
Towards Agile and Smooth Video Adaptation
in Dynamic HTTP Streaming

Guibin Tian and Yong Liu
Department of Electrical and Computer Engineering

Polytechnic Institute of New York University
Brooklyn, NY, USA 11201

gtian01@students.poly.edu, yongliu@poly.edu

ABSTRACT

Dynamic Adaptive Streaming over HTTP (DASH) is widely de-
ployed on the Internet for live and on-demand video streaming ser-
vices. Video adaptation algorithms in existing DASH systems are
either too sluggish to respond to congestion level shifts or too sen-
sitive to short-term network bandwidth variations. Both degrade
user video experience. In this paper, we formally study the respon-
siveness and smoothness trade-off in DASH through analysis and
experiments. We show that client-side buffered video time is a good
feedback signal to guide video adaptation. We then propose novel
video rate control algorithms that balance the needs for video rate
smoothness and high bandwidth utilization. We show that a small
video rate margin can lead to much improved smoothness in video
rate and buffer size. The proposed DASH designs are also extended
to work with multiple CDN servers. We develop a fully-functional
DASH system and evaluate its performance through extensive ex-
periments on a network testbed and the Internet. We demonstrate
that our DASH designs are highly efficient and robust in realistic
network environment.

Categories and Subject Descriptors

H.5.1 [Information Systems]: Multimedia Information Systems—
Video(e.g., tape, disk, DVI)

General Terms

Design

Keywords

Adaptation, DASH, Emulab, Multiple CDN, SVR

1. INTRODUCTION
Video traffic dominates the Internet. The recent trend in on-

line video streaming is Dynamic Adaptive Streaming over HTTP

(DASH) that provides uninterrupted video streaming service to user-
s with dynamic network conditions and heterogeneous devices. No-
tably, Netflix’s online video streaming service is implemented us-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10–13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

ing DASH [1, 2]. In DASH, a video content is encoded into multi-
ple versions at different rates. Each encoded video is further frag-
mented into small video chunks, each of which normally contain-
s seconds or tens of seconds worth of video. Video chunks can
be served to clients using standard HTTP servers in either live or
on-demand fashion. Upon network condition changes, a client can
dynamically switch video version for the chunks to be downloaded.

Different from the traditional video streaming algorithms, DASH
does not directly control the video transmission rate. Transmission
rate of a chunk is totally controlled by the TCP protocol, which
reacts to network congestion along the server-client path. Intuitive-
ly, if TCP throughput is high, DASH should choose a high video
rate to give user better video quality; if TCP throughput is low,
DASH should switch to a low video rate to avoid playback freezes.
To maximally utilize throughput achieved by TCP and avoid video
freezes, DASH video adaptation should be responsive to network
congestion level shifts. On the other hand, TCP congestion con-
trol incurs inherent rate fluctuations; and cross-traffic rate has both
long-term and short-term variations. Adapting video rate to short-
term TCP throughput fluctuations will significantly degrade user
experience. It is therefore desirable to adapt video rate smoothly.

In this paper, we propose client-side video adaptation algorithms
to strike the balance between the responsiveness and smoothness in
DASH. Our algorithms use client-side buffered video time as feed-
back signal. We show that there is a fundamental conflict between
buffer size smoothness and video rate smoothness, due to the inher-
ent TCP throughput variations. We propose novel video rate adap-
tation algorithms that smoothly increase video rate as the available
network bandwidth increases, and promptly reduce video rate in
response to sudden congestion level shift-ups. We further show
that imposing a buffer cap and reserving a small video rate margin
can simultaneously decrease buffer size oscillations and video rate
fluctuations. Adopting a machine-learning based TCP throughput
prediction algorithm, we also extend our DASH designs to work
with multiple CDN servers. Our contribution is four-fold.

1. We formally study the responsiveness and smoothness trade-
off in DASH through analysis and experiments. We show
that buffered video time is a good reference signal to guide
video rate adaptation.

2. We propose novel rate adaptation algorithms that balance the
needs for video rate smoothness and bandwidth utilization.
We show that a small video rate margin can lead to much
improved smoothness in video rate and buffer size.

3. We are the first to develop DASH designs that allow a client
to work with multiple CDN servers. We show that machine-
learning based TCP throughput estimation algorithms can ef-

109

fectively guide DASH server switching and achieve the mul-
tiplexing gain.

4. We implement the proposed algorithms into a fully-functional
DASH system, which is evaluated through extensive experi-
ments on network testbed and the Internet. We demonstrate
that our DASH designs are highly efficient and robust in re-
alistic network environment.

The rest of the paper is organized as follows. Section 2 describes
the related work. DASH designs for single server are developed
in Section 3. Extensions to the multiple-server case are presented
in Section 4. In Section 5, we report the experimental results for
single-server case and multi-server case on both Emulab testbed
and the Internet. We conclude the paper with summary and future
work in Section 6.

2. RELATED WORK
Although DASH is a relatively new application, due to its pop-

ularity, it has generated lots of research interests recently. In [3],
Watson systematically introduced the DASH framework of Netflix,
which is the largest DASH stream provider in the world. In [4],
authors compared rate adaptation of three popular DASH clients:
Netflix client, Microsoft Smooth Streaming [5], and Adobe OSM-
F [6]. They concluded that none of them is good enough. They
are either too aggressive or too conservative. Some clients even
just jump between the highest video rate and the lowest video rate.
Also, all of them have relatively long response time under network
congestion level shift. It was shown in [7] that dramatic video rate
changes lead to inferior user quality-of-experience. They further
proposed to gradually change video rate based on available band-
width measurement. In [8], authors proposed a feedback control
mechanism to control the sending buffer size on the server side.
Our video adaptation is driven by buffered video time on the client-
side, which has direct implication on client video playback. Our
scheme does not require any change on the server side. There are
also papers on DASH in wireless and mobile networks. In [9],
several adaptive media players on the market were tested to see
how they perform in challenging streaming scenarios in a mobile
3G network. In [10], Mueller et al implemented a DASH system
and proved it works in vehicular network environments. In [11],
a DASH-like algorithm was proposed for a server to regulate the
video uploading from a mobile client. In DASH, it is important to
predict TCP throughput and quickly detect congestion level shifts.
One way is to monitor the path using network bandwidth measure-
ment tools like pathload [12]. But measuring available bandwidth
itself injects probing traffic into the path, and it may take long time
to converge to an acceptable result. And the accuracy of such tools
is not guaranteed. And in [13] and [14], authors presented history-
based and machine-learning-based TCP throughput prediction. In
DASH, video chunks are continuously transmitted from the server
to the client. In this scenario, TCP throughput data can be col-
lected in realtime. In our experiments, we found that even simple
history-based TCP throughput prediction can achieve higher accu-
racy than those reported in [13] and [14]. For multi-server DASH,
a client needs to continuously evaluate the throughput of a DASH
server before switching to it. We implement the light-weight ma-
chine learning approach proposed in [14] for the TCP throughput
predict of candidate DASH servers.

3. DASH WITH SINGLE SERVER
We start with DASH system where a client only downloads video

chunks from a single server. We will extend our designs to the
multiple server case in Section 4.

