
Research Article

Towards AI-Based Traffic Counting Systemwith Edge Computing

Duc-Liem Dinh , Hong-Nam Nguyen , Huy-Tan Thai , and Kim-Hung Le

University of Information Technology-VNU-HCM, Ho Chi Minh City, Vietnam

Correspondence should be addressed to Kim-Hung Le; hunglk@uit.edu.vn

Received 23 February 2021; Revised 25 May 2021; Accepted 17 June 2021; Published 28 June 2021

Academic Editor: Jinjun Tang

Copyright © 2021 Duc-Liem Dinh et al. .is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

.e recent years have witnessed a considerable rise in the number of vehicles, which has placed transportation infrastructure and
traffic control under tremendous pressure. Yielding timely and accurate traffic flow information is essential in the development of
traffic control strategies. Despite the continual advances and the wealth of literature available in intelligent transportation system
(ITS), there is a lack of practical traffic counting system, which is readily deployable on edge devices. In this study, we introduce a
low-cost and effective edge-based system integrating object detectionmodels to perform vehicle detecting, tracking, and counting.
First, a vehicle detection dataset (VDD) representing traffic conditions in Vietnam was created. Several deep learning models for
VDD were then examined on two different edge device types. Using this detection, we presented a lightweight counting method
seamlessly combining with a traditional tracking method to increase counting accuracy. Finally, the traffic flow information is
obtained based on counted vehicle categories and their directions. .e experiment results clearly indicate that the proposed
system achieves the top inference speed at around 26.8 frames per second (FPS) with 92.1% accuracy on the VDD..is proves that
our proposal is capable of producing high-accuracy traffic flow information and can be applicable to ITS in order to reduce labor-
intensive tasks in traffic management.

1. Introduction

In the past few years, the intelligent transportation system
has become a fundamental branch of smart city construc-
tion, playing an essential role in public transport planning,
management, and security [1]. A typical ITS is operated on
the basis of a traffic flow analyzer that estimates the number
of vehicles on the road in a specific interval. Deeply in-
vestigating this information may reveal useful information
about the current traffic conditions (e.g., traffic density and
congestion level) or predicting abnormal events (e.g., traffic
jams and lane occupancy). During different periods, various
vehicle movement patterns are also inspected to identify
slow or immobile vehicles, resulting in congestion. .is
could be alleviated by using adaptive signal timing of traffic
lights, which is adaptively calculated from current traffic
flow information of intersections [2]. Counting the number
of vehicles is thus an integral component of ITS needed to
improve traffic efficiency.

Despite the fact that the widespread use of Internet of
.ings (IoT) aims to connect every physical object to the

Internet, building a connected environment in trans-
portation from a wireless sensor network has been facing
major challenges and is still far from reality [3]. Special
sensors (e.g., magnetic coil and ultrasonic detection) are
commonly deployed along the roadside to observe traffic
conditions. However, the deployment of these sensors re-
quires expensive costs and alteration in transportation in-
frastructure. .eir sensory data is most likely limited in both
quantity and quality due to transmission issues (e.g., dis-
connected and interfered by environmental factors) [4].
Hence, traffic counting from low-cost surveillance cameras
has emerged as a particularly attractive candidate for au-
tomation of traffic flow control in ITS because of the es-
calation in advanced artificial intelligence (AI) technologies
in computer vision. Compared with the sensory-based
method, a video-based traffic counting system (VTCS) not
only simplifies deployment and maintenance processes but
also seamlessly integrates with AI to detect, track, and
identify each vehicle and its behaviors [5]. For example, the
vehicle reidentification (Reid) application combines with AI
to identify vehicle owners’ information via recognizing

Hindawi
Journal of Advanced Transportation
Volume 2021, Article ID 5551976, 15 pages
https://doi.org/10.1155/2021/5551976

mailto:hunglk@uit.edu.vn
https://orcid.org/0000-0002-3477-1116
https://orcid.org/0000-0002-1949-3453
https://orcid.org/0000-0002-4197-1538
https://orcid.org/0000-0002-2781-8043
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5551976

vehicle license plate. Consequently, a VTCS using AI is
undoubted in the traffic flow analyzer of ITS.

Deep learning (DL), a subtechnique of AI, is the most
commonly used approach to increase vehicle detection
performance [6]. It makes use of many nonlinear hidden
layers for supervised/unsupervised feature extraction,
transformation, pattern analysis, and classification, where
each successive layer takes the output from the previous
layer as input..e features in data are automatically revealed
instead of manually adding in traditional machine learning
algorithms. .e main limitation relates to the fact that ex-
ecuting DL algorithms requires massive computation ca-
pability and training data [7]. .ese algorithms are thus
primarily performed in data centers on the cloud. Although
integrating DL into ITSs under such a cloud-centric para-
digm has drawn more attention from other researchers in
the last several years, it still encounters innumerable chal-
lenges to fulfill smart city requirements: (1) Transmitting
collected data from end devices to cloud is inevitably time-
consuming, whereas critical applications stringently require
low latency to instantly react with abnormal behaviors. (2)
Transmitting data over the network and storing these data
on distant servers may raise numerous issues related to
security- and privacy-preserving, especially sensitive data
about user’s behaviors. One viable solution to these prob-
lems is edge computing, considered as complementary of
cloud computing [8]. Data processing is preferred to cloud
servers to execute on edge devices. Moving these computing
tasks closer to data sources may considerably reduce latency
and security risks.

In this paper, we introduce an AI-based traffic counting
framework running in edge devices. .e framework aims at
effectively obtaining traffic flow information via three steps:
vehicle detecting, tracking, and counting. For the purpose of
accurately detecting various vehicle types, several common
object detection approaches are retrained and optimized to be
compatible with constrained devices before thoroughly ex-
amining on two representative single-board computers (GPU
and TPU). With regard to the counting step, we design a
lightweight counting method based on the cosine similarity
concept that is seamlessly integrated with the traditional
tracking method named Deep SORT. In addition, we estab-
lished a VDD dataset representing traffic conditions in
Vietnam, mostly consisting of motorcycles to validate the
efficiency of our proposal. .e experiment results show that
the proposed framework is capable of producing high-accu-
racy traffic flow information in real time (26.8 frames per
second with 92.1% accuracy on the VDD dataset). An in-
teresting point to note here is that the implementation of our
proposal can also be applied to multiple surveillance scenarios
such as crowdmonitoring and counting visitors in commercial
areas. Our main contributions can be summarized as follows:

(i) We present an AI-based traffic counting framework
operating directly on edge devices to obtain traffic
flow information effectively. A vehicle object de-
tection dataset (VDD) representing traffic condi-
tions in Vietnam is also created to evaluate the
performance of our proposal.

(ii) To select the appropriate vehicle detectionmodel for
edge devices, we optimize, retrain, and examine
various object detection approaches on two types of
single-board computers (SBCs) (Google Coral Dev
Board and Nvidia Jetson Nano).

(iii) We propose a lightweight counting method based
on the cosine similarity concept that is well suited
with the traditional tracking method.

(iv) We show that the proposed framework can obtain
high-accuracy traffic flow information in real time
while operating on SBCs (acting as edge devices).

(v) Our framework is packed into a Docker container
that is publicly available for the research and de-
velopment of open communities (https://github.
com/MrLiem/SSD_MobileDet_SORT).

.e remainder of the paper is organized as follows. In
Section 2, we present the related works. We then introduce
the proposed system in Section 3. .e experiment results are
reported in Section 4. Finally, Section 5 concludes the article.

