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Abstract This paper explores the numerical performances

of algorithms enriched by an augmented interface problem

in a domain decomposition method dedicated to nonsmooth

dynamic systems. Starting from simulations on a single time

step, different algorithms are tested on moderate size sam-

ples. The analysis of the results leads to an incomplete reso-

lution strategy for solving a time-evolution problem.
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1 Introduction

We are concerned herein in dense discrete systems with a

potentialy large number of bodies and of nonsmooth interac-
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tions between them (mainly frictional contact), for which

granular materials are the main application. The difficul-

ties for experiments to gather data at the microscale level

(the scale of the grains), and for the comprehension of the

involved phenomena, lead to extensive use of numerical

simulations as virtual tests. Simulation for models describ-

ing individually all the bodies (modeled for instance as

rigid bodies with large displacements and rotations, with a

dynamic evolution of movements and of the interaction net-

work between bodies) leads to costly models with a large

volume of results. As a first step, the examples in this article

will deal with medium sized 2D granular packings.

We proposed in [24,25] a domain decomposition strategy

for granular media based on previous works [2,21] dedicated

to nonsmooth discrete systems. Such a domain decomposi-

tion is illustrated in Fig. 1. We studied in [24] two domain

decomposition methods (DDM) as a support for distributed

memory parallelization with message passing. We analyzed

the parallel performances for large scale problems on a super-

computing architecture according to the literature [6,16,23].

As underlined in [3] the efficiency of the Domain Decompo-

sition methods in the context of multiprocessor computations

is well established from theoretical and practical standpoints

when dealing with a linear system derived from a discretiza-

tion of a continuous problem [10,17]. The scalability may be

proved theoretically when a coarse problem is added to the

preconditioner of a conjugate gradient algorithm applied to

the interface problem [18]. Enrichment of the coarse prob-

lem turns out to be mandatory to improve the convergence

for different situations such as 3D [12], plate bending [19] or

dynamic problems [11]. We proposed in [3] a first extension

of such an enrichment for nonsmooth dynamical problems

with an analytical study on very small examples.

To assess the local dynamical problem, the reformulation

of Newton–Euler equations in terms of measurable differen-
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tial inclusions (so that discontinuities are taken into account

when two bodies collide), the time integration of those equa-

tions over the time slab [t i , t f ] leads to a velocity–impulse

based formulation of the dynamics of the rigid body collec-

tion [20]:

MV − R = Rd , (1)

where the prescribed right-hand side is Rd = RD + MV i . V ,

or V f , is the assembly of the velocity of the grains defined

at the final instant t f ; it contains the translational degrees of

freedom (dof), and the rotational ones, in the inertia eigenba-

sis frame of each grain; the exponent is suppressed for under-

lining that these variables are unknowns, as R in the left-hand

side. R is the resultant impulse on the grains due to interac-

tions with other grains and RD are the external prescribed

impulses. V i denotes known quantities of the previous time

step or at the initial instant t i . The matrix M contains both

the mass (for the translational dof) and the inertia (for the

rotational dof).

Unilateral contact and friction laws between particles are

naturally expressed in contact frames. Mapping between par-

ticles dof and contact dof is achieved in a matricial way as

v = H T V and R = Hr , with v the assembly of the relative

contact velocities and r the assembly of the contact impulses.

H is a predicted compatibility operator computed at the ini-

tial instant or at a middle instant. The dynamic equations (1)

are then condensed to contact dof as,
{

Wr − v = −vd

R(v, r) = 0
, (2)

with W = H T M−1 H , vd = H T M−1 Rd and R(v, r) = 0

as the formal notation of contact laws. The difficulty to solve

the problem (2) is at least two-folds: on one hand, the num-

ber of unknowns (number of interaction quantities r and v)

may be large and the Delassus operator W is not well con-

ditioned (it is a priori non invertible). On the other hand, the

constitutive relations are nonsmooth (e.g. they are non lin-

ear and not differentiable). To address the nonsmoothness

issue, the NonSmooth Contact Dynamics (NSCD) method

with a nonlinear Gauss-Seidel (NLGS) solver [14,15,20] are

used. To address the large size of the problem, parallel com-

puting can be used [16,23], and in this article, we rely on

a substructuring approach [3,13,24]. Nevertheless, since we

focus herein on dedicated strategies, we only consider mod-

erate size samples, and a small number of subdomains for

the proposed examples.