3.1 Buffered Video Time
To sustain continuous playback, a video streaming client nor-

mally maintains a video buffer to absorb temporary mismatch be-
tween video download rate and video playback rate. In convention-
al single-version video streaming, video buffer is measured by the
size of buffered video, which can be easily mapped into buffered
video playback time when divided by the average video playback
rate. In DASH, different video versions have different video play-
back rates. Since a video buffer contains chunks from different
versions, there is no longer direct mapping between buffered video
size and buffered video time. To deal with multiple video versions,
we use buffered video time to directly measure the length of video
playback buffer.

Buffered video time process, denoted by q(t), can be modeled as
a single-server queue with constant service rate of 1, i.e., with con-
tinuous playback, in each unit of time, a piece of video with unit
playback time is played and dequeued from the buffer. The enqueue
process is driven by the video download rate and the downloaded
video version. Specifically, for a video content, there are L differ-
ent versions, with different playback rates V1 < V2 < · · · < VL.
All versions of the video are partitioned into chunks, each of which
has the same playback time of ∆. A video chunk of version i has
a size of Vi∆. A client downloads video chunks sequentially, and
for each chunk, he can choose one out of the L versions. Without
loss of generality, a client starts to download chunk k from version

i at time instant t
(s)
k . Then the video rate requested by the client

for the k-th chunk is v(k) = Vi. Let t
(e)
k be the time instant when

chunk k is downloaded completely. In a “greedy" download mode,
a client downloads chunk k right after chunk k − 1 is completely

downloaded, in other words, t
(e)
k−1 = t

(s)
k . For the buffered video

time evolution, we have:

q(t
(e)
k) = ∆ +max

(

q(t
(s)
k)− (t

(e)
k − t

(s)
k), 0

)

, (1)

where the first term is the added video time upon the completion of
the downloading of chunk k, the second term reflects the fact that
the buffered video time is consumed linearly at rate 1 during the
downloading of chunk k.

Using fluid approximation, we evenly distribute the added video

time of ∆ over the download interval (t
(s)
k , t

(e)
k], then

dq(t)

dt
=

∆

t
(e)
k − t

(s)
k

− 1(q(t) > 0), (2)

=
v(k)∆

v(k)(t
(e)
k − t

(s)
k)

− 1(q(t) > 0), (3)

=
T̄ (k)

v(k)
− 1(q(t) > 0), t ∈ (t

(s)
k , t

(e)
k], (4)

where 1(·) is the indicator function, and T̄ (k) is the average TCP
throughput when downloading chunk k. The buffered video time
remains constant when the requested video rate v(k) exactly match-
es T̄ (k) which is not practical. In practice, v(k) can only assume
one of the L predefined video rates. There will be unavoidable rate
mismatches, thus buffer fluctuations.

3.2 Control Buffer Oscillations
From (4), if the requested video rate is higher than the actual TCP

throughput, the buffered video time decreases, and video playback
freezes whenever q(t) goes down to zero; if the requested video rate
is lower than the actual TCP throughput, the buffered video time
ramps up, it suggests that user gets stuck at low video rate even
though his connection supports higher rate. A responsive video

110

qref q(t)u(t) + 1

T̂ (t)

ṽ(t)

TCP Thru.
Prediction

PID
Controller

Video Rate
Quantizer

Video
Buffer

+
v(t)

T (t)

T (t)

v(t)

Real
TCP Thru.

-

× ÷

Figure 1: PID control oriented adaptive streaming

adaptation scheme should control video rate to closely track TCP
throughput so that q(t) stays within a bounded region. As a result,
no video freeze happens, and the requested video rate matches the
TCP throughput in long-run.

To maintain a stable queue length, one can employ a simple rate
adaptation scheme:

v(k) = argmin
{Vi,1≤i≤L}

|Vi − T̂ (k)|,

where T̂ (k) is some estimate of TCP throughput before download-
ing chunk k. In other words, a client always downloads the version
with a rate “closest" to the estimated TCP throughput. However, it
is well-known that it is hard to accurately estimate TCP through-
put. Such an open-loop design is not robust against TCP throughput
estimation errors. To address this problem, we investigate a closed-
loop feedback control design for video rate adaptation.

Instead of directly matching the requested video rate v(k) with
TCP throughput estimate, we use the evolution of buffered video
time q(t) as feedback signal to adjust v(k). One straightforward
way is to set up a reference queue length qref , i.e. the target video
buffer time, and build a PID controller to regulate the requested
video rate.

PID is the most commonly used feedback controller in indus-
trial control systems. A PID controller calculates an "error" value
as the difference between a measured process variable and a de-
sired set point. The controller attempts to minimize the error by
adjusting the process control inputs. The PID controller calcu-
lation (algorithm) involves three separate parameters: the propor-
tional factor, the integral factor and derivative factor, denoted by
KP , KI , and KD respectively. Heuristically, these values can be
interpreted in terms of time: KP depends on the present error, KI

on the accumulation of past errors, and KD is a prediction of fu-
ture errors, based on current rate of change. The weighted sum of
these three actions is used to adjust the process via the output of
the controller. In practice, a PID controller doesn’t have to set all
the three parameters. There are very common usage of variations
of PID controller. In our research, because of inherent rate fluctu-
ations of TCP transmission, we use PI controller instead of PID
controller because the derivative factor may amplify the impact of
TCP fluctuations.

Figure 1 illustrates the diagram of the control system. We adopt
a Proportional-Integral (PI) controller, with control output driven
by the deviation of buffered video time:

u(t) = Kp(q(t)− qref) +KI

∫ t

0

(q(τ)− qref)dτ,

where Kp and KI are the P and I control coefficients respectively.
The target video rate for chunk k is

ṽ(k) = (u(t
(s)
k) + 1)T̂ (t

(s)
k),

where T̂ (t
(s)
k) is the TCP throughput estimate right before down-

qref q(t)F (t)

T̂ (t)

ṽ(t)

TCP Thru.
Prediction

Control
Module

Switching
Logic

Video
Buffer

v(t)

T (t)

T (t)

v(t)

Real
TCP Thru.

× ÷

Figure 2: Buffer size oriented adaptive streaming

loading chunk k. Taking into account the finite discrete video rates,
the actual requested video rate for chunk k is the highest video rate
lower than ṽ(k),

v(k) = Q(ṽ(k)) � max
{Vi:Vi≤ṽ(k)}

Vi, (5)

where Q(·) is the quantization function. When q(t) oscillates around
qref with small amplitude, the control signal u(t) is small, the re-
quested video rate is set close to the predicted TCP throughput. The
throughput estimation error and video rate quantization error will
be absorbed by the video buffer and closed-loop control.

3.3 Control Video Rate Fluctuations
To accurately control the buffer size, one has to constantly adapt

the requested video rate to realtime TCP throughput. If the achieved
TCP throughput is larger than the requested video rate, the buffer
size will increase and the feedback control module will increase the
video rate, which, according to (4), will slow down buffer increase,
and vice versa. Since TCP throughput is by-nature time varying,
the requested video rate will also incur constant fluctuations.

From control system point of view, there is a fundamental con-
flict between maintaining stable video rate and stable buffer size,
due to the unavoidable network bandwidth variations. From end us-
er point of view, video rate fluctuations are much more perceivable
than buffer size oscillations. Recent study has shown that switching
back-and-forth between different video versions will significantly
degrade user video experience [7]. Meanwhile, buffer size varia-
tions don’t have direct impact on video streaming quality as long
as the video buffer does not deplete. In this section, we revisit our
video rate adaptation design with the following goals:

1. avoid video rate fluctuations triggered by short-term band-
width variations and TCP throughput estimation errors;

2. increase video rate smoothly when the available network band-
width is consistently higher than the current video rate;

3. quickly decrease video rate upon the congestion level shift-
ups to avoid video playback freezes.

