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Abstract: Adversarial attacks have become one of the most serious security issues in widely used
deep neural networks. Even though real-world datasets usually have large intra-variations or multi-
ple modes, most adversarial defense methods, such as adversarial training, which is currently one of
the most effective defense methods, mainly focus on the single-mode setting and thus fail to capture
the full data representation to defend against adversarial attacks. To confront this challenge, we
propose a novel multi-prototype metric learning regularization for adversarial training which can
effectively enhance the defense capability of adversarial training by preventing the latent represen-
tation of the adversarial example changing a lot from its clean one. With extensive experiments
on CIFAR10, CIFAR100, MNIST, and Tiny ImageNet, the evaluation results show the proposed
method improves the performance of different state-of-the-art adversarial training methods without
additional computational cost. Furthermore, besides Tiny ImageNet, in the multi-prototype CIFAR10
and CIFAR100 where we reorganize the whole datasets of CIFAR10 and CIFAR100 into two and
ten classes, respectively, the proposed method outperforms the state-of-the-art approach by 2.22%
and 1.65%, respectively. Furthermore, the proposed multi-prototype method also outperforms its
single-prototype version and other commonly used deep metric learning approaches as regularization
for adversarial training and thus further demonstrates its effectiveness.

Keywords: adversarial attacks; adversarial training; classification; metric learning; multi-mode;
prototypes

1. Introduction

Deep neural networks (DNNs) have achieved superior performance in a wide range
of applications in computer vision [1,2], including image classification [3–8], object detec-
tion [9–13], and semantic segmentation [14,15]. Nevertheless, the performance of these
models significantly degrades under adversarial attacks, where crafted noise is added
to the natural images imperceptible to human eyes. The objective of these attacks is to
adversarially perturb the input data to mislead deep models to misclassified results [16,17].
This creates consequential concerns when DNNs are deployed in sensitive areas [18], such
as medical, military, and security applications.

One idea to defend deep neural networks (DNNs) from such adversarial attacks
is through training the models that perform robustly on both clean and adversarially
perturbed data. To attain a satisfactory performance, several defense mechanisms have
been developed to alleviate the problem and increase the robustness of DNNs, where the
most dominant defense approach is the technique called adversarial training [19].
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In adversarial training, adversarial examples are generated on the fly using adversarial
attacks, such as the Fast Gradient Sign Method (FGSM) and projected gradient descent
(PGD), and used to train a more robust model. Since adversarial training is one of the
most effective defense methods in the literature, it becomes the foundation of many other
defense algorithms. Besides adversarial training, recent works in adversarial defense
also used metric learning as a regularization mechanism. Deep metric learning [20–25]
focuses on training models to learn effective distance or similarity metrics between data
points. Triplet mining [26], Proxy NCA [27], Proxy Anchor [28], and SoftTriple [29] have
widely recognized techniques. Triplet mining forms training triplets to optimize distances
between similar and dissimilar samples. Proxy NCA optimizes a neighborhood-based
classification objective using class proxies, while Proxy Anchor employs proxy vectors as
class representatives to enhance inter-class and intra-class distances. Deep metric losses can
be incorporated into adversarial training to improve model robustness. For example, Triplet
Loss Adversarial (TLA) [30] defines a triplet loss to enforce that the latent representations
of clean and perturbed samples from the same class should be close and demonstrate
compelling results against other sophisticated adversarial defense methods.

Adversarial training serves as the foundation for various defense methods, including
those employing strong data augmentation [31], auxiliary data for primary task robust-
ness [32], and class-fairness considerations [33]. Despite the success of these adversarial
defense methods, they mainly focus on the single-mode setting while ignoring the fact that
real-world datasets usually have large intra-variations or multiple modes depending on
data labeling. As deep learning models are deployed to more domains, researchers must
collect or reorganize existing datasets for specific problems. For example, when classifying
people by gender, each gender category will have multiple modes (such as race, age, and
expression). When adversarial attacks are applied to such data, more data modes are
created, reducing the effectiveness of standard adversarial training.

Based on the observation, we consider that samples of each class have multiple local
clusters. The adversarial examples of the same class are misclassified into different classes.
Figure 1 shows the visualization of the latent representation of hand-written Digit images
from the MNIST dataset [34] using t-SNE [35]. To simulate the multi-mode data setting for
illustration purposes, we reorganize the original ten-class MNIST dataset into a two-class
structure (i.e., each new class contains the data of five classes, respectively.) The features
of clean and adversarial examples are extracted from the last fully connected layer of the
LeNet model (We use a modified LeNet [36] architecture for all our experiments for the
MNIST dataset). The model is trained on a modified MNIST dataset and used to extract
features for testing data for visualization. The adversarial images belong to the same class
(class 0 consisting of the digits {0, 1, 2, 3, 4}), and the model not only misclassifies them
into different classes but also creates different local clusters. In Figure 1, the red triangles
indicate the adversarial samples with more than one cluster. Based on this observation,
when the data for a class has multiple modes, the single-mode adversarial training is
incapable of capturing the inherent structure of the data.
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Figure 1. t-SNE Visualization of adversarial images from the same true class which is misclassified.
The figure shows the representations of the 1000 clean images and their adversarial examples from the
MNIST dataset [34] using the LeNet model. (The dataset is customized and converted into two classes,
and each class has five modes. One of two classes has been shown.) Green dots represent clean
samples of class 0, while the triangle dots show adversarial samples of class 0 which are misclassified
as class 1.

