
Towards an Analysis of Range Query Performance

in Spatial Data Structures*

Bernd-Uwe Pagel** Hans-Werner Six** Heinrich Toben** Peter Widmayer~

Abstract

In this paper, we motivate four different user defined window

query classes and derive a probabilistic model for each of

them. For each model, we characterize the efficiency of

spatial data structures in terms of the expected number of

data bucket accesses needed to perform a window query. Our

analytical approach exhibits the performance phenomena

independent of data structure and implementation details

and whether the objects are points or non-point objects.

1 Introduction

In recent years, various efficient data structures for

maintaining large sets of multidimensional geometric

objects have been developed. Most of these structures

have been designed for multidimensional points (see e.g.

[2, 5, 7]). In typical applications, however, objects

are arbitrarily geometric, i.e. non-point objects. In

many situations, it has been proven to be useful

to characterize non-point objects by their bounding

boxes, i.e. minimal enclosing multidimensional intervals,

serving as simple geometric keys. Hence, non-point data

structures deal with multidimensional intervals (see e.g.

[4, 5, 6]). Only the cell tree [3] does not use this

approximation.

All proposals claim to improve the performance of

spatial accesses and provide performance evaluations

for range queries, which are the most popular spatial

access operation. However, up to now, ail evaluations

have been carried out by simulations using the only

“This work has been supported by the Deutsche Forechungs-

gemeinschaft DFG, and by the ESPRIT II Basic Research

Actions Program of the European Comunity under contract
No. 6881 (AMUSING).

** FemU~vemitst Hagen, D-580cI Hagen

$ETH Zfil&, CJH-8092 z~l~h

Permission to copy without fee all or part of this material is

granted provided that the copies ere not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requiras a fee

and/or specific permission.

ACM-PODS-5/93/Washington, D.C,
@ J 993 ACM ~.8979J-~93.3j93/0005/02J 4...$J .5(3

assumption that ranges are windows of certain areas

(e.g. 1%, 0.1% and 0.01% relatively to the area of

the data space) and that window centers are uniformly

distributed.

In this paper, we try to get one step further towards

an understanding of window query performance of spa-

tial data structures. We sketch four different classes of

user-defined window queries and motivate their prac-

tical relevance. For each class, we derive a probabilistic

model, which we use as basis for our analytical inve-

stigations. For each window query model, we derive a

performance measure which characterizes arbitrary data

space organizations in terms of the expected number

of bucket accesses needed to perform a window query.

Since it is well-known that in practical applications data

bucket accesses exceed by far external accesses to the pa-

ged parts of the corresponding directory concerning fre-

quency and execution time, the data space organization

of a spatial data structure is essential for the window

query performance, Hence, although our considerations

are rest ricted to data bucket accesses, the real sit uat ion

is still sufficient y reflected.

In contrast to purely experimental investigations

which present the corresponding performance pheno-

mena for specific implementatione, specific object sets

and specific window query patterns, our analytical ap-

proach exhibits the effects on a conceptual level, inde-

pendent of data structure and implementation details,

and even independent of whether the objects are points

or non-point objects. We claim that our analysis sheds

some new light on the complex spatial data structure

field.

This paper is organized as follows. The next section

reviews the basic concepts of spatial data management
and introduces four different classes of user–driven

window queries. In section 3, we provide a more formal

look at the query classes by deriving a probabilistic

model for each of them. In section 4, for each

query model and arbitrary data space organizations,

we present an analytical evaluation of the window

214

query performance in terms of the expected number

of bucket accesses needed to perform a window query.

Section 5 states some open problems which are direct

implications of the analytical investigations. Section

6 reports on experiments we have performed to assess

the performance of well-known split strategies under

the four query models. Some further open problems

conclude the paper.

2 The Setting

Let us shortly review the basic concepts of spatial data

management. Data structures which efficiently support

spatial access to geometric objects cluster these objects

in data buckets according to their spatial locations.

With each data bucket a subspace of the data space,

the so-called bucket region, is associated containing all

objects of the corresponding bucket. Except for the

BANG-File [2] and the cell tree [3], a bucket region is a

multidimensional interval.

