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Abstract

The Intel R© Xeon PhiTM is the first processor based on Intel’s MIC (Many Integrated

Cores) architecture. It is a co-processor specially tailored for data-parallel computations,

whose basic architectural design is similar to the ones of GPUs (Graphics Processing

Units), leveraging the use of many integrated low computational cores to perform par-

allel computations. The main novelty of the MIC architecture, relatively to GPUs, is its

compatibility with the Intel x86 architecture. This enables the use of many of the tools

commonly available for the parallel programming of x86-based architectures, which may

lead to a smaller learning curve. However, programming the Xeon Phi still entails as-

pects intrinsic to accelerator-based computing, in general, and to the MIC architecture, in

particular.

In this thesis we advocate the use of algorithmic skeletons for programming the Xeon

Phi. Algorithmic skeletons abstract the complexity inherent to parallel programming,

hiding details such as resource management, parallel decomposition, inter-execution

flow communication, thus removing these concerns from the programmer’s mind. In

this context, the goal of the thesis is to lay the foundations for the development of a

simple but powerful and efficient skeleton framework for the programming of the Xeon

Phi processor. For this purpose we build upon Marrow, an existing framework for the

orchestration of OpenCLTM computations in multi-GPU and CPU environments. We ex-

tend Marrow to execute both OpenCL and C++ parallel computations on the Xeon Phi.

We evaluate the newly developed framework, several well-known benchmarks, like

Saxpy and N-Body, will be used to compare, not only its performance to the existing

framework when executing on the co-processor, but also to assess the performance on

the Xeon Phi versus a multi-GPU environment.

Keywords: Many Integrated Cores architectures, Intel R© Xeon PhiTM, Parallel Program-

ming, Algorithmic Skeletons
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Resumo

O Intel R© Xeon PhiTM é o primeiro processador baseado na arquitectura Many Integra-

ted Cores da Intel. O seu propósito é ser usado como um co-processador para a unidade

de processamento central para as computações de dados em paralelo. Os pricípios bási-

cos de desenho arquitectual são semelhantes aos usados nas unidades de processamento

gráfico (GPU), tirando proveito do uso de muitos núcleos de poder computacional menor

para efectuar computações paralelas. A grande novidade da arquitectura MIC, relativa-

mente aos GPUs, é a sua compatibilidade com a arquitectura x86, o que permite o uso

de muitas das ferramentas mais comuns utilizadas em computação paralela, o que pode

levar a uma menor curva de aprendizagem. No entanto, o uso do Xeon Phi em aplicações

comuns ainda requer o conhecimento geral de programação baseada em aceleradores e,

em particular, da arquitectura MIC.

Nesta tese, advogamos o uso de esqueletos algorítmicos para a programação do Xeon

Phi. Esqueletos algorítmicos abstraem a complexidade inerente à programação paralela,

escondendo detalhes como a gestão de recursos, decomposição paralela, ou a comuni-

cação com a camada subjacente, removendo assim estas preocupações da mente do pro-

gramador. Neste contexto, o nosso objectivo é oferecer as bases para o desenvolvimento

de uma ferramenta simples mas poderosa e eficiente, para a programação do Xeon Phi.

Como este propósito vamos trabalhar sobre o Marrow, uma ferramenta existente para a

orquestração de computações OpenCLTM em ambientes CPU e multi-GPU. Nós adapta-

mos o Marrow para executar computações paralelas tanto em OpenCL como em C++.

A nova versão é avaliada, usando vários testes bem conhecidos como o Saxpy ou

on N-Body, para comparar, não só o seu desempenho com a actual versão do Marrow

quando executada no co-processador, mas também para medir o desempenho num am-

biente com multi-GPUs e Xeon Phi.

Palavras-chave: Arquitecturas Many-Core, Intel R© Xeon PhiTM, programação paralela,

esqueletos algorítmicos
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1
Introduction

1.1 Motivation

Over the years, the magnitude of the problems addressed with the help of computational

resources has consistently grown at a exponential rate. This is true for both the scien-

tific computing and the information technology fields. An example of the former is the

experiments that take place at CERN’s Large Hadron Collider1. At peak rates, about 10

gigabytes of data are generated every second. This amount of data needs to be processed

quickly to assess its importance and determine if it is worth storing and so the data must

be processed in parallel in order to increase the throughput of the algorithms. On the

information technology end, the generalized use of the World Wide Web as a vehicle to

transmit both public and personal information. For instance, the amount of data gen-

erated by social networks grow exponentially over time. As a result, there are many

companies, such as Google, that are inferring information from this unstructured data2.

For that purpose, they need to find efficient ways to process all that information.

In this context, accelerator-based computing in general, and GPU computing in par-

ticular, is establishing itself as an consolidated field. The massive adoption of this model

is evident in the list of the current top 500 supercomputers, where the two fastest ones,

by June 2014, feature accelerators in their configuration3. Recent proposals explore the

use of many-core processors as dedicated co-processors to provide a tool with a great

computational power but also, power efficient. Examples are AMD’s APUs [AMD] and

Intel R©’s Xeon PhiTM [Int]. In this dissertation we are particularly interested in the latter.

1http://home.web.cern.ch/about/computing
2http://www.ams.org/samplings/feature-column/fcarc-pagerank
3http://www.top500.org/lists/2014/06/
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1. INTRODUCTION 1.2. Problem

Xeon Phi is the first product based on the MIC (Many Integrated Core) architecture

[Sei+08], being announced in November 2012. This co-processor features a large number

of cores (starting at 57 cores) and is attached to the host computer via a PCIe interface. Its

main advantages are the high degree of parallelism that offers and, opposing to GPUs, its

compatibility with the x86 architecture, which means that existing tools for x86-based sys-

tems are supported, moving away from the low level programming required by GPUs.

Additionally, it is also more power efficient [Abd+13] since only the cores actually be-

ing used consume significant amounts of power. Performance-wise, the efficiency of this

product was demonstrated by the first place in the list of supercomputers offering most

FLOPS (Floating-point Operations Per Second) per Watt by the time of its launch4. The

promise of the co-processor is evinced by its use on the fastest supercomputer by June

2014.

In sum, Xeon Phi embodies the new kind of general-purpose accelerators, which

seems to be a first step towards a widespread adoption of accelerator-based computing.

1.2 Problem

Xeon Phi is the first commercial product based on the MIC architecture, and so, due

to its tender age, there are still many challenges to address when trying to efficiently

program this kind of architectures. Due to its compatibility with x86, many of the existing

tools, like OpenMP [Ope13b], CilkTM [Int13b], OpenCLTM [Khr13], MPI [For12] or Intel

TBB [Int13c], can be directly used in the programming of Xeon Phi. Nevertheless, the

programmer is still faced with many details intrinsic to accelerator-based computing,

such as:

• The explicit management of multiple disjoint address spaces;

• The orchestration of data transfers and computation;

• The overhead of the communication between the host device and the accelerator.

Beyond that, there is the need to understand the implications that the particular nature

of the Xeon Phi architecture can have on the application, specially because of its high

level of parallelism, due to the 240 threads available. This understanding is important to

take advantage of the full potential of the co-processor and to avoid the under utilization

of the resources available [Joh+13; Sch+13]. In fact, although Xeon Phi grows from x86

cores, there is some debate concerning the ease of use of this co-processor. Some opinions

are in favor of GPUs stating that, in order to fully use the co-processor to its maximum,

the effort needed in programming is the same as the one needed in programming a GPU,

but the results are much better on a GPU [Hem13; Nvi]. To this extent, raising the degree

of abstraction in the programming of this kind of architectures is a relevant research topic.

4http://www.green500.org/lists/green201211

2



1. INTRODUCTION 1.3. Proposed Solution

The Xeon Phi processor has become available to the general community very re-

cently, thus only now the community is gathering efforts to address the aforementioned

challenges. Examples are the porting of MapReduce [Lu+13], parallel libraries [Cla+13;

Dok+13; Pot+] and compilers [PM12].

Research groups with experience on the GPGPU (General-Purpose computing on

Graphics Processing Units) field are directing the knowledge gathered in the accelera-

tor computing field to the Xeon Phi, extending existing frameworks to tackle the chal-

lenges associated with this platform [Lim+13; Men+13]. The approach of the work to

be developed in the context of this dissertation takes a similar approach. We will build

on previous knowledge acquired in the development of an algorithmic framework for

general-purpose computing on GPUs, the Marrow framework [AMP13; AMP14; Mar+13;

SAP14], and apply it in the construction of a similar framework for the programming of

the Xeon Phi.

In what concern structured parallel programming, to the best of our knowledge, the

adaptation of MapReduce to Xeon Phi proposed in [Lu+13] is the only work to port

known algorithmic skeletons to Xeon Phi. As such, Marrow’s features, namely a library

of multiple skeletons that can be combined to build complex, compound, behaviors, are

new to the field.

The challenges that we will face are:

• to subsume all communication with the device, and between the multiple concur-

rent computations that be encased in an skeleton, for instance in a pipeline;

• to transparently and efficiently manage the orchestration of the computation to be

offloaded to the device, this includes understanding when to move the data, do-

ing it efficiently over the PCIe bus and when to reuse data already residing on the

device’s memory;

• to efficiently execute this computation on the device. This includes paralelizing the

code given by the programmer, how many threads to spawn, where to place them

and how to exploit vectorization.

1.3 Proposed Solution

The Marrow framework is a library that provides algorithmic skeletons to orchestrate

compound OpenCL computations in heterogeneous environments with multiple CPUs

and GPUs. This framework steps away from other GPU programming frameworks by

offering both task- and data-parallel skeletons and by supporting skeleton nesting in this

type of environments. Currently Marrow supports the Map and MapReduce data-parallel

skeletons and the Pipeline and Loop task-parallel skeletons.

The goal of this thesis is to leverage Marrow’s structured programming model in the

programming of the Xeon Phi processor. For that purpose, we intend to initially develop

3



1. INTRODUCTION 1.4. Contributions

Host Xeon Phi

MapReduce

Pipeline Kernel 4

Kernel 3 Pipeline

Kernel 1 Kernel 2

Main thread

.write()

Notify future 
object

Figure 1.1: Offloading the computation tree to the Xeon Phi

a Xeon-specific OpenCL back-end, so that the framework can efficiently execute trees of

nested OpenCL applications on this device, as shown in Figure 1.1.

On a second phase, we want to adapt the framework with the purpose of supporting

different technologies, besides OpenCL. For that, the framework will be generalized to

hide all mechanisms intrinsic to OpenCL and the runtime will be extend with a new

back-end to support the execution of kernels expressed as C++ functions, expressing the

sequential behavior that each thread running on the Xeon Phi must execute. The parallel

execution of such code is managed by the framework.

In sum, the goal of this thesis is to offer both task- and data-parallel skeletons to

execute efficiently on the Intel Xeon Phi, and therefore, in heterogeneous environments

with CPU, GPU and Xeon Phi.

1.4 Contributions

The presented work will provide the following contributions:

1. A comparative study about the performance of multiple technologies used for pro-

gramming the Xeon Phi (OpenMP, Cilk Plus and OpenCL);

2. An OpenCL back-end to add support for the Xeon Phi to the Marrow framework

and the corresponding performance evaluation against GPU and CPU environ-

ments;

4



1. INTRODUCTION 1.5. Document Structure

3. A new runtime layer for the Marrow framework to support the execution of kernels

expressed as C++ functions, leaving for the framework the task of executing them

in parallel;

4. The evaluation of the performance of the new runtime layer relatively to the pre-

vious version by measuring the execution time of different benchmarks when exe-

cuting on the Xeon Phi, using both the OpenCL and the chosen technologies.

Part of the work developed in the scope of this thesis was presented via a poster com-

munication in INForum 2014, the 6th edition of the portuguese conference in computer

science, that took place at Universidade do Porto.

1.5 Document Structure

This document has the following structure:

Chapter 2 starts with state of the art by the time prior to the work presented on this the-

sis. It starts by the architecture of the co-processor, highlighting the important features to

consider when using this device, and then, it details the models used in the programming

of the co-processor as well as some tools available to achieve those models.

Chapter 3 provides an overall description of the Marrow framework, the starting point

for this thesis. It presents the framework’s programming and execution models, as well

as its architecture.

Chapter 4 presents the work developed in the scope of this thesis, namely the imple-

mentation of the Xeon Phi OpenCL Marrow back-end, the full support for the execution

of C++ instantiated Marrow skeletons on the Xeon Phi, and the changes performed on

the Marrow framework in order to efficiently and seamlessly support both the OpenCL

and C++ versions.

Chapter 5 shows the tests performed to evaluate the performance of the newly devel-

oped framework and how it compares to the previous version. The tests were divided

into two stages, the comparison between the Xeon Phi and GPUs using OpenCL and the

comparison of the OpenCL and C++ versions running exclusively on the Xeon Phi.

Chapter 6 pose the conclusions derived from the work performed and discusses open

issues that may be carried out in future work.
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2
The Intel R© Xeon PhiTM Processor

and its Programming

The Intel Xeon Phi co-processor is the first commercial product to use Intel MIC architec-

ture, based on the Larrabee [Sei+08] microarchitecture. In order to introduce the reader

to its key features, we present a general overview of its architecture in Section 2.1 and of

programming tools offered by Intel for its programming in Section 2.2. Furthermore, we

present an initial performance comparison of some of these tools in Section 2.3, to guide

us in the choice of which technologies to use in our work. The research presented in this

chapter was supported by the following literature: [JR13], [Col13] and [Rah13].

2.1 Intel R© Xeon PhiTM’s Architecture

The Xeon Phi is available in two form factors, shown in Figure 2.1, with passive or ac-

tive cooling. The co-processor features multiple Intel x86 cores, up to eight memory

controllers and a PCI Express system interface to communicate with the host device. Al-

though based on the Intel ia-64 architecture, the cores featured in a Xeon Phi processor are

simpler versions of the ones currently featured in the current Intel-compatible multi-core

CPUs. Consequently, they are smaller in size, a fact that contributes for more of them to

be packed in a single processor. Given that all these cores are identical, the Xeon Phi falls

into the category of homogeneous many-core architecture.

We begin by giving a general overview of the Xeon Phi’s architecture, detailing sub-

sequently its main components.