To tackle the problem of multi-modes, we propose an adversarial defense framework
using adversarial training with multi-mode loss to accommodate the multiple centers of
data. Figure 2 shows the overall framework of the proposed method inspired by SoftTriple
loss [29], which allows each class to have multiple prototypes and can better capture the
multi-mode nature of the real-world data as compared with other metric learning methods.
A prototype represents the number of centers within each class of the dataset. Notably,
a class can have multiple centers, which we refer to as prototypes. On the other hand,
since vanilla PGD adversarial training [19] is time-consuming, we also adopt the recent
fast adversarial training approaches, including Free [37] and Fast [38], to speed up the
training process.

To verify the effectiveness of the proposed approach, we perform extensive experi-
ments in both normal single-mode and multi-mode settings. We evaluate the proposed
method on four publicly available benchmarks: MNIST [34], CIFAR10 [39], CIFAR100 [39],
and Tiny ImageNet [40]. For the multi-mode settings, since the commonly used CIFAR10
and CIFAR100 datasets are mainly single-mode for each class, we reorganize CIFAR10
from 10 classes to 2 classes and CIFAR100 from 100 classes to 10 classes to simulate the
multi-mode setting for the experimental evaluations. In addition, since there are more
intra-variations for the Tiny ImageNet dataset, we do not reorganize the dataset as for the
CIFAR10 and CIFAR100 datasets and directly use it for the multi-mode evaluations.

The experimental results show that the proposed method can effectively improve
the robustness of PGD [19], Free [37], and Fast [38] adversarial training. Our method
outperforms PGD and TLA by 2.22% on CIFAR10-2, 1.65% on CIFAR100-10, and 0.43% on
Tiny ImageNet in the multi-mode situation and by 0.84% in single-mode on the CIFAR10
dataset. The clean accuracy (i.e., evaluating the performance using clean samples without
applying any adversarial attacks) of the model normally drops after adversarial training.
Instead, the clean accuracy of the proposed method has improved by 5% on CIFAR10-10
and 1.70% on CIFAR100-10 compared with state-of-the-art methods. This shows the merits
of the proposed method under the multi-mode setting.

The main contributions of this work are as follows:

1. As per our knowledge, this is the first work to introduce a multi-prototype in adver-
sarial training and consider the multi-mode nature of real-world data.

2. The proposed framework leverages adversarial training and uses multiple centers for
each class to train robust classification models on multi-mode datasets and achieves
superior performance compared to existing approaches.
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Figure 2. Framework for multi-mode adversarial training. Different shapes represent distinct classes,
while within each class, different colors signify different modes of the data.

2. Recent Work

In recent years, there have been a large number of related works focusing on various
approaches to adversarial attacks and defenses. Here we give an overview of relevant
adversarial attack and defense techniques.

2.1. Adversarial Attacks

Adversarial perturbations can mislead well-trained deep neural networks and were
first observed in computer vision [41], which created the new research area of adversarial
attacks and defenses for DNNs. The first successful adversarial attack, Fast Gradient Sign
Method (FGSM) [16] trained an adversarial robust model using the FGSM attack. FGSM is
a white box attack where the attacker has full access to model parameters. FGSM attack
calculates the gradient for input examples, takes the sign of that gradient, and multiplies it
with a small real number. The output is then added to the input sample to generate the
adversarial sample. Basic iterative method (BIM) is an enhanced version of FGSM by taking
multiple small FGSM steps [42]. Carlini and Wagner (CW) [17] introduce a new objective
function so the distance and penalty term can be better optimized. CW is a targeted attack
where the output of the attack is predefined by the attacker. CW includes three types of
attacks based on distance (L0, L2, L∞); CW2 is the strongest and fastest attack among the
three versions. The most effective adversarial attack projected gradient descent (PGD)
includes multiple steps with random restart [19]. It can be seen as a universal first-order
adversary. Other adversarial attacks proposed over the year include the Jacobian-based
Saliency Map Attack (JSMA), a Lagrangian relaxation formulation [43], DeepFool [44];
all fall into the single-viewpoint case where the input of the neural network is directly
controlled by the adversary. MIM [45] introduces momentum in an adversarial setting. All
these attacks are designed in the white-box (full access to modal parameters) threat model.
However, they are also effective in many gray-box (limited access to model parameters)
and black-box (no access to model parameters) settings because adversarial samples can be
transferred between different models [46,47].



Sensors 2023, 23, 6173 5 of 18

2.2. Adversarial Defense

Adversarial attacks have encouraged researchers to develop strong defense methods
against such attacks [48–50]. Adversarial training is a defense strategy against adversarial
attacks, which tries to improve the robustness of DNNs by training the model with adver-
sarial examples on the fly [16,19,51]. FGSM-based adversarial training [16] was the first
to train a robust model using both benign and adversarial samples generated with FGSM.
It was beaten when stronger adversarial attacks such as R+FGSM [52] and BIM [42] were
employed. Defensive distillation defense [53] improves the model robustness by smoothing
decision boundaries such that it is nearly impossible for gradient-based attacks to create
adversarial samples directly on the model. Defensive distillation leverages distillation
training techniques and conceals the gradient between the (logits) pre-softmax layer and
softmax outputs. This defense was invalidated later on by calculating the gradient directly
from a pre-softmax layer [54]. The CW adversarial attack successfully bypasses this defense
by choosing a proper loss function and calculating the gradient from a pre-softmax layer.

Extensive evaluations demonstrate that PGD is probably the most effective adversarial
attack. Based on this conjecture, PGD-based adversarial training [19] was proposed to train
a model using PGD-generated adversarial examples. Surprisingly, PGD-based adversarial
training indeed improves the robustness of the model against several types of attack, such as
BIM, FGSM, PGD, CW, and DeepFool attacks under both black-box and white-box settings.
Even for the strongest adversarial attacks, PGD-based adversarial training outperforms
all other defense algorithms. In recent competitions of adversarial attacks and defenses
(CAADs), the top-ranking defense against ImageNet adversarial examples relied on PGD
adversarial training [55]. Recent research work indicates that the most effective defense
mechanism against adversarial attacks is PGD-based adversarial training.