2. Related Works

.e recent years have seen the rapid improvement of AI and
its application across smart agriculture [9] and critical in-
frastructure development [10] and particularly in VTCS,
which is widely used in ITS and attracted more attention
from the research community in the last few years. .is is an
inevitable result of the emergence of advanced image pro-
cessing and AI technologies. Based on the survey in [11], we
may divide the vision-based vehicle counting method into
two categories: regression-based methods and detection-
based methods.

2.1. e Regression-Based Methods. .e regression-based
methods aim to exploit global image characteristics (e.g.,
color histogram and pixel density) to identify and count the
number of vehicles. .e authors in [12] introduce the
Maximum Excess over SubArrays (MESA) distance concept
for density estimation. Improving the MESA, L. Fiaschi et al.
[13] propose an ensemble of randomized regression trees
consisting of dense features as an input for the counting
process. In [14], the authors introduce a cascade regression
approach to measure and classify vehicles based on low-level
features for each foreground segment. Similarly, Liu et al.
[15] present a Hierarchical Classification based Regression
(HCR) model that employs the codec metadata of com-
pressed videos for extracting the batch of low-level features.
.e study in [16] incorporates a locally temporal regression
method with the spatial regression. Reference [17] designs a
convolution neural network (CNN) to regress vehicle spatial
density images. Meanwhile, Zhang et al. count the number of
vehicles by using an FCN-rLSTM network to extract spatial-
temporal information from density maps [18].

2.2. e Detection-Based Methods. In the ITS, most detec-
tion-based methods identify the vehicle in the video by
analyzing image features. In [19, 20], scale-invariant feature

2 Journal of Advanced Transportation

https://github.com/MrLiem/SSD_MobileDet_SORT
https://github.com/MrLiem/SSD_MobileDet_SORT

transform (SIFT) and speeded-up robust features (SURF)
are formed from image keys and interest points. .ese
extracted features are demonstrated to be effective for
detecting vehicles. Likewise, Dalal et al. [21] extract histo-
gram of oriented gradients (HOG) features using silhouette
contours, especially the head, shoulders, and feet. Reference
[22] creates a set of Haar-like features, including four edge
features, eight line features, and two center-surround fea-
tures..ese features combined with SVMor AdaBoost could
significantly increase the performance of the detection
model. However, the mentioned approaches are unstable
and easily affected by large rotations in images. .eir de-
tection accuracy is thus strongly affected when changing the
camera angle.

To overcome this problem, deep learning-based object
detections are applied by Girshick et al. [23] to combine the
region proposal method with CNNs (R-CNN) for searching
all possible regions of the object. To lighten the feature
extraction process, the authors in [24] extract the feature
maps only once from the entire image before training the
detectors. Reference [25] improves R-CNN and SPP-net by
applying Fast R-CNN, which supports single-stage training
with multitask loss function and bounding-box regression.
Ren et al. [26] integrate a selective search mechanism in
Faster R-CNN to accelerate the inference operation. .e
evaluation shows that Faster R-CNN is 10x faster than Fast
R-CNN and 250x faster than R-CNN while maintaining
similar accuracy. Despite being 250x faster than R-CNN,
Faster R-CNN is still insufficient for real-time context with
the detection speed lower than 10 FPS [27]. Liu et al. [28]
propose Single Shot MultiBox Detector (SSD) replacing
RPN by uniform extraction..is enhancement improves the
detection speed up to 19 FPS (SSD512) and 46 FPS (SSD300).
In a similar attempt, a serial of YouOnly Look Once (YOLO)
algorithms [29–33] developed by Joseph Redmon could
improve both the object’s detection speed and accuracy.
.ese algorithms use a convolutional network to process
multiple bounding boxes and return class probabilities for
those boxes on entire images.

For the tracking method, Tomasi et al. [34] propose
Kanade-Lucas-Tomasi (KLT) feature tracker built from
pyramid representation. Meanwhile, the authors in [35]
propose the spatiotemporal relations that can be applied in a
video to extract the movement trajectory information of
vehicles. In [36–38], KLT is used to extract vehicle trajec-
tories and count vehicles. .e authors in [39] combine
Kalman Filter and Hungarian algorithm to build Simple
Online and Real-time Tracking (SORT) supporting multi-
object tracking with high performance. Wojke et al. propose
an extension of SORT named Deep SORT [40] which joins
the appearance information in data association to improve
the tracker’s robustness.

Several studies further estimate the traffic flow param-
eters for ITS, such as vehicle category, density, speed, and
traffic accidents. Reference [41] calculates the average speed
of a traffic stream, density, and volume from counting ve-
hicle results. Gao et al. [42] classify the vehicle size into lite,
small, medium, and large based on vehicles’ motion flow.
Works in [43] build a real-timemonitoring framework using

ontology and latent Dirichlet allocation (OLDA) and bidi-
rectional long short-term memory (Bi-LSTM) which has
been proven to have higher accuracy compared to the
previous models. Meanwhile, several works use relevant text
data instead of images or videos for assessing the traffic flow
parameters. .e data could be social networking data re-
trieved from the most relevant documents, reviews, and
tweets from social media and news articles. For example, in
[44], the authors propose the word embedding model to
interpret semantic meanings and a low-dimensional vector
of each word in the sentence. A fuzzy ontology-based lexicon
method is also exploited to increase the word embedding
model’s accuracy.

Besides these traffic flow variables, many other studies
also focus on improving information security while trans-
ferring data from edge devices to the cloud in ITS. .ere are
a number of ways in which the data reliability can be ex-
tended and enhanced. For example, Li et al. [10] apply the
watermark embedding and extraction technique to secure
the exchange data between devices and the cloud. A secure
management paradigm used for big data context is discussed
in [45]. Reference [46] presents a mobile edge architecture
supporting software defined system. .e authors in [47]
build reliable and stable clusters for transmitting data based
on trust degree estimation. In a similar attempt, a new AI-
based routing protocol [48] is introduced to increase the
efficiency and security of data in ITS.Meanwhile, the authors
in [49–51] exploit the blockchain technology for authenti-
cation and authorization, suitable for large-scale intelligent
applications.

3. Traffic Counting System

In this section, we broadly discuss how the proposed traffic
counting system works. First of all, Figure 1 shows the
architecture overview of our system, including its functional
components. In our vision, a low-cost camera integrating
with an edge device (single-board computers) could act as an
AI camera that effectively counts the number of running
vehicles on the street..en, the counting result is transferred
to a server on the cloud where the traffic information is
analyzed and interactively visualized. A block diagram given
in Figure 2 summarizes the detecting, tracking, and counting
vehicle operations on edge devices in the proposed system.
Compared with the traditional cloud paradigm, our ap-
proach significantly reduces the end-to-end latency and
consumed network resources. In more detail, our system is
composed of the following main components:

(a) USB Camera. It is directly plugged into a single-
board computer for constantly capturing the traffic
vehicles and extracting to high-quality video
streaming, which is the input of object detection
models running directly on edge devices. In our
experiment, the output video resolution is set at
720p.

(b) Edge Device. It is a central processing component
used to perform computational tasks. Edge devices
could be single-board computers with sufficient

Journal of Advanced Transportation 3

computational power (e.g., Nvidia Jetson Nano and
Google Coral Dev Board) to count the number of
vehicles in observed videos in two steps: (1) iden-
tifying vehicles in the video frames by using a deep
learning model and (2) assigning all vehicles specific
IDs and counting their occurrences. .en, the
counting results are transmitted to a cloud server for
further processing via MQTT protocol.