Point data structures usually create bucket regions

which form a partition of the data space (see e.g.

[2, 5, 7]). Data structures for bounding boxes generate

bucket regions which may overlap and do not necessarily

cover the entire data space (see e.g. [4, 6, 8]).

We are interested in the range query performance
of a spatial data structure DS(G), which is currently

storing a set G of geometric objects. We restrict our

investigations to so-called window queries where the

query window forms a d-dimensional interval. The

operation window-query (w, DS(G)) retrieves for the

query window w each point object which is located in

w, respectively each bounding box which intersects w.

The window query performance of a data structure

heavily depends on the kind of the window queries to

be performed, and hence depends on the expected user

behavior – which is usually unspecified.

A closer look turns out that the user may vary the

aspect ratio, the location of the query window and the

query value which can be the area of the window or the

size (cardinality) of the answer set. Let us assume that

there is no direct correlation between these parameters.

So we can discuss each parameter in turn.

We sssume the aspect ratio to be 1, i.e. square

windows. This seems to be appropriate unless some

slope bias is known beforehand, since the expected value

of the aspect ratio is 1 if all aspect ratios are equally

likely.

Concerning the window location, two possible user

behaviors seem to be likely:

Q Every part of the data space is equally likely to

be requested, i.e. a uniform distribution for the

window center is assumed. This assumption models

the situation where no user preference is known

●

beforehand, respectively reflects the behavior of

novice and occasional users.

Each object is equally likely to be requested. This

situation where queries prefer densely populated

parts of the data space can be observed in many

applications.

Let us now turn to the specification of the query value.

In a user-driven query, the requested part of the data

space usually has to be represented on a screen. Then

two possible variants of user behavior seem to be likely:

The user specifies the query value in terms of

the window area. We assume the area to be a

constant which is typical for situations where the

user specifies queries such that the requested part

covers (more or less) the entire screen (zooming

facilities neglected).

The user always determines the query value with

the intention to retrieve the same (constant) number

of objects. Here, the cardinality of the answer

set is assumed to be constant. This is typical

for an experienced user who tends to request an

amount of information which is neither overloaded

nor insufficient and satisfies his personal needs.

In this model, the window area depends on the

underlying object population.

Combining the two proposed variants of query value,

respectively location, results in four different models for

user-defined window queries. In the next section, we

render them in precisely defined probabilistic models.

Such a framework allows for an analytical characteriza-

tion of arbitrary data space organizations with respect

to the underlying query model.

3 Probabilistic models for user-defined

window queries

Let us resume by defining the introduced problem more

precisely as follows. Let d be the dimension of the

data space we consider, S; = [0, 1), 1 < i < d, and

S= S1XS2 X... x Sd the d-dimensional data space

in which all geometric objects are defined. A geometric

object is either a point p given by its coordinates, i.e.

P = (P.z1, P%..., P.xd)! P% ~ Si, or a d-dimensional

interval ~ = [~.~1, ~.rl])(. . . x [~.~d, ~.?’d], v.1~, v.~~ ~

Si, v.li < v.ri. An interval v can be interpreted ss
bounding box of an arbitrary non-point object.

Let us assume that for storing the set G of objects the

data structure DS(G) currently consumes m consecu-
tive blocks B1, Bz, Bm, the so-called data buckets.

Each bucket has a capacity of c objects. With each

object g, a bucket is uniquely associated. The bucket

215

region R(Bi) ~ S of a bucket Bi is a d-dimensional

interval enclosing (the bounding boxes of) all objects

in Bi. For a bucket set B = {Bl, Bm} we call

R(B) = {R(BI),..., R(B~)} the corresponding orga-

nization of the data space.

Let E?d be the space in which all query windows are

defined. The location of a query window w is specified
by its center W.C= (w./l + w.12)/2 componentwise. We

call a query window w legal iff W.C ~ S. Let W be

the set of all legal windows. Let ~C : s + (R+)d

be the (componentwise continuous) density function

of the center distribution of legal windows and Fe :

s + [(),1] be the corresponding distribution function.

Let & : S ~ (R+)d, resp. FG : S + [0,1], be
the (componentwise continuous) density function, resp.