While PGD-based adversarial training is highly effective against adversarial attacks, it
is not an efficient method due to the significant computational cost associated with generat-
ing PGD adversarial examples. To illustrate, training a ResNet model for CIFAR10 using
PGD-based adversarial training can take up to three days on a single GPU. Furthermore,
the first position model in the Competition on Adversarial Attacks and Defenses (CAADs)
required 52 hours on 128 V100 GPUs. Free [37] proposed an algorithm to reduce the com-
putational cost with comparable performance. The Free method takes FGSM steps with full
step size α = ε followed by updating the model parameters for every N iteration on the
same mini-batch (referred to as mini-batch replays). The perturbation of one mini-batch
is passed to the next mini-batch as an initial value of perturbation. The total number of
epochs is reduced by a factor of N; the bigger the N value the fewer epochs needed to get
the same results as PGD-based adversarial training. We refer interested readers to [37] for
more details.

While Free training is faster than PGD adversarial training, it is not fast enough.
Fast [38] developed an algorithm to train a model faster and to be adversarially robust.
As stated earlier, standard FGSM adversarial training was ineffective and failed against
stronger adversarial attacks. Nonetheless, FGSM adversarial training combined with
random initialization and bigger step size (α = 1.6× ε) is just as effective as PGD-based ad-
versarial training. Fast [38] effectively uses cyclic learning rates in adversarial training and
it speeds up the process by requiring fewer epochs to converge. FGSM is computationally
cheap and the total training has been significantly reduced compared to Free or PGD-based
adversarial training. PGD, Free, and Fast adversarial training are state-of-the-art algorithms
to train a robust model. These three methods can be incorporated with other algorithms to
improve the current defense against adversarial attacks.

Class-wise Calibrated Fair Adversarial training (CFA) [33] adapts adversarial configu-
rations based on individual classes during the training process. It enhances robustness by
customizing the adversarial settings for different classes and improving the weight averag-
ing technique to stabilize and enhance the worst class performance. Diverse Augmentation-
based Joint Adversarial Training (DAJAT) [31] incorporates both simple and complex data
augmentation techniques using separate batch layers. It employs linearly increasing ε and
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weight smoothing to prevent gradient masking, enhancing data diversity during adver-
sarial training and improving model robustness, while biased multi-domain adversarial
training [32] uses auxiliary data for a primary dataset without the need for class distribution
matching by efficiently differentiating between robust and non-robust features. In contrast,
our approach delves into the correlation between multi-mode data and adversarial training
by incorporating multiple prototypes within each class.

2.3. Adversarial Training in Metric Learning

Deep metric learning using triplet loss aims to learn the similarity measure from raw
materials (images) in the embedded space [26,30,56]. This embedded space was used in
adversarial training to improve the robustness of the model. Triplet Loss Adversarial
(TLA) [30] successfully utilizes triplet loss with adversarial training to build a robust
model. The final loss of TLA is the combination of cross-entropy and triplet loss with
regularization. The triplet consists of anchor (adversarial), positive and negative examples,
where the adversarial sample is generated using a PGD attack. The idea of TLA is that it
will separate adversarial samples from clean ones in the latent space. To the best of our
knowledge, TLA is the first work to successfully apply metric learning with adversarial
training by using triplet loss and cross-entropy loss. Unlike TLA, generative metric learning
uses triplet loss with anchor, positive, and negative samples as adversarial for person
re-identification [57–59]. Although TLA improves the performance against strong PGD
adversarial attacks, it is extremely expensive in terms of computation. TLA adds additional
computation to PGD-based adversarial training due to triplet mining for triplet loss. Despite
TLA computational cost, it proves that deep metric learning algorithms can be utilized
with adversarial training. It suggests the feasibility of incorporating deep metric learning
algorithms with adversarial training.

3. The Proposed Method

In this section, we present the motivation behind the proposed method, which is
followed by a detailed discussion of the proposed algorithm. The adversarial training
will be positioned as a baseline method. We further describe the training settings for the
proposed method.

3.1. Preliminaries
3.1.1. Notation

In this study, we consider fθ(.) the function mapping of a classifier C, from an image x
to its corresponding softmax output fθ(x) and θ are the network parameters to learn. c(x)
denotes the predicated class label by classifier C with argmax of softmax output. The true
label for an image x is denoted as y. When c(x) = y, it means the image has been correctly
classified. The pre-softmax layer of classifier C is denoted by g(x). The adversarial example
is denoted as x′ corresponding to its clean counterpart denoted as x and A(x) is a set of
adversarial examples. This study focuses on the untargeted attack, where the objective of the
adversarial attack is to generate x′ using x and θ such that c(x) 6= c(x′).

3.1.2. Threat Model

The main focus of this work is to improve the performance and robustness of deep
neural networks against adversarial examples. The goal of an adversary is to mislead the
classification model. We restrict x′ to be in the l∞-ball of radius ε around the clean image x.
The set of adversarial samples can be defined as follows:

A(x) = x′ : c(x′) 6= y, ||x− x′||∞ ≤ ε, (1)

where ε is the budget, the maximum amount of the pixel value for each pixel of the image
x can be perturbed. For the white-box settings, the adversary has full access to the model
parameters and architecture.
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3.1.3. Adversarial Training

Adversarial training (AT) is one of the state-of-the-art defense methods against ad-
versarial attacks. Adversarial examples generated using untargeted attacks are commonly
used in adversarial training. The untargeted adversarial attacks change the predicted
output label to other labels without a specific target. Thus, AT tries to solve an optimiza-
tion problem for a given network fθ with parameter θ, dataset (xi, yi), loss function l,
perturbation δ, and a threat model ∆ as shown in Equation (2).

min
θ

∑
i

max
δ∈∆

l( fθ(xi + δ), yi), (2)

The threat model is to take ∆ = {δ : ||δ||∞ ≤ ε} for some ε > 0. In other words, the
adversarial examples are generated on the fly using one of the adversarial attacks to train
the classification model.