The key components of a Xeon Phi chip are:
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(a) Model with passive cooling (b) Model with active cooling

Figure 2.1: Available models of the Xeon Phi co-processor

Co-processor cores These are based on P54c (Intel Pentium from 1995) cores with ma-

jor modifications including Intel 64 ISA, 4-way SMT, new vector instructions, and

increased cache sizes.

Vector Processing Unit The VPUs are part of the core and capable of performing 512-bit

vector operations on 16 single-precision or 8 double-precision floating-point arith-

metic operations as well as integer operations.

Cache All cores have full coherent L2 caches.

Tag directories (TD) Components used to look up cache data distributed among the

cores and keep coherency.

Ring interconnect The interconnect between the cores and the rest of the co-processor’s

components.

Memory controller (MC) Interface between the ring and the graphics double data rate

(GDDR5) memory.

PCIe interface Used to connect with PCIe bus and the host.

The topology used to interconnect all the cores in the system is a bidirectional in-

terconnect ring (Figure 2.2). This bus is also used by the cores to access data from the

main memory through the memory controllers also connected to the ring. There are eight

memory controllers with two channels, each communicating with GDDR5 memory at 5.5

GT/s (Giga transfers per second) having a theoretical memory bandwidth of 352 GB/s.

The movement of data between the host’s memory and the Intel Xeon Phi’s memory is

made through DMA (Direct Memory Access) enabling the independence from the host

intervention in some cases. One key requirement to allow the usage of the co-processor

is the BIOS support for memory mapped I/O address ranges above 4GB.

To manage all the hardware, one of the cores executes a micro-OS, based on Linux,

that is read at boot-time from an on-board flash.
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Figure 2.2: Diagram of the Xeon Phi’s architecture [GH13]

With respect to reliability features, there is parity support in the L1 cache, error cor-

rection code (ECC) on L2 and memory transactions, cyclic redundancy code (CRC) and

command and address parity on the memory I/O. The co-processors also implement ex-

tended machine check (MCA) features to help the software detect imminent failure.

2.1.1 Cores

Each core is an in-order processor that features four hardware threads that are used to

mask the latencies inherent to in-order micro-architectures. The choice of this type of

processor relates to the fact that it is much simpler and more power efficient, as opposed

to the highly speculative out-of-order type, widely used on Intel Xeon processors. The

multi-threading is done by using the time-multiplexing mechanism.

Inside the core, there are also the L1 and L2 caches, shared by the hardware threads,

along with an L2 cache hardware prefetcher (HWP) that can detect sixteen, forward or

backward, sequential data accesses to determine the direction of the stream and then is-

sue multiple prefetch requests to keep the data flow. Figure 2.3 shows a simple overview

of each core’s micro-architecture.

Instruction execution within a core is structured in only 5 pipeline stages, unlike most

modern processors, which makes the execution of an instruction to be much faster there-

fore improving the overall performance of the system. The architecture used is a su-

perscalar architecture, with two different pipelines on the chip, known as the U and V

pipelines, enabling that two instructions are at the execution stage at the same clock cy-

cle. Integer operations and mask instructions are single-cycle. Most vector instructions

have a four-cycle latency and single-cycle throughput, so the concurrent execution of

four threads will not reveal the vector unit latency if all of them are executing vector

instructions.

There is also a turbo mode that, if the available power allows, increases the frequency

of the cores in order to boost performance.
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Figure 2.3: Diagram of the cores’ micro-architecture [JR13]

Vector Processing Unit

The vector processing unit (VPU) used is 512 bit wide. This means that it can operate

over 16 single-precision floats or 32-bit integers at a time. It implements a novel ISA

(Instruction Set Architecture), with 218 new instructions compared with those imple-

mented in the Xeon family of SIMD instruction sets. The instructions are received from

the core’s ALU (Arithmetic Logic Unit) and the data is received from the L1 cache by a

dedicated 512-bit bus. Most of the VPU instructions are issued from the core through the

U-pipe. Some of the instructions can be issued from the V-pipe and can be paired to be ex-

ecuted at the same time with instructions in the U-pipe. These instructions are computed

using quadratic minimax polynomial approximation and use a lookup table to provide

a fast approximation to the transcendental functions. The vector architecture supports

a coherent memory model in which the Intel-64 instructions and the vector instructions

operate on the same address space. The instructions support the following native data

types:

• Packed 32-bit integers (or dword)

• Packed 32-bit single-precision FP values

• Packed 64-bit integers (or qword)

• Packed 64-bit double-precision FP values

The ISA supports the proposed standard IEEE 754-2008 floating-point instruction

rounding mode requirements. Each VPU consists of eight master ALUs, each contain-

ing two SP (Single-Precision) and one DP (Double-Precision) ALU with independent

pipelines, thus allowing sixteen SP and eight DP vector operations.
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2.1.2 Cache

Many changes were made to the original 32-bit P54c architecture to make it into an Intel

Xeon Phi 64-bit processor. The data cache was modified to non-blocking by implement-

ing thread-specific flush, which means that, when there is a cache miss, only the pipeline

of the thread that caused the miss will be flushed, preventing the other threads from also

being blocked. When the data is available to the thread that had a cache miss, that thread

is then woken up.

The L1 cache consists of 8-way set-associative 32 kB L1 instruction and data caches,

separately, having an access time of approximately 3 cycles. The L2 cache is also 8-way

set-associative and 512 kB in size. Although, unlike the L1 caches, this one is unified, in

the sense that it is used to cache both data and instructions. The latency of these caches

can be as small as 14-15 cycles.

The L1 cache is inclusive to the L2 cache. It can deliver 64 bytes of read data to

corresponding cores every two cycles and 64 bytes of write data every cycle. Both caches

use pseudo-LRU implementation as a replacement algorithm.

To maintain the coherence of all L2 caches a modified MESI [PP84] protocol using a

TD-based GOLS (Globally Owned, Locally Shared) protocol is used.

2.1.3 PCIe

The system interface of the chip supports PCI Express 2.0 interface x16 lanes with 64- to

256-byte packets, peer-to-peer read/writes. The peer-to-peer interface allows two Intel

Xeon Phi cards to communicate with each other without host intervention. The clock

system uses a PCI Express 100 MHz reference clock and includes on-board 100 MHz ±

50 ppm reference.

2.2 Programming the Intel R© Xeon PhiTM

Due to its high number of logical cores, Xeon Phi is specially tailored for HPC (High

Performance Computing) applications. It requires the installation, on the host, of the

drivers, also known as MPSS (Many-Core Platform Software Stack package), making it

visible to the host as a co-processor connected via a network interface. The usage of the

co-processor may be summarized in the three execution models depicted in Figure 2.4:

the native model, the offload model and the symmetric model.

The native model consists in running the main application directly on the co-processor.

This is possible due to the micro OS running on the co-processor, allowing it to be con-

sidered as a node in a cluster, therefore, being able to run applications independently. In

this case, first, the code that is to be executed by the co-processor needs to be compiled

for the co-processor’s architecture and then, the generated binary must be sent to the co-

processor using some network tools such as secure copy (scp). The application can then
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(a) Offload model

(b) Symmetric model (c) Native model

Figure 2.4: Xeon Phi’s different execution models

be subsequently executed directly on the processor, requiring only some kind of remote

shell, typically secure shell (ssh).

The symmetric model leverages the fact that the co-processor features a TCP/IP stack

and thus may be viewed as a network node. As such, the application may be composed

of multiple, independent, modules deployed at each end of the platform composed by

the host and the Xeon Phi. The coordination of these modules is performed through

some message-passing interface. In this model there is also the need to generate a binary

specific for the co-processor and execute it like the native model.

Finally, in the offload execution model, the main application is executed on the host-

ing machine, offloading computations to the co-processor. These computations can be

executed both synchronous or asynchronously with respect to the issuing thread. With

this model, the application just has to annotate the regions that are to be offloaded, so

that the compiler knows exactly which code to compile for the co-processor. After it has

been compiled, the application is executed on the host, disregarding any additional ef-

fort. The parallel execution model associated with this execution model is the Fork-Join.

This model of parallelism creates a new task (forks) when there is the need to do some

new computation in parallel with the main thread and terminates it (joins) when the

computation is done.

Because of the compatibility with the x86-architecture, some of the tools already used
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for programming multi-core systems can be used to exploit the parallelism of the co-

processor. Regarding the native mode, all parallel programming tools that have been,

or may be, compiled to the Xeon phi architecture can be used, such as Intel CilkTM Plus

[Int13b; Lei09], OpenMP (Version 3.1) [Ope11] or Intel Threading Building Blocks [Int13c]

libraries. These tools can also be used on the remaining models to program the code

sections destined to run on the co-processor. As for the offload model, the tools available

to send a computation to the co-processor are the language extensions provided by the

Intel compiler, the OpenMP 4.0 [Ope13b] and OpenCLTM [Khr13] libraries. As previously

mentioned, in order for the modules executing both on the host and the co-processor to

communicate between each other, a library like MPI [For12] can be used.

The next sections will detail some of the tools aforementioned to understand the effort

required to use them, and, for each one, some historical context is given as well as its

basics and some of the most usual patterns of how they are used are explained. Some

examples on how they can be used are presented in Appendix A.

2.2.1 Native model

Given that the tools used in the native model can also be used for the remaining models,

this section will provide a general overview of state of the art of programming tools for

the Xeon Phi.

2.2.1.1 OpenMP

OpenMP (Open Multi-Processing) is an API for the development of parallel applications

in a wide range of processors architectures and operating systems. It was developed

by the nonprofit technology consortium OpenMP Architecture Review Board (OpenMP

ARB) in the year of 1997 for Fortran and in 1998 for C/C++. The programming model is

based on a set of compiler directives (pragmas) and a library of routines available to the

programmer to query and tune some aspects of the execution environment.

The specification is currently in its 4.0 version. However, only version 3.1 is widely

supported by GNU’s, Oracle’s and LLVM’s compilers. The compiler provided by Intel for

generating code for the Xeon Phi architecture is one of tools that already include support

for some of the OpenMP 4.0 features.

OpenMP provides constructs for parallel sections and loops, tune the scheduling

mechanism, task creation, nested parallelism, operations to avoid race conditions and

reducing the results of multiple threads to a single one.

The execution model used by OpenMP is based on the Fork-Join pattern. The se-

quential parts of the program are executed by a single thread whilst the parallel parts

are executed by multiple threads. The upper limit for the number of threads can be

tuned by changing the environment variable OMP_NUM_THREADS or by using the routine

omp_set_num_threads(). As for the memory model, there are two types of memory:

the thread private and the one shared by all threads.
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OpenMP helps the implementation of two of the most common models of parallelism,

the Loop-centric and the Fork-Join models [Col13].

For-loop parallelism in OpenMP A very large number of parallel applications are

based on for-loops in which the same code is executed for the multiple pieces of data

available. Such loops can be easily parallelized with OpenMP through the #pragma

omp parallel for.

The parallel for directive may be complemented with several clauses, with the

purpose of fine tuning parallelization parameters or strategies, such as scheduling model,

variable privacy among threads or reduction of the intermediate results of each iteration.

Fork-Join parallelism in OpenMP Recursive problems that cannot be trivially trans-

formed into for-loops may be coded as Fork-Join computations. These computations are

based in tasks, that are assigned to the available threads, to be executed in parallel. The

expressing of such tasks in OpenMP requires the use of #pragma omp task to denote

the task’s code: a function call or a block comprising multiple function calls.

The clauses associated to this pragma can be used to specify, like in the for-loop mech-

anism, the privacy of the variables but also the stop condition to prevent the runtime from

spawning too much threads.

A second directive that can be used to express task parallelism is the #pragma omp

section. All of this tasks must be inside a #pragma omp sections block so that the

code that is after this block is only executed after all units of work complete.

A common practice in fork-join parallelism is to allow the main thread to also con-

tribute in the execution of the spawned tasks and, with that, the main thread is not

blocked waiting for all spawned functions but also is one less thread that needs to be

spawned.

2.2.1.2 Intel R© CilkTM Plus

Cilk Plus is an open specification released by Intel that extends the linguistic and runtime

technology for algorithmic multi-threaded programming named Cilk [Blu+95] with fea-

tures for vector parallelism. Cilk was developed at MIT in 1994, based on ANSI-C with

the addition of Cilk specific keywords. After acquiring the Cilk trademark in 2009, Intel

released the commercial version, Cilk Plus, in 2010. The current version of this frame-

work is 1.2.

This specification aims at addressing some shortcomings of template libraries, such

as support for the C language, and not only C++, as well as for vector parallelism and

finally that, because it is implemented at the compiler level, there are more opportunities

for optimization. One important feature of this specification is that it guarantees that the

serialized code, i.e. removing/replacing the Cilk keywords from the code, has the same

results as the parallel code.

14



2. THE INTEL R© XEON PHI
TM PROCESSOR AND ITS PROGRAMMING 2.2. Programming the Intel R© Xeon PhiTM

The model of execution is based only on work-stealing scheduling [BL99], which

gives a good, out of the box, performance to Cilk programs but provides less tuning

capabilities to the programmer.

For-loop parallelism in CilkTM The ability to have parallel for-loops is also available

with Cilk Plus. These for-loops are constructed by simply changing the keyword for

with cilk_for but have some restrictions like the impossibility to use break/return

inside the loop, the independence between loop iterations and, to make the calculation of

the number of iterations possible, the creation of only one control variable as well as the

inability to change it or the condition expression inside the loop. The use of cilk_for

does not mean necessarily that the loop will be executed by multiple threads in parallel.

Since the creation of threads has some overhead, the runtime system decides if the body

of the loop pays off the creation of a new thread, if not, is the main thread that executes

all iterations. It is also possible to do some basic computations with arrays, without the

need to use for-loops, by using the array annotations and the reducers available.

The array annotations are used to perform simple operations over multiple arrays

with the same range. The operations can also include scalars which are converted to ar-

rays of replicated copies of the scalar with the same length as the range specified with

the annotation. The full version of specifying a section of an array is by indicating the

index at which the section begins, the length of the section and the step between con-

secutive indexes ([first:length:step]). If the step is omitted then the default step

considered is 1. There is a short version to specify that the section is composed of all the

elements of the array, omitting all arguments ([:]). Most scalar operations can be used

in array sections, including the assign operator. The operation is applied element-wise to

all elements of the sections and the result has the same length as the involved sections,

which must all have the same length.