(continuous) distribution function, of the location of the

geometric objects. We assume that the location of a

non-point object g is uniquely determined by a point

belonging to g, e.g. the center of g. Let J4 : W+ [0, 1]

be a probability measure for legal windows.

A window query model WQM is a 4-tuple with the

components aspect ratio ar (which is 1:1 for all models),

window measure JU, the window value JU(W) which

is a constant cM for all legal windows w, and center

distribution Fc:

WQM = (ar, M, C&f, Fe).

Model 1 is characterized by choosing the conventional

area function A as window measure M, constant

window area cA for the window value and a uniformly

distributed window center:

WQMI = (1:1, A,cA, U[fl).

In model 2, the window measure is retained but

center distribution equals the object distribution:

WQM2 = (1: l, A,cA, FG).

In model 3, we assume the window measure

to be the answer size of the query. Hence,

the

M

the

window measure is Fw : W + [0,1] where Fw(w) =

“.f.~~ &(P)dP, the window value is some constant c~~,
and the window center is uniformly distributed (Note

that the window areas depend on the object distribution

Fw.),

WQM3 = (l:l,rw,c~W,u[~).

Model 4 is similar to model 3 except for the window
center distribution Fe which equals the object distribu-

tion FG:

WQM4 = (1 :1, FW, CFW, F’G).

The four query models presented above provide a

framework for the following investigations on window

query performance.

4 Analytical results on window query

performance

For each of the four window query models, we charac-

terize data space organizations in terms of the expected

number of bucket accesses needed to perform a window

query. Without loss of generality and only for simpli-
city reasons, we choose d = 2 for further considerations.

This reduces bounding boxes, bucket regions, and query

windows to two-dimensional rectangles.

For W~&fh, 1< k <4, and data space organization

R(B) = {R(B1), R(B~)}, let P~(w fl R(Bi) # 0)

be the probability that the window w intersects bucket

region R(Bi), and pk (w (1 R(B); j) be the probability

that window w intersects exactly j bucket regions in

R(B). Then for a data space organization R(B), the

expected number of buckets intersecting a query window

in model k – we call it the performance measure for

model k – is given by

pM(w@%, R(B)) = &j”Pk(w II R(B); j).
j=O

The following Lemma facilitates the computation of

PM(W~Mk, R(B)).

Lemma.

m m

~j. Pk(wn R(B);j) = ~P,(wn R(B,) # 0)
j=O i=l

Proof (by induction on m). To improve readability we

omit index k. We extend the notation R(B) of a data

space organization to R(BImJ), m E No, to indicate the

cardinality of R(B).

Basis m = O: We get

&.P(wn R(d’));j) = O = ~P(wnR(Bi)#O).

j=O i=l

By induction hypothesis

‘$j-P(wnR(B(m));j)=~p(wilR(Bi) # 0)
j=O i=l

holds for all m E IV.

Induction step m ~ m+ 1:

We focus on region R(Bm+l) e R(13tm+1)). Con-
sidering R(13m+l) separatly and removing it from

R(l?Im+l)) yields the decreased set

R(l?(mj) = R(B(m+lJ)\{R(Bm+ l)}. We get

M+l

~j.P(wnR(B@+l));j)

j=O

216

m+l

=~j[P(wnR(BI~J); j)oP(~nR(Bm+l)=O)
j=O

+P(tmm(li”’)); j – l) P(tmli(13m+1)#0)]
m+l

=~j[(P(~nR(B(mJ); j-1) -P(~nR(B(m));j))
j=O

. P(w n R(Bm+l) + O)+P(W n R(ll(m));j)]

=P(w n R(l?m+l) # 0)
m+l

. ~j[P(wnR(B(m)); j-l)-P(~nR(B(~)) ;j)]
j =0

m+l

+ ~ j “P(wn R(l?(m)); j)
j=O

The second sum meets the induction hypothesis, hence

it remains to prove

m+l

~j.[P(~nR(B(m)) ;j-l)-P(wnR(B(mJ) ;j)]= 1.
j =0

We have

m+l

~ j. [P(wn R(13(m));j-1)-P(tu n 12(13(’’’));j)]
j=O

= ~(j+1). P(w n ~(d~));j)
j=O

m+l

-~jP(wnR(B(m));j)
.=

= ~L(w n R(B(”’));j)
j =0

= 1

•1

Figure 1: Representatives of query windows according

to a bucket region.