The Projected Gradient Decent (PGD) is one of the most powerful adversarial attacks
that has been used to create adversarial samples during adversarial training [19]. Adversar-
ial samples are created for each mini-batch and then update the model using Stochastic
Gradient Descent (SGD).

3.2. Multi-Prototype Adversarial Training through Metric Learning

Classification models usually treat data in the single-mode setting for each class.
Similarly, adversarial training does the same without considering that there may be more
than one mode for each class when each class has large intra-class variations. Training
neural networks without considering the multi-mode nature in the real-world dataset
could not effectively capture full data distributions. Our findings reveal that modeling the
multi-mode nature using multiple prototypes for each class improves the performance and
robustness of both clean and adversarially perturbed images.

Multi-Prototype Adversarial Loss: To train a robust model for real-world settings,
we adopt adversarial training with metric learning for adversarial robustness [30]. For the
regularization, we leverage the SoftTriple [29] loss from deep metric learning in adversarial
settings. SoftTriple loss is an extension of SoftMax loss for classification and is similar
to proxy-based losses but assigns multiple prototypes to each class. The SoftTriple loss
increases the dimension of the final fully connected (FC) layer to accommodate multi-mode
settings for each class.

SoftTriple loss is defined in Equation (3).

LSo f tTriple = − log(
exp(λ(S

′
i,yi
− δ))

exp(λ(S′i,yi
− δ)) + ∑j 6=yi

exp(λS′i,j)
) (3)

S
′
i,c = ∑

k

exp( 1
γ x>i wk

c)

∑k exp( 1
γ x>i wk

c)
x>i wk

c ,

where λ is the scaling factor, δ is the margin, xi is the input, γ is the smoothing factor (0.1),
and [w1, . . . , wC] are the class weights from the last fully connected layer.

To accommodate multi-mode settings for each class, SoftTriple loss has a regularization
term. The following equation represents the objective function of the SoftTriple loss.

min
1
M

M

∑
i=1

LSo f tTriple(xi) +
τ ∑K

j=1 R(w1
j , · · · , wK

j )

CK(K− 1)
, (4)
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where τ = 0.2 and M, C, K are the numbers of training samples, classes, and prototypes for
each class, respectively. R(w2

j , · · · , wK
j ) is defined below.

R(w1
j , · · · , wK

j ) =
K

∑
t=1

K

∑
s=t+1

√
2− 2ws>

j wt
j

The final loss (Lall) of the proposed approach is the combination of cross-entropy loss,
deep metric loss (we use SoftTriple loss for the rest of the paper.), and L2 regularization as
shown in Equation (5).

Lall = LCE + λ1LDML + λ2Lnorm, (5)

where LCE and Lnorm are the cross-entropy loss (for classification) and the commonly used
L2-norm weight decay term, respectively; LDML is a deep metric loss to consider multiple
prototypes for each class, where SoftTriple loss is used as the LDML term to accommodate
the multi-mode nature for each class in adversarial settings. λ1 and λ2 are two positive
scalars to balance among losses. The values of λ1 and λ2 are dataset-dependent, and
specific values for each dataset are provided in Section 4.2.

To be specific, SoftTriple loss employs multiple prototypes for each class that can effec-
tively capture the hidden distribution of multi-mode data better since they help to reduce
the intra-class variance. While training with multiple prototypes, this property is crucial to
reserve the triple constraints over original examples. Compared with existing deep metric
learning methods, the number of triplets in SoftTriple grows linearly with the number of
original examples. SoftTriple loss encodes the prototypes in a fully connected layer and
hence does not need to sample triplets while optimizing. The number of prototypes for
each class has to be determined by SoftTriple loss during training. To overcome this issue,
a large number of prototypes for each class has been used at the beginning, and we then
gradually merge the closest prototypes according to their L2 distances to acquire a compact
set of prototypes.

3.3. Faster Adversarial Training

Although PGD adversarial training [19] is currently one of the most effective defense
methods against adversarial attacks, it is computationally expensive. The Free [37] method
takes FGSM steps with full step sizes α = ε followed by updating the model for N iterations
on the same mini-batch (referred to as mini-batch replays). The perturbation is not reset
between mini-batches, but the previous perturbation is continually used for the next
mini-batch to recycle the gradient information. To account for the additional iterations
of mini-batch replay, the total number of epochs is reduced by a factor of N to make the
total iterations equivalent to T epochs of standard training. This algorithm is faster than
standard PGD adversarial training and takes less time to train the same model. To further
improve the training speed over the Free method, the Fast [38] method discovered that with
careful parameter tuning, it is possible to train the robust model much faster while keeping
comparable performance using FGSM-generated adversarial examples with the random
initialization, higher value of step size α, and cyclic learning rate.

4. Experiments and Analysis

The proposed method is evaluated to verify the robustness against state-of-the-art
adversarial attacks and compare the results with existing methods. We conduct experiments
on benchmark datasets: MNIST, CIFAR10, CIFAR100, and Tiny-ImageNet. We follow the
same setting as [19,30,37,38] for a fair comparison. To begin with, we describe the datasets
used and details the training settings in the following section. We further present details
on each experiment and a discussion of the results. We follow the guidelines by Athalye
et al. [18] to check the validity of our claim.
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4.1. Datasets

We conducted experiments based on widely used datasets for classification to demon-
strate the effectiveness of the proposed method, including CIFAR10 [39], CIFAR100 [39],
MNIST [34], and Tiny ImageNet [40]. During training, horizontal flipping and random
cropping are used as data augmentation.