To simultaneously achieve the three goals, one has to strike the
right balance between the responsiveness and smoothness of video
rate adaptation upon network bandwidth increases and decreases.
Classical feedback control, such as those presented in Figure 1,
is no longer sufficient. We develop a new rate control system as
shown in Figure 2.

3.3.1 Control Module

The control module still uses buffered video time q(t) as feed-
back signal, since it directly reflects the mismatch between the
video rate and realtime TCP throughput. Instead of controlling q(t)
to a target level qref , we only use q(t) to guide the video rate se-
lection. To determine video rate v(k) for chunk k, we need TCP

111

�� �� �� � �� �� ��
�

���

���

���

���

�

���

���

���

���

�

Figure 3: Adjustment Function for Buffer Size Deviation

throughput prediction T̂ (k) and an adjustment factor F (k), which
is a function of the target buffer size, current buffer size, previous
buffer size, and the current video rate:

F (k) = Fq(k) ∗ Ft(k) ∗ Fv(k), (6)

with

Fq(k) = 2 ∗
ep∗(q(t

(s)
k

)−qref)

1 + ep∗(q(t
(s)
k

)−qref)
(7)

Ft(k) =
∆

∆− (q(t
(s)
k)− q(t

(s)
k−1))

(8)

Fv(k) =
VL

v(k − 1) +W
+

W

VL +W
(9)

In (6), the adjustment factor F (k) is a product of three sub-factors:
buffer size adjustment Fq(k), buffer trend adjustment Ft(k), and
video chunk size adjustment Fv(k), which we explain one-by-one
in the following.

Buffer Size Adjustment Fq(k) is an increasing function of buffer

size deviation q(t
(s)
k)−qref from the target buffer size in (7). Larg-

er buffer size suggests one should be more aggressive in choos-
ing higher video rate. As illustrated in Figure 3, when the buffer
size matches the target qref , the adjustment is neutral (with value
1); when the deviation is small, the adjustment is approximately

1 + p(q(t
(s)
k)− qref), mimicking a simple P -controller, with sta-

tionary output of 1 and Kp = p; when the deviation is large, the
adjustment factor increases/decreases smoothly with upper bound
of 2 and lower bound of 0. This is to avoid Fq overpowers the other
two factors.

Buffer Trend Adjustment Ft(k) is an increasing function of

buffer size growth q(t
(s)
k) − q(t

(s)
k−1) since the downloading of the

previous video chunk, as calculated in (8), where ∆ is the video
time contained in one chunk. If there is no buffer size growth,
the adjustment is neutral (with value 1). If the buffer size grows
fast, it suggests that the previous video rate is too conservative, one
should increase the video rate; if the buffer size decreases fast, it
suggests that the previous video rate is too aggressive, one should
decrease the video rate. From equations (1) to (4), in a greedy

download mode with t
(e)
k−1 = t

(s)
k , it can be shown that with fluid

approximation:

Ft(k) =
T̄ (k − 1)

v(k − 1)
=

dq(t)

dt
+ 1(q(t) > 0). (10)

In other words, Ft(k) is the ratio between the actual download
throughput and video rate for chunk k − 1. Ft is essentially a
Derivative D-controller, that responds fast to increase/decrease trend
in buffered video time.

Video Chunk Size Adjustment Fv(k) is a decreasing function
of the previous video rate v(k − 1), calculated in (9), where W

is a constant. If v(k − 1) = VL, the adjustment is neutral; if
v(k − 1) < VL, Fv(k) > 1. This is because HTTP adaptive
streaming uses TCP transmission. If a chunk is small, TCP has to
go through slow-start process to open up its congestion window,
leading to low TCP throughput even if the available bandwidth is
much higher. This compensation enables fast rate increase when a
DASH session starts or resumes from a low video rate. If the client
connects to the server with persistent HTTP connection, there will
be no such problem because only the first chunk will experience
slow start. In such scenario, we can just set this adjustment factor
to constant 1. Notice that, each adjustment factor assumes value of

1 when the system is at the equilibrium point, i.e., q(t
(s)
k) = qref ,

q(t
(s)
k) = q(t

(s)
k−1), v(k − 1) = VL. When the system operates

within the neighborhood of the equilibrium point, each adjustmen-
t factor takes small positive or negative deviation from one. The
total deviation of their product from one is approximately the sum-
mation of the individual deviations, similar to the PI controller in
the previous section. Different from the PI controller, the produc-
t deviation changes smoothly within a bounded region when the
system operates away from the equilibrium point.

3.3.2 Rate Switching Logic

After we get the final adjustment factor F (k), similar to the
buffer control case in Section 3.2, we can multiply it with the TCP

throughput estimate and set a target video rate ṽ(k) = F (k)T̂ (t
(s)
k),

then use the quantization function Q(·) in (5) to convert it to a dis-
crete video rate v(k). If we adjust the video rate directly according
to the quantized target video rate, there will be again frequent fluc-
tuations. To resolve this, a rate switching logic module is added af-
ter the quantizer as shown in Figure 2. It controls video rate switch
according to algorithm 1.

Algorithm 1 Smooth Video Adaptation Algorithm.

1: ṽ(k) = F (k)T̂ (t
(s)
k);

2: if q(t
(s)
k) <

qref

2
then

3: v(k) = Q(T̄ (k − 1));
4: return;
5: else if ṽ(k) > v(k − 1) then

6: Counter ++
7: if Counter > m then

8: v(k) = Q(T̂ (t
(s)
k));

9: Counter = 0;
10: return
11: end if

12: else if ṽ(k) < v(k − 1) then

13: Counter = 0
14: end if

15: v(k) = v(k − 1); return;

If the buffer size drops below half of the target size
qref

2
, it indi-

cates that the current video rate is higher than the TCP throughput,
and there is a danger of buffer depletion and playback freeze. We
then immediately reduce the video rate to v(k) = Q(T̄ (k − 1)),
where T̄ (k−1) is the actual TCP throughput of the previous chunk
transmission. Due to the quantization, v(k) < T̄ (k − 1), if TCP
throughput in the current round is close to the previous round, the
buffer size is expected to increase until it goes back to above

qref

2
.

If the buffer size is larger than
qref

2
, we consider it safe to keep

the current rate or switch up to a higher rate. To avoid small time-
scale fluctuations, video rate is switched up only if the target video
rate ṽ(k) calculated by the controller is larger than the current rate

112

v(k − 1) for m consecutive chunks. Whenever a switch-up is trig-
gered, the video rate is set to match the TCP throughput estimate

T̂ (t
(s)
k). Before the switch-up counter reaches m, if the target video

rate calculated for one chunk is smaller than the current video rate,
the switch-up counter will be reset and start over.

