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Abstract

In this paper we present a method for computing the localization of a
mobile robot with reference to a learning video sequence. The robot is first
guided on a path by a human, while the camera records a monocular learning
sequence. Then the computer builds a map of the environment. This is done
by first extracting key frames from the learning sequence. Then the epipolar
geometry and camera motion are computed between key frames. Addition-
ally a hierarchical bundle adjustment is used to refine the reconstruction. The
map stored for the localization include the position of the camera associated
with each key frame as well as a set of interest points detected in the im-
ages and reconstructed in 3D. Using this map it is possible to compute the
localization of the robot in real time during the automatic driving phase.

1 Introduction
In this paper, we deal with the problem of mobile robot localization with reference to
a video sequence. Our goal is to be able to guide a robot manually for some time and
to record a reference video sequence. Then the robot should be able to follow the same
trajectory by itself. For this application, we have developed a system that builds a three
dimensional model of the robot’s environnement using only visual data recorded during
the learning phase. After that, when the robot is near the learning trajectory, it is possible
to use the current frame taken by the camera to localize the robot in real time. The results
presented in this paper deal only with the reconstruction of the environment and its use
for localization.

A common solution for localization of a robot in outdoor situations is the GPS. But
GPS is difficult to use in urban environments because buildings can occult the visibility of
satellites so localization may not be possible at some times. Reflections of the GPS signal
on the buildings can also occur and corrupt the localization. On the other hand, vision
works better if there are a lot of features near the robot. This is the case in downtown
areas where GPS doesn’t work very well. So these two approaches to localization are
complementary. A typical example is the case of an urban canyon where the robot is in a
straight and narrow street. In that case all the visible satellites must be in a plane, which
is not a good situation to compute the localization.
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A solution for visual navigation with reference to a prerecorded image sequence was
presented by Yoshio Matsumoto at al. [10] but the method did not provide the location of
the robot at each frame. Seung-Hun Jeon et al. [7] proposed a method that allows to com-
pute the pose of the robot in the case of indoor environments with horizontal and vertical
planes. In our case, we want to be able to find a localization in an outdoor environment
without assumptions on the geometry of the scene. An approach closer to ours has been
proposed by Kiyosumi Kidono et al. [8]. After a human guided phase, the robot builds
a map of the environment and uses it to localize itself in autonomous navigation. This
system relies both on vision and odometry. Additionally it assumes a calibrated stereo rig
for vision data acquisition and movements are done in 2D on a ground plane. In our case
we use only one camera and no odometry, the ground doesn’t have to be planar. We only
suppose that the camera’s internal parameters are known very roughly.

The human guided approach is different from the Simultaneous Localization And
Mapping (SLAM). For example, Se et al. [13] describe a robot which is able to build
a map with the 3D position and appearance of visual landmarks. This map is used for
localization. But the landmarks can be observed several times as the robot comes back
to a previous position. In our case, the map has to be built from only one human guided
path. Moreover the hypothesis are different because we use only one camera instead of a
calibrated stereo rig with three cameras.

Map building is the more complex part of the algorithm. Fortunately, this part of
the computation can be done off line. So the real time constraint applies only to the
localization of the robot. That means that we can use computation intensive algorithms
to build a good map. We think that a global and costly optimization step is necessary
for practical cases, both for accuracy and robustness under our hypothesis. We can also
prepare in advance every computation on the reference sequence that could be needed for
the localization process.

In section 2 we present the method used to build the map from the reference image
sequence. Then in section 3 the method used to compute the localization of the robot is
detailed. Finally we present some results in section 4.

2 Reconstruction of the reference sequence

2.1 Overview
The goal of the reconstruction is to obtain the position of a subset of the cameras in the
reference sequence as well as a set of landmarks and their 3D location, all of these given
in a global coordinate system. For the reconstruction we use a monocular image sequence
and we make the assumption that we roughly know the camera’s internal parameters. It
allows to use more robust algorithms for the initial computation of the epipolar geometry.
It works even if the scene is planar in some images, which is not the case for uncalibrated
approaches (for example [1], [12]). Then it is possible to refine the internal parameters in
the global optimization of the reconstruction.

Every step in the reconstruction as well as the localization relies on image matching.
Matching a pair of images is done by detecting interest points in each image. Harris
corner detector [5] is used for this step. Then a Zero Normalized Cross Correlation score
is computed between interest points neighborhoods. And the pairs with the best scores
are kept to provide a list of corresponding point pairs between the two images. Matching



images this way may sound very time consuming and not really suited to a real time
application, but it is possible to implement a very efficient corner detector using SIMD
extensions of modern processors.