(c) ingsBoard Server. It is a cloud server used to store
and visualize the traffic information collected from
several edge devices [52]. .e server offers the ad-
ministrators a general view of traffic conditions in
different places.

(d) Flask. .is component is a micro web framework
written in Python. It is used to build a Live Video
Streaming Server to stream live videos from edge
devices to web browsers for administration tasks.

3.1. Vehicle Detecting. In this study, we retrained existing
models using the transfer learning technique instead of building
from scratch. Training a model with no computed weights or
bias may require a vast amount of computing time and training
data that is insufficient for edge computing [53]. In contrast,
transfer learning enables reusing a model that has been already
trained for a specific task. .e model is further trained by a
smaller dataset described in detail about a particular context.

Camera

Read
video

Stre
am

in
g re

su
lt

Process
video Vehicle detection

vehicle tracking

vehicle counting

Coral Dev Board/
Jetson Nano

Flask server

MQTT
protocol

Numbers of vehicles for each
type and their directions

Visualize dataThings board server

Figure 1: .e architecture overview of the proposed edge-based system for traffic flow detection. Vehicle detecting, tracking, and counting
are directly performed on edge devices (e.g., Google Coral Dev Board and Nvidia Jetson Nano).

Input
frames

Live video stream

Bounding
boxes,

classes, and IDs

Detector (SSD, YOLO)

Tracker (Deep SORT)

Counting
algorithm

Vehicle counting result

<frame_id> <object_id> <movement_id> <vehicle_class_id>

5 2 0 2

28 5 2 3

Figure 2:.e block diagram depicts the data flow in the proposed system..e video input goes through detector and tracker components to
create bounding boxes and identification before counting by our counting algorithm.

4 Journal of Advanced Transportation

.emodel’s efficiency is thus significantly increased and tightly
fits in the defined context. In the proposed system, we employed
TensorFlow object detection API (available at https://github.
com/tensorflow/models/tree/master/research/object_detection)
to retrain the model with a self-created Vietnamese vehicle
dataset. In detail, we examined six models for operating in-
ference object detection task on single-board computers: SSD
MobileNet V1 300× 300, SSD MobileDet 320× 320, SSD
MobileNet V2 320× 320, SSD MobileNet V2 FPNLite
320× 320, SSD MobileNet V2 FPNLite 640× 640, and SSD
MobileNet V1 FPN 640× 640models with checkpoint available
on TensorFlow Detection Model Zoo [54].

To decrease the model size and resource consumption
(CPU and RAM), we quantized the models with entirely 8-bit
fixed-point numbers from 32-bit floating-point numbers (in-
cluding weights and activation outputs). .is quantization
makes the model smaller and faster without significantly af-
fecting the neural network’s inference accuracy. We applied
either quantization-aware training (recommended) or full-in-
teger posttraining quantization for total compatibility with the
Edge TPU. In more detail, quantization-aware training utilizes
“fake” quantization nodes to replicate the effect of 8-bit values in
the neural network graph during the training process [55]. .e
model has better tolerance for lower precision values because
the 8-bit weights are adjusted through training instead of
converting later. Full-integer posttraining quantization esti-
mates the range of floating-point values in each network layer
using a small subset of data (extracted from either training or
evaluating datasets) [56].

In general, selecting the best vehicle detection model
according to both accuracy and speed is likely to be impossible
to obtain. .is may be explained by the fact that there are two-
stage detection methods (e.g., R-CNN, Fast R-CNN, Faster
R-CNN, and Mask R-CNN) detecting objects through two
steps: (1) the model suggests a set of regions of interest based on
a region proposal network; (2) the region proposals are dis-
patched to the channel for bounding-box regression as well as
object classification. Such models achieve the highest accuracy
rates, but they are often slow and require significant compu-
tational resources. On the other hand, the single-stage detectors
such as YOLO (You Only Look Once) and SSD (Single Shot
MultiBox Detector) ignore the region proposal phase and the
detection process is executed directly over a dense number of
possible locations..ey are thus faster and simpler than former
approaches, but their detection accuracy is slightly decreased. To
find the suitable vehicle detection models running on edge
devices, we empirically evaluate several object detection
methods (including YOLO family and SSD architecture) on
Coral Dev Board and Nvidia Jetson Nano devices. .e com-
parison results are reported in detail in Section 4.

3.1.1. YOLO. You Only Look Once (YOLO) is a network
specifically designed for fast and accurate real-time object
detection. Its detection accuracy is comparable with
common object detection algorithms, such as RetinaNet
and Faster-RCNN [57]. YOLO network is lightweight and
compact, making it suitable for real-time embedded
applications, especially executing directly the

classification and the localization in the image as a re-
gression problem [29]. Since 2016, different YOLO ver-
sions have been released, such as YOLO9000 [30],
YOLOv4 [32], YOLOv4-tiny [58], and YOLOv5 [33].
.ese versions gradually increase the general frame-
work’s accuracy. YOLOv4 and YOLOv5 not only have
high detection accuracy but also perform well with small
targets. Smaller models have also been released (e.g.,
YOLOv4-tiny and YOLOv5-small), suitable for AI ap-
plications on the edge devices and embedded systems.

In contrast to other region proposal classification net-
works (Fast R-CNN) which perform detection on different
region proposals in an image, YOLO does not seek interested
regions in the input image. It typically splits the image into a
19×19 grid cell in charge of predicting K bounding boxes.
.e overall architecture of the algorithm is illustrated in
Figure 3. .e network contains 24 convolutional layers and
then comes through two fully connected layers. Instead of
using the inception modules implemented by GoogLeNet,
the 1× 1 reduction layers followed by 3× 3 convolutional
layers are simply utilized.

3.1.2. Single Shot MultiBox Detectors. Single Shot MultiBox
Detector (SSD) is one of the most well-known deep learning
object detection methods. In SSD, the multiscale feature maps
for detection are employed, as shown in Figure 4. As a result,
with 300× 300 and 500× 500 images, SSD achieves 72.1%mAP
and 75.1%mAP, respectively, on VOC2007 test at 58 FPS on an
Nvidia Titan X, which outperforms Faster R-CNNmodels. SSD
algorithm has been developed by researchers on many different
backbone models as a feature extractor. .e backbone model is
typically a pretrained image classification network such as
MobileNet V1, V2, Inception, and MobileDet. MobileNet V1 is
an efficient neural network model for mobile and embedded
vision applications. It is based on depthwise separable convo-
lution that comprises two steps: depthwise convolution and
pointwise convolution. A single filter is applied to each input
feature map channel by depthwise convolution, and then the
pointwise convolution utilizes the 1× 1 convolution to combine
the outputs of the depthwise layer. Using MobileNet, there is
nine times less computation overhead than the standard con-
volution with only a slight reduction in the accuracy [60].
MobileNet V2 is an upgraded version ofMobileNet V1 by using
inverted residual blocks with bottlenecking features [61]. Its
number of parameters is significantly lower than that of the
original MobileNet V1. MobileDet is a novel image classifi-
cation model architecture attaining state-of-the-art results on
various mobile accelerators. It is a step backward from
depthwise convolution, which is considered asmore efficient for
edge devices and mobile processors. .e experimental results
show that MobileDet surpasses MobileNet V3 on the COCO
object detection tasks by 1.7mAP at comparable mobile CPU
inference latencies andMobileNet V2+SSDLite by 1.9mAP on
CPU [62].