The parameter m controls the trade-off between the responsive-
ness and smoothness of rate adaptation. Larger m will definitely
make the adaptation smoother, but sluggish. If the video rate is
at low levels, the user will have to watch that video rate for a long
time even if there is enough bandwidth to switch up. To address this
problem, we dynamically adjust m according to the trend of buffer
growth. More specifically, for chunk k, we calculate a switch-
up threshold as a decreasing function of the recent buffer growth:

m(k) = fm(q(t
(s)
k) − q(t

(s)
k−1)), and video rate is switched up if

the switch-up counter reaches (m(k) +m(k− 1)+m(k− 2))/3.
The intuition behind this design is that fast buffer growth suggests
TCP throughput is persistently larger than the current video rate,
one should not wait for too long to switch up. Similar to (10), it
can be shown that if buffer is non-empty,

q(t
(s)
k)− q(t

(s)
k−1) = ∆

(

1−
v(k − 1)

T̄ (k − 1)

)

.

One example dynamic-m function we use in our experiments is a
piece-wise constant function which we got from empirical study:

m(k) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if q(t
(s)
k)− q(t

(s)
k−1) ∈ [0.4∆,∆);

5 if q(t
(s)
k)− q(t

(s)
k−1) ∈ [0.2∆, 0.4∆);

15 if q(t
(s)
k)− q(t

(s)
k−1) ∈ [0, 0.2∆);

20 otherwise.

(11)

3.4 Control Buffer Overflow
So far we assume a “greedy" client mode, where a client contin-

uously sends out “GET" requests to fully load TCP and download
video chunks at the highest rate possible. In practice, this may not
be plausible for the following reasons: 1) A DASH server normally
handles a large number of clients. If all clients send out “GET" re-
quests too frequently, the server will soon be overwhelmed; 2) If the
requested video rate is consistently lower than TCP throughput, the
buffered video time quickly ramps up, leading to buffer overflow.
In Video-on-Demand (VoD), it means that the client pre-fetches
way ahead of the its current playback point, which is normally not
allowed by a VoD server. In live video streaming, pre-fetching is
simply not possible for content not yet generated. The buffered
video time is upper-bounded by the user tolerable video playback
lag, which is normally in the order of seconds; 3) Finally, fully
stressing TCP and the network without any margin comes with the
risk of playback freezes, especially when the client doesn’t have
large buffer size, like in the live streaming case.

To address these problems, we introduce a milder client down-
load scheme. To avoid buffer overflow, we introduced a buffer cap

qmax. Whenever the buffered video time goes over qmax, the client
keeps idle for a certain timespan before sending out the request for
the next chunk. Also, to mitigate the TCP and network stresses, we
reserve a video rate margin of 0 ≤ ρv < 1. For any target video
rate ṽ(k) calculated by the controllers in the previous sections, we
only request a video rate of v(k) = Q((1 − ρv)ṽ(k)). With the
video rate margin, the buffered video time will probably increase.
When q(t) goes over qmax, the client simply inserts an idle time of
q(t)− qmax before sending out the next download request. As will
be shown in our experiments, even a small video rate margin can
simultaneously reduce the buffer size oscillations and video rate
fluctuations a lot.

4. DASH WITH MULTIPLE SERVERS
While most DASH services employ multiple servers hosting the

same set of video contents, each client is only assigned to one serv-
er [1]. It is obviously more advantageous if a DASH client is al-
lowed to dynamically switch from one server to another, or even
better, simultaneously download from multiple servers. Our video
adaptation algorithms in Section 3 can be easily extended to the
case where a client can download from multiple servers. We con-
sider two cases. In the first case, given n servers, a client always
connects to the server which can provide the highest video down-
load rate. In the second case, a client simultaneously connects to
s out of n servers, and downloads different chunks from different
servers then combine them in the order of the video.

4.1 TCP Throughput Prediction
In single-server study, since we keep downloading video chunks

from the same server, we can use simple history-based TCP through-
put estimation algorithm [13] to predict the TCP throughput for
downloading new chunks. With multiple servers, it is necessary for
a client to estimate its TCP throughput to a server even if it has not
downloaded any chunk from that server. We adopt a light-weight
TCP throughput prediction algorithm proposed in [14]. The au-
thors showed that TCP throughput is mainly determined by packet
loss, delay and the size of the file to be downloaded. They propose
to use the Support Vector Regress (SVR) algorithm [15] to train a
TCP throughput model T̂ (pl, pd, fs) out of training data consist-

ing of samples of packet loss rate p
(i)
l , packet delay p

(i)
d , file size

f
(i)
s and the corresponding actual TCP throughput T (i). To predict

the current TCP throughput, one just need to plug in the current
measured packet loss, delay, and the download file size. For our
purpose, we download each chunk as a separate file. Chunks from
different video versions have different file sizes. In our SVR TCP
model, we use video rate Vi in place of file size fs.

4.2 Dynamic Server Selection
In the first case, we allow a client to dynamically switch to the

server from which it can obtain the highest TCP throughput. While
a client downloads from its current DASH server, it constantly
monitors its throughput to other candidate servers by using the
SVR TCP throughput estimation model. To accommodate the SVR
throughput estimation errors, which was reported around 20% in
[14], the client switches to a new DASH server only if the estimat-
ed throughput to that server is at least 20% higher than the achieved
throughput with the current DASH server.

To avoid wrong server switch triggered by SVR estimate errors,
we use trial-based transition. When a client decides to switch to
a new server, it establishes TCP connections with the new server,
and also keeps the connections with the current server. It sends
out “GET" requests to both servers. After a few chunk transmis-
sions, the client closes the connections with the server with smaller
throughput and uses the one with larger throughput as its current
DASH server.

4.3 Concurrent Download
In the second case, a clients is allowed to simultaneously down-

load chunks from s out of n servers. The client-side video buffer is
fed by s TCP connections from the chosen servers. The video rate
adaptation algorithms in Section 3 work in a similar way, by just
replacing TCP throughput estimate from the single server with the
aggregate TCP throughput estimate from s servers.

A simple client video chunk download strategy is to direct differ-
ent chunk download requests to different servers, with the number
of chunks assigned to a server proportional to its TCP throughput

113

Server 1

Server 3

Server 2

5

4

3

………..

m

m-

1

……

6

n-

1

Req for seg k

Req for seg

Req for seg k+2

Seg k

Seg k+1

Seg k+2

2

1

1

2

3

4

n

Client

Request Queue

Receiving Buffer

Figure 4: Self-adaptive Concurrent DASH Downloading.

estimate. But such a scheme is not robust against throughput es-
timation error. If the throughput to a server is overestimated, the
server will be overloaded, and the chunks assigned to it cannot be
downloaded in time, which will delay the overall video playback.
To solve this problem, we introduce self-adaptive chunk assign-
ment and timeout chunk retransmission.

Self-adaptive Chunk Assignment. We assume that all the DASH
servers have the same copies of all the chunks of the same video.
As illustrated in Figure 4, on the client side, all connections to cho-
sen servers share a common chunk download request queue, which
is sequentially injected with download requests for vide chunks at
rates specified by the video adaptation algorithm. After a connec-
tion finishes downloading a chunk, it takes another chunk download
request from the head of the download queue. This way, the distri-
bution of chunks to each connection is automatically regulated by
its TCP throughput, instead of the TCP throughput prediction. To
avoid video buffer overflow, idle time is inserted to all connections.