• MNIST: This dataset consists of handwritten digits. It contains 60,000 training images
and 10,000 testing images. MNIST is a ten-class dataset with gray-scale images with
dimensions of 28× 28.

• CIFAR10: This is a ten-class dataset with RGB images with dimensions of 32× 32. The
number of images in the training set and test set is 50,000 and 10,000, respectively.

• CIFAR100: The CIFAR100 dataset has 50,000 training and 10,000 testing images of
100 classes. Each image is an RGB image with a size of 32× 32.

• Tiny ImageNet: This has 200 classes and each image is RGB with dimension 64× 64.
It includes around 100,000 training images, 10,000 validation images, and 10,000 test
images. Each class has 500 training images and 50 validation images.

For traditional single-mode settings, we mainly compare the proposed method with
other approaches on the MNIST, CIFAR10, and CIFAR100 datasets. To verify the effective-
ness of multi-mode settings, we further customize the CIFAR10 and CIFAR100 datasets
to create multi-mode data for this experiment. The CIFAR10 dataset is converted into a
2-class dataset and denoted as CIFAR10-2. Similarly, the CIFAR100 dataset is converted
into a 10-class dataset and uses the notation CIFAR100-10. The numbers of images in
the CIFAR10-2 and CIFAR100-10 datasets are the same, and only the number of classes
has been reduced. Unless specified, CIFAR10 and CIFAR100 are the original datasets. In
addition, since there are more intra-variations for the Tiny ImageNet dataset, we do not
reorganize the dataset as for the CIFAR10 and CIFAR100 datasets and directly use it for the
multi-mode evaluation.

4.2. Implementation Details

The proposed method is implemented based on PyTorch and uses ResNet50 for
Tiny ImageNet and ResNet18 [4] for CIFAR10 and CIFAR100. To generate d-dimensional
embedding features, the output of layer 4 of the model is used with 512 hidden units using
ResNet18 and 2048 for ResNet50. In all experiments, the model uses Stochastic Gradient
Descent (SGD) with mini-batch size 32 for Tiny ImageNet and 128 for all other datasets,
momentum 0.9, and weight decay 5× 10−4. We follow the standard training procedure
and employ DAWNBench [60] to train a robust model. We compare the proposed approach
with TLA [30,61], PGD-AT [19], Free [37], and Fast [38] across all three datasets as well as
customized datasets.

• Standard Training: We train the CIFAR10, CIFAR100, and Tiny ImageNet models for
120 epochs with an initial learning rate of 0.1 and reduce the learning rate by a factor
of 10 after every 30 epochs during training. MNIST models were trained for 50 epochs
using 0.01 as the initial learning rate, and the rate is reduced one time by a factor of 10.

• DAWNBench: This competition has shown that the classifiers can be trained at sig-
nificantly quicker times and at much lower cost than traditional training methods.
A cyclic learning rate with a minimum of 0.001 and a maximum of 0.2 was utilized
and it reduces the number of epochs needed to train the models. All the models were
trained for 15 epochs.

PGD7 (7 steps of PGD attack) is used for PGD-based adversarial training. The number
of modes for MNIST is 5, while for CIFAR10, CIFAR10-2, CIFAR100, CIFAR100-10 is 10,
and for Tiny ImageNet is 20. If two modes are similar in the latent feature space, they are
merged into one mode in the multi-mode settings. The number of modes is set to 1 in
single-mode experiments. Free adversarial training takes FGSM steps with full step sizes
α = ε followed by updating the model weights for N iterations on the same minibatch
(also referred to as “minibatch replays”) where ε stands for the budget. This method
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uses replay (N) as 8 for CIFAR10, CIFAR10-2, CIFAR100, CIFAR100-10, and 4 for the
Tiny ImageNet and MNIST datasets. Fast adversarial training uses FGSM with step size
α = 8.0 for CIFAR10,CIFAR10-2, CIFAR100, CIFAR100-10, and MNIST, while α = 4.0 for
Tiny ImageNet.

All training times are measured using a single GeForce GTX 1080Ti GPU. The proposed
method has been tested against a variety of adversarial attacks including PGD, BIM, FGSM,
and CW. PGD10 means 10 iterations of PGD adversarial attack with one random restart
following [37]. The λ1 and λ2 in Equation (5) are 0.5 and 0.001, respectively for CIFAR10,
CIFAR10-2, CIFAR100, and CIFAR100-10. While for MNIST and Tiny ImageNet, λ1 = 0.5,
λ2 = 0.005 and λ1 = 0.1, λ2 = 0.001 are used, respectively.

To demonstrate the effectiveness of the proposed method, we use different epsilon
and alpha values as shown in each experiment setting. The accuracies of clean examples
and adversarial examples are measured to evaluate the performance of the proposed
approach. For the MNIST dataset, a variant of the LeNet CNN architecture having batch
normalization [36] is used in our study. This architecture has two convolution layers
(of stride 2) with each layer followed by ReLU, and then two fully connected layers,
where the first is followed by ReLU as well. The hyperparameters of PGD adversarial
example generation for the CIFAR10, CIFAR10-2, CIFAR100, and CIFAR100-10 datasets
are ε = 8.0/255 bounded with L∞ and the step size α = 2.0/255. Similarly, for the MNIST
dataset, we use the hyperparameters with the step size α = 0.01 and ε = 0.3. For the Tiny
ImageNet, we adopt ε = 8/255 for training and ε = 4/255 for validation with the step size
α = 2/255 for both.

4.3. Experimental Results

As explained in Section 4.2, we compare our method with three state-of-the-art adver-
sarial training approaches in both standard and DAWNBench environments. Furthermore,
we also present the results for MNIST, CIFAR10, CIFAR100, and Tiny ImageNet following
the same setting as TLA [30] for comparisons, and show the effectiveness of the proposed
method using the standard dataset settings.