3.2. Vehicle Tracking and Counting. Frame-by-frame analysis
of incoming video streams does not guarantee temporal

Journal of Advanced Transportation 5

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection

continuity in the determined objects, and thus counting
function cannot be immediately performed. Time-consistent
labeling of objects must be achieved between frames to provide
a reliable counting method for moving objects. In addition, the
method has to prevent undercounting (unidentified objects are
mistakenly identical) and overcounting (identical objects are
misidentified as distinct). In order to achieve this goal, we
employed an extension of amultiobject trackingmethod named
Deep SORT (the Simple Online and Realtime Tracking with a
Deep Association metric). An overview of the Deep SORT’s
components is illustrated in Figure 5. Deep SORT uses a
combination of Kalman Filter and Hungarian algorithm to
track the objects between frames consistently. Kalman Filter
predicts trajectory tracks, while the Hungarian algorithm is
responsible formatching the predicted trajectory tracks with the
objects in the frames. .e outstanding feature in Deep SORT is
to integrate an appearance descriptor, which is a wide residual
network, with two convolutional layers followed by six residual
blocks [63]. .is descriptor makes the tracker more robust
against object misses and occlusions, effectively reducing the
number of identity switches. Consequently, Deep SORT is well
suitable for real-time scenarios.

Combining with the tracking method, we developed a
novel algorithm to effectively count different vehicle
types after leaving the Region-of-Observation (ROO).
.e proposed algorithm consists of two steps:

(i) Step 1 is to determine whether the vehicle is inside or
outside the ROO. First of all, a horizontal line to the
right of each point of the bounding box is defined and
extended to infinity. We then count the number of
times the line intersects with polygon edges. A point is
considered to be inside the polygon if either counting of
intersections is odd or it lies on an edge polygon. In
contrast, the point is outside. In case at least one point
of the bounding box is within the polygon, we may
conclude that the bounding box is in the ROO area, as
shown in Figure 6.

(ii) Step 2 is to determine the direction of movement
(DOM) based on trajectory.

For one-way and two-way roads, the vehicle’s DOM is
selected by calculating the cosine similarity score be-
tween the trajectory of each vehicle and the predefined
DOMs. As shown in Figure 7, let x and y be two vector
pairs (AB, CD) and (AB, EF). We compute the cosine
similarity score between these vectors with the fol-
lowing equation:

similarity � cos(ϕ) �
x.y

|x| · |y|
, (1)

where |x| and |y| are the Euclidean norms of vectors
x and y. We then compare them to find the vehicle’s

Conv. layer
7 × 7 × 64-s-2
Maxpool layer
2 × 2-s-2

Conv. layer
3 × 3 × 192
Maxpool layer
2 × 2-s-2

Conv. layers
1 × 1 × 128
3 × 3 × 256
1 × 1 × 256
3 × 3 × 512
Maxpool layer
2 × 2-s-2

Conv. layers
1 × 1 × 256
3 × 3 × 512
1 × 1 × 512
3 × 3 × 1024
Maxpool layer
2 × 2-s-2

 ×4

Conv. layers
1 × 1 × 512
3 × 3 × 1024
3 × 3 × 1024
3 × 3 × 1024-s-2

 ×2

Conv. layers
3 × 3 × 1024
3 × 3 × 1024

Conv. layer Conv. layer

448

448

7

3
3

112

192 256 512

56 28

28

3
3

14

14 7

7

7

7

7

73
3

3
3

1024 1024 1024 4096 30

56
3
3

3

112

7

Figure 3: YOLO network architecture (from [31]).

MobileNet through
the last DSC module

300

38
19

19

10
5

5 3

3

1

1
10

38
300

3 512 1024

SSD 1

SSD 2

SSD 3

SSD 4 SSD 5

512 256 256 256

Extra feature layers

Figure 4: MobileNet-SSD network architecture (from [59]).

6 Journal of Advanced Transportation

DOM. Points C and D are the coordinates of the
center box of the first and last frames of objects
entering the ROO area. A set A, B, E, F is a list of
predefined points to describe DOMs.

For intersections, the cosine similarity approach is
ineffective because there are many similar directions.
.erefore, we proceed to compute the minimum
distance from the center point of the bounding box to
the edges of the polygon of the first and last frames that
appeared in the ROO area to determine the direction
of the vehicle’s movement. Figure 8 shows the process
of determining the vehicle’s DOMbased on calculating
the minimum distance method. Assuming that there is
a vehicle in ROO with the black and white circle
corresponding to the center point of the first frame and
the last frame of the recorded object, the min distances
between each of the two center points and the edges of
the polygon illustrated by two yellow lines in plot (b)
were calculated. We can see that the distance from the
black point (the center point of the first frame) to edge
A is the smallest distance implying that the vehicle
comes from the direction of edge A; similarly the
vehicle exits the ROO at the direction of edge D be-
cause the distance from thewhite point (center point of
the last frame) to edge D is the most minimal. Finally,
we can deduce that the vehicle moves from edge A to
edge D, corresponding to arrow number 2 in plot (a).

4. Results and Discussion

4.1. Dataset Generation. .is section presents the vehicle
detection dataset (VDD) produced for vehicle detection in
real-world conditions. .e dataset consists of 22 videos of
urban roads and intersection scenes recorded using several
traffic cameras. .ese videos are 23 minutes in length [64].
.e cameras are set up on the roadside and capture vehicles
moving into or leaving the different roads and intersec-
tions. Videos in VDD are taken from various angles, pe-
riods, and weather conditions. For each video, we split it
into an 18-minute video for training and a 5-minute video
for testing. We then cut training videos into image frames
and label them every 3 seconds. We obtain about 2,000
annotated images of approximately 10,000 objects. Fur-
thermore, we adopt the data augmentation technique to
increase the training set’s diversity by applying transfor-
mations such as image rotation and modifying brightness.
.e dataset set after augmentation is about 4700 annotated
images. In the final step, we convert these images and XML
files to be compatible with TensorFlow TFRecord for the
training process.

To enhance the counting accuracy, we classify the videos
into two scenes: one-way or two-way roads and intersec-
tions. We also define a Region-of-Observation (ROO) and
the direction of movement (DOM) for each video. ROO is
represented as a polygon, limiting the space to focus on
processing to traffic detection. DOM determines the possible
directions of movement of vehicles. Figure 9 illustrates six
representative scenes from the dataset with predefined ROO
(polygons with a red border) and DOM (possible directions
of movement indicated in the form of arrows). A list of
points for drawing the ROO area and direction arrows is
provided for each video.

4.2. Index of Performance. We evaluated the performance of
a model based on the following criteria: accuracy, FPS,
memory used, CPU usage, model size, GPU usage, and TPU
compatibility. Regarding the detection accuracy, we applied
COCO detection metrics officially used in several COCO
competitions. .is metric is slightly different from Pascal
VOC metrics in terms of implementation and additional
statistical reports such as mAP (mean Average Precision) for
IoU from 0.5 to 0.95 as well as precision/recall statistics for
small, medium, and large objects.

Point inside polygon

Point outside polygon

Bounding box outside polygon

Bounding box inside polygon

Figure 6:.emechanism is used to check whether a bounding box
is inside ROO or not.

Deep SORT

Kalman
Filter

prediction

Hungarian
algorithm (cascade
matching and IOU

matching)

Deep appearance
descriptor

Mahalanobis
distance

Association metrics

Detections

Figure 5: A block diagram depicts data flow in Deep SORT to track the vehicle between frames. Kalman Filter predicts trajectory tracks,
while the Hungarian algorithm matches the predicted trajectory tracks with the detected objects in the frames.