Chunk Timeout Retransmission. Even with self-adaptive assign-
ment, if the connection to a server suddenly incurs bandwidth defi-
ciency, the chunk already assigned to that connection still cannot be
downloaded in-time, which again will delay the video playback. To
avoid this problem, we introduce timeout-based chunk retransmis-
sion mechanism. Based on the history-based throughput estimation
and the chosen video rate, we can calculate the expected transmis-
sion time for each chunk on each connection. Every time a HTTP
“GET" request for a chunk is sent to a server, one timer starts for
the chunk. The timer will expire in twice of the expected chunk
transmission time. If the chunk has not been completely down-
loaded before the timer expires, a download request for that chunk
will be sent to another server.

4.4 Probabilistic Server Switching
If there are a large number of clients using the same DASH ser-

vice, there is a possibility that many clients simultaneously detect
and switch to the same lightly loaded server which will overload
that server quickly, the client will then switch back. This will def-
initely causes oscillations in server selection to the whole system.
To resolve this problem, probabilistic switching can be introduced
into the system. In this solution, when a client detects that it should
switch to a better server, it sorts all the servers that are better than
its current server with their predicted throughput, and then switch
to different servers with different probability. Assume there are n
servers that are better than the current server, and Ti is the predict-
ed throughput of the ith server, Tc is the real-time throughput of
the current server, then the probability to switch to the ith serv-
er can be calculated as Ti/(

∑n

k=1 Tk + Tc), also, the probability
to stay at the current server is Tc/(

∑n

k=1 Tk + Tc). This induces
that a lighter loaded server has higher probability to be chosen and

probabilistic switching reduces the possibility of synchronization
between clients.

In this paper, we didn’t implement probabilistic switching in our
system because we only focus on single client case. In multiple
clients scenarios, this mechanism should be implemented to avoid
system oscillations.

5. PERFORMANCE EVALUATION
We implemented our video rate adaptation algorithms into a fully-

functional DASH system, and extensively evaluated it using con-
trolled experiments on a network testbed, the Emulab [16], as well
as real Internet experiments, with both wireline and wireless clients.

5.1 System Implementation
Our DASH system runs on linux/unix platforms. It consists of

a vanilla Apache HTTP server and a customized HTTP client. All
the proposed video rate adaptation algorithms are implemented on
the client side using C++. For multi-server experiments, we also
implemented the SVR-based TCP throughput estimation algorithm
proposed in [14]. A light-weight network measurement thread runs
on the server and the client to periodically collect packet loss and
delay statistics for TCP throughput estimation. To train the SVR
TCP throughput model, the client sends HTTP “GET" requests to
a server to get video chunk files. Since TCP throughput is affect-
ed by file size, the training data need to be collected for different
video rates. Since we use a large number of video rates in our ex-
periments, that would make the training process too long and too
intrusive to the network. To reduce training experiments, we design
a mechanism to collect TCP throughput data for all the video rates
in one single HTTP “GET" request. On the server side, the file used
for training is larger than the size of a video chunk at the highest
video rate. After the client sends out a “GET" request to download
the training file, it records the time lags when the total number of
the received data bytes reaches the video chunk sizes at all possi-
ble video rates. TCP throughput to download a chunk at a video
rate is calculated as the video chunk size divided by the recorded
time lag for that rate. This way we can get the training data for all
the video rates in one transmission. As mentioned above, we use
non-persistent HTTP connection in this paper, so a separate HTTP
connection is used for downloading each video chunk in the train-
ing. For persistent HTTP connection, we should use a persistent
HTTP connection for downloading video chunks in training. It is
expected that the chunk size has less impact on the obtained TCP
throughput in that case.

5.2 Emulab Experiments Setup
Emulab network testbed allows us to conduct controlled and re-

peatable experiments to compare different designs. The structure
of the our Emulab testbed is shown in Figure 5. It consists of five
nodes, among which one node acts as the DASH client, the other
four nodes are DASH servers. Each node runs the standard FreeBS-
D of version 8.1. The servers have Apache HTTP server of version
2.4.1 installed. Also, Ipfw and Dummynet are used on the servers
to control the bandwidth between nodes.

In all our experiments, the server provides 51 different video
rates, ranging from 100Kbps to 5.1Mbps, with rate gap between
two adjacent versions 100Kbps. The link capacity between the
client and server is set to be 5Mbps. In this setting, even if there
is no background traffic, the client still cannot sustain the highest
video rate. To generate realistic network bandwidth variations with
congestion level shift, we inject background TCP traffic between
the servers and the client. Twenty TCP connections are established
for each server-client pair. We control the rate at which data is

114

50Mbps,
25ms delay

Virtualized Router
(via HP 5400zl switches 10G

ports)

5Mbps
25ms delay

(vi

pc850 Emulab PC nodes (Based on the Intel ISP1100 1U server platform)

Figure 5: Emulab Testbed

injected to a background TCP connection to emulate network con-
gestion level shift. The background TCP traffic we use for all single
server experiments is shown in Figure 6. The aggregate background
traffic rate jumps between three different levels, oscillations within
the same level are due to TCP congestion control mechanisms.

0 2000 4000 6000 8000 10000 12000
0.5

1

1.5

2

2.5

3

3.5

time(sec)

M
b

p
s

Figure 6: Background Traffic with Level-shift

5.3 TCP Throughput Prediction Accuracy
For DASH from single server, since a client continuously down-

loads video chunks from the same server which makes realtime
TCP throughput data available, we use simple history-based TCP
throughput prediction. The client measures the time it takes to
download each chunk and calculates the average TCP throughput
for each chunk. To predict TCP throughput for the next chunk
downloading, it simply takes an average of TCP throughput for the
previous W chunks, discarding the largest one and the smallest one.
If W is too small, the estimate tends to be noisy, if W is too large,
the estimate reacts slowly to sudden congestion level shift. In our
experiments, we set W = 10. While some other history-based TCP
throughput prediction algorithms have been proposed, e.g., [13],
we found in our experiments that even the simple one works well
in the context of DASH. For DASH with multiple servers, if a clien-
t has never downloaded from a server, there is no TCP throughput
history to extrapolate on. We instead use SVR TCP throughput
prediction [14] with initial offline training and light-weight online
measurement. For our controlled experiments, single run of offline

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

Mbps(predict throughput)

M
b

p
s
(r

e
a

l
th

ro
u

g
h

p
u

t)

(a) SVR: average error 25.7%

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

Mbps(predict throughput)

M
b

p
s
(r

e
a

l
th

ro
u

g
h

p
u

t)

(b) History: average error 9.6%

Figure 7: TCP Throughput Prediction Accuracy.

training is good enough. In practice, offline training can be done
periodically to make the SVR model up-to-date.

We now compare the accuracy of history-based and SVR TCP
throughput prediction in our Emulab experiments. TCP background
traffic follows the same trend as in Figure 6. To get more samples,
we increase the duration of each congestion level to 160 minutes.
During the experiments, the client downloads video chunks at all
the 51 video rates. Figure 7 compares the accuracy of SV R pre-
diction with history-based prediction. We can see that our history-
based prediction is obviously better than SV R prediction. The
average error for history-based prediction is 9.6%, while the er-
ror for SV R prediction is about 25.7%, which is consistent with
the results reported in [14]. The high accuracy of history-based
prediction in DASH is because chunks are downloaded by TCP
continuously and TCP throughput for adjacent chunks are highly
correlated. On the other hand, SV R prediction is light-weight, its
accuracy is already good enough to guide the server selection in
multi-server DASH. In our following experiments, the accuracy of
history-based prediction is even lower than 5%. This is because
the TCP throughput prediction accuracy at low video rates is worse
than at high video rates. At low video rates, because the video
chunk size is small, very small absolute estimation error can cause
large relative error which doesn’t happen for high video rates. In
this accuracy experiment, we do the transmission for all 51 video
rates from 100Kbps to 5.1Mbps while in real DASH experiments,
for most of time, the video rate is higher than 1Mbps.