To use a reducer function there is only the need to call it with a section as argument

and the return is the corresponding reduction. As for the reducer variables, the variable

is defined using the constructor of the reducer operation that is needed, specifying the

type of the variable and, optionally, indicating the initial value. The variable can only be

affected inside a cilk_for loop and using the corresponding operations of the reducer.

Outside the loop the variable can only be modified or read using the set_value and

get_value functions, respectively. The various reducers include addiction/subtraction,

minimum/maximum, binary operations and string concatenation.

Regarding parallel for-loops there are still the #pragma simd and elemental func-

tions. Like cilk_for, the use of #pragma simd acts only has a hint to the compiler to

execute the loop with vectorization. The vectorization is performed in small chunks of

data whose size will depend on the vector width of the machine making the code portable

as opposed to manual vectorization.
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The elemental functions are functions that are annotated so that the compiler can com-

pile multiple versions of the function optimized to evaluate multiple iterations in paral-

lel. The annotation is __declspec(vector) with some optional clauses, uniform(a)

and linear(a:k). The uniform clause is used when an argument is constant between

multiple iterations and the linear clause states that the argument a will step by k in

consecutive calls to the function. If k is omitted then the default step is 1. A function

can be marked as elemental even if it is defined in a different module. This mechanism

of annotating functions is very important in situations where the functions are complex

and the compiler cannot analyze them properly in order to make optimization.

Fork-Join parallelism in CilkTM The original programming model for which Cilk was

developed is the Fork-Join parallelism since the first specification only featured the defi-

nition of the cilk_spawn and cilk_sync keywords. The execution model is based on

work-stealing schedule so the loop parallelism is based on spawning multiple threads

and then create a queue from where the threads steal work to do.

This model is very simple to use in Cilk, to execute a function by a different thread

in parallel, simply precede the function call with the keyword cilk_spawn. This can be

used not only in functions that return void but also on an assignment to some variable.

The assignment occurs when the function returns so, after spawning the function, if the

caller uses the variable, it implicitly waits for the result to be available. The cilk_sync

keyword is used to explicitly make the thread wait for all spawned functions inside the

current block (function, try/catch or cilk_for). An implicit sync is made at the end

of each spawning block, only waiting for functions spawned within the block.

2.2.1.3 Intel R© TBB

Intel R© TBB (Threading Building Blocks) was developed by Intel in 2006, as a proprietary

library but becoming open-source in version 2.0 including a GPL v2 a year later, and it is

a library that provides a set of solution for programming with tasks in C++.

The approach of TBB is to deal with tasks instead of threads and let the run-

time system assign the tasks to the available threads. The library consists in a col-

lection of generic parallel algorithms (parallel_for or parallel_pipeline), syn-

chronization primitives (atomic operations and mutual exclusion), concurrent contain-

ers (concurrent_hash_map or concurrent_queue), scalable memory allocation

(scalable_malloc and scalable_free) and a task scheduler to manage the creation

and activation of tasks. The underlying scheduling system is, like Cilk Plus, based on a

work-stealing strategy guaranteeing that the load is fairly distributed among all threads.

The use of an atomic variable to store the result guarantees that there are no data races

when multiple threads try to update the variable. Beyond the usual operators to assign

a variable, atomic variables also provide the fetch_and_add, fetch_and_store and

compare_and_swap methods to read and update, atomically, the value of the variable.
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TBB 4.0

The 4.0 version of this library added the flow graph feature. This feature enables the

creation of a dependency graph to specify the computation and the flow of messages

between the nodes.

The mostly common used nodes are the broadcast_node, the function_node

and the join_node. A broadcast_node simply forwards every incoming message to

all its successors. The function_node is used when a function must be applied to the

incoming messages so the type of the incoming and outgoing messages must match the

type of the function. In addition to the function, the level of concurrency must be speci-

fied to state the maximum number of parallel calls that can be made. In case the function

must be called serially the special value serial can be used and, on the other hand, if

the function can be called concurrently as many times as wanted the value unlimited

can be used. When a node receives multiple values at once from its predecessors a

join_node must be used to combine the values from all of its inputs and broadcast

to all successors a tuple with the values received. The buffering policy is queueing so

that a tuple is only emitted when there are values available in every incoming port.

After creating the nodes, the edges between them are defined using the make_edge

routine. To start the computation and feed the nodes with values the method try_put is

invoked and then the method wait_for_all of the graph is called to wait for all nodes

to finish their computations.

Summary

Regarding the ability to program the devices, the existing technologies for shared mem-

ory programming on multi-cores may be directly used, namely OpenMP, Cilk Plus and

Intel TBB. One advantage of using these technologies is that, because the co-processor is

composed by x86 cores, there are no special concerns when using them, unless some fine

tuning is desired, then requiring the understanding of the underlying architecture.

As mentioned before, since version 3.1 is the most widely supported version, the

native and symmetric models can be used to develop, more easily, parallel applications

but there is the overhead to compile the program, send it to the co-processor and then

execute it there which does not give the transparency or usability of the offload model.

The Cilk framework has no construct available to use the Xeon Phi as an extra execut-

ing unit, disregarding the offload execution model, and taking advantage of the vector

units in each core. To use the co-processor features, other tools must be used to offload

some computation that has Cilk constructs, therefore taking advantage of the high num-

ber of cores and the vector units available in the co-processor. Since the computation is

offloaded to the co-processor all data needed must be transferred using the available di-

rectives and clauses. Due to the simplicity of this framework, and its goal to parallelize a

program with the least changes possible, the constructors available to spawn threads or

to parallelize for-loops do not have any clauses. This prevents the possibility to perform
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any optimization, making this framework the one with the least chance of tuning but

providing good performance out of the box.

The Cilk programming model is tailored for task parallelism, while OpenMP is spe-

cially directed for data parallelism. Hence, to express fork-join computations in Cilk is

much more simpler than in OpenMP.

Like some of the previous frameworks, TBB does not have any mechanism to use the

co-processor as an auxiliary device. Because of this, the application must run in native

mode on the co-processor or an offload construct from other framework must be used to

send some computation that uses the TBB library to the co-processor.

2.2.2 Offload model

The previous section focused on tools that can be used to program the Xeon Phi just like

a multi-core processor. This section will now focus on how both data and computation

can be transferred between the host and the co-processor.

2.2.2.1 Intel R© Compiler

The Intel compiler generates both offload and cross-compiled code for the Intel Xeon Phi.

As expected, the offload mode is used to compile programs that offload computation to

the co-processor, whilst the cross compile mode is for generating code for applications to

be executed on native mode. This compiler is an augmented version of the traditional In-

tel compiler featuring new additions to enable the code offloading and compiler options

to generate MIC-specific code, with the -mmic flag, and to perform code optimization.

Compiler Pragmas for offloading computation

The pragmas introduced to support the offload of computation were the #pragma

offload, #pragma offload_attribute, #pragma offload_transfer and

#pragma offload_wait.

The #pragma offload is used to offload a given computation to the co-processor.

The code delimited by an offload block is compiled for both the host CPU and the Xeon

Phi, so that the former can execute the block when there are no co-processors available.

This pragma is always followed by the clause target to specify the

co-processor to which the computation is to be offloaded to in the form

of target(mic[:target_number]) where target_number, if >= 0, is

used to select the nth co-processor when multiple are available, being n =

target_number mod nr_co_processors. If value -1 is assigned, then the selection

process is delegated onto the runtime system, which will fail the execution of the block

if no co-processor is available. When the target number is not specified, the runtime

proceeds as if the value was −1 but, instead of the application failing, the computation

is executed by the host processor in the absence of available co-processors.
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When the code is compiled, there is the need to know which sections need

to be specifically compiled for the co-processor so all global variables as well as

user-defined functions that are used inside an offload block must be prefixed by

__attribute__(target(mic)). To prevent the need to write the attribute for

every variable and function, the #pragma offload_attribute directive can be

used. There are some arguments for this directive, two to start the declaration block

(#pragma offload_attribute(push, target(mic))) and one to end the block

(#pragma offload_attribute(pop)). An #include can even be used between

these pragmas to compile a whole module for the co-processor. It should be noted that

only bitwise copyable variables flow between the host and the co-processor making C++

classes impossible to be sent to the co-processor. However, if a class is defined inside the

pragmas, an instance of such class can be created and used inside the offload region.

When an computation is offloaded, all local and non pointer-based variables in the

lexical scope of the block are sent to the co-processor before the beginning of the com-

putation, and retrieved back to the host when the computation ends. The remainder

variables must be explicitly copied through the four existing clauses, namely in, out,

inout and nocopy. The first three state that the variables specified should be copied

between the host and co-processor (to, from or both). The last one is used to allow the

reuse of a previously copied variable without being sent back to/from the co-processor.

By default, the space needed for the variables is allocated before the computation and is

freed after the computation has ended. To enable the reuse of allocated space, the clauses

to copy data have two arguments, the alloc_if and the free_if, to which is passed a

boolean expression to state if the space is to be allocated/freed or not.

The #pragma offload_transfer directive was designed to permit the transfer of

data between the host and the co-processor even when there is no computation to be

executed. This directive also accepts the target and the data transfer clauses available

to the offload directive.

The last directive, #pragma offload_wait, is used to wait for the completion

of some computation or data transfer previously started. The asynchronous compu-

tation and/or data transfer occurs by using the signal clause in the offload and

offload_transfer directives.

MYO (Virtual-Shared) Memory Model

Some of the drawbacks of using the offload model is the need to explicitly transfer data

between the host and the co-processor, as well as the impossibility of transferring com-

plex structures that are not bitwise copyable. To resolve these issues there is an alter-

native to the offload model, based in virtual shared memory, the MYO (Mine Yours

Ours) model. The idea behind this model is to delegate on the runtime system the job of

keeping all variables shared between the host and the co-processor coherent. The syn-

chronization happens at the beginning and at the end of offload statements and only
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affects the changed variables. The keyword extensions available to use this model are:

_Cilk_shared and _Cilk_offload.

_Cilk_shared may be applied to both variables and functions. Shared variables are

assigned the same virtual address on the host as on the co-processor. They are allocated

dynamically in the virtual shared space by the host, which means that, when the pro-

gram is compiled, the code for the allocation of the shared variables is generated in the

host’s compiled code only. Because of that, if shared variables are defined only on the

co-processor’s code, by using an #ifdef __MIC__ directive, their allocation code will

not be generated, causing an runtime error when accessed. _Cilk_shared annotated

functions are defined both on the host and the co-processor.

The allocation of shared memory must be made using the functions

_Offload_shared_malloc and _Offload_shared_aligned_malloc

and the respective de-allocation with the _Offload_shared_free and

_Offload_shared_aligned_free functions. As for shared classes the placement

version of the operator new must be used along with the _Offload_shared_malloc

function.

Shared pointers to shared data, private pointers to shared data and shared pointers to

private data are allowed with this memory model. This last case is used to have persistent

data between offloads calls that do not need to be shared with the host. The allocation

of the memory is made using the traditional malloc function and the address is stored

in the shared variable so that distinct offload regions have access to the allocated space.

This type of pointer must be used carefully because, since the memory was not allocated

in the virtual shared memory an invalid de-referenciation can occur.

OpenMP 4.0

Up to version 3.1, the threads collaboratively executing an OpenMP computation had to

share a common addressing space. This is guaranteed in machines with shared memory

and can be emulated by software in a distributed environment, although the approaches

proposed along the years never were widely adopted due to the overhead introduced

being too high [BME07]. Beyond that, there was no support to express computations that

should be executed by external devices, such as co-processors. Given the incremental

use of co-processors in general purpose computing, the 4.0 version of the OpenMP spec-

ification includes built-in support, namely the #pragma omp target, that allows the

computation to be offloaded to a device instead of being executed by the main processor.

By the date of writing of this document, there is not support for GPUs yet. These external

devices are often referred to as accelerators because of their optimized architecture to do

some type of computation which can offer some improvement to the performance of a

program. Since the accelerator is a device independent from the host, possibly having a

different instruction set or even be programmable in a different language, and by having

its own memory it is considered an heterogeneous device in relation to the host.
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The changes made for this version were based on other API created to help develop

parallel programs that offload computation to an accelerator, the OpenACC API [Ope13a;

Wie+12]. The design of the OpenACC directive set always took into consideration a

future integration in OpenMP. In fact, some of the people that worked on OpenACC’s

specification were members of the OpenMP ARB.

With the concept of accelerator, the notion of teams was added to aggregate multiple

threads, with the #pragma omp teams directive. The approach enables a more com-

plex distribution of work among all teams, and the threads that compose them, with the

#pragma omp distribute directive. Also the memory model had to be changed to

also take into account the accelerator’s memory. To ease the mapping from the host’s

memory and the accelerator’s memory, new clauses were added to the #pragma omp

target directive: the map clauses. These clauses enable the programmer to specify if

a host’s variable is to be copied from/to the accelerator or just to allocate space in the

accelerator for some variable.

In addition to the support for accelerators, the last version of OpenMP adds SIMD

constructs, task enhancements, thread affinity (via environment variables), and user-

defined reductions, through the #pragma omp declare reduction. The SIMD con-

structs added are the #pragma omp simd directive, that annotates a loop to be auto-

matically vectorized, so that its execution makes use of SIMD lanes, the #pragma omp

declare simd directive, to explicitly state that the target function can be called from a

SIMD loop, and the #pragma omp parallel for simd directive, that marks a loop

be executed by multiple threads, like the #pragma omp parallel for, but also to

make use of the SIMD lanes.

The task enhancements made were the ability to stop an ongoing task or a group of

tasks and possibility to have task dependencies between tasks.

2.2.2.2 OpenCLTM

OpenCL (Open Computing Language) is a specification developed in 2008, initially by

Apple R© Inc. and then taken by the Khronos Group, to be used in writing of parallel

applications on an heterogeneous system consisting of CPUs, GPUs, FPGAs and other

processors. The latest version of the specification is 2.1 but the version supported by

Intel R©’s compiler is 1.2. This framework is very focused in data parallelism since it was

initially designed to work with the GPU architecture in mind, which allow the execution

of the same instructions over multiple data at once.