The Lemma tells us that for the computation of

PM(WQM~, R(B)), it remains to compute Pk(w n

R(B~) # 0) for every bucket region R(Bi) c R(B).

For this purpose, let us consider a single bucket region

R(Bi). Every legal window belongs to one of the

following three classes:

● Queries with centers inside R(Bi),

● Queries with centers outside R(B;), but intersecting

R(Bi),

● Queries which do not intersect R(Bi).

Figure 1 depicts a representative of each class.

For bucket region R(Bi), let Rc(Bi) be the domain in
which the centers of all windows intersecting R(Bi) are

located. Hence, the probability that a random window

intersects R(Bi) equals the probability that the window

center falls into domain R. (Bi). Obviously, R. (Bi)

depends on the underlying query model. To be precise,

Rc(Bi) depends on the window value cm and so, of

course, on the window measure Ad.

We exemplarily explain the computation of Pk(w n
R(Bi) # 0) for the first model because analogous

considerations hold for the remaining models.

In this model, query windows are squares with fixed

width and height @, and their centers occur at

each possible position in the data space with equal

probability.

I 1

I I

Figure 2: A domain R,(B) in model 1.

For simplicity, let us assume for a while that each

region R(Bi) is far enough off the data space boundaries

such that domain RC(Bi) is just the region R(Bi)

inflated by a frame of width &/2. If R(Bi) has width

R(Bi) .L and height R(Bi) .H then the probability that
w intersects R(Bi) is determined by the area of Rc(Bi)

which is (R(Bi).L+@) . (R(Bi). H+@). SO we get

(see figure 2)

~OJVQMI, R(B))=

=~(R(Bi).L+fi) ~(R(Bi).H+&)

i=l

217

=~R(13i).L~R(B,).H
this holds for each RC(Bi) by definition.) This leads to

i=l
m

+ & “ ~(l?(~i).~+lt(~i).11)

i=l

+CA. f7Z.

What do we gain from this simple performance

measure? In geometric terms, this function combines

the sum of all region areas, the weighted sum of all

region perimeters, and the weighted number of regions.

It should be mentioned that for the first time the strong

influence of the region perimeters is revealed. To our

knowledge, so far only in the R*-tree simulations to

a certain extent region perimeters have been taken

into account [1]. Besides this observation, a number

of plausibility arguments can now quantitatively be

illustrated. For instance, the term cA . m tells us that

high bucket utilization is a more important factor if

query windows are larger. On the other hand, very

small query windows make the term ~~1 R(Bi).L .

R(Bi).11 dominate the others. Whenever the data space
organization partitions the data space, ~~=1 R(Bi).L -

R(Bi) .H equals 1, no matter how regions are chosen.

Then for query windows with CA< R(Bi).L+R(Bi).H,

for any region R(Bi) c R(B) the term cA-m is negligible,

and the sum of the perimeters determines the efficiency.

For query windows ensuring cA > R(Bi) .L + R(Bi).H,

the term cA . m, or in other words the number of

buckets, respectively the bucket storage utilization, is

the significant part of the formula. Note that the

latter arguments substantiate common opinions and

experiments in the spatial data field.

Figure 3: Boundary considerations in model 1.

To get the exact performance measure for model 1

we must take the data space boundaries into account.

If a region R(Bi) comes close enough to a data space

boundary then domain Rc(Bi) is not just region R(Bi)

inflated by a frame of width @/2 but the restriction of

the inflated R(Bi) to S (see figure 3). (Remember that

‘PM(WQMI, R(B))= fA(&(Bi)).

Analogous considerations lead to the performance

measures of the remaining models. In model 2, the

domains Rc(Bi) are identical to those in model 1.