5.4 Single-server DASH Experiments
We present Emulab results for DASH from single-server.

5.4.1 Buffer Size Control

We first evaluate the performance of PID-based buffer control
proposed in Section 3.2. We set Kp = 0.1, KI = 0.01 and the
reference buffered video time is qref = 20 seconds. The duration
for each congestion level is scaled down to 500 seconds. In Fig-
ure 8(a), we can see that the buffer size can be controlled around
20 very well. In Figure 8(b), the requested video rate tracks the
TCP throughput perfectly under all congestion level shifts. But the
frequent video rate fluctuations are not acceptable to users. As stat-
ed in Section 3.3, instead of accurately controlling buffer size, one
should smoothly reach high video rate under the throughput that
can be achieved by TCP.

5.4.2 Smooth Video Adaptation

We conduct single-server DASH experiments using the smooth
video adaptation algorithm proposed in Section 3.3. Figure 9 shows
the results by setting the rate switch-up threshold m to 1, 5, 20, and
dynamic value defined in (11) respectively.

115

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b

p
s

video rate

throughput

(a) m=1

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b

p
s

video rate

throughput

(b) m=5

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b

p
s

video rate

throughput

(c) m=20

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b

p
s

video rate

throughput

(d) dynamic m

0 2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

30

35

40

45

50

time(sec)

ti
m

e
(s

e
c
)

(e) m=1

0 2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

60

70

80

90

100

time(sec)

ti
m

e
(s

e
c
)

(f) m=5

0 2000 4000 6000 8000 10000 12000
0

50

100

150

200

250

300

350

time(sec)

ti
m

e
(s

e
c
)

(g) m=20

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

120

time(sec)

ti
m

e
(s

e
c
)

(h) dynamic m

Figure 9: Smooth Video Adaptation: (a)-(d): video rate and throughput; (e)-(h): buffer size evolution

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

time(sec)

ti
m

e
(s

e
c
)

(a) buffer size

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

time(sec)

M
b

p
s

video rate

throughput

(b) video rate/throughput

Figure 8: PID-based Buffer Size Control.

Table 1 shows the average video rate and buffer size.

Table 1: average video rate and buffer size for single server

m avg. video rate(Mbps) avg. buffer size(second)

1 2.16 26.75

5 2.15 55.39

20 2.10 209.17

Dyn. 2.13 86.34

Compared with Figure 8(b), the video rate smoothness has sig-
nificant improvement. Larger m has smoother video rate, but in-
curs much larger oscillations in buffer size. This again reflects the
fundamental design trade-off between video rate smoothness and
buffer size smoothness. The average video rate of all the cases are
close, with larger m has slightly lower rate. This is because, with
larger m, it takes longer to switch-up video rate after TCP through-
put increases. The buffered video time keeps increasing, leading
to large buffer size overshoot. Since the rate switch-down is trig-
gered only after the buffer size goes down to half of the reference
size, large buffer size overshoots with larger m also make it reac-
t slowly to the sudden congestion level leaps. In Figure 9(c), the
video rate remains at high level way after the actual TCP through-

2000 2500 3000 3500 4000
0

1

2

time(sec)

M
b

p
s

m=1

2000 2500 3000 3500 4000
0

1

2

time(sec)

M
b

p
s

m=5

2000 2500 3000 3500 4000
0

1

2

time(sec)

M
b

p
s

m=20

2000 2500 3000 3500 4000
0

1

2

time(sec)

M
b

p
s

Dynamic m

Figure 10: Video Smoothness of different m values

put goes down around 6, 000 second, until the buffer size falls back
to 10 seconds. The small windows at bottom-right corner of Figure
9 (a)-(d) are the zoom-in views of video rate within 200 seconds
after the big rate switch-down around 6, 000 second. It is obvi-
ous that, with a larger m, it takes much longer time to switch up
to a higher rate. In Figure 9(d) and Figure 9(h), by dynamically
adjusting m based on the queue length increase trend, dynamic-
m simultaneously achieves video rate smoothness of large m and
switch responsiveness of small m.

Figure 10 further shows the video rate trends between 2, 000 sec-
ond and 4, 000 second for different m. For non-dynamic m algo-
rithms, larger m leads to smoother video rate, but as shown in Fig-
ure 9, larger m results in slower responsiveness. As for dynamic
m algorithm, it maintain good smoothness of the video rate trend
while achieving fast responsiveness.

5.4.3 Adaptation with Buffer Cap and Rate Margin

As stated in Section 3.4, large buffer size is not possible in live
streaming and not plausible in VoD; reserving a bandwidth mar-
gin can potentially reduce video rate fluctuations. In the first set

116

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b

p
s

video rate

throughput

(a) ρv = 5%

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b

p
s

video rate

throughput

(b) ρv = 10%

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b

p
s

video rate

throughput

(c) ρv = 20%

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b

p
s

video rate

throughput

(d) ρv = 30%

0 2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

time(sec)

ti
m

e
(s

e
c
)

(e) ρv = 5%

0 2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

time(sec)

ti
m

e
(s

e
c
)

(f) ρv = 10%

0 2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

time(sec)

ti
m

e
(s

e
c
)

(g) ρv = 20%

0 2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

time(sec)

ti
m

e
(s

e
c
)

(h) ρv = 30%

Figure 11: Video Adaptation under Buffer Cap of 20 Seconds and Different Video Rate Margins.

of experiments, we set the buffer cap qmax to 20 seconds and try
different bandwidth margins. Figure 11 shows the results for differ-
ent margins. Table 2 shows the average video rate, TCP through-
put utilization (calculated as average video rate over average TCP
throughput), and average buffer size for each case. With bandwidth
margin and buffer cap, the buffer size oscillates within a smal-
l neighborhood of the buffer cap. Video rate adapts smoothly to
congestion level shifts, and the TCP throughput utilization is close
to the target value of 1− ρv .

Table 2: Adaptation with Buffer Cap and Bandwidth Margin

margin average video TCP throughput average buffer
ρv rate(Mbps) utilization (%) size(second)

5% 1.99 91.98 19.79

10% 1.87 87.32 20.13

20% 1.6 76.43 20.98

30% 1.42 69.57 21.31

In live streaming, buffer cap qmax reflects the tolerable user
playback lag. By setting qmax to a small value, we can simulate
a live streaming session. Figure 12 shows the results for buffer cap
of 5 seconds and 10 seconds. Table 3 shows the average video rate,
utilization ratio and average buffer size. For both cases, the mar-
gin is set to 10%. We can see that when qmax = 5, there can be
playback freezes when the background traffic suddenly jumps from
0.6Mbps to 3Mbps around 6, 000 second. Such a steep jump is a
rare event in practice. When qmax = 10, the buffer never depletes.