The platform model in OpenCL consists of a host connected to multiples compute

devices, or OpenCL devices, with their own memory, which in turn are composed of

compute units that will execute processing elements. The processing elements are in-

stances of kernels, defined in OpenCL C, that are applied to some portion of data. Each

instance of a kernel is also known as work item and can be grouped into work groups.

The set of all work items is known as NDRange (N-Dimensional Range) and can have
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up to three dimensions. An example of an one dimensional range is the vector addiction

where work item i has to compute the sum of the elements in position i of the input ar-

rays. A two dimensional range can be used in matrix multiplication where work item

(i, j) computes the position (i, j) of the result. The value of the indexes can be obtained

with the get_global_id(x) where x is the order of the index.

The memory objects available in OpenCL are only buffer and image objects. The

buffers are one dimensional collections of scalars or user-defined structures and are ac-

cessed in kernels via pointers. The image objects are 2D or 3D textures, frame-buffers

or images and can only be accessed through built-in functions. The kernels are imple-

mented considering a local view of a thread, as opposed to the other frameworks that are

based on a global view.

In addition to the memory objects, there are other entities that need to be created

when developing an OpenCL application. The first one is a cl_context. This entity is

used by the OpenCL runtime all the remaining entities. Next, to compile the program

for the devices specified in the cl_context, the cl_program that contains the kernels

to be used in the application must be created, providing its source code or the file con-

taining it. After the cl_program is created, an entity for each kernel must be created, a

cl_kernel, indicating the cl_program and the name of the kernel. Finally, all the com-

mands for creating, writing and reading buffers or for executing a kernel must be issued

to a cl_command_queue. When a command to execute a kernel is issued, it executes

asynchronously with the host, not guaranteeing that it will start immediately.

2.2.2.3 Summary

The directives supported by the Intel compiler, OpenMP 4.0 and OpenCL, all feature con-

structs to offload computations to the co-processor. However, to make use of Xeon Phi’s

offload model, the host side orchestration must be explicitly managed by the program-

mer. This is particularly noticeable when in the presence of compound computations,

such as pipelines. An alternative is MPI, which allows for message-passing communica-

tion between threads running in the host CPU and in the co-processor, being important

for the symmetric model. Nonetheless, MPI’s API is known to be low-level and cumber-

some. Thus, the programmer is still burden with low-level details.

Several of the features incorporated in OpenMP 4.0, such as task affinity, multiple

teams and the SIMD constructs, complemented by the clauses to specify byte alignments

or work distribution among teams, provide a tuning framework for exploiting the ad-

vantages of the multiple cores and the SIMD lanes present on the Intel Xeon Phi.

The support of these technologies for the Xeon Phi appears to still be very primitive,

but we personally assessed it doing some experimental tests.
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2.3 Preliminary Results

After the initial research for the tools available to program the Xeon Phi, a comparison

between their performance was conducted to choose the technology that would be used

in the scope of this thesis. The results of that comparison are presented in this section.

There were two important aspects that we wanted to measure, the performance of

memory transfers, and the performance of the execution itself disregarding the commu-

nication overhead.

The first test consisted in allocating an array of char elements, fill it with randomly

generated values and then measure the time required to transfer the data in and out of

the co-processor. For each technology there were executed 20 tests, from 100 Mbytes to 2

Gbytes of data with a step of 100 MBytes. In Figure 2.5 are depicted the results obtained

and it can be observed that with both OpenMP and Cilk the data transfer is faster, 52%

and 61%, respectively.
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Figure 2.5: Transfer times with different technologies

After the evaluation of the performance of data transfers, the performance of common

applications was measured. For that, the first application was the well known matrix

multiplication. The method use to perform this calculation was to assign to each thread

an element of the resulting matrix, so, the thread that needs to compute the value of the

position i, j, has to transverse the row i from the first input matrix and the column j

from the second input matrix. In the case of the column the naive approach would use

the original matrix which would result on the values being dispersed by the input struct.

To prevent this, and with the goal of taking advantage of the SIMD lanes available, the

second matrix is transposed so that the values from the same column are contiguous. The

results obtained are presented in Figure 2.6. These results show that, if the potential of

the hardware is fully used, the performance can be tweaked to be better when compared

with tools that do not offer such freedom.

The previous example was already really promising, however, the scope of applica-

tion of Marrow is not limited to these simple computations. Hence, we also evaluated the

relative performance of OpenCL, OpenMP and Cilk Plus when thread communication is
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Figure 2.6: Execution times of integer matrix multiplication with different technologies

required. In this case, the example that was used was the N-Body problem. As it can be

observed, in the results presented in Figure 2.7, both OpenMP and Cilk Plus have a better

performance, of approximately less 50% of execution time, than OpenCL. These results

support the hypothesis that with tools that provide more control over the runtime, like

OpenMP, it is possible to achieve a better performance than with specialized tools like

OpenCL, since the mechanisms can be fine tuned for each case.
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Figure 2.7: Execution times of the N-Body problem with different technologies

At this point, there were good results already favoring the use of the OpenMP tech-

nology but, given that all the previous tests were performed using applications devel-

oped by ourselves, we wanted to use a set of examples that were specially developed to

measure the performance of a device with highly parallel applications. For that, we re-

sorted to an OpenCL and OpenMP adaption of the NPB benchmark suite [SJL11], a suite

of parallel benchmarks, originally developed by NASA1, to evaluate the performance of

parallel supercomputers, implemented in OpenMP and OpenCL.

In order to execute the benchmarks on the Xeon Phi, the OpenCL versions did not

require any modifications because they were already adapted to receive as an argument

1http://www.nas.nasa.gov/publications/npb.html
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the type of device to be used, which in this case was accelerator. However, the OpenMP

versions had to be adapted to offload the computation to the co-processor, as these were

written to be executed on CPUs. There were only two fundamental changes to be per-

formed, the offload of the main() function and the compilation of the auxiliary mod-

ules. The first one consisted in creating a new main function, main2(), that simply of-

floads the execution of the original one using the #pragma offload target(mic)

inout(argc) in(argv:length(argc)) directive, and the second was the gener-

ation of Xeon Phi machine code for the included headers and macros, through the

#pragma offload_attribute directive (see Section 2.2.2.1).

From all the available benchmarks, the ones used were the ones that, after the adap-

tations, compiled using the Intel compiler, namely:

IS Integer Sort, random memory access;

FT Discrete 3D fast Fourier Transform, all-to-all communication;

SP Scalar Penta-diagonal solver;

EP Embarrassingly Parallel.

For each benchmark, there are multiple predefined problem sizes that are represented

by different classes, from A to D, increasing in size. When trying to execute the different

benchmarks, some of the higher classes aborted with runtime errors so the examples were

executed to the highest possible class.
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Figure 2.8: Speedup of the OpenMP versions of the IS, FT, SP and EP benchmarks rela-
tively to their OpenCL versions, in Intel Xeon Phi

Figure 2.8 presents the speedup of OpenMP compared to the OpenCL version. The

results show that OpenCL has a better performance in the EP benchmark, with speedups

tending to 0.25. This is the type of computation OpenCL is tailored for, and hence is

expected to deliver better performances than the remainder technologies. However, in

the benchmarks that have a high level of communication, like the FT benchmark, the

speedup tends to 2. For the other two benchmarks, IS and SP, the speedup gets close to 1,
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hinting that the performance is the same with either technology for average applications

considering the trivial modifications to offload the computations.

2.4 Conclusions

One of the advantages of using a device like Xeon Phi is that not only it provides an

high level of parallelism, like GPUs, but at the same time, due to its x86 compatibility,

the most common tools used in multi-core processors can also be used. This means that,

in addition to the higher level of programming provided by such tools when compared

to technologies like OpenCL, all the knowledge gathered in the context of multi-core

processors can also be applied in this case.

From the OpenCL versus OpenMP versus Cilk experimental results, it can be con-

cluded that, for hand written applications, if the hardware is correctly used, the perfor-

mance of technologies that provide a lower level of programming, such as OpenMP and

Cilk, can be better than more generic technologies like OpenCL. From these tests the

tools that were chosen to be used as support for the proposed work was OpenMP for the

parallel execution on the co-processor and the compiler pragmas for the data transfers

because they provided the best performances. Both the results from our tests and from

the SNU NPB tests were promising and, specially for OpenMP, the support provided by

the community about this tool is very large.
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3
The Marrow Algorithmic Skeleton

Framework

Marrow [AMP14; Mar+13; SAP14] is a C++ ASkF (Algorithmic Skeleton Framework) for

general purpose computing in computing nodes featuring multiple CPUs and GPUs. It

provides a library of skeletons for task- and data-parallelism, to orchestrate and hide the

details of the programming model related to OpenCL, leaving only to the programmer

the task of providing the parallel computations, in the form of OpenCL kernels. These

skeletons may be nested onto a computation tree in order to build complex behaviors.

Furthermore, the framework transparently performs a number of device-type specific

optimizations, such as the overlap of computation with communication to reduce the

overhead of data transfers between the host and the GPU (which is usually carried out

over the PCIe bus), and the division of the CPU devices taking into consideration cache

affinities.

The framework currently supports the following five types of skeletons:

Pipeline Applies multiple computations to the input data in a way such that the out-

put of a stage becomes the input to the next stage. This skeleton is particularly suit-

able for accelerator computing, in general, because the intermediate results can be

kept on the accelerator’s memory, disregarding the overhead of transferring them

back to the host.

Loop (and For) This skeleton iterativelly applies an OpenCL computation, being that

the loop’s control condition may, or not, depend on data computed by the nested

kernel. The former is akin to a while loop, while the second is closer to a for. In

fact, due to its wide use, the For specialization of the Loop skeleton is featured in
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the framework’s skeleton library. Besides, there are still two modes of execution

in a multi device environment, one is when each iteration needs the data modified

by previous iterations requiring the existence of a synchronization point at the end

of each iteration, the other is when the iterations are independent so all GPUs can

execute their work without waiting for the remainder devices.

Map and MapReduce When a computation is to be applied to independent partitions of

the input data the Map skeleton should be used. In case of, at the end of applying

the computation to all partitions, the multiple results need to be aggregated, the

MapReduce skeleton is the one to be used. All of the skeletons support nesting,

meaning that they can be used as inner nodes enabling the composition of more

complex computations.

3.1 Architecture

Marrow’s architecture, depicted in Figure 3.1, comprises two layers: the skeleton library

and the runtime module. The programmer only has access to the library layer that pro-

vides the multiple skeletons.

As mentioned before, a computation is represented as a tree. In this tree, the inner

nodes are the skeletons aforementioned, and, the leaf nodes, are instances of the class

KernelWrapper that encapsulate the actual computation kernels. This wrapper is re-

sponsible for managing the cl_program’s and cl_kernel’s necessary for its execution

and it is the one that sets the arguments of the kernel and issues its execution resort-

ing to the OpenCL routines. In addiction, there are also the kernel data-types, of type

IWorkData, that represent the different arguments of the kernel, namely:

BufferData represents a contiguous memory region. It is used to represent arrays. Be-

yond the type of the elements, the minimum indivisible size to which it can be

partitioned into, the mode of access and the mode of partitioning can also be indi-

cated;

FinalData/SingletonData are used for constant values that are always the same for ev-

ery thread. When the value is known by the time the tree is being constructed,

the FinalData class is used, whereas if the value changes for each execution, the

SingletonData class is the correct one. There is no additional information for

these data-type besides the type of the value for both types and the value itself for

the FinalData type;

LocalData is used to represent data that is allocated only on the device and not on the

host. Similarly to SingletonData, the type of the elements is the only information

provided.

In order to be able to execute the same tree with different inputs, the buffers are

only provided at the execution stage. The Vector data container serves as a wrapper
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to those buffers, abstracting all inter-device communication and data partitioning (when

such partitioning is required).

The runtime layer is responsible for dealing with all the details inherent to the man-

agement of OpenCL computations, namely, problem decomposition across multiple de-

vices, scheduling, and communication (including synchronization). The Scheduler

module is used to decide the distribution of partitions among all the available devices us-

ing the Auto-Tuner module to decompose the domain of a kernel. The transfer of data

to a device and the consequent execution of the kernel is dealt by the Task Launcher

module. The ExecutionPlatform module is the main responsible for interacting with

the underlying platform. In the case of the OpenCL devices, is this module that manages,

for example, the command queues associated with each device. Recently the support for

multiple ExecutionPlatform modules was added so the computation tree can be ex-

ecuted exclusively, or in parallel, by multiple platforms.

OpenCL Devices

User Applications

    Skeleton Library

Pipeline Kernel Data-TypesLoopMapReduce

KernelWrapper VectorForMap

    Runtime Containers

Exceptions PartitionInfoSchedulerKernelBuilder

Auto-Tuner TaskTask Launcher
ExecutionPlatform

ExecutionPlatform
...

Figure 3.1: Marrow’s architecture

3.2 Programming Model

The programming model in Marrow can be defined in three stages: allocation of the

tree, execution requesting and de-allocation of the tree. To help understand how the

framework is used, a simple example of how to build a three stage pipeline is illustrated

in Listing 3.1. This example consists in applying three filters, namely the Gaussian Noise,

the Solarize and the Mirror filters, to an image.

The tree allocation phase is represented by the instantiation of the three kernels and

the pipeline skeleton (lines 3 to 9). For each kernel, akin to OpenCL, the file of the source

29



3. THE MARROW ALGORITHMIC SKELETON FRAMEWORK 3.2. Programming Model

Listing 3.1: Image filter pipeline using the Marrow framework

1 //Create each kernel

2 //gauss

3 KernelWrapper gauss = kernel<Vector<uchar4, 2>, const int, uchar4*> ("

gaussian_noise_kernel.cl", "gaussian_transform");

4 //solarize

5 KernelWrapper solarize = kernel<Vector<uchar4, 2>, const int, uchar4*> ("

solarise_kernel.cl", "solarise_transform");

6 //mirror

7 KernelWrapper mirror = kernel<Vector<uchar4, 2>, uchar4*> ("mirror_kernel.cl",

"mirror_transform");

8 //Create the pipeline with the multiple stages

9 Pipeline filter_pipeline = pipeline (gauss, solarise, mirror)

10 //Set input/output arguments

11 //input image

12 Vector<cl_uchar4, imgWidth > input_image ( imgWidth*imgHeight )

13 //fill input_image

14 ...

