Towards an Adaptive Distributed Multimedia
Streaming Server Architecture Based on
Service-oriented Components

Roland Tusch

Institute of Information Technology, Klagenfurt University, Austria
roland@itec.uni-klu.ac.at

Abstract. This paper presents an adaptive distributed multimedia stream-
ing server architecture (ADMS) which explicitly controls the server-
layout. It consists of four types of streaming server components, which all
provide dedicated services in an arbitrary number of instances on an ar-
bitrary number of server hosts. Vagabond?2 is used as the underlying mid-
dleware for component adaptation. It is shown, how the CORBA-based
components have to be declared in order to run on top of Vagabond2.
Finally, inter-component dependencies are pointed out, which have to be
taken into account during component adaptations.

1 Introduction

Current distributed multimedia servers are monolithic and performance-
optimized in order to cope with thousands of simultaneous client requests.
However, in case of increasing numbers of clients in heterogenous envi-
ronments, it is usually not the server, but the network that becomes a
bottleneck. Since server implementations are not component-based, they
have no chance to cope with this problem and might reject client requests
due to network resource shortages. From the client’s point of view, one
solution to this problem is the usage of a proxy-server. However, this ap-
proach has only limited power, as the server has no explicit control over
client-side proxies.

Component-oriented programming has shown to be a major improve-
ment in implementing complex distributed systems, allowing to build in-
dependent pieces of software that can be reused and combined in dif-
ferent ways. A number of software components for building distributed
server applications like distributed web services based on Enterprise Java-
Beans[1], DCOM]2], the .NET framework, or CORBA’s Component Model
(CCM)[3], exists. Much less effort has been done in building components
for distributed multimedia streaming services. There are two key differ-
ences between multimedia and non-multimedia services. First, a multime-
dia streaming service imposes real-time constraints on delivering media

data to the clients. Second, the amount of generated network traffic and
the time periods for serving clients are usually orders of magnitude bigger
than in the case of non-multimedia services. This is why existing com-
ponents originally built for distributed web services usually can not be
reused for building distributed multimedia services.

Components for real-time server applications also require a middle-
ware that enables for guaranteed or predicted component adaptation
times, i.e. times for migrating or replicating a server component from
one server host to another. Currently, there is no such middleware sys-
tem available for operation in internet settings. Existing systems like
e.g. Jini[4] or Symphony[5] only provide means for best-effort compo-
nent adaptations. They rely on the existence of a network of reasonable
speed and latency. The adaptive distributed multimedia streaming server
architecture proposed in [6], which serves as the fundament for this work,
is based on Vagabond2[7]. Vagabond2 is a CORBA-based middleware
that enables for dynamic adaptations of so-called adaptive applications.
An adaptive application is a service-based component which provides the
necessary information to be run and managed on a remote Vagabond?2
host. Similar to the Network QoS Broker of the MASA system in mo-
bile environments[8], Vagabond2 bases on a resource broker component
which translates client request demands into network and host resource
demands. Network and host resource availabilities of all Vagabond?2 server
hosts are measured periodically and the measured data is used for sta-
tistical predictions of resource abilities in cases of required component
adaptations.

This paper explores the building blocks of an adaptive distributed
multimedia streaming server architecture, called ADMSJ[6]. It presents the
minimum decomposition of a distributed streaming server architecture,
which yet allows to construct flexible demand-oriented streaming services
in internet settings. Each of the four distinguished CORBA-based com-
ponents provides clearly defined interfaces and can be combined in an
arbitrary number, allocated on a dynamic number of server nodes. The
number of dependent component instances defines a virtual multimedia
streaming server cluster. Its size may grow and shrink dynamically over
time, depending on QoS requirements derived from client requests, as well
as host and network resource availabilities.

2 Service-oriented Components of a Distributed
Multimedia Streaming Server

Before discussing the server components of an adaptive distributed mul-
timedia streaming server in detail, a brief connection to the ADMS run-
time environment including its service-based middleware Vagabond?2 is
provided.

2.1 AdaptiveApplication: The Service-oriented Component
Interface of Vagabond2

The runtime environment for an adaptive multimedia streaming server
could look like the one illustrated in figure 1, as proposed in [6]. It provides
means for non-real-time component management, and real-time compo-
nent interactions.

Adaptive Distributed Multimedia Streaming Server (ADMS)

Management Interface Senvice Interface

Wanagement Plans

Vagabond?2 Adaptive Real-time
Javabased Communication CORBA-ORB
Java2 Runtime CORBA-ORE Ervironment (ACE) TAOQ

Real-time Operating System

Fig. 1. The ADMS Runtime Environment

The component-based streaming server ADMS builds on top of a man-
agement plane and a service plane. The management plane interfaces
to Vagabond2, which itself requires its runtime environment including a
Java-based CORBA ORB for performing best-effort component adapta-
tions. On the other hand, the service plane allows server components to
directly interact by taking into account real-time constraints. Thus, the
service plane is constituted by the native component implementations
based on e.g. ACE and the TAO real-time CORBA ORBI9].