But instead of simply taking the area of Rc(Bi) – an

implication of the uniform window center distribution

- Rc(Bi) must now be valued by the window measure
Fw :

PM(WQM2, R(B))= ~ Fw(Rc(Bi)).

i=l

Along these lines, the performance measure for model 3

can easily be written down as

PM(WQM3, R(B)) = ~A(Rc(Bi)).

i=l

However, it is not a trivial task to determine the

domains Rc(Bi) in WQM3. By definition, domain

Rc(Bi) is the set of the centers of all legal windows w

such that window value M(w) = c&f and w intersects
region R(Bi). Since cM = cFw, i.e. the anSWer SiZe is

assumed to be constant, the window area depends on

the location of the window center, and domain Rc(Bi)

has a non-rectilinear shape depending on FG, although

bucket region R(Bi) is always a rectangle. To get an

impression of how complicated the determination of the

domain Rc(Bi) for a region R(Bi) can be, we provide

the following example.

Example. For model 3, we assume a non-uniform

but still simple object distribution given by the vector-

valued density function ~G(p) = (1, 2p.zz) for p =
(p.zl, p.zz), and a window value c&= 0.01. TO avoid

problems incured by data space boundaries we choose

the bucket region R(Bi) = [0.4, 0.6] x [0.6, 0.7]. The area

of a query square w depends on the location of its center

W.C. After some calculations we yield for window w the

area A(w) = - and the side length l(w) = m.

To get the lower boundary of .Rc(Bi) we compute the

curve of all window centers whose associated window

just touch the lower boundary of region R(Bi). Hence,
we have to solve for W.C.X2 the equation 0.6 — W.C.X2 =

l(w)/2. The equations C.W.X2 – 0.7 = l(w)/2, 0.4 –

W.c.xl = l(w)/2, W.c.zl – 0.6 = l(w)/2, respectively,

for the upper, left and right boundaries, respectively,

are treated analogously. The resulting region Rc (Bi) is
depicted in figure 4.

•1

The transition from model 3 to model 4 is analogous

to the transition from model 1 to model 2. Domains

218

. . . ., ,.,
.

.
.S”=JO,’1)2

Figure 4:

example.

Non-rectilinear domain RC(Bi) from the

RC(.Bi) in model 4 are identical to those in model 3.

But w before, instead of taking the areas of the Rc(Bi)

as values, in this case the RC(Bi) must be valued by F’w

before summing them up. Altogether we get

‘PJ4(WQA4.4, R(B)) = ~ ~w(&(~i)).

i=l

5 Obvious questions

In the preceding section, for each of the four query

models we derived a performance measure which cha-

racterizes data space organizations in terms of the ex-

pected number of bucket accesses needed to perform a

random window query. Our investigations give rise to

some obvious questions.

For example, for an object set G and a window query

model WQM

What is an optimal data space organization? and

Which data structure, resp. corresponding insertion

algorithm, achieves an optimal data space organization?

We must admit that we have no answers yet. After

all, when addressing the second question we have gained

some further insight into spatial data structures we want

to report on in the following.

For sake of simplicity, we concentrate on data structu-

res for points. These data structures usually partition
the data space, i.e. when an object insertion causes a

data bucket overflow the corresponding bucket region

R(B) is partitioned by a splitline into two bucket re-

gions R(BI) and R(132) and the objects in R(B) are

distributed over the corresponding two buckets. It is

important for the efficiency of a spatial data structure

that for any data bucket to be split the choice of the split

line depends only on the corresponding bucket region,

i.e. can be chosen independently of all other bucket re-

gions. This locality criterion for binary splits naturally

219

leads to binary tree directories for the bookkeeping of

the binary splits, resp, data space organization.

The following observation is crucial for the data

structure performance. As long as the data structure is

flexible enough to support arbitrary split strategies, the

choice of the split strategy determines the performance

efficiency. This perception immediately poses the next

question:

For query model k, what is the best binary split strategy?

Unfortunately, we again cannot provide an answer.

It is clear, that carrying the optimality criterion of the

global situation over to the local situation of a bucket

split will not achieve the desired effect. A sound solution

will be bssed on stochastic optimization theory for

dynamic processes, and still remains an open problem.

Finally, we end up with the question

How do well-known split strategies perform according to

the four query models?