15 //output image

16 Vector<cl_uchar4, imgWidth > output_image ( imgWidth*imgHeight )

17 //Request tree execution

18 Future future = filter_pipeline(input_image, output_image);

19 //or Future future = filter_pipeline.run(input_image, output_image);

20 //Wait for results

21 future->wait();

22 //Cleanup

23 delete future;

code and the name of the kernel are provided. In addition, so that the runtime can char-

acterize the kernel, the type of the arguments, which, in this case, are a vector of uchar4,

a constant integer, and a pointer to an uchar4, denoting an output vector of that same

type. When representing an array, both the type and the number of elements per threads

are specified, which is 2 in the example because each thread will apply its filter to 2 pixels

of the received image. After all the kernels are instantiated, the pipeline is defined by

simply stating the order of the stages (line 9).

Once the tree is allocated, the input and output Vector’s are created (lines 12 to 16).

Each one is parameterized with the type of its elements and the indivisible unit (which in

this case is chosen to be an image line) and it is instantiated with the number of elements.

The input Vector’s are filled just like with a normal array, using the indexation operator

([]).

Finally, the execution request (line 18), prompt through the run routine or the ()

operator, returns a future object. Hence synchronization is data-centric, host and skeleton

execution may run concurrently until the former requires the result output by the latter

by waiting for the result with the wait routine. After the computation is completed, the

Future object must be deleted.
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3.3 Execution Model

Marrow’s internal execution model is depicted in Figure 3.2. The issuing of a Marrow

tree execution request (step 1) triggers the creation of a future object (step 2) that is sub-

sequently returned to the issuing thread (step 3). Concurrently the task to be executed

(the Marrow tree) is submitted to the Scheduler so that the work can be distributed

among the target devices (step 4). The resulting partitions are subsequently scheduled to

each device, as they are pushed unto per-device work queues (step 5). When possible,

the TaskLauncher removes a task from a queue (step 6), and requests the correspond-

ing Skeleton to launch the data transfer and execution (step 7). The Skeleton issues

the ExecutionPlatform of each device to transfer the corresponding data and to exe-

cute the kernels (step 8). Upon completion, and when all output data is available to be

used, the TaskLauncher notifies the future object associated to the computation that

the task is finished (step 9). The future object then notifies the application, by awaking it

in case it had requested the results before they were available, to inform the results are

ready to be used (step 10).



3. THE MARROW ALGORITHMIC SKELETON FRAMEWORK 3.3. Execution Model

used and all the combinations are considered.

The Marrow framework was designed from the beginning to be used with OpenCL,

hence some of the underlying mechanisms, such as its execution model, were highly

influenced by the latter. For example, just as it happens with OpenCL, where the data

transfers are independent from the actual execution, on Marrow, there are three stages

for the execution of a computation three, the upload of the input data to all the devices,

the execution of the computation and the download of the results back to the host.
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4
Marrow on Xeon Phi

This chapter will describe most of the work proposed in this thesis. Section 4.1 starts

by explaining the efforts for adapting the Marrow framework for the Xeon Phi keeping

the OpenCL runtime. In Section 4.2, the changes performed to the framework in order

to support computations defined as C++ functions. The work described in Section 4.3

was developed to give the framework an initial runtime support for streaming of data.

Section 4.4 concludes with the adaptations to the framework, in order to support multiple

technologies.

4.1 OpenCL Version

OpenCL support for the Xeon Phi meets all the requirements of the current version

of the Marrow framework. Accordingly, the addition of Xeon Phi support in Marrow

can be tackled just at the OpenCL backend level, the ExecutionPlatforms. Prior

to the work developed in the scope of this thesis, Marrow comprised two different

ExecutionPlatforms, one for each type of supported processing units, namely CPUs

and GPUs. The main differences between these platforms are at the optimization level.

The CPUExecutionPlatform is tuned for exploring cache locality, using for that pur-

pose the OpenCL CPU fission functionality. As for the GPUExecutionPlatform, in or-

der to minimize the overhead associated with the CPU-GPU communication performed

over the PCIe bus, GPU computation is overlapped with bi-directional data transfers to

and from the GPUs - a technique that we refer to as overlap.

Similarly to GPUs, the Xeon Phi is a many-core accelerator plugged in the PCIe

bus. Accordingly, the overlap feature is an optimization parameter that may well

yield performance gains when applied in the co-processor. To that extend, the
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GPUExecutionPlatform was chosen as the base for the XeonExecutionPlatform.

Due to OpenCL’s device-type abstraction, the GPUExecutionPlatform and the

XeonExecutionPlatform are virtually identical, differing only in the type of de-

vice that each one issues to the OpenCL runtime, namely CL_DEVICE_TYPE_GPU and

CL_DEVICE_TYPE_ACCELERATOR. After this change the new ExecutionPlatform

was added to the Marrow runtime, like depicted in Figure 4.1, and all the examples suc-

cessfully ran on the co-processor.

Figure 4.1: New Runtime with all ExecutionPlatforms

The OpenCL framework features many device type independent mechanisms,

like the creation of command queues, transfer of data to the device or the build

of kernels. Accordingly, with the purpose of factoring all these mechanisms, a

generic ExecutionPlatform was created to enclose all these mechanisms so that

more OpenCL platforms can be added to the framework without the need the re-write

all these mechanisms. This platform is subclassed by the CPU, GPU and Xeon Phi

ExecutionPlatforms as illustrated in Figure 4.2. The generic class features not only

all the methods required to get information about the devices like the number of de-

vices, the type of the devices or the amount of total and free memory available but also

the methods for allocating and freeing memory and for uploading and downloading data

to/from the devices. As for the specific ExecutionPlatforms, they only have the code

responsible for collecting all the devices available on the system, the allocation and cre-

ation of contexts as well as for storing the information about the memory available on

each device.

Figure 4.2: Class diagram of the multiple ExecutionPlatforms
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4.2 C++ Version

Having in mind the Xeon Phi’s compatibility with the x86 architecture, a pure C++ ver-

sion was developed in order to take fully advantage of the hardware without requiring

the programmer to express its computations in OpenCL, and, with that, raise the level

of abstraction. Dropping the OpenCL dependence of the library lead to some signifi-

cant changes. Firstly, the computations are no longer defined has OpenCL kernels, but

rather as simple C++ functors, relieving the user from knowing the OpenCL syntax and

semantics, which implies knowledge on parallel programming and computer architec-

ture. Secondly, the parallization of the user-defined behaviors are no longer delegated

on the OpenCL runtime. In addition to the orchestration, all parallelization of the exe-

cution of the leaf nodes needs to be handled by the framework. Finally, Xeon Phi allows

the synchronization between all executing threads, something that was not possible on

GPUs and was reflected on OpenCL. Therefore, with the help of the pragmas provided

by Intel’s compiler, the whole tree can be offloaded to the accelerator.

4.2.1 Programming Model

The OpenCL version of the Marrow framework already hides most of the underlying

OpenCL mechanisms. Thus, the transition to the C++ version kept the programming

model very similar to the existing one. Regarding the creation of the computation tree

all the nodes remain the same except the leafs that now are CFuncWrappers (Listing

4.1). As for the OpenCL portion of the model, the implementation of each kernel was

replaced by the definition of a Functor1 class representing the computation to be applied

by each leaf to the corresponding input data. By comparing Listing 4.2 and Listing 4.3,

it can be observed that the notion of global id no longer exists and now, the programmer

only has to define the computation applied to each element and does not need to deal

with the access to such element, given that, on the new version, only the necessary ele-

ments are received as arguments, as opposed to the arrays in the kernel code. In order

for the code of the Functor class to be compiled for the MIC architecture, its declaration

must be enclosed between #pragma offload_attribute (lines 2 and 12). This detail

could be masked by resorting to a C++ macro. The resort to this type of class relates

to the impossibility of the compiler to vectorize the code without the access to the func-

tion, whereas with a parameterizable CFuncWrapper, its code is only compiled when

the parameter is instantiated, allowing the compiler to access the function and vectorize

it.

4.2.2 Execution Model

The shifting from OpenCL to pure C++ allows for the skeleton tree to be fully evaluated

on the co-processor, instead of on the host. The advantage of this approach is that, with

1A Functor class is a class that implements the operator () so that it can be called like a function
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Listing 4.1: Tree allocation with Functor class

1 // Tree allocation with Functor class

2 unique_ptr<IExecutable> func(

3 new CFuncWrapper<Functor>(inDataInfo, outDataInfo));

4 skeletonTree = new xeonphi::Map(func);

Listing 4.2: Functor class example for the Saxpy problem

1 // Mark the class to be compiled for MIC

2 #pragma offload_attribute (push,target(mic))

3 class Functor {

4 public:

5 Functor() {};

6 ~Functor() {};

7

8 void operator () (const float X, const float Y, const float a, float * const

out){

9 *out = X*a + Y;

10 }

11 };

12 #pragma offload_attribute (pop)

Listing 4.3: Kernel example from the Saxpy problem

1 __kernel void saxpy(__global float *X, __global float *Y, const float a,

__global float *out)

2 {

3 int pos = get_global_id(0);

4 float x = X[pos];

5 float y = Y[pos];

6 out[pos] = a * x + y;

7 }
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the orchestration taking place in the co-processor, there is no need to transfer the control

between the host and the device. To illustrate the main differences between the OpenCL

and the C++ versions, consider a computation tree that represents a 2-stage Pipeline,

each performing a map operation (see Figure 4.3).

Figure 4.3: Computation tree of a two stage Pipeline with two Maps

For a tree evaluation request, the first step is to transverse the tree in order to allocate

the memory necessary for the execution of each skeleton. Regarding the Pipeline,

besides the memory for the input and output data, an intermediate memory is allocated

to serve as a temporary storage for the results that are produced by the Pipeline’s first

stage, and will be consumed by the next stage. As for Map, since there is no need for

additional storage, and because the memory for the arguments is allocated by the parent

node, no memory is allocated by this skeleton. After all memory has been allocated, the

input data is then uploaded to the device.

Next, the execution starts at the root of the tree and is propagated downwards, and

left to right, until it reaches the leaves. When a leave is reached the respective kernel

is executed, leaving the task of its parallel execution to the OpenCL runtime, following

the SPMD execution model. While the Map skeleton only has to request an execution of

the kernel using the input and output data, the Pipeline needs to request the execu-

tion of the first stage passing the intermediate memory as the output memory and then,

for the second stage, use it as the input memory. Marrow resorts to multiples queues

of commands to avoid having the Pipeline waiting for the first stage to finish before

requesting the execution of the next stage. However the execution of both stages is per-

formed in a sequential way. This can have a cost in performance considering that the

second stage could start processing the results of the first stage before its completion.

One limitation imposed by GPUs is the lack of global synchronization, entailing that,

if the computation requires that the various instances synchronize at one point, the con-

trol needs to transferred back to the host. To achieve this behavior, the computation must

to be split into multiple kernels so that, when each kernel finishes its execution, a syn-

chronization happens. This approach can be expensive because when there is the need to
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Listing 4.4: Example of how parallelization is achieved

1 #pragma omp parallel for collapse(3)

2 for (k = 0; k < size3; k++)

3 for (j = 0; j < size2; j++)

4 for (i = 0; i < size1; i+=CHUNK_SIZE){

5 unsigned int pos = k*size1*size2 + j*size1 + i;

make some decisions based on the modified data, like it happens with the evaluation of

the Loop skeleton’s stop condition, there has to be a data transfer from the device to the

host and then, possibly, the data is sent back to the device.

For the C++ version, taking into account that there is no restriction and the syn-

chronization can be performed on the device, the control can be sent to the device itself

(Section 4.2.4), along with the computations, thus eliminating the transfer with the host

of both data and/or code.

When all the data is done been processed by the tree, the results are then downloaded

back to the host, storing it on the memory provided by the user.

4.2.3 Parallel execution of the leaf nodes

Due to the different models of execution of OpenCL and C++, the task of executing the

kernels in parallel needs to be implemented by the framework. Since every skeleton may

receive a C++ functor as argument, they must be equipped with the mechanisms to par-

allelize the kernels. To perform this task, any tool which had its runtime system compiled

for the Xeon Phi could be used. From the studied tools, OpenMP was chosen because,

as opposed to Cilk plus, it allows the fine tunning of some aspects like the number of

threads to use or the scheduling strategy for distributing the work among those threads.

For the Map skeleton the strategy is to spawn multiple threads that will execute the

kernel over some portion of the input data. In the programming model defined for the

C++ version, the provided function has to define the computation to be applied to an

indivisible unit of the input data, so, in this context, it only has access to the data subset

really needed for its implementation. From this, the problem of how to access a multi-

dimensional structure emerges, since Vector is a flat representation of this type of struc-

ture, and so, to tackle it, a very common strategy of storing this type of structures was

used. The access is accomplished by considering that the whole struct was flattened to

a single dimensional space where the elements from each dimension follow a row-major

order organization. For the parallelization itself, the iterations of three (number of di-

mensions supported by Vector) for constructs that iterate over the dimensions of the

input data are distributed by the available threads. Listing 4.4 shows the pragma used,

where sizei denotes the size (in number of elements) on dimension i of the input data,

CHUNK_SIZE is the maximum number of elements that each thread has to process per

cycle iteration, and pos is the position where those elements start.
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Optimizations Initial experimental results revealed that the execution time was bigger

than the OpenCL version so, some optimizations were performed. The first tweak tested

was the scheduling method used by OpenMP to distribute the work among all threads

but after some testing it was concluded that both dynamic and static had the same

performance, so the default setting was kept (static). Another issue that was addressed

was the granularity of the work assigned to each thread (CHUNK_SIZE). Initially, the

number of elements assigned to each thread was the number of elements which could be

processed using the VPU available to each core considering that its width is 512 bits. This

meant that, if the input elements where of type int, then 16 elements would be assign

to each thread (512 bits/(4 bytes ∗ 8 bits/byte) = 16), or, in case the elements were of type

float, each thread would receive just 8 elements at once (512 bits/(8 bytes∗8 bits/byte) =

8). More experimental results revealed this value was so fine grained that the overhead

of issuing the execution was bigger than the actual cost of the execution. To minimize

this impact, the number of elements was changed to be 1/(ncores ∗ 2) of the input size.