In the first step of the reconstruction, we extract a set of key frames from the refer-
ence sequence. Then we compute the epipolar geometry and camera motion between key
frames. Additionally, the interest points used to compute the epipolar geometry are re-
constructed in 3D. These points will be the landmarks used for the localization during the
on-line phase. They are stored with their neighborhood in the images so that it is possible
to match them with interest points detected in new images.

2.2 Key frame selection
Key frame selection is necessary because if there is not enough camera motion between
two images, the computation of the epipolar geometry is an ill conditioned problem. So
we try to select images so that there is as much camera motion as possible between key
frames while still being able to match the images. The first image of the sequence is al-
ways selected as a key frame. When image In has been selected as a key frame, we match
interest points between In and the following images In+1, In+2, .... The wrong matches
are filtered out by computing a global dominant homography with Ramdom Sample Con-
sensus (RANSAC) [3] and a large reprojection error threshold (20 pixels). RANSAC is
a simple and robust technic for model fitting in presence of data outliers. The next key
frame is chosen as the last image with a number of matches above a threshold (300 points).
This is an heuristic method but it ensures that we have a large enough number of point
matches between key frames. Figure 1 shows three consecutive key frames extracted from
the Seaport sequence.

Figure 1: Three successive key frames extracted from the Seaport sequence

2.3 Camera motion computation
At this point we have a subset of the frames from the video sequence recorded during
the learning step. The structure and motion algorithm used to build a 3D reconstruction
of the scene and camera motion can be separated in three parts. With the first three key
frames we compute the camera motion over the three frames by computing an essential
matrix. Then for each successive set of three images, the motion is computed using a
pose estimation algorithm. These computations produce an initial estimate of the camera
motion, and a hierarchical bundle adjustment is used to refine this initial estimation.



For the first image triplet, the computation of the camera motion is done with the
method proposed by Nister [11] for three views. It involves computing the essential matrix
between the first and last images of the triplet using a sample of 5 point correspondences.
Computing the essential matrix E between two images is done by writing the epipolar
constraint each of the 5 points projections must verify : q′i

T
Eqi = 0,∀i ∈ {1..5} and a

6th relation that is verified by any essential matrix :EET E− 1
2 trace(EET )E = 0. These

relations lead to a 10th order polynomial equation, so there are at most 10 solutions for
E. Each matrix E gives 4 solutions for (R,T ). The solutions for which at least one of the
5 points is not reconstructed in front of both cameras are discarded. Then the pose of the
remaining camera is computed with 3 out of the 5 points in the sample. This process is
done with a RANSAC approach : each 5 point sample produces a number of hypotheses
for the three cameras. The best one is chosen by computing the reprojection error over
the three views for all the matched interest points and keeping the one with the higher
number of inlier matches.

We need an algorithm to compute the pose of the second camera. A review of cali-
brated pose estimation algorithms is given by Haralick et al. [4]. If the internal param-
eters of the camera are known, with three 3D points Pi whose projections in the image
are known, it is possible to compute the pose of the camera. We chose to use Grunert’s
method as it is described in [4]. This method relies on trigonometrical computations in the
tetrahedron formed by the three 3D points and the optical center of the camera. Relations
are computed between the distance of each of the 3D points to the optical center and this
leads to a 4th order polynomial equation. There are at most 4 solutions for each sample of
three points. The solution is choosen in the RANSAC process.

For the next image triplets, we use a different method for computing camera motion.
Assume we know the location of cameras C1 through CN , we can compute camera CN+1
by using the location of cameras CN−1 and CN and point correspondences over the image
triplet (N−1,N,N +1). We match a set of points Pi whose projections are known in each
image of the triplet. From the projections in images N− 1 and N, we can compute the
3D coordinates of point Pi. Then from the set of Pi and their projections in image N + 1,
we use a calibrated pose estimation algorithm to compute the location of camera CN+1.
In addition the 3D location of the reconstructed interest points are stored as they will be
the landmarks used for the localization process. The pose estimation algorithm is based
on Grunert’s method and a RANSAC selection process. Random samples of three points
are used to compute the pose of camera CN+1. The advantage of a such an iterative pose
estimation process is that it can deal with virtually planar scenes.