Remember that up to now all performance evalua-

tions have been based only on the first query model.

Because of the practical relevance of the models 2, 3,

and 4, such an investigation is meaningful and the next

section deals with the experiences we gained from our

experiments.

6 Experimental results

In order to assess the effects of split strategies used

in data structures for points, we have chosen the

radix split, the median split and the mean split. As

underlying data structure we have taken the LSD-tree

[5], whose binary tree directory allows for the realization

of arbitrary split strategies, and implemented it in Eiffel

on a SUN SPARCstation.

During each test run 50.000 2-dimensional points

from the data space [0, 1)x [0, 1) have been inserted into

the initially empty LSD-tree. In order to achieve stati-

stically significant results (a small confidence interval)

the bucket capacity was set to c= 500 objects. Whene-

ver a split has to be performed, the split line is chosen

such that it hits the longer bucket side and the hit po-

sition is defined by the underlying split strategy, The

three split strategies were evaluated for each query mo-

del assuming two constants CM= 0.01 and cM = 0.0001.

For models 3 and 4, the performance measures are com-
puted by an approximation procedure. For each bucket

split, the number of objects currently being stored and

the according performance measures are reported.

A J3-distribution randomly generates different object

distributions, namely a uniform, a l-heap and a 2-

heap distribution. The relatively extreme population of

the l-heap distribution usually exhibits certain effects
very clearly, while the 2-heap distribution is a suitable

abstraction of cluster patterns typically occuring in

real applications. A representative pattern of each of

. ...
. ..” .“

. .

Figure 5: l-heap distribution. Figure 6: 2-heap distribution.

the heap distributions is depicted in figures 5 and 6,

respectively.

Let us start the discussion of the experimental results

with the main outcome of our extensive simulations.

The efficiencies of the data space organizations created

by the three split strategies differ only marginally.

Differences mainly depend on the point of time the

snapshot was performed and never exceed more than

ten percent of the absolute values. Hence, we restrict

our further discussion to radix splits.

Figure 7, respectively 8, depicts the different perfor-

mance measures for the l-heap, resp. 2-heap, distribu-

tion with respect to each model and for cM = 0.01. It

turns out that the different model assumptions lead to

rather different evaluations of the same data space par-

tition. This effect is mainly observed for distributions
with a zero population in wide parts of the data space

like e.g. the l-heap distribution. Note, however, that for

a direct comparison the absolute values must be related

to the answer size.

A second bunch of simulations deals with the situa-

tion where the insertion sequence of objects is somewhat

“presorted”. Such a presorting often occurs in real ap-

plications. For example, whenever we have used real

geographic data in what application so ever, the data
file was “sorted” according to counties, municipalities or

districts, while each data pile itself was almost random.
In order to cover this situation by our experiments, we

take the 2-heap distribution and completely insert the

one heap first and then the other heap, both in random

order.

Again, our experiments do not exhibit significant

differences for the different split strategies. This result

is somewhat unexpected because the radix split is well

known for its robustness while especially the median

split is known to be order sensitive. Even in the

situation when the first heap has been inserted and the

procedure switches to the second heap, for none of the

three split strategies a significant deterioration can be

observed. For an entire discussion, however, it should be

mentioned, that in case of the median split the directory

tends to a certain degeneration.

Although all split strategies create data space orga-

nizations of more or less the same efficiency, our per-

sonal choice is the radix split. Besides the robustness

of the directory against insertion ordering, the entries

in the directory, i.e. the split position, can be encoded
with short bitstrings thus keeping the directory small.

Another outcome of our experiments not mentioned

so far is the effect of using minimal bucket regions.

These regions are not bounded by split lines or data

space boundaries but are just the bounding boxes of the

objects actually stored in the corresponding buckets. It
turns out that for small window values G&I, minimal

bucket regions can improve the performance up to 50

percent.

7 Open problems

The following open problems can be added to the list

presented in section 5.

It seems to be natural to extend the search for

efficient split strategies to data structures for non-

220

-D?
-,-/ ------

;~ “ ““’”’”’”’”’”““””””““”’’””””“’;.-’’”’””’”““”-””v----- ““”’’””’‘“”””,;..:.:.:.:,’~”ti “’ “ ““““’
.,.,,

m
x ~.