Journal of Advanced Transportation 7

Center point of bounding box of the first frame
appearing in ROO

Center point of bounding box of the last
frame appearing in ROO

Min distance to edges of polygon

Distance to edges of polygon

(a)

Center point of bounding box of the first frame
appearing in ROO

Center point of bounding box of the last
frame appearing in ROO

Min distance to edges of polygon

Distance to edges of polygon

(b)

Figure 8: Illustration of min distance calculation method in intersection scenarios: (a) an intersection with six moving directions labeled
from 1 to 6 (POO and predefined DOM) and (b) illustration of the min distances and distance to edges used to count the vehicles moving
following direction number 2 (calculating min distance).

Figure 7: Illustration of calculating cosine similarity score in one-way and two-way road scenarios.

1

(a)

1

2

(b)

Figure 9: Continued.

8 Journal of Advanced Transportation

For the counting task, we separately evaluated the
efficiency of the proposed counting algorithm from the
detection process. When a vehicle leaves the ROO region,
our system updates and logs the current counting result.
.e detected vehicle must belong to one of the four se-
lected vehicle types, and the vehicle must move in one of
the DOMs. We then summarize the total number of each
type of vehicle and their directions when exiting the ROO
in each testing video. Let ŷ and y be the system’s counting
result and the actual result from ground truth. Finally, we
calculate the error rate according to the following
formula:

Error �
|y − ŷ|

y
. (2)

4.3. Evaluation Results. .e proposed traffic counting sys-
temwas evaluated in two types of edge devices—first, a Coral
Dev Board supported TPU (Section 4.3.1) and then Jetson
Nano Board supported GPU (Section 4.3.2). .e counting
result was also reported at the end of the section.

4.3.1. On Coral Dev Board. We evaluate running models on
embedded CPU: quad-core Cortex-A53 @ 1.5GHz in case of
using or without using Edge TPU coprocessor to compare
the results in two cases. First, we retain the available models
with our datasets until the models were converged. By
checking the weight file saved during training, we select the
highest accuracy for each model. For compatibility with the
Edge TPU, all models are quantized to the nearest 8-bit
fixed-point numbers using the TensorFlow Model Optimi-
zation Toolkit [65]. .e first two models are quantized using

the quantization-aware training technique, and the fol-
lowing four models are applied using the full-integer
posttraining quantization method. .ese models are then
compiled with the Edge TPU compiler to run on Edge TPU
[66]. Next, we run the evaluation models on our traffic
videos (1280× 720 resolution) and obtain the results pre-
sented in Table 1. We can see that, after being converted to
an 8-bit fully quantized TFLite model, the model size has
been significantly reduced (2 to 4 times depending on the
model) compared to the original size. .e model size is
reported about 3–5Mb to be suitable for deploying on
embedded devices. Among the models, the smallest model
after being converted is the SSD MobileDet 320× 320 with
3.3Mb (TFLite model) and 4.31Mb (TFLite model com-
patible with Edge TPU).

As shown from the evaluation, many models achieve
high accuracy, such as SSD MobileDet 320× 320, SSD
MobileNet V2 FPNLite 320× 320, SSD MobileNet V2
FPNLite 640× 640, and SSD MobileNet V1 FPN 640× 640
with mean Average Precision mAP@0.5 out of 0.9. .e
highest and lowest detection accuracies are reported to be
0.963 and 0.768 at models SSDMobileNet V1 FPN 640× 640
and SSD MobileNet V1 300× 300, respectively. .e other
important factor in evaluating a Traffic AI camera’s effi-
ciency in real time is frames per second (FPS). Our ex-
periments show that the models running on Edge TPU have
a much higher speed than the ones running on embedded
CPU only. SSD MobileNet V1 300× 300, SSD MobileDet
320× 320, and SSDMobileNet V2 320× 320 have the highest
detection speed with 27.5, 26.8, and 25 FPS, respectively.
.ese figures demonstrate that these models are suitable for
real-time applications. SSD MobileNet V2 FPNLite
320× 320 and SSD MobileNet V2 FPNLite 640× 640 give

1

2

(c)

1

2

3

(d)

1

2

3

4

5

6

(e)

1

2

3

4

5

6

7

8

9

10

11

12

(f)

Figure 9: Different scenarios captured from VDD with predefined ROO and DOM. (a) VDD Scene-1, (b) VDD Scene-2, (c) VDD Scene-3,
(d) VDD Scene-4, (e) VDD Scene-5, and (f) VDD Scene-6.

Journal of Advanced Transportation 9

not much higher FPS when running on Edge TPU (7.9 and
2.3 compared to 2.45 and 0.63). SSD MobileNet V1 FPN
640× 640 almost shows no difference between Edge TPU
and embedded CPUwith low FPS of only 0.08 when running
on Edge TPU. By deeper analysis, we figure out that, after
converting to the TFLite model and compiling to run on
Edge TPU, not all models are compatible with operations
supported on TFLite [67] and Edge TPU [68].

In case the models could not satisfy all the requirements
to run on Edge TPU, they could be further compiled to
enhance the performance. At the first point in the model
diagram where the unsupported operation occurs, the
compiler splits the chart into two parts. .e first part of the
diagram that contains only supported operations is com-
piled into a custom operation that executes on Edge TPU,
and the others are performed on CPU. Currently, the Edge
TPU compiler cannot partition the model more than once.
When an unsupported operation happens, the operations
and the following tasks are executed on the CPU regardless
of the subsequent supported operations. .at means the
percentage of operations performed on Edge TPU and its
order may affect the model’s inference time running on the
Coral Dev Board. When the models are executed on the
board, memory and CPU usage are stable. Average con-
sumed memory ranges from 17% to 27%, and CPU usage is
below 35% when running inference on Coral Dev Board
(memory: 1GB, CPU: quad-core Cortex-A53, Cortex M4F).
During the inference phase, the average CPU temperature
fluctuates around 55 degrees Celsius, and the temperature of
TPU remains around 41 degrees Celsius.

From our evaluation results, we highly recommend
using the SSD MobileDet 320× 320 model in the vehicle
detection context. Although this model does not give the
highest accuracy, it provides the highest performance with
an accuracy of 92.1% and the average inference time of
37,313ms (equivalent to average FPS of 26.8). Initially, we
retrain the SSD MobileDet model at about 150000 steps.
During the training, we use TensorBoard to observe the
changes in the loss and the accuracy of each stage’s weight on
the test set. At about 100000 steps, the model tends to
converge, mAP@0.5 peaks at 92.1% and then stops in-
creasing, and total loss at this step reaches 0.312, as shown in

Figures 10 and 11 . We extract the saved weight file at step
100000, and then we convert the model to a TFLite format
before compiling it to Edge TPU.

4.3.2. On Jetson Nano. We retrained the models SSD
MobileNet V2, SSD Inception V2, YOLOv4, Tiny YOLOv4,
and YOLOv5-small with our datasets and obtained pa-
rameters (mAP) after training. Unlike Coral Dev Board that
performs inference in INT8 precision, Jetson Nano uses
FP16 or FP32 precision. As a result, there is no need for the
quantization step for the inference. However, these models
should be optimized and restructured using TensorRT for
high throughput, low latency, and a low device-memory
footprint. .e workflow consists of the following steps: we
convert the TensorFlow model to the UFF format and the
Darknet model to the ONNX format, which is compatible
with the TensorRTengine. We reported several performance
parameters of models (e.g., throughput, accuracy, memory
usage, and CPU-GPU) in Table 2.