2.4 Hierarchical bundle adjustment
The computation of camera motion previously presented doesn’t give a very good so-
lution. Moreover, the computation of camera CN depends on the results of the previous
cameras and errors can build up over the sequence. In order to correct this problem, we use
a bundle adjustment algorithm which provides a better solution. The bundle adjustment is
a Levenberg-Marquardt minimization of the cost function f (CI ,C1

E , · · · ,CN
E ,P

1, · · · ,PM)
where CI are the internal parameters of the camera (they are constant throughout the se-
quence), Ci

E are the external parameters of camera i, and P j are the world coordinates of
point j. The cost function is the sum of the reprojection errors of all the inlier reprojec-



tions in all the images :

f (CI ,C1
E , · · · ,CN

E ,P
1, · · · ,PM) = ∑

1≤i≤N
∑

1≤ j≤M, j∈Ji

d2(p j
i ,KiP j)

where d2(p j
i ,KiP j) is the squared euclidean distance between KiP j the projection of point

P j by camera i, and p j
i is the corresponding detected point. Ki is the 3× 4 projection

matrix built from the parameters values in CI and Ci
E . And Ji is the set of points whose

reprojection error in image i is less than 2 pixels at the beginning of the minimisation.
After a few iteration steps, Ji is computed again and more minimization iterations are
done. This inlier selection process is repeated as long as the number of inliers increase.

It’s not a good idea to compute all the camera locations and use the bundle adjustment
only once on the whole sequence. In that case, increasing errors could produce an initial
solution too far from the optimal one for the bundle adjustment to converge. Thus it is
necessary to use the bundle adjustment throughout the reconstruction of the sequence.
Using an adjustment after each new frame is reconstructed is possible but very time con-
suming, and impractical for large sequences. A faster solution as described in [6] is to use
the adjustment hierarchically. A large sequence is divided into two parts with an overlap
of two frames in order to be able to merge the sequence. Each subsequence is recursively
divided in the same way until each final subsequence contains only three images. Each
image triplet is processed as described above. For the first triplet we obtain the geometry
by computing an essential matrix. Each remaining triplet has its first two frames in com-
mon with the previous one. So the first two cameras of the triplet are deduced from the
previous triplet. The third camera is computed using the pose estimation algorithm. After
each triplet has been computed we run a bundle adjustment over its three frames.

In order to merge two sequences S1 and S2, we use the last 2 cameras S1
N−1 and S1

N
of S1 and the first 2 cameras S2

1 and S2
2 of S2. As the images are the same, the cameras

associated after merging must be the same. So we apply a rotation and a translation to S2

so that S1
N and S2

2 have the same position and orientation. Then the scale factor is com-
puted so that d(S1

N−1,S
1
N) = d(S2

1,S
2
2), where d(Si

n,S
j
m) is the euclidean distance between

the optical centers of the cameras associated with Si
n and S j

m. This doesn’t ensure that
S1

N−1 and S2
1 are the same, so a bundle adjustment is used on the result of the merging

operation. Merging is done until the whole sequence has been reconstructed. The recon-
struction ends with a global bundle adjustment. It should be noted that the final bundle
adjustment optimizes also the focal length (known only roughly at the beginning). The
number of points used in the bundle adjustment is on the order of five to ten thousands.

3 Localization
In order to locate the robot at the current frame, the first step is to retrieve the closest key
frame in the database. Interest points are detected in the current frame and the points are
matched to the interest points associated with each reference image. Incorrect matches
are filtered out by computing the global dominant homography with a RANSAC process
with a loose error threshold (20 pixels). The chosen key frame is the one with the greatest
number of inlier matches. At the start of the localization, it is necessary to match the
current image with all the key frames. After this step, we always have a localization for



the robot, so we need only to match the current image to the last used key frame and the
next one.

At this point we have a set of point matches between the current frame and a key frame
in the database. For each interest point of the key frame, we know its 3D position since it
has been computed in the reconstruction process. So we have a set of matches between the
2D points in the current image and 3D points in the world coordinate system. The current
pose of the camera is then computed using the same perspective pose estimation algorithm
as in the reconstruction : Grunert’s method used in a RANSAC process. We need random
samples of only three points, so this computation doesn’t take a lot of computing power.
The solution we get from this algorithm is then refined with an iterative minimization
algorithm developed by Lowe [9] and improved by Dhome et al. [2]. The minimization
is done with a Newton-Raphson algorithm with the cost function g(Rα,β ,γ ,Tu,v,w) where
the six parameters characterize the rotation and translation between the world and camera
coordinates systems. The cost fucntion is :

g(Rα,β ,γ ,Tu,v,w) =
i=N

∑
i=1

(d2(Pi,Ncol
i ) + d2(Pi,Nrow

i ))

where d2(Pi,Ncol
i ) (resp. d2(Pi,Nrow

i )) is the squared euclidean distance between Pi and
the plane passing through the optical center and containing the image column (resp. row)
of the projection of point Pi.