Table 3: Live Streaming Simulation

buffer-cap avg. video TCP throughput avg. buffer
second rate(Mbps) utilization (%) size(second)

5 1.84 86.92 5.48

10 1.90 85.77 10.79

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b
p
s

video rate

throughput

(a) video rate (qmax = 5)

0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6

7

8

time(sec)

ti
m

e
(s

e
c
)

(b) buffer size (qmax = 5)

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b
p
s

video rate

throughput

(c) video rate (qmax = 10)

0 2000 4000 6000 8000 10000 12000
0

2

4

6

8

10

12

14

time(sec)

ti
m

e
(s

e
c
)

(d) buffer size (qmax = 10)

Figure 12: Simulation of live DASH streaming

5.4.4 Side-by-side Comparison

There have already been some client side video adaptation al-
gorithms as introduced in Section 2. As a comparison, we im-
plement the client side adaptation algorithm proposed in [17]. In
[17], authors use µ = MSD/SFT as the transmission metric-
s to decide whether to switch up or switch down where MSD is
the media segment duration and SFT is segment fetch time. If
µ > 1 + ǫ, the chosen video rate will switch up one level, where
ǫ = maxi (bri+1 − bri)/bri and bri is the video rate of represen-
tation level i. If µ < γd where γd denotes switch down threshold,
the chosen video rate switches down to the highest video rate level
i that satisfies bri < µ ∗ bc where bc is the current video rate.

And also, to limit the maximum buffer size, idle time is added

117

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b

p
s

video rate

throughput

(a) Video rate trend

0 2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

60

70

80

90

100

time(sec)

ti
m

e
(s

e
c
)

(b) Buffer size trend

Figure 13: Video rate and buffer size trend for [17]

between two consecutive chunk fetches. The idle time is calculated
according to (12) where ts, tm and tmin denote the idle time, the
buffered media time, the predefined minimum buffered media time
respectively, bc and bmin denote the current representation bitrate
and the minimum representation bitrate respectively.

ts = tm − tmin −
bc

bmin

MSD (12)

We implemented the algorithm exactly as proposed in [17]. We
did the same experiments as in our algorithm, the same curves are
plotted to do side-by-side comparison with our algorithm. During
the experiments, all configurations of the network including hard-
ware, operating system and bandwidth settings between nodes are
exactly the same as for our algorithm. Also, We added the same
background traffic as shown in Figure 6.

The results are presented in Figure 13. By comparing with the
results in Figure 9 and Figure 11, we can see that the average video
rate in Figure 13 is much lower. This happens because the algorith-
m is too conservative and can’t make full use of the available band-
width. When the algorithm decides to switch up, it only switches
up one level without considering the actual TCP throughput. Al-
so, there are many video rate fluctuations because of the lack of
smoothing mechanism in this algorithm. We can see that even one
TCP throughput out-lier will cause the video rate to switch up or
switch down.

To be more specific, Table 4 shows the detailed comparison of
average video rate achieve by both algorithms at different conges-
tion levels. During the whole experiments, background traffic con-
sists of six stages with each stage of 2000 seconds, From Table
4, our algorithms achieve significantly higher video rates in a s-
moother fashion than the algorithm proposed in [17].

Table 4: Average Video Rates (Mbps) at different congestion lev-
els

❳
❳
❳
❳
❳
❳
❳
❳❳

Stage
Algorithm

m=1 m=5 m=20 Dyn m [17]

0 ∼ 2000 1.30 1.28 1.17 1.24 0.75

2000 ∼ 4000 1.66 1.66 1.57 1.24 0.75

4000 ∼ 6000 3.56 3.44 3.32 3.44 1.62

6000 ∼ 8000 1.28 1.31 1.47 1.34 0.70

8000 ∼ 10000 1.64 1.72 1.60 1.61 0.84

10000 ∼ 12000 3.56 3.44 3.41 3.55 1.80

5.5 DASH with Multiple Servers
We set up four Emulab nodes as DASH servers, and conducted

two types of multi-server DASH experiments.

0 2000 4000 6000 8000 10000 12000
0

2

4

time(sec)

M
b

p
s

0 2000 4000 6000 8000 10000 12000
0

2

4

time(sec)

M
b

p
s

0 2000 4000 6000 8000 10000 12000
0

2

4

time(sec)

M
b

p
s

0 2000 4000 6000 8000 10000 12000
0

2

4

time(sec)

M
b

p
s

Figure 14: Background Traffic for Multiple Server DASH

5.5.1 Dynamic Server Selection

In the first experiment, we introduce background TCP traffic to
each of the four servers. As illustrated in Figure 14, each server
rotates between four background traffic levels, each level lasts for
3, 000 seconds. The whole experiment lasts for 200 minutes which
is generally the length of an epic Hollywood movie. In the experi-
ment, using SVR throughput prediction, the client is able to quick-
ly detect traffic level shifts on all DASH servers, and dynamically
switch to the server with the highest TCP throughput. As shown
in Figure 15(a), the video rate is always maintained at a high level,
independent of traffic level shifts on individual servers. There are
several traffic rate dips. When we use a video rate margin of 10%,
the rate smoothness is improved, as seen in Figure 15(b).

5.5.2 Concurrent Download

Figure 15(c) and Figure 15(d) show the experimental results when
the client concurrently connects to two servers that offer the high-
est TCP throughput. To make a fair comparison with the single-
connection case in the previous section, we reduce the link capac-
ity and background traffic rate on all servers by roughly half. As
shown in Figure 15(c), the client dynamically downloads chunks
from the top-2 servers to sustain a high video rate throughout the
experiments. The aggregate TCP throughput from top-2 servers
has smaller variance than in the single dynamic server case, this
leads to a much smoother video rate. The video rate can be fur-
ther smoothed out when a bandwidth margin of 10% is added, as
plotted in Figure 15(d). According to our experiment log, in both
single connection and multiple connections cases, the switching of
servers absolutely follows our prediction. This shows that SV R is
accurate enough to monitor major congestion level shift and trigger
DASH server switching.

5.6 Internet Experiments
Finally, we test our DASH system on the Internet. We only do

experiments for the single-server case.

5.6.1 Client with Wireline Access

We set up a Planetlab node in Shanghai, China (planetlab −
1.sjtu.edu.cn) as the DASH server, and an Emulab node located
in Utah, USA as the DASH client. We don’t inject background
traffic between the server and client.

Figure 16 and Table 5 show the results at different rate margin-
s. Since different experiments are conducted sequentially, the TCP
throughput patterns are not controllable. In all experiments, we
do observed long-term shifts and short-term fluctuations of TCP
throughput along the same Internet path. Our video adaptation al-

118

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time(sec)

M
b

p
s

video rate

throughput

(a) video rate (ρv = 0)

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time(sec)

M
b

p
s

video rate

throughput

(b) video rate (ρv = 10%)

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time(sec)

M
b

p
s

video rate

throughput

(c) video rate (ρv = 0)

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time(sec)

M
b

p
s

video rate

throughput

(d) video rate (ρv = 10%)

Figure 15: Emulab Experiments with Multiple Servers: (a),(b): client only downloads from a single best server; (c),(d): client downloads
concurrently from the top-2 servers.

gorithms can adapt well to the network condition changes, which
is consistent with our Emulab results. In fact, the video rate is
even smoother than our Emulab experiments. This is because the
background traffic injected in Emulab experiments is more volatile
than the real cross-traffic on the Internet path. Another difference
from Emulab experiments is that when the rate margin is large e.g,
ρv = 30%, the achieved TCP throughput in Figure 16(d) is lower
than with no or small margins. This is because in Emulab experi-
ments, we control the total rate of background traffic. But in Inter-
net experiments, background traffic is out of our control. When our
DASH system is more conservative, the requested video chunks are
smaller, which puts TCP at a disadvantage when competing with
other cross-traffic.