4.3.1. Performance Evaluations on Single-Mode Datasets

In the following experiments, we evaluate the proposed method on the MNIST, CI-
FAR10, and CIFAR100 datasets and compare the performance with other state-of-art de-
fenses. To begin with, we compare the proposed method trained in different adversarial
settings on CIFAR10, including standard PGD and fast adversarial training approaches,
where Ours (PGD), Ours (Free), and Ours (Fast) indicate that to train the proposed method
in the corresponding normal or fast adversarial training settings. For each method shown
in Table 1 with various single-step and multi-step white-box adversarial attacks, we use
the same setting for training as depicted before. The proposed method improves the per-
formance of all three methods (i.e., Fast, Free, and AT) without introducing a significant
amount of additional training time, as shown in Table 1.

Table 1. Recognition accuracy (%) and required training time for different adversarial training
approaches on the CIFAR10 dataset in the white-box attack settings. Ours (PGD), Ours (Free), and
Ours (Fast) indicate the proposed method trained in the corresponding normal or fast adversarial
training setting.

Method Clean FGSM PGD10 PGD20 Training Time (min)

PGD-AT [19] 83.77 78.37 51.60 50.40 2895
Ours (PGD) 85.45 78.91 53.15 52.34 2916

Free-AT [37] 85.29 71.45 46.09 45.90 362.2
Ours (Free) 85.01 72.20 49.29 48.10 377.0

Fast-AT [38] 85.29 78.70 46.81 45.71 171.8
Ours (Fast) 85.98 78.94 47.84 46.64 174.6
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With standard adversarial training procedure, Ours (PGD) produces the best adver-
sarial robustness against various adversarial attacks. In the subsequent experiments, we
primarily focus on reporting the performance of Ours (PGD). For Table 2, we follow the
same setting of [30] and compare the proposed method with TLA, RoCL, ACL, and other
competitive approaches on the MNIST, CIFAR10, and CIFAR100 datasets, and the results
show that the proposed method is more robust than those methods against PGD attacks.
The results reveal that, even for the single-mode data, the proposed multi-mode approach is
still effective for performance improvement. We further compare the proposed method and
ACL by conducting adversarial fine-tuning over their pre-trained models. The proposed
method uses ACL pre-trained weights obtained by self-supervised learning as initialization
of the model and then uses the proposed method to train the model. As demonstrated in
Table 2, the proposed method with ACL can further improve the performance.

Table 2. White-box attack setting: Recognition accuracy (%) of different models on clean samples
and adversarial samples generated using PGD10 attack (10 steps with one random restart). Unless
explicitly mentioned, “Ours (PGD)” denotes the proposed method with multiple prototypes. Best
results are bold.

Method
MNIST CIFAR10 CIFAR100

Clean PGD10 Clean PGD10 Clean PGD10

Fast [38] 98.71 89.41 85.29 46.81 46.46 20.28
Free [37] 98.63 89.69 85.01 46.09 49.94 21.08
PGD-AT [19] 98.98 89.70 83.77 51.60 49.12 20.15
TLA [30] 99.29 93.86 85.23 52.31 48.80 22.89
RoCL [62] 99.20 93.89 85.31 52.53 49.16 22.94
ACL [63] 99.15 94.91 83.28 52.90 56.83 28.36

Ours (PGD) single mode 99.04 93.88 85.28 52.49 49.96 23.01
Ours (PGD) 99.16 94.93 85.45 53.15 50.12 23.83
Ours (PGD) + ACL 99.28 95.28 85.95 53.23 56.63 29.10

4.3.2. Performance Evaluations on Multi-Mode datasets

Then, we further evaluate the robustness of the proposed method on the multi-mode
datasets, CIFAR10-2, CIFAR100-10, and Tiny ImageNet. The details of the customized
datasets are mentioned in Section 4.1. The customized datasets simulate the multi-mode
nature of the real-world datasets. This enables us to verify the effectiveness of the proposed
method. We compare the proposed method with other baseline defense methods leverag-
ing different deep metric learning regularization strategies, including TLA [30], AT [19],
Free, [37], ACL [63], RoCL [62], and Fast [38].

Table 3 shows the compared results with other state-of-the-art adversarial defense
methods in the multi-mode settings. Since ACL uses two independent batch normalizations,
respectively, for clean and adversarial samples to pre-train the model and results in a better
robust accuracy, we also utilize the same ACL adversarial batch normalization technique
with the proposed method for better performance. For this purpose, we combine ACL
with the proposed method (Ours (PGD)+ACL) by directly leveraging the model of ACL
as the backbone of our approach, which also initialized its publicly available pre-trained
weights for adversarial training. Furthermore, since ACL and RoCL pre-training are
computationally expensive, ACL is only provided with the checkpoints of PGD for the
CIFAR10 and CIFAR100 datasets. For this situation, we mainly evaluate the performances
of RoCL, ACL, and Ours (PGD) + ACL on the CIFAR10-2 and CIFAR100-10 datasets. The
results in Table 3 show the proposed approach improves the performance of clean and
adversarial samples consistently in both customized and Tiny ImageNet datasets and
achieves better results than other approaches. Moreover, the performance of the proposed
approach can be further improved when combined with ACL. Furthermore, Table 4 shows
the results compared with other state-of-the-art adversarial training methods against
different adversarial attacks and a comparison using the CIFAR10 and CIFAR10-2 datasets.
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We also follow the settings of [18] to evaluate the performance of the proposed method
against targeted and untargeted attacks on the CIFAR10-2 and CIFAR100-10 datasets, and
the results are shown in Table 5. From these results, the proposed method achieves better
performance than other approaches in different settings, especially for multi-mode settings.
This demonstrates the effectiveness of our proposed method.