Vagabond?2 allows to specify an adaptive service component by deriv-
ing it from the CORBA interface AdaptiveApplication|7,6]. Here the terms
application and service are considered synonymously. The key function-
ality of this interface is the getApplicationInfo() method, which allows
to dynamically request the binaries of the service component, as well as
a possibly dynamic set of files, upon which the component depends on.

Figure 2 illustrates this connection as an excerpt of Vagabond2’s IDL
specification.

module vagabond?2 |
#f exception and struct declarations ...
interface Applicationinfo |
string getApplicationiName);
string gettainClassMamel);
OctetSeq getApplication AR() raises (ServerlOException),
OctetSeq getDependentFilesZIP() raises (ServerlOException),

i

interface AdaptiveApplication |
w0id start(in StringSeq params) raises (ServiceAlreadyStartedExc epton);
woid stop() raises (ServiceMotStartedException);
[F": ApplicationInfo getApplicationInfoi);
hoolean isldlel),
ClientSeq getClients(),
woid setLocked(in boolean locked),
boolean isLocked();
};
[

Fig. 2. Vagabond2’s Core Interfaces for Adaptive Service Components

The getApplicationJAR() method indicates that Vagabond2’s imple-
mentation is Java-based, allowing for a dynamic replication/migration of
the component based on byte code. As a result, each adaptive service com-
ponent has to provide a Java implementation of its specification. However,
using JNI, the service of the component can use a native implementation
of it in order to handle real-time issues.

2.2 The Building Blocks of an ADMS

When designing an adaptive distributed streaming server, the following
two guidelines have to be taken into account. First, each adaptive compo-
nent must be independent to a certain extent, reusable, adaptable, com-
binable, and mowvable. And second, a component should fulfill a complete
dedicated task for a certain usage scenario. E.g. during a data acquisition
scenario a media stream has to be stored on a set of server nodes. To
perform this operation in a distributed environment, one component is
needed to receive the media stream, split the stream into smaller pieces,
and distribute the pieces among a set of data nodes. The data nodes them-
selves are equipped with a component for storing and retrieving pieces
of media data. Thus, a distribution component can be combined with a

number of storage components, which all run on separate server nodes.
The second guideline implies a beneficial side-effect that the number of
distinct components is kept small, since the number of usage scenarios is
quite limited.

Following these guidelines, four basic building blocks have been iden-
tified to constitute an ADMS: data distributors (DDs), data managers
(DMs), data collectors (DCs), and cluster managers (CMs). Each of these
components can be replicated or migrated on demand, and provides ser-
vices to other components. Figure 3 demonstrates a sample ADMS con-
sisting of two DDs, four DMs, two DCs, and one CM. In a typical ADMS
environment there is only one CM instance, but a number of DD, DM,
and DC instances, where each instance should run on a dedicated host.

Strearn

Production Client

Client

Upload

==
Client,

LIVE Source

Stream

Client,

Fig. 3. Service-oriented Components Building an ADMS system

2.2.1 Data Distributor: A data distributor is a service-based com-
ponent that distributes media data received from a production client or
a live camera to a selected couple of data managers. The unit of distribu-
tion is a so-called stripe unit, which either can be of constant data length
(CDL), or constant time length (CTL). Like in RAID level 5 systems
parity units are generated, in order to cope with data manager failures.
In cases of a non-live source, the process of distribution can be driven
by a MPEG-7 document describing a temporal decomposition of the me-

dia stream. Thus, a media stream can be decomposed into a number of
segments, organized in an arbitrary number of levels.

Depending on the number of data managers the media stream is
striped across, the stream is either single, narrow, or wide striped. The
number and location of target data managers is advised by the cluster
manager component. The data distributor distributes only elementary
streams, since the target system is designed for streaming scenarios based
on RTP. Thus, if the media source contains a multiplexed stream, it has
to be demultiplexed into elementary streams before striping. In this case,
byte boundaries of elementary stream segments have to be adapted in a
possibly supplied MPEG-7 descriptor.

2.2.2 Data Manager: Data managers are the key components in the
ADMS architecture. A data manager provides means for efficient stor-
age and retrieval of elementary streams or segments of them. Since one
elementary stream or segment may be striped among a number of data
mangers, each data manager only stores a portion of the stream or seg-
ment. Figure 4 gives an insight about how a data manger internally or-
ganizes its managed media streams. It consists of a set of partial media
streams, which themselves consist of a set of leaf and compound media
segments. Only leaf media segments store real media data. Stream seg-
mentation is supported to perform more efficient media data buffering.