Despite the performance improvements, the optimization of the granularity per se

was not enough to match the performance achieved by the OpenCL version. A closer

look of the behavior of the framework, revealed that the code that was executed by each

thread was not being vectorized. This had a high impact on the performance considering

that one of the key features of the Xeon Phi is the availability of VPUs on every core.

This problem existed because the vectorization is performed by the compiler and, since

the execution code was passed as a function pointer, it could not access it at compile

time, therefore not being able to assume that the code was likely to be vectorized. The

only way discovered to tackle this problem was by resorting to the C++ template fea-

ture. This feature consists in parameterizing a class with a generic type that is unknown

when the class is (partially) compiled but that has to be provided when the code that

uses that class is compiled. Since the vectorization is to be performed to the code that is

applied to the multiple elements given to each thread, the class that was parameterized is

CFuncWrapper. Instead of passing the function as an argument to the wrapper, a func-

tor class is given as a parameter to CFuncWrapper that instantiates a new object of the

functor class.

The speedup achieved by each optimization relatively to the previous one is depicted

in Figure 4.4. As illustrated, by simply issuing the compiler to optimize the code, via

-O2 flag, the gain in performance was of over 2.5 times. The results show that the tuned

grained was the one that provided the biggest improvement, with a speedup slightly

over 5. The changes performed to the framework to apply the last optimization, the

vectorization of the user-defined function, were rewarded with an increase of over 3.5

times more performance.
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Figure 4.4: Speedup obtained from each optimization

Listing 4.5: Interface to offload skeletons to the co-processor

1 typedef void (*fptr)(arguments&, arguments&);

2

3 //Method that returns a function to be offloaded representing the Skeleton sub-

tree.

4 virtual fptr getSkeletonFunction() = 0;

5

6 //Method that returns the arguments to be passed to the skeleton function.

7 virtual arguments* getSkeletonArguments(unsigned int partitionIndex, unsigned

int overlapPartition) = 0;

4.2.4 Offloading the Computation Tree

The offloading of the computation’s orchestration to the device imposed several design

changes to be made to the skeletons. Instead of recursively going through the tree on

the host, a mechanism had to be developed to aggregate all the orchestration into one

region to be offloaded and then executed on the co-processor. An intuitive approach

would be to simply offload the tree, as it is, to the device and then execute it there. This,

however, cannot be done because there is the need to compile all code that will run on the

accelerator for the MIC architecture and the current support for this is still early and the

Intel compiler does not support the offloading of classes. Although Cilk Plus provides a

mechanisms to offload classes, as described in Section 2.2.2.1, it does not support classes

as complex as the ones representing the skeletons. Given these limitations, our strategy

was to have all skeletons implement one function with the code for its orchestration and

then combine all functions into a single one, thus representing the whole computation

tree in one function that can be offloaded to the Xeon Phi.

Listing 4.5 presents the interface that every skeleton needs to implement. It is used

so that every skeleton can export the code of its orchestration as an function pointer, that

we refer to as skeleton function, as well has the arguments needed for such orchestration,

defined as skeleton arguments. With this information available to the parent skeleton, the

tree function is then built, virtually, because it is not actually a single function, by passing
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Listing 4.6: Example of how to get the pointer to a function defined on the co-processor

1 __attribute__((target(mic)))

2 inline void funcMap(arguments& args, arguments& privArgs){

3 //... orchestration code

4 }

5

6 func_ptr getSkeletonFunction(){

7 void* f2;

8 #pragma offload target(mic) out(f2)

9 {

10 f2 = (void*) funcMap;

11 }

12 return (func_ptr) f2;

13 }

along with its skeleton arguments, the pointers to the skeleton functions of its children

as well as their skeleton arguments’ pointers. For a better understanding, lets consider

a computation defined by a Map with a CFuncWarpper. The skeleton arguments for

the CFuncWrapper are the constant arguments of the kernel function, and for the Map

skeleton are: the size of each dimension of the input data; the pointer to the function that

orchestrates the behavior of the CFuncWrapper; and a pointer to the CFuncWrapper’s

arguments. In order for all the code to be executed on the accelerator side, the pointers

must refer to memory addresses on the device. To achieve this, regarding the skeleton

function and like it is shown in Listing 4.6, first, the function has to be declared with

__attribute__((target(mic))) (line 1), so that the code is compiled for the ac-

celerator, and then, to get the address of the function, the de-referencing must be done

inside an offload block (lines 8 through 11). Concerning the allocation of the skeleton

arguments the approach is the same. From a more technical point of view, explicitly

defining the code that has to run on the device has the advantage of reducing the MIC

code footprint to the one that is effectively necessary.

4.2.5 Efficient memory transfer

One key aspect of working with accelerators is that, commonly, they are attached to the

host machine via some interface that has a non negligible latency. Such is the case with

the Xeon Phi. Hence, one of the runtime operations that requires special attention is

the memory transfers between the host and the device. Being originally built with the

OpenCL execution model in mind, Marrow follows its execution model where the allo-

cation and transfer of memory are performed separately from the execution of the com-

putation. This design prevents the use of the usual approach where the data that needs to

be sent over to the accelerator is specified, on the #pragma offload used to execute the

code on the device, using the clauses available. To abide to this architectural design, the

first approach was explicitly allocate the memory on the device by offloading a malloc

call, saving the returned address. Afterwards, when the data is uploaded to the device, it
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is stored in the allocated space using the memcpy routine. This approach was considered

because it allows to pass the address where the data was allocated in the co-processor to

the execution stage. However, the performance results were not good because the data

was being moved two times, first, from the host to some space used by the runtime that

manages the communication between the accelerator and the host, and then from there

to the allocated space.

Since the driver of this optimization phase was the efficiency of the memory trans-

fer between the host and the device, we naturally continued our research in the quest

of better solutions. A deep investigation, on how the runtime associates the memory

on the co-processor with the memory provided by the user, revealed that the runtime

automatically converts host addresses that are used inside offloaded regions, by the cor-

responding address on the co-processor’s memory. This conversion works, as long as the

memory has been previously allocated and correctly filled using the available pragmas

to transfer data between the host and the Xeon Phi. From this knowledge, the mem-

ory transfers were changed to correctly use the #pragma offload_transfer. This

change resulted in an improvement of 15 times on memory transfers, as shown in Fig-

ure 4.5. However, this mechanism required that the pointers provided by the user were

saved by the framework, resulting in a modification to the IWorkData class (described

in Section 3.3), making it store the pointer to the data when execution of the tree is issued.
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Figure 4.5: Speedup obtained from the usage of #pragma offload_transfer

4.3 Adding Data-flow Support

Currently, the framework follows an execution model in batch where the data to which

the computation tree is to be applied has to be entirely provided up-front. With the goal

of allowing a stream of data to be provided to the computation tree, an initial version of

the underlying support was developed.

In order to support a stream of data, a concurrent queue was implemented from

where each skeleton would consume data or, in case there was no data available, they
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Listing 4.7: Structure of a working_unit

1 typedef struct working_unit{

2 typedef struct buff {

3 void* vector;

4 unsigned int elem_size;

5 } buff;

6 buff** buffers;

7 unsigned int* layers;

8 unsigned int num_layers;

9 unsigned int total_buffers;

10 unsigned int num_elems;

11 bool end_of_stream;

12 } working_unit;

would block waiting for new data. As such, there are always two queues between skele-

tons: the input and the output queues. The elements to be processed are enclosed inside a

working_unit, whose structure is depicted in Listing 4.7.

The initial approach was to have an array with the pointers to the input and output

buffers of data, and their respective sizes, that the next level on the tree needs. This

solution works fine for a single Map but it proved to be insufficient for more complex

structures, such as a Pipeline of two stages, proved to be insufficient. The problem is

that, if the Pipeline creates a working_unit with the input buffers and the middle

buffers to where the first stage should write the results. When it has finished processing

the unit and needs to pass it to the second stage, it does not know the pointer to where

the second stage should write, because that pointer was given to the Pipeline and not

passed to the first stage. This problem was tackled by keeping the information of how

many layers of buffers there are. A layer of buffers is set of buffers that will be used as

input or as output for a kernel. This information is constructed as the tree is covered and

each Skeleton adds a new layer if the next level of the tree needs any extra buffer. For

the Pipeline skeleton, a layer with the middle buffers is added after the first layer. For

the example, if the first stage applies a function that receives elements from two buffers

and writes to a single output buffer, and the second stage reads elements this latter buffer

and writes to yet another output buffer, an working_unit received by the Pipeline

has the structure shown in Figure 4.6(a). In turn, the unit passed to stage 1, illustrated in

Figure 4.6(b), is augmented with the buffer allocated for the inter-stage communication,

placed in position 2, and the layers are updated to state that the second one has size 1.

When a stage receives an unit, it simply reads the values from the first layer as input

and writes to the second layer every time. In this case, the second layer will correspond

to the memory allocated for the temporary results. Upon completion, the unit that is

passed to the next stage (Figure 4.6(c) for the example) is the one received, with the first

layer removed, since that data was already consumed, which means, in our example, that

second stage will read from the temporary memory and write for the final memory.
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Figure 4.6: Example of the working_unit’s received by the Pipeline, the stage 1 and
the stage 2

To prevent the excess of working units, only the skeleton that executes the paral-

lelization, in this case the Map skeleton, splits the working units into smaller chunks.

This means that, the root of the tree only adds one unit to the queue, with the number of

elements of the input data. When a Map consumes a unit with multiple elements, it splits

then into chunks to be passed to the executing threads.

One advantage from this execution model is that, since the data now flows through

the tree, the two stages of the Pipeline can be executed in parallel and, when the result

of the first stage, the second one can start processing it right away.

4.4 From a Single Backend to a Multiple Backend Marrow

Framework

This final section reports some code adjustment operations that had to be applied upon

the pre-existing Marrow framework implementation, so that the skeleton library and run-

time layers would be technology agnostic. Considering that, initially, the Marrow frame-

work was designed to work with OpenCL, the runtime layer was filled with OpenCL

references that needed to be removed so that the new version could still use all the ex-

isting mechanisms like automatic configuration selection and work scheduling. Initially,

the references to the OpenCL memory objects where replaced by unique identifiers that

translated into either OpenCL Memory Objects for the OpenCL version or C++ pointer

for the C++ version. The mapping between the identifiers and the memories is en-

closed in the ExecutionPlatforms. Another OpenCL mechanism that was used by

the framework was the use of events to wait for the memory transfers or the execution

to end. Given that this mechanism is useful for the framework, the interface IEvent
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was created to raise the level of abstraction and enabling the usage of the event mecha-

nism, independently from the technology used. The corresponding OCLEvent class was

developed to encapsulate the OpenCL event objects.

Lastly, in order to keep the library layer independent from the underlying technology

and its mechanisms, such as the ones described on Sections 4.2.3 and 4.2.4 for the C++

version, an abstract class representing each skeleton type was created. The details of each

technology were moved to specialized versions of each skeleton, under the namespaces

marrow::opencl and marrow::xeonphi, for the OpenCL and C++ versions, respec-

tively. The wrappers of each version, namely CFuncWrapper and KernelWrapper,

were moved to the corresponding namespace. The diagram representing the new struc-

ture is depicted in Figure 4.7.

Figure 4.7: Class diagram after the framework generalization
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5
Experimental Results

The effectiveness of the solutions developed in the scope of this thesis were evaluated

from a performance perspective. More particularly we wanted to find the answer to two

questions: “Is the Xeon Phi competitive against current GPUs for the execution of com-

plex OpenCL computations orchestrated by Marrow?” and “How does the new version

of Marrow compare to the OpenCL version?”. To that end we conducted two different

experimental analysis on distinct hardware infrastructures.

5.1 Metrics and Methodology

The Marrow framework includes a suite of benchmarks, developed specially in Marrow,

that can be used to asses the performance of the framework. The metric used for each

scenario was the execution time of each benchmark. At each run, the benchmark was

executed 100 times and the times were sorted. The time of each test is then the averages

of the middle 34 times.

5.1.1 Benchmarks

This section will describe the objective of each benchmark, as well as how it is defined

as a Marrow computation tree. Except the Series benchmark, all the others were already

implemented in the Marrow framework. The available benchmarks are:

Image Pipeline This example consists in a pipeline of image filters that are applied to an

input PPM image. The filters are the Gaussian Noise, Solarize and Mirror. These kernels
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have been taken from AMD’s OpenCL Samples1. This benchmark could not be rewritten

in C++ because each working unit needs to access two distinct pixels of the image. The

images used as examples for the tests were Lena.ppm, Garden.ppm, Ocean.ppm and

Andro.ppm having 1024x1024, 2048x2048, 4096x4096 and 8192x8192 pixels, respectively.

The computation tree is composed of two pipelines, resulting in a three stage pipeline

with the filters as leaves, being applied in the following order: Gaussian Noise → Solarize

→ Mirror.

N-Body This benchmark performs the N-Body simulation, where the position and ve-

locity of a set of bodies are updated, during a certain number of steps, based on the initial

values and the forces applied by each body on the others. The kernel follows a classical

direct-sum algorithm, of complexity O(N2) where N denotes the number of bodies, in

which a single body is affected by all the other bodies in the set. Like the image filters, the

kernel used for this benchmark was taken and adapted from AMD’s OpenCL Samples.

The input for this benchmark is a file with the particles and the number of simulations to

perform.

The computation tree is composed of a For loop where the step function simply in-

crements the counter of the number of steps.

Segmentation This is a tomography image enhancing algorithm. A tomography image

is a set of pixels within a three dimensional space, where each pixel represents the amount

of absorbed radiation at that position as a gray-scale value. This algorithm changes the

value of each pixel, converting its value into either white, grey or black, depending on

a threshold. The examples used for this benchmark were cubo100.mat, cubo200.mat

and cubo400.mat, which represent cubes with dimensions 100x100x100, 200x200x200 and

400x400x400, respectively.