~-.,-.-

n?
——

;
madeL 1.,---.,,,.,,,.,. ,. .,,,.,,,,

m .>’..mckkA2. . .
. ..-. -.,.,.. madeL3, .’ ,.,,,,..,...-, mode L4<- ,,,,,., .,,.,,,.,,

..’,.-’- __— —
.:.. ,—.— —,— —“

? r>————-’— -
.~.

0.0 5.0 10.0 1s,0 20.0 25.0 W.o 3s.0 40.0 45.0 So.o

number of inserted ob iects Mltls

Figure 7: The four performance measures for l-heap

distribution, radix splits and cM = 0.01.

point geometric objects. These datastructures generate

bucket regions which may overlap and do not necessarily

cover the entire data space. For example, it should
be worthwile to use the knowledge gained from our

analytical investigations for an improvement of the split

strategies of the R-tree which are not well understood

yet.

Although the time penalty incured by external direc-
tory accesses is small compared to data bucket accesses,

it would be desirable (at least from a theoretical view-

point) to extend the performance measures to cover ex-

ternal directory accesses as well. Usually, with each di-

rectory page a directory page region is associated which

is the bounding box of all data bucket regions pointed

at from the directory page (see e.g. [4, 5]). Since direc-

tory page regions again form a data space organization,

such an integrated analysis of range query performance

seems to be feasible.

Finally, the development of analogous performance

measures for other query types, like e.g. nearest neig-

hbor queries or queries partly focussing on the volume

(area) of the objects, would improve the understanding

of spatial data structures even more.

References

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: an efficient and robust

access method for points and rectangles. In Proc.

ACM SIGMOD Int. C’onf. on Management of Data,

Atlantic City, 1990.

: :. ..., .,, .,..-..“, ‘
,---

,...

:q ..-’
~ ~.+. , i ...,...., .. l...,...,./,...
a!

,,,

0
u
0?
~ _-y...--. !.-. .. ,. . .

.,

:

,, ,

:?

a n-

&
0

,.--’ $

~ :. ,.. .-f ,.

D

,&

c ,,
Z?

-u ‘-
............. . . .

aJ

u

al —.. madel. 1
UI mode L2

=! _ madeL 4
J

0.0 5,0 10,0 15,0 2Q,0 2s.0 30.0 35.0 40.0 45,0 So.o,

number of i,nserted ob !ects Xlo

Figure 8: The four performance measures for 2-heap

distribution, radix splits and c&l =0.01.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

M .W. Freeston. The BANG file: a new kind of

grid file. In Proc. ACM SIGMOD Int. Conf. on the

Management of Data, pages 260–169, San Francisco,

1987.

0. Gunther. Eflicient structures for geometric

data management, volume 337 of Lecture Notes in

Computer Science. Springer, Berlin, 1988.

A. Guttman. R-trees: a dynamic index structure

for spatial searching. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, pages 47-57, Boston,

1984.

A. Henrich, H.-W. Six, and P. Widmayer. The LSD-

tree: spatial access to multidimensional point- and

non-point objects. In 15th Int. Conf. on VLDB,

pages 45-53, Amsterdam, 1989.

A. Hutflesz, H.-W. Six, and P. Widmayer. The

R-file: an efficient access structure for proximity

queries. In Proc. 6th Int. Conf. on Data Engineering,

pages 372–379, Los Angeles, 1990.

J. Nievergelt, H. Hinterberger, and K.C. Sevcik.

The grid file: an adaptable, symmetric multikey file

structure. ACM Transactions on Database Systems,

9(1):38-71, 1984.

B. Seeger and H.-P. Kriegel. The buddy-tree: an

efficient and robust access method for spatial data

base systems. In 16th Int. Conf. on VLDB, pages

590-601, Brisbane, 1990.

221

	Abstract
	Introduction
	The Setting
	Probabilistic models for user-defined window queries
	Analytical results on window query performance
	Obvious questions
	Experimental results
	Open problems
	References

