source environment for system modeling, simulation,
and teaching. In Computer Aided Control System De-
sign, 2006 IEEE International Conference on Control Ap-
plications, 2006 IEEE International Symposium on Intel-
ligent Control, 2006 IEEE, pages 1588 —1595, oct. 2006.
doi:10.1109/CACSD-CCA-ISIC.2006.4776878.

A. Griewank and A. Walther. Principles and Techniques of Al-
gorithmic Differentiation, Second Edition. SIAM, 2008.

A. Griewank, K. Kulshreshtha, and A. Walther. On the numer-
ical stability of algorithmic differentiation. Computing, 94
(2-4):125-149, 2012.

V. Ruge, W. Braun, B. Bachmann, A. Walther, and K. Kul-
shreshtha. Efficient implementation of collocation meth-
ods for optimization using openmodelica and ADOL-C. In
H. Tummescheit and K.-E. Arzén, editors, Proceedings of the
10" Modelica Conference, pages 1017-1025, Lund, Sweden,
2014. Modelica Assiciation and Lund University Electronic
Press. doi:10.3384/ECP140961017.

A. Walther and A. Griewank. Getting started with ADOL-C. In
U. Naumann and O. Schenk, editors, Combinatorial Scientific
Computing, pages 181-202. Chapman-Hall, 2012.

366 Proceedings of the 12" International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132363