According to Table 2, at mAP@0.5, YOLOv4 (0.939),
YOLOv5-small (0.937), and Tiny YOLOv4 (0.899) are
among the most accurate models, but their FPS are lower
than those of SSDMobileNet V2 and SSD Inception V2. To
achieve the model’s highest mAP, we train each model
with the distinctive number of loops due to their archi-
tectures’ differences. In particular, the models based on
Darknet’s framework are trained between 5 and 7 hours.
Meanwhile, TensorFlow models take 10 to 12 hours to
reach the most accurate mAP. During the training for
YOLO’s models, it is crucial to adjust the parameters such
as batch size, subdivisions, and max batches to be com-
patible with the datasets. We print out each model’s FPS
and recognize that SSD MobileNet V2, SSD Inception V2,
and Tiny YOLOv4 are groups of models with much higher
FPS and reported about 24 FPS, 19 FPS, and 20.04 FPS,
respectively. We then visualize all stats relevant to
throughput and mAP before concluding that Tiny
YOLOv4 and SSD Inception V2 models are the most
suitable solutions.

It is noticeable from Figure 12 that the models associated
with the high level of accuracy hardly linked with equivalent

Table 1: Experimental results about running models on Coral Dev Board.

Model

Model size (Mb) Accuracy FPS Memory (%) CPU usage (%)

TFLite
Edge TPU
TFLite

mAP@0.5 :
0.95

mAP@
0.5

TFLite
Edge TPU
TFLite

TFLite and Edge TPU
TFLite (%)

TFLite
Edge TPU
TFLite

SSD MobileNet V1
300× 300

5.37 5.75 0.445 0.768 2.6 27.5 17.8 26% 34.7%

SSD MobileDet
320× 320

3.33 4.31 0.621 0.921 1.8 26.8 19.7 25.8% 33.3%

SSD MobileNet V2
320× 320

4.58 5.18 0.462 0.794 3.2 25 18.3 26.2% 32.1%

SSD MobileNet V2
FPNLite 320× 320

3.68 3.88 0.623 0.906 2.45 7.9 18 26.9% 26.7%

SSD MobileNet V2
FPNLite 640× 640

4.26 4.74 0.754 0.951 0.63 2.3 19.1 26.4% 24.8%

SSD MobileNet V1 FPN
640× 640

30 30.7 0.781 0.963 0.07 0.08 26.8 25.2% 25.1%

10 Journal of Advanced Transportation

height in FPS; on the other hand, the models involved with
relatively low accuracy level ended up in high FPS. In both
CPU and GPU modes, the obtained values are not too
different. Discovering the proper model for vehicle detection
is about finding the appropriate trade-off between accuracy
and performance, satisfying the requirements. In Figure 12,
among the various models investigated in this research, Tiny
YOLOv4 and SSD Inception V2 are the best trade-offs
between mAP and throughput (FPS).

4.3.3. Counting Result. We run the proposed counting
algorithm on the preprepared testing videos. Figure 13 is a

screenshot of Camera 06 belonging to the set of testing
videos, and counting results are shown in Table 3. Based on
the results, the error parameter has an absolute value
stretching from 6.4% to 25%. Generally, we found that the
larger the sample volume, the lower the absolute number of
the error. For example, in direction 1, the vehicle numbers
were counted as 16, 165, 3, and 35. .e errors detected
using the experimental counting algorithm were 20%, 6.4%,
25%, and 14.6%, respectively. .e correlation between
sample volumes and error rate suggests that our counting
accuracy could be increased when the sample volume is
large enough.

mAP
Tag: detectionboxes_precision/mAP

0.6

0.4

0.2

0

0 20k 40k 60k 80k 100k 120k

(a)

mAP@.50IOU
Tag: detectionboxes_precision/mAP@.50IOU

0.8

1

0.6

0.4

0.2

0

0 20k 40k 60k 80k 100k 120k

(b)

Figure 10: Accuracy of SSD MobileDet model during training. (a) mAP@0.5 : 0.95; (b) mAP@0.5.

Total_loss
Tag: loss/total_loss

1.2

1.6

0.8

0.4

0

0 20k 40k 60k 80k 100k 120k

(a)

Classification_loss
Tag: loss/classification_loss

0.8

0.6

0.4

0.2

0

0 20k 40k 60k 80k 100k 120k

(b)

Figure 11: SSD MobileDet training loss curve. (a) Total loss. (b) Classification loss.

Table 2: Experimental results about running models on Jetson Nano.

Model Framework Size (MB) mAP@0.5 mAP@0.5:0.95 MEM (GB) FPS CPU (%) GPU (%)

1 YOLOv4 (416× 416) Darknet 296.2 0.939 0.694 2.516 4.09 27.6 99
2 Tiny YOLOv4 (416× 416) Darknet 32.7 0.899 0.619 1.905 20.04 23.3 88
3 YOLOv5-small (640× 640) Darknet 14.5 0.937 0.632 3.1 4.02 58.8 87
4 SSD MobileNet V2 (300× 300) TensorFlow 67.8 0.796 0.449 2.217 24 30.1 94
5 SSD Inception V2 (300× 300) TensorFlow 100.2 0.840 0.481 2.043 19 33.2 99

Journal of Advanced Transportation 11

5. Conclusion

In this study, we introduced an edge-based traffic counting
system..e performance evaluation of various deep learning
object detection models, which directly perform real-time
vehicle detection in Jetson Nano and Coral Dev Board, is
also analyzed and discussed. .e evaluation results cover
several performance indices (e.g., model size, accuracy, FPS,
memory, and CPU usage) that are useful for selecting
minimum hardware cost to deploy a traffic counting ap-
plication to edge devices. Moreover, a counting algorithm

and optimization methods are adopted to reduce model size
while maintaining high detection accuracy. .e experiment
results show that SSD MobileDet running on Coral Dev
Board gives the best correlation between accuracy (92.1%)
and inference time (37,313ms) compared to the other
models, but Jetson Nano is more popular, compatible with
more types of architect models, and also cheaper than Coral
Dev Board ($99 versus $129.99 of Coral Dev). Our future
work will focus on further optimizing the vehicle detection
model while maintaining low inference time. .is could be
done by employing novel object detection methods, such as

0 10 20 30 40
0.7

0.8

0.9

1

YOLOv4 YOLOv5-small

SSD mobilenet V2

Tiny YOLOv4

SSD inception V2

Throughput (FPS)

m
A

P
@

0.
5

Figure 12: .e mean average precision of evaluated models across throughput.

Direction 1 Direction 2

Figure 13: Tracking result running on board of Camera 06 belonging to the set of testing videos.

Table 3: Evaluating experimental traffic counting result on Camera 06.

Type of vehicle
Direction 1 Direction 2

Experimental Actual Error (%) Experimental Actual Error (%)

Type 1 (car, taxi,. . ..) 16 20 −20 25 31 −19.4
Type 2 (motorcycle, bicycle,. . .) 165 155 6.4 109 121 −11.6
Type 3 (bus, coach bus,. . .) 3 4 −25 4 5 −20
Type 4 (truck, container,. . .) 35 41 −14.6 31 38 −18.4

12 Journal of Advanced Transportation

vision transformer architecture. We also plan to include
layering plate identification on the top of current vehicle
detection to recognize the vehicle identity that is very useful
for traffic management features.

Data Availability

.e captured traffic video data used to support the findings
of this study are available from the corresponding author
upon request.

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

Acknowledgments

.is research was funded by Vietnam National University
Ho Chi Minh City (VNU-HCM) under Grant no. DSC2021-
26-04.