Table 5: Wireline Internet Experiments

margin average video TCP throughput average buffer
rate(Mbps) utilization (%) size(second)

0% 3.34 97.80 32.99

5% 2.82 91.83 19.95

10% 2.55 86.32 20.50

5.6.2 Client with Wireless Access

We also test our system on wireless clients. The server resides in
Emulab, the client is a laptop in a residential network in New York
City, which connects to Internet through a Wi-Fi router. we change
the distance between the laptop and the router to create dynamic
bandwidth while running the DASH client is running. Figure 17
and Table 6 show the results with different rate margins for the
wireless client.

Table 6: Internet Experiments with Wireless Client

margin average video TCP throughput average buffer
rate(Mbps) utilization (%) size(second)

0% 2.80 97.24 57.83

20% 2.33 81.23 20.40

30% 1.27 63.44 21.11

When we take the laptop far away from the wireless router, the
wireless connection is very unstable. TCP throughput varies over
a wide range, and it is not repeatable across different experiments.
Without a rate margin, the video rate also fluctuates a lot, and there
are several video freezes. Increasing rate margin to 20% reduces
video rate fluctuation and eliminates freezes. However, for the ex-
periments with 30% margin in Figure 17(e) and Figure 17(f), the

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time(sec)

M
b

p
s

video rate

throughput

(a) video rate (ρv = 0)

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

time(sec)

ti
m

e
(s

e
c
)

(b) buffer size (ρv = 0)

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time(sec)

M
b

p
s

video rate

throughput

(c) video rate (ρv = 20%)

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

time(sec)

ti
m

e
(s

e
c
)

(d) buffer size (ρv = 20%)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

time(sec)

M
b

p
s

video rate

throughput

(e) video rate (ρv = 30%)

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

time(sec)

ti
m

e
(s

e
c
)

(f) buffer size (ρv = 30%)

Figure 17: Internet Experiments with Wireless Client: comparison
of different rate margins

TCP throughput is extremely low from 1600 seconds to 2600 sec-
onds, when the laptop was taken very far away from the router.
The video rate is kept at 100Kbps, and the video buffer depletes
for many times. When the laptop is moved back closer to the router,
the TCP throughput starts to increase, and the video rate switches
up steadily.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we developed video adaptation algorithms for DASH.

Our algorithms use client-side buffered video time as feedback sig-
nal, and smoothly increase video rate as the available network band-

119

0 5000 10000 15000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b

p
s

video rate

throughput

(a) video rate (ρv = 0)

0 5000 10000 15000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b

p
s

video rate

throughput

(b) video rate (ρv = 5%)

0 5000 10000 15000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b

p
s

video rate

throughput

(c) video rate (ρv = 10%)

0 5000 10000 15000
0

0.5

1

1.5

2

2.5

3

3.5

4

time(sec)

M
b

p
s

video rate

throughput

(d) video rate (ρv = 30%)

Figure 16: Internet Experiments with Wireline Client

width increases, and promptly reduce video rate in response to sud-
den congestion level shift-ups. By introducing buffer cap and small
video rate margin, our algorithms simultaneously achieved stable
video rate and buffer size. Using machine-learning based TCP
throughput prediction, we extended our designs so that a DASH
client simultaneously works with multiple servers to achieve the
multiplexing gain among them. We conducted extensive controlled
experiments on Emulab, as well as Internet experiments with wire-
line and wireless clients. We demonstrated that the proposed DASH
system is highly responsive to congestion level shifts and can main-
tain stable video rate in face of short-term bandwidth variations.

Our wireless experiments demonstrated the unique challenges of
delivering DASH in wireless networks. We are interested in refin-
ing our current adaptation algorithms for WiFi and 3G/4G cellular
networks. In this paper, we mostly focus on the adaptation of single
DASH client. When there are multiple DASH clients in the same
service session, they compete with each other through the common
TCP protocol at the transport layer and diverse video adaptation
protocols at the application layer. We are interested in studying the
fairness and stability of user video Quality-of-Experience among
multiple competing DASH clients. Server-side DASH algorithms
will be investigated to regulate the competition between them. An-
other direction is to investigate the application of DASH in P2P
streaming systems. In P2P DASH, the video adaptation on a peer
is not only driven by download throughput from the server, but also
by upload/download throughput to/from other peers.

7. ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers and

the Shepherd Dr. Yin Zhang for their valuable feedbacks and sug-
gestions to improve the paper quality. The work is partially sup-
ported by USA NSF under contracts CNS-0953682, CNS-0916734,
and CNS-1018032.

8. REFERENCES
[1] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt,

M. Steiner, and Z.-L. Zhang, “Unreeling netflix:
Understanding and improving multi-cdn movie delivery,” in
Proceedings of IEEE INFOCOM, 2012.

[2] J. F. Kurose and K. Ross, Computer Networking: A

Top-Down Approach Featuring the Internet, 6th ed.
Addison-Wesley, 2012.

[3] M. Watson, “Http adaptive streaming in practice,” Netflix,
Tech. Rep., 2011.

[4] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An
experimental evaluation of rate-adaptation algorithms in
adaptive streaming over http,” in ACM Multimedia Systems,
2011.

[5] Microsoft, “IIS Smooth Streaming,”
http://www.iis.net/download/SmoothStreaming.

[6] Adobe, “Open Source Media Framework,”
http://www.osmf.org/.

[7] E. C. R. Mok, X. Luo and R. Chang, “Qdash: A qoe-aware
dash system,” in ACM Multimedia Systems, 2012.

[8] S. M. L. De Cicco and V. Palmisano, “Feedback control for
adaptive live video streaming,” in ACM Multimedia Systems,
2011.

[9] H. S. B. Haakon Riiser and P. Vigmostad, “A comparison of
quality scheduling in commercial adaptive http streaming
solutions on a 3g network,” in ACM Multimedia Systems,
2012.

[10] S. L. Christopher Mueller and C. Timmerer, “An evaluation
of dynamic adaptive streaming over http in vehicular
environments,” in ACM Multimedia Systems, 2012.

[11] W. C. B. Seo and R. Zimmermann, “Efficient video
uploading from mobile devices in support of http streaming,”
in ACM Multimedia Systems, 2012.

[12] C. Dovrolis, M. Jain, and R. Prasad, “Measurement tools for
the capacity and load of Internet paths,”
http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/bw-est/.

[13] Q. He, C. Dovrolis, and M. Ammar, “On the predictability of
large transfer tcp throughput,” in Proceedings of ACM

SIGCOMM, 2005.

[14] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine
learning approach to tcp throughput prediction,” in ACM

SIGMETRICS, 2007.

[15] A. J. Smola and B. Schölkopf, “A tutorial on support vector
regression,” Statistics and Computing, vol. 14, no. 3, pp.
199–222, Aug. 2004.

[16] Emulab-Team, “Emulab - Network Emulation Testbed
Home,” http://www.emulab.net/.

[17] C. Liu, I. Bouazizi, and M. Gabbouj, “Rate adaptation for
adaptive http streaming,” in ACM Multimedia Systems, 2011.

120