The computation tree is formed by simple map with the algorithm’s kernel.

Solarize This is the application of the Solarize filter, that is used in the Image Pipeline

benchmark, to the input image. The images from the Image Pipeline were also used for

this benchmark.

The tree of this benchmark is the sub-tree of the Image Pipeline representing only the

Solarize filter, namely a single map with the filter’s kernel.

Saxpy This example is a matrix operation from BLAS (Basic Linear Algebra

Subroutines). It consists in receiving two equally sized matrices as input, multiplying

each element from the first matrix by a scalar and then adding the result to the corre-

sponding value of the second matrix (z[i] = a ∗ x[i] + y[i]).

The computation tree is built with a single map with the function’s kernel.

1http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-
sdk/
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Series This benchmark computes the first N fourier coefficients of the function f(x) =

(x+ 1)x on the interval [0, 2]. It heavily exercises transcendental and trigonometric func-

tions. The kernel for this benchmark was from the Java Grande Forum Benchmark Suite2.

This benchmark receives the value of N as input.

The computation tree is assembled with a map containing the function’s kernel.

5.2 Intel R© Xeon PhiTM vs GPU

The goal of this first set of tests was to compare the performance of the OpenCL version

of the framework when executing on three different systems, one with the Xeon Phi co-

processor, and the other two systems with GPUs. The infrastructure of each system is the

following:

C2050

• CPU - Quad-core Intel R© Xeon E5506 @ 2.13 GHz

• Motherboard - ASUS P6T7 WS Super Computer LGA 1366 DDR3 7PCIE16X

• Main Memory - 12 GB RAM DDR3

• GPU - NVIDIA R© Tesla TM C2050

• GPU Driver Version - 295.41

• Operating System - Linux Ubuntu 10.04.4 LTS (kernel 2.6.32-41)

GTX 680

• CPU - Quad-core Intel R© Xeon E5506 @ 2.13 GHz

• Motherboard - ASUS P6T7 WS Super Computer LGA 1366 DDR3 7PCIE16X

• Main Memory - 12 GB RAM DDR3

• GPU - NVIDIA R© GeForce R© GTXTM 680

• GPU Driver Version - 295.41

• Operating System - Linux Ubuntu 10.04.4 LTS (kernel 2.6.32-41)

2http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/seq/contents.html
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Xeon Phi

• CPU - Quad-core Intel R© Xeon E5-2603 v2 @ 1.80 GHz

• Main Memory - 16 GB

• Co-processor - Intel R© Xeon PhiTM 5110P

• MPSS version - 13.1.3 20130607

• Intel R©compiler version - 295.41

• Operating System - Linux Red Hat 4.4.7-4 (kernel 2.6.32-431)

5.2.1 Results

In results for the Image pipeline benchmark, it can be observed that behavior of each

system is very similar (Figure 5.1(a)). For every input, the system with the GTX 680 is

always one that provides the best performance whereas for the Xeon Phi, it is the one

with the worst performance. However, as depicted in Figure 5.1(b), the slowdown of the

co-processor tends to 1.5, as the input size increases.
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Figure 5.1: Image pipeline benchmark on various GPUs and the Xeon Phi

For the N-Body problem, the results are different from the previous one. As it is

shown in Figure 5.2, at first, the performance of the Xeon Phi is much worst than the

other two system but, has the input size increases, the results are better each time, with

a tendency to be below 1, which means a speedup, if the size input data is large enough.

Again, the GTX 680 system is the one to deliver the best performance.

The Saxpy benchmark, like the previous ones, reveals that the Xeon Phi system is

the one with the worst performance (Figure 5.3(a)). However, unlike the Image Pipeline

benchmark, the tendency of the Xeon Phi slowdown is to get near 1.20 (Figure 5.3(b)),

which means that, for large inputs, the performance of this system gets closer to the

other systems. Just as before, the GTX 680 is the better system.
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Figure 5.3: Saxpy benchmark on various GPUs and the Xeon Phi
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In the Segmentation benchmark, as with the N-Body problem, the tendency of the

slowdown of the Xeon Phi system (Figure 5.4(b)) does not stabilize to a fixed value, mean-

ing that, if the input size is large enough, the performance of this system can be better

than the other systems. Except from the cubo200 input, the better system is again the

GTX 680.
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Figure 5.4: Segmentation benchmark on various GPUs and the Xeon Phi

The Series benchmark reveals a different behavior from the other benchmarks. As

shown in Figure 5.5, the Xeon Phi is no longer the system with the worst performance,

achieving better results than the C2050 system, but still being worse than the GTX 680

system. As in the Saxpy benchmark, the tendency of the Xeon Phi slowdown is to stabi-

lize around 1.20.
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Figure 5.5: Slowdown of the Series benchmark on various GPUs and the Xeon Phi , rela-
tive to the fastest time

The final benchmark, and the one with the strangest results, is the Solarize. The re-

sults presented in Figure 5.6, show that, despite the decrease in performance of the Xeon

Phi system in the Garden example, peaking at a slowdown of near 1.60, the performance

of this system tends to keep increasing, and to even surpass the performance of the other

systems. As the other benchmarks already shown, the GTX 680 is the system that per-

forms the best.
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Figure 5.6: Slowdown of the Solarize benchmark on various GPUs and the Xeon Phi ,
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5.2.2 Conclusions

The OpenCL framework was initially very focused for GPUs, hence the performance of

an application running on a Xeon Phi compared with its performance on a state of the

art GPU is quite low. In [Kis14], report that the performance in Xeon Phi was worst than

the performance on a NVIDIA R© GeForce R© GTX TITAN by a ratio of 82 times more.

Although our tests support the same conclusion, the results we obtained did not show

such a huge difference.

The results presented above, reveal that, first, the GTX 680 is the system with the bet-

ter performance across all tests. Then, despite the performance of the Xeon Phi system

being the worst in almost every benchmark, the tendency of this system is always to keep

improving its performance as the input data size increases. This was expected because,

as the cores available in the co-processor are weaker, one of its strengths is the high level

of parallelism offered with the high number of cores available and the number of threads

per core. It is important mentioning that in the Xeon Phi the overlap level chosen by

the runtime was 1 almost every time, not causing any improvement in the performance,

whereas for the GPUs this value was correctly adapted, highly favoring the execution

time on these systems. Another aspect that was observed was that the Xeon Phi-based

system can be quite competitive against GPU-based systems for some classes of prob-

lems, such as it happened in the N-Body, Segmentation and Solarize benchmarks. This

was shown to be more likely in applications that have a high volume of transcendental

functions, in the Series benchmark, where the Xeon Phi had a better performance than the

C2050 GPU. To be noted that the OpenCL support for the Xeon Phi is quite recent, due to

its youth, and thus not as matured and optimized as the one for GPUs. Accordingly, one

can expect that the performance gap that could be observed in several of the benchmarks

may be reduced, or even closed, in the future, as this device gets more attention from the

community.
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5.3 C++ vs OpenCLTM on Intel R© Xeon PhiTM

To answer our second question, “How does the new version of Marrow compare to the

OpenCL version?”, we compared the performance of the optimized C++ version against

the OpenCL version. In order to perform a deep analysis of the behavior of both versions,

the performance of the computation and the data transfers was measured by splitting

the execution time into three components: the upload, the execute and the download

stages. Given that not all skeletons are available in this version, some of the benchmarks

available could not be ported to be used with only C++. So, the benchmarks used in

this comparison where the Saxpy, Segmentation, Solarize and Series benchmarks. The

infrastructure where this tests were performed was the Xeon Phi system described in

Section 5.2.

5.3.1 Results

The first analysis presents an execution time breakdown for the Saxpy benchmark with

an input size of 50.000.000 elements. The breakdown contemplates the actual execution

time on the Xeon Phi, as well as the host to device and device to host transfer times,

download and upload, respectively. The results, displayed in Figure 5.7, show that the

data transfer is more efficient in C++, whereas the computation is faster in the OpenCL

version. However, the difference between the data transfers times in both versions is

bigger that the difference of the execution times, so, the time spent with the data transfers,

have an higher impact on the total execution time, resulting on the C++ version having

a lower overall execution time than the OpenCL version for an large input size.
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Figure 5.7: Comparison of the various stages between OpenCL and the optimized C++
version on Xeon Phi with a communication bound application

Since the previous example is a communication bound application, which means that

it relies heavily in the data transfers, as the input size increases so do the memory trans-

fers. To analyze how the framework behaves with a computation bound application,

the Series benchmark with 1.000.000 was executed. The results, presented in Figure 5.8,
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illustrate that, for applications where the most of the time is spent doing calculations,

the performance of C++ is not much worse than OpenCL, having only a slowdown of

approximately 0.8.
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Figure 5.8: Comparison of the various stages between OpenCL and the optimized C++
version on Xeon Phi with a computation bound application

The following analysis addresses the scalability of both version as the problem size

increases. The results for the Saxpy benchmark (Figure 5.9) reveal that, for small in-

puts, OpenCL out-performs C++, with the latter having speedups of 0.1. This was ex-

pected after the analysis of the time spent on each stage, but, as the input size grows,

the data transfer time becomes more costly. This results in the performance of the C++

version getting closer to the OpenCL one, and, for inputs big enough, even surpass it,

with speedups of 1.5.
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Figure 5.9: Saxpy benchmark between OpenCL and the optimized C++ version on Xeon
Phi

Similarly to the Saxpy, in the Segmentation benchmark, the C++ version has a very

bad performance for the smaller inputs, achieving speedups as low as 0.1 relatively to

the OpenCL version. However, as it happened before, for the cubo400 example, the per-

formance of C++ was better than OpenCL, reaching the speedup of 1.2.

The Solarize benchmark had a behavior analogous to the previous tests, with OpenCL

performing better with the smaller inputs, but this time, the C++ version had a slightly
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Figure 5.10: Segmentation benchmark between OpenCL and the optimized C++ version
on Xeon Phi

better speedup for this type of input, of 0.3. Again, as it was already shown, C++ per-

forms better as the input increases, surpassing OpenCL at a peak of 1.5.
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Figure 5.11: Solarize benchmark between OpenCL and the optimized C++ version on
Xeon Phi

The last test performed, with the Series benchmark, had a different outcome from the

other tests since this application is computation bound, unlike the previous benchmarks.

Although this benchmark registered the better speedup, of 0.5 for the smaller input size,

the tendency for having a better performance each time the input size is increased was

not observed. This time, the speedup stabilized at a value of 0.8 relatively to OpenCL.

5.3.2 Conclusions

From the breakdowns of the multiple stages of an execution, it can be observed that the

computation time in C++ has a worst performance than with OpenCL. This can be re-

lated to the fact that the examples used were very data-centric, the type of application

OpenCL is tailored for, thus taking better advantage of the hardware than the C++ ver-

sion. Another important fact is how the orchestration is performed in C++, which resorts

heavily to function pointers and function calls that are well known to be computationally

heavy. Relatively to the type of application, the remaining tests clearly show that, for the

computationally bound, the increase of the input size is not enough for C++ to take over

the performance of OpenCL, because stage where OpenCL performs better, the execution
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Figure 5.12: Series benchmark between OpenCL and the optimized C++ version on Xeon
Phi

stage, is the dominant one, as the Series benchmark proves. For communication bound

applications, the type of the other benchmarks, it is clearly shown that the sizes of the

problems to be solved should be large enough so that the time spent transferring data

from the host to the data influences the overall execution time.
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6
Conclusion

With this thesis we provide two functional prototypes of an algorithmic skeleton frame-

work to construct and execute complex computations on Intel’s Xeon Phi. The first pro-

totype can be used to perform OpenCL computations using all the skeleton provided by

previous versions of the Marrow framework. The second prototype has some limitations

but allows not only the execution of C++ kernels in parallel over a structure of data but

also to chain multiple kernels in order to form a pipeline. Both were tested using some

well known data and task parallel examples to assess its performance. In addition to this,

an very initial support for streaming data was implemented.

These prototypes support the viability of the Xeon Phi as a tool for performing data

intense computing. The second one, specially, demonstrates that it is possible to provide

an high level programming tool, that can still efficiently execute on the co-processor, for

applications like the execution of a single function to each elements of a structure, or the

application of a filter to an image. Also, it can be concluded that building such tools

using only C++ and a low level library like OpenMP, that allows some fine tuning of

the parallelism, is much better to take advantage of the hardware when compared with a

technology like OpenCL. Some of the main challenges encountered during the course of

this thesis were the incapability of Intel’s compiler to support some fundamental features,

like the offloading of classes to co-processor, and, due to the co-processor’s youth, the

lack of support when dealing with some errors that happened.
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6.1 Future Work

In order to offer a fully functional C++ framework, the remaining skeletons from the

previous version of Marrow could be implemented. Also, to take advantage of the hard-

ware, the Pipeline skeleton could be modified to concurrently execute both stages on

the co-processor and then, even implement an automatic load balancer that could dy-

namically assign more cores to a more computational intensive stage. In addiction, the

support for the application of structured computations to continuous streams of infor-

mation, similarly to Spark streaming [Zah+13], could be added to the framework.

Regarding some optimizations that could be made, the template feature could be used

to prevent the need to pass function pointers and deal with void pointers to pass argu-

ments to the various skeletons. Furthermore, the reuse of already allocated memory for

buffers of equal or smaller size could be performed to prevent the need to re-allocate new

memory.
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A
Examples

A.1 For-loop parallelism in OpenMP

An OpemMP example of the use of the clauses schedule and reduction is shown

in Listing A.1. The schedule clause has 2 arguments, the type of scheduling which in

this case is dynamic and the size of each chunk of iterations which is 10. The dynamic

scheduling ensures that each thread will receive a balanced number of chunks, which

may be bad in the situations where the iterations have an unbalanced amount of work

required which can lead to some threads doing much more work than others. The chunk

size is simply to state that all the iterations will be grouped into chunks of 10.

The reduction clause has the form operator:list in which the operator is the

reduce function to be used and the list has the variables to which the function will be

applied. The variables that appear in list must be shared among all threads in order

to be possible to access its multiple values and apply the reduce function. The particular

example of Listing A.1, since the final result is the sum of all multiplications the operator

is + and the variable to which it is applied is the result variable.