Table 3. White-box setting: Recognition accuracy (%) on clean samples and adversarial samples gen-
erated using PGD10 attack (ten steps with one random restart). CIFAR10-2 has 2 classes, CIFAR100-10
has 10 classes and Tiny ImageNet has 200 classes.

Method
CIFAR10-2 CIFAR100-10 Tiny ImageNet

Clean PGD10 Clean PGD10 Clean PGD10

Fast-AT [38] 81.68 57.87 50.27 24.36 55.12 28.86
Free [37] 79.88 58.61 49.84 25.06 60.42 29.93
PGD-AT [19] 80.12 59.38 52.60 25.38 60.20 32.90
TLA [30] 80.48 59.92 52.50 26.10 59.38 33.70
RoCL [62] 82.34 59.98 52.69 26.17 - -
ACL [63] 84.88 62.10 58.28 30.20 - -

Ours (PGD) 86.64 62.14 54.10 27.75 61.50 34.13
Ours (PGD) + ACL 87.82 63.33 62.32 34.02 - -

Table 4. Recognition accuracy (%) as compared with other state-of-the-art adversarial defense
methods on the CIFAR10 and CIFAR10-2 datasets under different adversarial attacks under the
white-box setting.

Training Method Clean FGSM BIM7 PGD10 CW

CIFAR10

TLA [30] 85.23 77.01 58.52 52.31 55.45
RoCL [62] 85.31 79.08 60.34 52.53 57.33
ACL [63] 83.28 79.12 60.50 52.90 57.56

Ours (PGD) 85.45 78.91 60.14 53.15 56.39
Ours (PGD) + ACL 85.95 79.69 61.30 53.23 58.66

CIFAR10-2

TLA [30] 80.48 78.00 65.34 59.92 64.90
RoCL 82.34 80.45 67.98 59.98 67.03
ACL 84.88 80.85 68.08 62.10 67.50

Ours (PGD) 86.64 80.31 67.82 62.14 66.01
Ours (PGD) + ACL 87.82 81.89 69.44 63.33 68.77

Table 5. Recognition accuracy (%) on the multi-mode CIFAR10-2 and CIFAR100-10 datasets on
different 10-step PGD attacks.

Attack Type CIFAR10-2 CIFAR100-10

Untargeted 63.33 34.02
Targeted (Least likely) 79.08 39.88
Targeted (Next label) 79.00 39.30
Targeted (Random) 79.00 38.56

The experimental results show that the proposed method is not only better suited for
the single-mode datasets but also further improves the performance on multi-mode datasets.
Additional results of different hyper-parameters and settings are shown in Section 5. In
addition, we show more detailed analyses and experimental results on the multi-mode
datasets in the discussion and ablation study in Section 5.
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4.4. Comparisons with Other Metric Learning Regularization Methods

The Deep Metric Learning algorithm learns similarity measures from raw images in
embedding space. Triplet Loss Adversarial (TLA) [30] proves that metric learning can be
used in adversarial training to improve the robustness of the model. TLA [30] uses triplet
loss to train a robust model. We also use Proxy-Anchor [28], Proxy-NCA [27], and N-Pair [6]
losses for comparison with the proposed method. Table 6 illustrates the performance of all
these losses. Results show that our method outperforms all other metric learning losses in
adversarial settings, while TLA [30] is the second best in terms of adversarial accuracy. TLA
needs high computation power and time to train a model due to negative sample mining
while our method does not use mining and trained the same classifier faster. The results
demonstrate that our multi-mode approach performs more favorably than TLA and is faster
because the data-to-prototype similarities are used instead of the data-to-data similarities.

Table 6. Performance comparison of clean and robust accuracies (%) of various deep metric learning
regularizations for adversarial training on the CIFAR10-2 dataset by following the similar training
settings of PGD-AT [19] on the three input types (i.e., Clean, FGSM, and PGD10).

Metric Loss Clean FGSM PGD10

Triplet loss [30] 80.48 78.00 59.92
N-Pair loss [6] 77.50 75.21 57.08
Proxy-NCA [27] 80.60 76.48 57.38
Proxy-Anchor [28] 81.51 77.06 58.12

Ours (PGD) + ACL 87.82 81.89 63.33

5. Discussions and Ablation Studies

In this section, we also perform additional analyses to evaluate the effectiveness of
different parameters under various attacks. We propose a multi-prototype adversarial de-
fense method for multi-mode data. Our method builds upon recent advances in adversarial
training [18,19,30] and deep metric learning [28–30] to learn representations that outper-
form prior work on adversarial attacks. We also use deep metric losses as regularization in
adversarial training and present the results in Table 6 for comparison with the proposed
method.

We have thoroughly investigated the combination of the Adversarial Contrastive
Learning (ACL) approach with other methods mentioned, such as PGD, Free and Fast,
and TLA. In the case of combining ACL with PGD, it essentially duplicates the process
ACL already performs during fine-tuning after self-supervision. As for Free and Fast,
their training algorithm differs significantly from ACL, and incorporating ACL weights
did not yield improved performance. Regarding TLA, utilizing ACL weights made the
training process unstable, as TLA relies on triplet mining. Hence, the combination with
ACL weights did not contribute to enhanced performance.