Stream Table:

StreamlD Object
B PartialMediaStream

SegmentlD Object

PartialMediaSegment
stripelnits

N |) pa| =

Fig. 4. Objects Comprising a Data Manager Component

Figure 5 illustrates, how a data manager is derived from Vagabond2’s
AdaptiveApplication interface. First, a common abstraction layer is intro-
duced, which is valid for all four ADMS component types. It introduces
the interfaces ADMSServerApplication and Session, allowing to create rate-
controlled and transaction-based sessions of certain type (retrieval, ac-

quisition, or management) with the component. Second, the bottom layer
defines the interfaces and structures comprising the data manager com-
ponent. An ADMSDataManager allows only to create so-called data manager
sessions (DMSession). Since each session is associated with exactly one el-
ementary stream, a data manager session provides means to e.g. store
stripe units for a certain stream segment, to compose a segment tree of
known segments by the component, or to retrieve stripe units of a certain
segment via a stripe unit iterator. Based on the sessions admitted data
rate (in kbit/sec), the unit iterator allows to retrieve an according number
of stripe units per second.

<<Interface>>
AdaptiveApplication P——
aldleq : boalean Applicationinfo
star(params : StingSed) provides ;
stop(force - boolean) - 1 i u 0'51"”9
getapplicationinfo) : Applicationinfa | getitainClasshiamen) - siring
getClients() : ClientSeq getApplicationAR(OctetSeq
setLocked(ocked : boolean) getDependentFilesZIP() : OcletSeq
IsLocked(: boolean
Session
ADMSServerApplication gz:i?ﬁ;éﬂnézgé‘g%&m aesnle
manages has
getSession(sessioniD : long long) © Session getadmittedRateq - lang long 5 RETRIEVAL
yetSessioniDe(et: SessionType) : LonglongSey | 4 0 - |getClient0 : Client N 5 ACCUISITION
sei_oggingEnabledienabled : boolean) getManagedStream : long long | 0 1 |§ MANAGEMENT
isLogying() : boolean close()
commit)
[F rollback)
ADMSDataManager
createSession(st: SessionType, ¢ : Client, streamlD : long long) © lona long
DhiSession
StripeUnitSeqlterator
StrineUnitSe Celieis seamentlD : long long provides | stareSegmentUnits(segmentiD : long long, units : StripeUnitSer)
i 4 assignsu nentiD : lang 1ang, parentiD : lang lang) : boolean

1. getNumberOfSequences() | 0,.* getSeamentUnitsiterator(seamentiD : long long) : StripeUnitSealteratar
1 geiNexSequence() rermoveMediaStream(
removedediaSeqrment(segrmentlD : long long)

1.7
StripeUnit

unitiD': lang lang

data : OctetSeq

isRU: boolean

startsSegment : boolean

Fig. 5. The Data Manager Component as Special Adaptive Application of Vagabond2

2.2.3 Data Collector: A data collector component performs the in-
verse operations of a data distributor. Its main task is to serve a client
request by collecting stripe units of a certain media stream from a given
set of data managers, resequencing those units, and sending the buffered
stream to the client using RTP. It provides server-level fault tolerance by
exploiting parity units in cases of unavailable data managers.

Since collecting stripe units from the associated data managers is
always a load-generating and time-consuming task, the data collector
should also include a caching component, in order to reduce startup laten-
cies. Following Lee’s framework of video distribution architectures[10], the
data collector can implement the independent-prozy or proxy-at-client-
model. However, there are advantages of running the data collector com-
ponent as a service on a separate Vagabond2 host. First, the client does
not know anything about the internal ADMS layout. Second, the col-
lector can serve a set of clients with even unequal client capabilities by
applying gateway functionalities, e.g. by transcoding the streams. This is
illustrated in figure 3 for DC', which streams the same media stream with
different qualities to a notebook and to a handheld client simultaneously.
And finally, keeping the data collector component independent from the
clients allows the cluster manager to select the most appropriate one for
serving a certain client request.

2.2.4 Cluster Manager: Since a typical ADMS environment consists
of a dynamic number of DDs, DMs, and DCs, one central component
is required for managing these component instances and compositing the
virtual server. The cluster manager component does this and furthermore
implements a directory service keeping track which data mangers store
data of which elementary streams, and which data collectors keep which
elementary streams in their cache. For data acquisition it advises data
managers for stream distribution by applying load-balancing strategies for
network and host resources. For data retrieval it originally handles client
requests based on RTSP, and delegates the request to appropriate data
collectors, if possible. These decisions are based on server loads, network
loads, client vicinity to data collectors, and client terminal capabilities.