References

[1] Y. Lin, P. Wang, and M. Ma, “Intelligent transportation
system (its): concept, challenge and opportunity,” in Pro-
ceedings of the 2017 IEEE 3rd International Conference on Big
Data Security on Cloud (Bigdatasecurity), IEEE International
Conference on High Performance and Smart Computing
(Hpsc), and IEEE International Conference on Intelligent Data
and Security (Ids), pp. 167–172, IEEE, Beijing, China, May
2017.

[2] M. A. Khan, S. Abbas, Z. Hasan, and A. Fatima, “Intelligent
transportation system (ITS) for smart-cities using Mamdani
Fuzzy inference system,” International Journal of Advanced
Computer Science and Applications, vol. 19, no. 2, 2018.

[3] B. B. Gupta and M. Quamara, “An overview of internet of
things (IoT): architectural aspects, challenges, and protocols,”
Concurrency and Computation: Practice and Experience,
vol. 32, no. 21, 2018.

[4] S. H. Shah and I. Yaqoob, “A survey: internet of things (IOT)
technologies, applications and challenges,” in Proceedings of
the 2016 IEEE Smart Energy Grid Engineering (SEGE),
pp. 381–385, IEEE, Oshawa, Canada, August 2016.

[5] A. Sumalee and H. W. Ho, “Smarter and more connected:
future intelligent transportation system,” Iatss Research,
vol. 42, no. 2, pp. 67–71, 2018.

[6] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani,
“Deep learning for IoT big data and streaming analytics: a
survey,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 4, pp. 2923–2960, 2018.

[7] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar,
N. Seliya, R. Wald, and E. Muharemagic, “Deep learning
applications and challenges in big data analytics,” Journal of
Big Data, vol. 2, no. 1, pp. 1–21, 2015.

[8] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies
for internet of things: a primer,” Digital Communications and
Networks, vol. 4, no. 2, pp. 77–86, 2018.

[9] N. Kumar, V. Poonia, B. B. Gupta, and M. K. Goyal, “A novel
framework for risk assessment and resilience of critical in-
frastructure towards climate change,” Technological Fore-
casting and Social Change, vol. 165, p. 120532, 2021.

[10] D. Li, L. Deng, B. Bhooshan Gupta, H. Wang, and C. Choi, “A
novel CNN based security guaranteed image watermarking

generation scenario for smart city applications,” Information
Sciences, vol. 479, pp. 432–447, 2019.

[11] A. Hanif, A. B. Mansoor, and A. S. Imran, “Performance
analysis of vehicle detection techniques: a concise survey,” in
Trends and Advances in Intelligent Systems and Computing,
pp. 491–500, Springer, Berlin, Germany, 2018.

[12] V. Lempitsky and A. Zisserman, “Learning to count objects in
images,” in Proceedings of the 23rd International Conference
on Neural Information Processing Systems-Volume 1,
pp. 1324–1332, Vancouver, Canada, December 2010.

[13] L. Fiaschia, U. Koethe, R. Nair, and F. A. Hamprecht,
“Learning to count with regression forest and structured
labels,” in Proceedings of the 21st International Conference on
Pattern Recognition (ICPR2012), Tsukuba, Japan, November
2012.

[14] M. Liang, X. Huang, C.-H. Chen, X. Chen, and A. Tokuta,
“Counting and classification of highway vehicles by regression
analysis,” IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 5, pp. 2878–2888, 2015.

[15] X. Liu, Z. Wang, J. Feng, and H. Xi, “Highway vehicle
counting in compressed domain,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3016–3024, Las Vegas, NV, USA, June 2016.

[16] Z. Wang, X. Liu, J. Feng, J. Yang, and H. Xi, “Compressed-
domain highway vehicle counting by spatial and temporal
regression,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 29, 2019.

[17] H. Tayara, K. G. Soo, and K. T. Chong, “Vehicle detection and
counting in high-resolution aerial images using convolutional
regression neural network,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3016–3024, Las Vegas, NV, USA, June 2016.

[18] S. Zhang, G. Wu, J. P. Costeira, and J. M. F. Moura, “FCN-
rLSTM: deep spatio-temporal neural networks for vehicle
counting in city cameras,” in Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV), Venice,
Italy, October 2017.

[19] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

[20] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: speeded up
robust features,” in Proceedings of the Computer Vision-ECCV
2006, pp. 404–417, Springer, Graz, Austria, May 2006.

[21] H. Tayara, K. G. Soo, and K. T. Chong, “Histograms of
oriented gradients for human detection,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), San Diego, CA, USA, June
2005.

[22] R. Lienhart and J. Maydt, “An extended set of Haar-like
features for rapid object detection,” in Proceedings of the
International Conference on Image Processing, pp. 900–903,
Rochester, NY, USA, September 2002.

[23] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic seg-
mentation,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 580–587, Columbus,
OH, USA, June 2014.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling
in deep convolutional networks for visual recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 9, pp. 1904–1916, 2015.

[25] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 1440–1448,
Santiago, Chile, December 2015.

Journal of Advanced Transportation 13

[26] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards
real-time object detection with region proposal networks,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 39, pp. 1137–1149, 2016.

[27] Z. Dai, H. Song, X.Wang et al., “Video-based vehicle counting
framework,” IEEE Access, vol. 7, pp. 64460–64470, 2019.

[28] W. Liu, D. Anguelov, D. Erhan et al., “SSD: single shot
multiBox detector,” in Proceedings of the Computer Vision-
ECCV 2016, pp. 21–37, Springer, Amsterdam, .e Nether-
lands, October 2016.

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, real-time object detection,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 779–788, Las Vegas, NV, USA, June 2016.

[30] J. Redmon and A. Farhadi, “YOLO9000: better, faster,
stronger,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7263–7271, Honolulu, HI,
USA, July 2017.

[31] J. Redmon and A. Farhadi, “YOLOv3: an incremental im-
provement,” in Proceedings of the Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, June 2018.

[32] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4:
optimal speed and accuracy of object detection,” 2020, https://
arxiv.org/abs/2004.10934.

[33] G. Jocher, K. Nishimura, T. Mineeva, and R. Vilariño,
YOLOv5, 2020.

[34] A. Dame and E. Marchand, “Optimal detection and tracking
of feature points using mutual information,” in Proceedings of
the 16th IEEE International Conference on Image Processing
(ICIP), pp. 3601–3604, Cairo, Egypt, November 2009.

[35] C. Choi, T. Wang, C. Esposito, B. B. Gupta, and K. Lee,
“Sensored semantic annotation for traffic control based on
knowledge inference in video,” IEEE Sensors Journal, vol. 21,
p. 1, 2021.

[36] R. Zhao and X. Wang, “Counting vehicles from semantic
regions,” IEEE Transactions on Intelligent Transportation
Systems, vol. 14, no. 2, pp. 1016–1022, 2013.

[37] R. Ke, Z. Li, S. Kim, J. Ash, Z. Cui, and Y. Wang, “Real-time
bidirectional traffic flow parameter estimation from aerial
videos,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 4, 2016.

[38] U. Gopikrishnan and R. Jose, “DriveCare: a real-time vision
based driver drowsiness detection using multiple convolu-
tional neural networks with kernelized correlation filters
(MCNN-KCF),” in Proceedings of the 2020 IEEE 5th Inter-
national Conference on Computing Communication and
Automation (ICCCA), Greater Noida, India, October 2020.