To further evaluate the proposed method, we compared the results on CIFAR10 and
CIFAR10-2 with the state-of-the-art methods using seen (adversarial attack used during
training) and unseen (adversarial attacks not used during training) adversarial attacks,
shown in Table 4. The performance under FGSM, BIM, PGD10, and CW adversarial attacks
demonstrates that the proposed method is more robust than TLA. To compare the training
complexity of TLA with the proposed method, let M, N, C, B, and U denote the dataset
size, adversarial steps, classes, batches per epoch, and proxies of each class, respectively.
We use the same training settings, including the number of epochs, batch sizes, etc, for all
methods. The training time complexity of proxy-based losses (e.g., Proxy-NCA [27] and
Proxy-Anchor [28]) is in general lower than pair-based (e.g., Triplet [30] and N-Pair [6]
losses). Since triplet loss that inspects triplets of data has the complexity of O(M3N),
which is reduced by negative batch mining strategy, the complexity of the TLA loss is
O(M3N/B2)[28]. SoftTriple loss uses multiple proxies per class and associates each data
point with U positive proxies and U(C − 1) negative proxies. The complexity of the
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SoftTriple loss is thus O(MNCU2). As stated, the complexity of the proposed loss is lower
than TLA and other pair-based losses.

On the other hand, to better understand the effects of multiple modes in adversarial
training, we also conduct experiments to explore the effects of changing the number of
prototypes for each class for CIFAR10-2 under different cases. Figure 3 shows the effect
of different numbers of prototypes for each class on the robustness and clean accuracy.
When the number of prototypes is increased, the performance improves up to a point and
then slightly decreases. With three prototypes for each class, the method gives the best
performance for this experiment. However, the performance can be further improved when
the number of prototypes of each class varies. We show this in another experiment, where
we initialized the number of classes with 10 for both classes in the CIFAR10-2 dataset. The
prototypes are merged if they are close or similar in the latent feature space. The best
performance on the CIFAR10-2 dataset, as demonstrated in Table 7, is achieved when using
three prototypes for class 0 and four prototypes for class 1.

Table 7. Clean and adversarial accuracy (%) using the different number of prototypes for the
CIFAR10-2 dataset using Our(PGD) training.

Number of Prototypes for Class 0/Class 1 Clean PGD10

2/2 78.48 60.17
2/3 79.52 60.20
3/2 80.08 60.27
3/3 80.10 62.10
4/3 85.24 62.10
3/4 87.82 63.33
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Figure 3. Effect of the different number of prototypes on multi-mode CIFAR10-2. Label Clean
represents the natural images (not perturbed) in green, while PGD10 is the adversarial samples
shown in Blue.

Thus, we confirm that the number of prototypes plays an important role when training
a robust classifier using adversarial training. Hyper-parameters also affect performance.
Unlike TLA, our method does not depend too much on the batch size because we did not
use negative sampling. λ1 in Equation (5) also affects the performance and we use different
values to fine-tune it. Table 8 shows the performance of different datasets using a range of
λ1 values and fixed λ2 = 0.001 for the CIFAR10 and CIFAR10-2 datasets. We evaluate it in
the range from 0.1 to 2 based on the experiment. As shown in Table 8, λ1 = 0.5 produces
the best results for CIFAR10 and CIFAR10-2.
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Table 8. Recognition accuracy (%) under 10 steps of PGD attack when the model is trained using
different λ1 parameters on the CIFAR10 and CIFAR10-2 datasets.

Dataset λ1 = 2.0 λ1 = 1.5 λ1 = 1.0 λ1 = 0.5 λ1 = 0.1

CIFAR10 49.54 50.90 51.04 53.23 52.18
CIFAR10-2 59.22 59.60 60.90 63.33 60.74

6. Qualitative Results

In this experiment, we compare our method with AT, TLA, and RoCL for the retrieval
of nearest neighbors in the presence of adversarial attacks in a multi-mode setting. We
only show the top four retrievals for this experiment. The results of the CIFAR10-2 dataset,
as shown in Figure 4, demonstrate the robustness of our method in correctly retrieving
the top four nearest neighbors in both clean and adversarial conditions. When presented
with clean query images, all models successfully retrieved the correct nearest neighbors
but AT. However, given adversarial query images, our method stood out by being able
to retrieve the correct nearest neighbors, while other methods such as TLA and RoCL
retrieved a mix of correct and incorrect nearest neighbors. This highlights the advantage of
our method in handling multi-mode data, as it leverages multiple prototypes to accurately
capture the characteristics of such data. Other methods, on the other hand, fail to effectively
handle multi-mode data as they do not consider this scenario during training. Our results
suggest that our method is more robust to adversarial attacks and can retrieve correct
nearest neighbors in both clean and adversarial scenarios, making it useful in real-world
applications. These results reinforce the effectiveness of the proposed method in the
retrieval of nearest neighbors under adversarial attack in a multi-mode setting.

Query (Clean) Query (Adv)Top-4 Retrievals Top-4 Retrievals

TL
A

O
ur

s
AT

R
oC

L

Figure 4. Qualitative results of retrieving most similar images from the CIFAR10-2 dataset by
querying a “horse” using various adversarially trained models, including AT, TLA, RoCL [62], and
Ours. The images from the classes which are different from the query image are highlighted by red
bounding boxes. For a clean image query, all methods can retrieve correct images except AT. In
addition, given an adversarial image query, the AT retrieves incorrect class images. TLA and RoCL
retrieve two correct and two false images and are more robust compared to AT. While the proposed
method retrieves all the images from the correct class, this shows the proposed method is the best
one among the compared methods against adversarial attacks in the multi-mode setting.
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7. Conclusions

We present a multi-prototype metric learning regularization for image classification.
Our method outperforms the current state-of-the-art method including TLA and PGD-AT,
especially in the multi-mode settings. To the best of our knowledge, the proposed approach
is the first work to take the multi-mode nature of each class of real-world datasets into
consideration in adversarial training. The experimental results show that the proposed
method also outperforms other deep metric learning regularizations for adversarial training.
In the future, we will keep working in the direction of multi-stage loss, where the loss
function takes input from the intermediate layers. Furthermore, future work will also
concentrate on optimizing the number of prototypes more effectively.
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