A.2 Fork-Join parallelism in OpenMP

The example in Listing A.2 shows the usage of tasks to spawn multiple tasks, in this

case 10, to execute the enclosed computation and subsequently print out the result. The

creation of new tasks is achieved by the use of the #pragma omp task directive to state

that the call of the recursive method Recurse is to be made by a new thread.
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Listing A.1: Example of vector dot product with OpenMP

1 #include <omp.h>

2 #include <stdio.h>

3

4 int main (int argc, char* argv[]){

5 int i, n, chunk;

6 n = 1000;

7 chunk = 10;

8 int a[n], b[n], result, result_check;

9 result = result_check = 0.0;

10

11 /* Some initializations */

12 for (i=0; i < n; i++){

13 a[i] = i; b[i] = i * 2;

14 }

15

16 #pragma omp parallel for \

17 schedule(static,chunk) \

18 reduction(+:result)

19 for (i=0; i < n; i++)

20 result = result + (a[i] * b[i]);

21

22 for(i = 0; i < n; i++)

23 result_check += (a[i] * b[i]);

24 printf("Final result = %d (should be %d)\n",result, result_check);

25 return 0;

26 }

Listing A.2: Example of recursive parallelization with OpenMP[Col13]

1 #include <omp.h>

2 #include <stdio.h>

3

4 void Recurse(const int task_) {

5 if (task_ < 10) {

6 printf("Creating task %d...", task_+1);

7 #pragma omp task

8 {

9 Recurse(task_+1);

10 }

11 unsigned long foo=0; for (long i = 0; i < (1<<16); i++) foo+=i;

12 printf("result of task %d in thread %d is %ld\n", task_, omp_get_thread_num

(), foo);

13 }

14 }

15

16 int main(int argc, char* argv[]) {

17 #pragma omp parallel

18 {

19 #pragma omp single

20 Recurse(0);

21 }

22 return 0;

23 }
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Listing A.3: Example of vector dot product with array annotation [MRR12]

1 float cilkplus_sprod(

2 size_t n,

3 const float a[],

4 const float b[] ) {

5 return __sec_reduce_add(a[0:n] * b[0:n]);

6 }

Listing A.4: Example of vector dot product with cilk_for [MRR12]

1 float cilkplus_sprod(

2 size_t n,

3 const float a[],

4 const float b[] ) {

5 cilk::reducer_opadd<float> res(0);

6 cilk_for (size_t i = 0; i < n; i++){

7 res += a[i] * b[i];

8 }

9 return res.get_value();

10 }

One detail to be taken into account is how the first call is made. As depicted in List-

ing A.2 the Recurse(0) call is placed inside a #pragma omp single block that is in

turn inside a #pragma omp parallel block. This is usual when using the Fork-Join

model because the execution needs to be made by several threads in a parallel environ-

ment, hence the parallel block, but only one thread needs to run the first call. If the

parallel block is missing, all tasks are executed by the master thread and if the single

block is missing, all threads in the team will start with Recurse(0) making the tasks be-

ing run multiple times, which is not the desired behavior.

A.3 For-Loop parallelism in CilkTM Plus

In Listing A.3 is shown an example of how a function that uses array annotations and

reducers. In this case, the reducer used is sum all the results of multiplying the corre-

sponding values for two arrays.

There are two ways to use the reducers, either using a function to reduce a section, as

shown in Listing A.3, or by using a reducer variable that is used to aggregate the results

of parallel loop iterations, as shown in Listing A.4.

Listing A.5 shows the declaration and usage of elemental functions.

A.4 Fork-Join parallelism in CilkTM

The original programming model for which Cilk was developed is the Fork-Join paral-

lelism since in the first specification only the cilk_spawn and cilk_sync keywords

were defined and the execution model is based on work-stealing schedule so the loop
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Listing A.5: Example of use of #pragma simd and elemental functions [MRR12]

1 __declspec(vector(linear(a),uniform(b)))

2 void bar(float* a, float* b, int c, int d);

3

4 void foo(float* a, float* b, int* c, int* d, int n){

5 #pragma simd

6 for( int i=0; i<n; ++i )

7 bar( a+i, b, c[i], d[i] );

8 }

Listing A.6: Example of recursive parallelization with Cilk [Col13]

1 #include <stdio.h>

2 #include <cilk/cilk.h>

3

4 void Recurse(const int task) {

5 if (task < 10) {

6 printf("Creating task %d...", task+1);

7 cilk_spawn Recurse(task+1);

8 long foo=0; for (long i = 0; i < (1L<<20L); i++) foo+=i;

9 printf("result of task %d in worker %d is %ld\n", task,

10 __cilkrts_get_worker_number(), foo);

11 }

12 }

13

14 int main() {

15 Recurse(0);

16 }

parallelism is based on spawning multiple threads and then create a queue from where

the threads steal work to do.

This model is very simple to use in Cilk, as shown in Listing A.6. To execute a func-

tion in a different thread in parallel simply precede the function call with the keyword

cilk_spawn. This can be used not only in functions that return void but also on an

assignment to some variable. The assignment occurs when the function returns so, after

spawning the function, if the caller uses the variable it implicitly waits for the result to

be available. The cilk_sync keyword is used to explicitly make the thread wait for all

spawned functions in the spawning block (function, try/catch or cilk_for). An im-

plicit sync is made at the end of each spawning block, only waiting for functions spawned

within the block.

The Cilk programming model is tailored for task parallelism, while OpenMP is spe-

cially directed for data parallelism. Hence, to express fork-join computations in Cilk is

much more simpler than in OpenMP. That can be confirmed by comparing the program-

ming examples depicted Listing A.2 and Listing A.6. A common practice in fork-join

parallelism is to allow the main thread to also contribute in the execution of the spawned

tasks and, with that, the main thread is not blocked waiting for all spawned functions

but also is one less thread that needs to be spawned.
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Listing A.7: Example of vector dot product in TBB

1 size_t N = 1024;

2 size_t STRIDE = 20;

3 float a[N];

4 float b[N];

5 atomic<int> res;

6

7 void dot_range( const blocked_range<size_t> &r ){

8 for( size_t i = r.begin(); i != r.end(); ++i )

9 res += a[i]*b[i];

10 }

11

12 void dot_array(){

13 parallel_for(blocked_range<size_t>(0, N, STRIDE), dot_range,

14 auto_partitioner());

15 }

A.5 For-Loop parallelism in Intel R© TBB

Listing A.7 shows an example of usage of the parallel_for routine with an atomic

variable to avoid a data race between threads. The parallel_for shown has three ar-

guments, the range of the for loop, the function to be applied to each sub-range and the

partitioner to be used. The range is defined by the initial value, the limit of the range

exclusively and, optionally, the minimum size of each sub-range, which is 1 by default if

the value is not specified. The function used can have only one argument that is of type

range, like in the example, representing the sub-range to be processed or the index of the

position to be processed. The way the range is divided in sub-ranges, is defined by the

partitioner used, which can be an auto_partitioner, that will try to divide the range

so that the amount of work of all threads is balanced, a simple_partitioner, that will

divide the range until the minimum size is achieved, or an affinity_partitioner,

that will try to assign to each thread a similar sub-range of some previous parallel con-

struct.

A.6 Flow graph in Intel R© TBB 4.0

In Listing A.8 is demonstrated the code for a graph that consists in an input node, that

feeds the values, a squarer and cuber nodes, that receive a value from the input node and

apply the corresponding functions, a join node, that takes the result from the squarer and

cuber nodes and produces a tuple with the values, and a final node summer that sums

the values of the tuples.
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Listing A.8: Example of a flow graph in TBB[Int13c]

1 int result = 0;

2 graph g;

3 broadcast_node<int> input(g);

4 function_node<int,int> squarer( g, unlimited, square() );

5 function_node<int,int> cuber( g, unlimited, cube() );

6 join_node< tuple<int,int>, queueing > join( g );

7 function_node<tuple<int,int>,int> summer( g, serial, sum(result) );

8

9 make_edge( input, squarer );

10 make_edge( input, cuber );

11 make_edge( squarer, get<0>( join.input_ports() ) );

12 make_edge( cuber, get<1>( join.input_ports() ) );

13 make_edge( join, summer );

14

15 for (int i = 1; i <= 10; ++i)

16 input.try_put(i);

17 g.wait_for_all();

Listing A.9: Kernel function in OpenCL to calculate the addition of two arrays

1 __kernel void arr_add(

2 __global const float *a,

3 __global const float *b,

4 __global float *c,

5 const unsigned int nelems)

6 {

7 int id = get_global_id(0);

8 if(id < nelems)

9 c[id] = a[id] * b[id];

10 }
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A.7 OpenCLTM

An example of a kernel function is shown in Listing A.9. All kernel functions must be

preceded by a __kernel keyword. As previously mentioned the get_global_id rou-

tine is used to get the index of the arrays of each work item. The keyword __global

states that the arguments’ address space is global to all work items. The other address

spaces available are __private for the address space local to each work item, __local

for the address space shared by all work items in a work group and __constant for

read-only arguments in the global address space, shared by all work items.

An OpenCL application can usually be split into five sections: initialization, alloca-

tion of resources, creation of programs/kernels, execution and finalization. Listing A.10

illustrates all these sections, that we next detail.

Lines 2 to 8 show the creation of the context for the device, which can be of an spe-

cific type by using the clGetDeviceIDs routine with the desired type, along with the

corresponding command queue using clCreateCommandQueue.

In the allocation phase (lines 10 to 13) the buffer and image objects are created and

the command to initiate them is enqueued with clEnqueueWriteBuffer. This write

can be blocking or non-blocking depending on the value passed as the third argument.

In this case the write is blocking so after the call return the pointer ax can be safely used.

A program is a set of kernels and functions like the one in Listing A.9. A

program must be loaded and built using the clCreateProgramWithSource and

clBuildProgram routines. After the program is built, the kernel defined can be ob-

tained for execution using clCreateKernel routine, as demonstrated in lines 15 to 20

of Listing A.10.

Before issuing the command to execute a kernel the argument must be set us-

ing the clSetKernelArg routine. The enqueueing of the kernel is made through

clEnqueueTask (Listing A.10, lines 22 to 24).
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A. EXAMPLES

Listing A.10: Example of an OpenCL application

1 //Initialization

2 cl_int err;

3 cl_context context;

4 cl_device_id devices;

5 cl_command_queue cmd_queue;

6 err = clGetDeviceIDs(CL_DEVICE_TYPE_GPU, 1, &devices, NULL);

7 context = clCreateContext(0, 1, &devices, NULL, NULL, &err);

8 cmd_queue = clCreateCommandQueue(context, devices, 0, NULL);

9 //Allocation

10 cl_mem ax_mem = clCreateBuffer(context, CL_MEM_READ_ONLY,

11 atom_buffer_size, NULL, NULL);

12 err = clEnqueueWriteBuffer(cmd_queue, ax_mem, CL_TRUE, 0,

13 atom_buffer_size, (void*)ax, 0,NULL,NULL);

14 //Program/Kernel creation

15 cl_program program[1];

16 cl_kernel kernel[1];

17 program[0] = clCreateProgramWithSource(context,1,

18 (const char**)&program_source, NULL, &err);

19 err = clBuildProgram(program[0], 0, NULL, NULL, NULL, NULL);

20 kernel[0] = clCreateKernel(program[0], "mdh", &err);

21 //Execution

22 err = clSetKernelArg(kernel[0], 0, sizeof(cl_mem), &ax_mem);

23 err = clEnqueueTask(cmd_queue, kernel[0],

24 0, NULL, NULL);

25 //Finalization

26 err = clEnqueueReadBuffer(cmd_queue, val_mem, CL_TRUE, 0,

27 grid_buffer_size, val, 0, NULL, NULL);

28 clReleaseKernel(kernel);

29 clReleaseProgram(program);

30 clReleaseCommandQueue(cmd_queue);

31 clReleaseContext(context);

After the computation, the results can be retrieved from the buffer using the

clEnqueueReadBuffer routine (Listing A.10, lines 26 and 27). The reading from a

buffer can be made in a blocking way to guarantee that the data will be available af-

ter the call to the clEnqueueReadBuffer routine using the CL_TRUE flag. To fin-

ish the execution, the resources are released with the routines clReleaseKernel,

clReleaseProgram, clReleaseCommandQueue and clReleaseContext.

A.8 Intel R© Compiler pragmas

Listing A.11 presents the usage of the offload directive to perform some computation

concurrently, with the copy of f1 and allocation of f2, and then the offload_transfer

directive to wait for the result in f2 to became available.
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A. EXAMPLES

Listing A.11: Example of asynchronous computation [Int13a]

1 const int N = 4086;

2 float *f1, *f2;

3 f1 = (float *)memalign(64, N*sizeof(float));

4 f2 = (float *)memalign(64, N*sizeof(float));

5

6 // CPU sends f1 as input synchronously

7 // The output is in f2, but is not needed immediately

8 #pragma offload target (mic:0) \

9 in( f1 : length(N) ) \

10 nocopy( f2 : length(N) free_if(0)) signal(f2)

11 {

12 foo(N, f1, f2);

13 }

14

15 // Perform some computation asynchronously

16

17 #pragma offload_transfer (mic:0) wait(f2) \

18 out( f2 : length(N) alloc_if(0) free_if(1))

19 // CPU can now use the result in f2

A.9 MYO Memory Model

An example of the dynamic allocation of shared classes is depicted in Listing A.12.

75



A. EXAMPLES

Listing A.12: Example of allocation of memory for a shared class [Col13]

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <new>

4

5 class _Cilk_shared MyClass {

6 int i;

7 public:

8 MyClass(){ i = 0; };

9 void set(const int l) { i = l; }

10 void print(){

11 printf("Value: %d\n", i);

12 }

13 };

14

15 MyClass* _Cilk_shared sharedData;

16

17 int main(){

18 const int size = sizeof(MyClass);

19 _Cilk_shared MyClass* address = (_Cilk_shared MyClass*)

_Offload_shared_malloc(size);

20 sharedData=new( address ) MyClass;

21 sharedData->set(1000); // Shared data initialized on host

22 _Cilk_offload sharedData->print(); // Shared data used on coprocessor

23 sharedData->print(); // Shared data used on host

24 }
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