4 Results
In order to evaluate the localization results, two cameras were mounted on a car (one on
the right side and one on the left) in order to record two video sequences at the same
time. The reconstruction was computed using only the images from the right sequence.
Then, the left sequence was used as a test sequence to simulate a small lateral localization
error of the robot. The images from the left sequence were localized with the algorithm
described previously and the right sequence serving as the reference sequence.

A few images from the Seaport sequence (right camera) are displayed on figure 2. For
this sequence 76 key frames were selected among the 500 images of the complete video.
The total length of the path is about 100 meters. On this sequence, a few persons were
walking on the side of the street but the interest points on these persons were correctly re-
jected in the RANSAC process and it did not affect the reconstruction. The reconstruction
appears on figure 2 as seen from above. The squares represent the position of the cameras
of the key frames, and the dots are the landmarks reconstructed (there are 9698 of them
for the Seaport sequence). There are more key frames when there is a turn because the
interest points go out of the field of view faster. Using the reconstruction of the right
sequence, both sequences were used with the localization process to produce the trajec-
tories of the left and right cameras. For each image in the sequence, we computed the
distance between the estimated positions of the left camera and the right camera. Since
the length unit in the reconstruction is arbitrary, we set it so that the mean of the distance
between the right and left cameras equals the real distance which was about 1.2m. The
computation gave some variations with a standard deviation of about 25 cm.

Other sequences have been used to test our algorithm. The number of features and the
result of the localization are detailed in table 1. The Canyon sequence is a good example



Figure 2: Three images from the Seaport sequence and the associated reconstruction

of a urban canyon where GPS can’t be used for localization because the street is narrow
and GPS signals are blocked by buildings. In that kind of place, there is a lot of visual data
available for localization. In this sequence there are two speed bumps. It illustrates why
in the case of urban navigation, it is not possible to make the assumption that the ground
is planar. Three images of the sequence and the associated reconstruction are shown on
figure 3. The distance between the left and right cameras for the Canyon sequence appear
on figure 4. The standard deviation is about 5 cm.

Figure 3: Three images from the Canyon sequence and the associated reconstruction

The Road sequence was made on a wide road in an environment with less visual
features. It is still possible to build a reconstruction of the trajectory and to compute a



Figure 4: Distance between the left and right cameras for the Canyon sequence

localization. A few images are visible on figure 5 along with the reconstruction.
The distance between the right and left cameras computed with the localisation pro-

cess was computed for each of the three sequences. The standard deviation appears in
table 1. The localization works best in the Canyon sequence where there is much more
visual information. In this sequence, a lot of points are detected on the walls on each side
of the street, whereas in the Seaport sequence only one wall is visible. That’s important
because points which are closer to the cameras offer more information for the localization
than points far away. At the extremes, points at infinity are only useful for computing the
orientation of the camera. In the Road sequence, no points are visible near the vehicle.
This explains why localization is worse than in the other sequences. In dense urban areas,
these results are acceptable for commanding a robot. In more open environments, the re-
sults lack some accuracy, but those are only raw results of the localization algorithm. The
results should be better when coupled with a Kalman filter or when using a movement
model of the robot.

Sequence Seaport Canyon Road
Number of images 500 380 360
Number of key frames 76 60 33
Number of 3D points 9698 4633 2611
Standard deviation 25 cm 5 cm 50 cm

Table 1: Number of frames and points and standard deviation for the distance between
the left and right cameras

For these examples, the image size was 728x532 pixels, and 1500 interest points were
detected in each frame. The whole localization process runs at about 5 Hz on a Pentium
4 2.4GHz processor. Detecting interest points in the curent frame takes about 40 ms,
matching takes 100 ms, choosing the closest key frame takes 20 ms, and computing the



Figure 5: Three images from the Road sequence and the associated reconstruction

pose takes again 20 ms. The time spent for detecting the points depends on image size,
the time for matching depends on the number of interest points detected in each frame.
With smaller images (360x266 pixels) the whole localization process takes about 70 ms
and with some optimizations of the code it should be possible to reach the video frame
rate (40 ms per image).

We are grateful to ICARE project team at INRIA Sophia Antipolis for providing the
video sequences.

5 Conclusion
We have presented a real time localization algorithm for a mobile robot with reference to
a learning sequence. The robot is first guided on a path by a human, while the camera
records the learning sequence. Then the computer builds a map of the environment. With
this map, it is possible to compute the localization of the robot. We have shown some
maps obtained on a few sequences.

The project is just beginning so we have plans to improve the results in the near
future. We also plan to make a comparison between the results obtained from our vision
algorithm with the ground truth measured using a differential GPS sensor. In order to
improve the localization process, we would like to improve the matching method. Some
possibilities would be real time wide baseline matching, or a matching method robust to
weather and season changes.
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