3 Dependence Management Between ADMS Components

Similar to the dependence management of component-based applications
in operating systems suggested in [11], a dynamic dependence manage-
ment between ADMS components is necessary. Despite the obvious de-
pendency of distributors and collectors from the cluster manager, a col-
lector may be faced with dynamic, stream-based dependencies from data
managers. In particular, a data collector dc depends on a data manager
dm regarding a media stream m, iff dc does not have cached m, and dm
stores at least a portion of m (mp). Speaking in terms of a component
configurator as presented in [11], the hook from dc to dm is dynamic,

since it is removed, if either dc caches m, or dm is replaced by another
data manager dm,.. The replacement itself can either be accomplished by
replicating the partial media stream m, to an existing data manager, or
to a newly created data manager, or even by replicating the whole data
manager dm to a new host.

Different dependence configurations may result in considerably differ-
ent performance behaviors when serving a client request. This is especially
the case, if the locations of a data collector’s hooks are wide spread. Per-
formance evaluations in the ADMS testbed, consisting of servers in two
LANS interconnected by the internet with widely distributed data man-
agers, have shown similar results. For detailed results the interested reader
is referred to [7]. It has to be noted, that the dependence management is
accomplished by the cluster manager. The CM is also responsible for tak-
ing care of optimal dependencies between data collectors and data man-
agers. Thus, if it recognizes increased request denials due to bad collector
hooks, it has to reconfigure the server layout by replicating/migrating
media streams and/or ADMS server components.

4 Conclusion and Future Work

The major contribution of this paper lies in exploring and designing the
building blocks of an adaptive distributed multimedia streaming server.
Current distributed multimedia servers have deficits in adapting them-
selves to changing client demands due to their monolithic implementa-
tions. Four basic components have been identified that allow to compose
a distributed streaming server, which is able to adapt itself in reaction to
varying client demands. Furthermore, it is shown how these components
are built on top of Vagabond2, which serves as the middleware for com-
ponent management and adaptation. The contribution is concluded by
pointing out the explicit inter-component dependencies, which have to be
considered during server adaptations.

A summarization regarding the common values of most important
properties of ADMS components is given in table 1. While a data manger
e.g. is highly adaptable due to the coding characteristics and the amount
of the media data it stores, a cluster manager is much less adaptable.
On the other hand, a cluster manager is much more mobile than a data
manager, since it depends on orders of magnitude less data.

Currently a resource broker component is being developed which al-
lows to monitor and manage network and host resources between all server
hosts. This component will be used by the cluster manager to decide

Component|Dependencies|Adaptability| Combinability| Mobility
CM none low DD, DC high
DD CM, DM medium CM, DM high
DM none high DD, DC low
DC CM, DM medium CM, DM medium

Table 1. Values for Most Important Properties of ADMS Components

whether a client request will be admitted or not. Future plans are to
integrate a native implementation of a MPEG-4 proxy server as a data
collector component in the ADMS system. Since this proxy server com-
prises gateway functionality, the data collector will even be able to adapt
media streams to different qualities. This approach opens a new research
area concerning combined adaptation possibilities regarding server adap-
tations and media stream adaptations.

References

1. Sun Microsystems: Enterprise JavaBeans Specification. 2.1 edn. (2002)
http://java.sun.com/products/ejb/.

2. Microsoft: DCOM Technical Overview. (1996)
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn_dcomtec.asp.

3. Object Management Group: CORBA Components. 3.0 edn. (2002)
http://www.omg.org/cgi-bin/doc?formal /02-06-65.pdf.

4. Waldo, J.: The Jini Architecture for Network-centric Computing. Communications
of the ACM 42 (1999) 76-82

5. Friedman, R., Biham, E., Itzkovitz, A., Schuster, A.: Symphony: An Infrastructure
for Managing Virtual Servers. Cluster Computing 4 (2001) 221-233

6. Tusch, R.: AMS: An Adaptive Multimedia Server Architecture. Technical Re-
port TR/ITEC/02/2.06, Institute of Information Technology, Klagenfurt Univer-
sity (2002)

7. Goldschmidt, B., Tusch, R., Bészorményi, L.: A Mobile Agent-based Infrastructure
for an Adaptive Multimedia Server. Parallel and Distributed Computing Practices,
Special issue on DAPSYS 2002 (2003) To appear. Papers is also available as tech-
nical report TR/ITEC/03/2.05.

8. Carlson, D., Hartenstein, H., Schrader, A.: QoS Orchestration for Mobile Multi-
media. In: Proceedings of ASW’2001, The First Workshop on Applications and
Services in the Wireless Networks. (2001)

9. Schmidt, D.C., Levine, D.L., Mungee, S.: The Design of the TAO Real-Time
Object Request Broker. Computer Communications, Elsivier Science 21 (1998)

10. Lee, J.Y.: Parallel Video Servers: A Tutorial. IEEE Multimedia 5 (1998) 20-28
11. Kon, F., Campbell, R.H.: Dependence Management in Component-Based Dis-
tributed Systems. IEEE Concurrency 8 (2000) 26-36