[39] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple
online and realtime tracking,” pp. 3464–3468, 2016, https://
arxiv.org/abs/1602.00763.

[40] N. Wojke, A. Bewley, and D. Paulus, “Simple online and
realtime tracking with a deep association metric,” pp. 3645–
3649, 2017, https://arxiv.org/abs/1703.07402.

[41] R. Ke, Z. Li, J. Tang, Z. Pan, and Y. Wang, “Real-time traffic
flow parameter estimation from UAV video based on en-
semble classifier and optical flow,” IEEE Transactions on
Intelligent Transportation Systems, vol. 20, pp. 54–64, 2018.

[42] Z. Gao, R. Zhai, P. Wang et al., “Synergizing appearance and
motion with low rank representation for vehicle counting and
traffic flow analysis,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, pp. 2675–2685, 2017.

[43] F. Ali, A. Ali, M. Imran, R. A. Naqvi, M. H. Siddiqi, and
K.-S. Kwak, “Traffic accident detection and condition analysis

based on social networking data,” Accident Analysis & Pre-
vention, vol. 151, p. 105973, 2021.

[44] F. Ali, D. Kwak, P. Khan et al., “Transportation sentiment
analysis using word embedding and ontology-based topic
modeling,” Knowledge-Based Systems, vol. 174, pp. 27–42,
2019.

[45] C. L. Stergiou, K. E. Psannis, and B. B. Gupta, “IoT-based big
data secure management in the fog over a 6G wireless net-
work,” IEEE Internet of ings Journal, vol. 8, no. 7, 2020.

[46] Y. Jararweh, M. Alsmirat, M. Al-Ayyoub et al., “Software-
defined system support for enabling ubiquitous mobile edge
computing,” e Computer Journal, vol. 60, no. 10,
pp. 1443–1457, 2017.

[47] F. Mirsadeghi, M. K. Rafsanjani, and B. B. Gupta, “A trust
infrastructure based authentication method for clustered
vehicular ad hoc networks,” Peer-to-Peer Networking and
Applications, vol. 13, pp. 1–17, 2020.

[48] H. Fatemidokht, M. K. Rafsanjani, B. B. Gupta, and
C.-H. Hsu, “Efficient and secure routing protocol based on
artificial intelligence algorithms with UAV-assisted for ve-
hicular ad hoc networks in intelligent transportation systems,”
IEEE Transactions on Intelligent Transportation Systems,
pp. 1–13, 2021.

[49] C. Esposito, M. Ficco, and B. B. Gupta, “Blockchain-based
authentication and authorization for smart city applications,”
Information Processing & Management, vol. 58, no. 2,
p. 102468, 2021.

[50] Mamta, B. B. Gupta, K. -C. Li, V. C. M. Leung, K. E. Psannis,
and S. Yamaguchi, “Blockchain-assisted secure fine-grained
searchable encryption for a cloud-based healthcare cyber-
physical system,” IEEE/CAA Journal of Automatica Sinica,
2021.

[51] A. Al-Qerem, M. Alauthman, A. Almomani, and B. B. Gupta,
“IoT transaction processing through cooperative concurrency
control on fog-cloud computing environment,” Soft Com-
puting, vol. 24, no. 8, pp. 5695–5711, 2020.

[52] L. T. De Paolis, V. De Luca, and R. Paiano, “Sensor data
collection and analytics with thingsboard and spark
streaming,” in Proceedings of the 2018 IEEE Workshop on
Environmental, Energy, and Structural Monitoring Systems
(EESMS), pp. 1–6, IEEE, Salerno, Italy, June 2018.

[53] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A
survey on deep transfer learning,” in Artificial Neural Net-
works and Machine Learning, pp. 270–279, Springer, Cham,
Switzerland, 2018.

[54] Tensorflow, “Tensorflow 2 detection model Zoo,” 2020,
https://github.com/tensorflow/models/blob/master/research/
object_detection/g3doc/tf2_detection_zoo.md.

[55] R. Krishnamoorthi, “Quantizing deep convolutional networks
for efficient inference: a whitepaper,” 2018, https://arxiv.org/
abs/1806.08342.

[56] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius,
“Integer quantization for deep learning inference: principles
and empirical evaluation,” 2020, https://arxiv.org/abs/2004.
09602.

[57] T. Y. Ross and G. Dollár, “Focal loss for dense object de-
tection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2980–2988, Honolulu, HI,
USA, July 2017.

[58] Z. Jiang, L. Zhao, S. Li, and Y. Jia, “Real-time object detection
method based on improved YOLOv4-tiny,” 2020, https://
arxiv.org/abs/2011.04244.

[59] S. Arabi, A. Haghighat, and A. Sharma, “A deep learning
based solution for construction equipment detection: from

14 Journal of Advanced Transportation

https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/1602.00763
https://arxiv.org/abs/1602.00763
https://arxiv.org/abs/1703.07402
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://arxiv.org/abs/1806.08342
https://arxiv.org/abs/1806.08342
https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2011.04244
https://arxiv.org/abs/2011.04244

development to deployment,” 2019, https://arxiv.org/abs/
1904.09021.

[60] A. G. Howard, M. Zhu, B. Chen et al., “Efficient convolutional
neural networks for mobile vision applications,” 2017, https://
arxiv.org/abs/1704.04861.

[61] A. Howard, A. Zhmoginov, L. C. Chen, M. Sandler, and
M. Zhu, “Inverted residuals and linear bottlenecks: mobile
networks for classification, detection and segmentation,”
2018, https://arxiv.org/abs/1801.04381.

[62] Y. Xiong, H. Liu, S. Gupta et al., “Mobiledets: searching for
object detection architectures for mobile accelerators,” 2020,
https://arxiv.org/abs/2004.14525.

[63] X. Hou, Y. Wang, and L. P. Chau, “Vehicle tracking using
deep SORTwith low confidence track filtering,” in Proceedings
of the 2019 16th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS), pp. 1–6, IEEE,
Taipei, Taiwan, September 2019.

[64] “AI challenge Hochiminh City example,” 2020, https://github.
com/hcmcaic/ai-challenge-2020.

[65] Tensorflow, “TensorFlow model optimization,” 2021, https://
www.tensorflow.org/model_optimization/guide.

[66] Google, “Edge TPU compiler,” Google LLC, Mountain View,
CA, USA, 2020, https://coral.ai/docs/edgetpu/compiler/
#system-requirements.

[67] Tensorflow, “TensorFlow lite and TensorFlow operator
compatibility,” 2021, https://www.tensorflow.org/lite/guide/
ops_compatibility.

[68] Google, “All operations supported by the Edge TPU and any
known limitations,” Google LLC, Mountain View, CA, USA,
2020, https://coral.ai/docs/edgetpu/models-intro/#supported-
operations.

Journal of Advanced Transportation 15

https://arxiv.org/abs/1904.09021
https://arxiv.org/abs/1904.09021
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/2004.14525
https://github.com/hcmcaic/ai-challenge-2020
https://github.com/hcmcaic/ai-challenge-2020
https://www.tensorflow.org/model_optimization/guide
https://www.tensorflow.org/model_optimization/guide
https://coral.ai/docs/edgetpu/compiler/#system-requirements
https://coral.ai/docs/edgetpu/compiler/#system-requirements
https://www.tensorflow.org/lite/guide/ops_compatibility
https://www.tensorflow.org/lite/guide/ops_compatibility
https://coral.ai/docs/edgetpu/models-intro/#supported-operations
https://coral.ai/docs/edgetpu/models-intro/#supported-operations