Section 2 is dedicated to the domain decomposition in

the context of granular media and to the formulation of the

generic solver. Section 3 presents the augmented interface

problem for enriching one of the two stages of the algorithm.

Several algorithmic strategies are developed and tested in

Sect. 4. Finally a fully multiscale resolution is proposed in

Sect. 5. For an evolution granular problem, this amounts to

an incomplete resolution at each time step according to a

separation of the scales, macro scale for the interface, micro

scale inside the subdomains. After the conclusions in the

last section, some technical aspects on the parallel solver are

developed in “Appendix”.

2 Domain decomposition

2.1 Domain partitioning

Domain partitioning of a discrete element collection is, at

each time step or at a user-defined frequency, a partitioning of

an interaction graph. The interaction graph consists in nodes

associated to grains and edges associated to interactions.

The proposed DDM assumes a partitioning similar to [25]

and dual to the partitioning proposed in [13]: one distributes

the interactions among the subdomains. A convenient way is

to distribute the middle points between the centers of mass

of interacting particles over the subdomains using a regular

cartesian grid with as many cells as subdomains (nsd denotes

the number of subdomains). It has been named as the ‘box

method’ [6]. With such a choice, if a grain (or a particle)

indexed with i supports interactions with mi neighboring

subdomains, mi is called its multiplicity number. If mi > 1

the particle Si belongs both to the subdomain and to the inter-

face between subdomains (cf. Fig. 1). Therefore, a boolean

matrix BE selecting kinematic degrees of freedom of grains

belonging to subdomain E allows to define the grain veloci-

ties in this subdomain as,

VE = BE V (3)

With this definition of the mapping matrix, one can check

that the diagonal matrix of the grain multiplicities is∑nsd

E=1 BT
E BE .

2.2 FETI-like domain decomposition: NSCDD algorithm

The present DDM considers a non overlapping partition of

the sample.

For consistency with the rigid model of the grains, the

masses and moments of inertia are distributed among the

neighboring subdomains according to their multiplicity num-

ber. More precisely the distribution of masses and inertia is an

algebraic partitioning and not a geometrical partitioning. This

leads to a partition of unity over the inertia parameters, as,

M̃E = BE DM BT
E , (4)

with,

Dkl =

{
0 if k �= l

1/mi if k = l
(5)
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(a) (b)

Fig. 1 Domain partitioning of a 200,000 sphere sample (100 subdomains). a and underlying structure of corner grains. b For convenience a gray

scale is restricted to [1,4] and b gray scale is restricted to [3,7]; m = 1: inner grain; m = 2: face grain; m > 2: corner grain

for entries k related to the grain Si . The partition of unity

property reads: M =
∑nsd

E=1 BT
E M̃E BE .

This topic is investigated in details in [25]. In each subdo-

main E , the problem is identical to the global one (with the

subscript E), provided that a term arising from the inter-grain

interface is added. It can be built from the interconnecting

condition (on the velocity jumps of boundary grains) that has

been added to ‘glue’ neighboring subdomains, where AΓ E

is a signed boolean matrix with a finite rotation, to map the

grain velocities VE to the global coordinate basis into which

the null velocity jump on the grain interface is expressed,

nsd∑

E=1

AΓ E VE = 0 (6)

Γ denotes the global interface of all the interface grains.

Formally the previous summation is performed on all the

subdomains; in a practical way, for a given grain interface,

only the neighboring subdomains have to be considered. We

then obtain a FETI-like formulation [5,7,9] for the reference

problem using a multiplier field FΓ and the notation ÂT
Γ E =

H T
E M̃−1

E AT
Γ E , W̃E = H T

E M̃−1
E HE ,

W̃ErE − vE − ÂT
Γ E FΓ = −vd

E

R(vE , rE ) = 0

}
E = 1, . . . , nsd

nsd∑

E=1

AΓ E VE = 0

(7)

The reduced problem on (rE ,vE ,FΓ ), with the notations

f̂ =
∑

E AΓ E M̃−1
E Rd

E , vd
E = H T

E M̃−1
E Rd

E and X =∑
E AΓ E M̃−1

E AT
Γ E and a partial condensation of the prob-

lem, reads,

W̃ErE − vE − ÂT
Γ E FΓ = −vd

E

R(vE , rE ) = 0

}
E = 1, . . . , nsd

X FΓ −

nsd∑

E=1

ÂΓ ErE = f̂

(8)

One easily reformulates the interface equation as an incre-

mental problem [25]: if FΓ is associated to a velocity field

V with the dynamical equations, and if this last field is not

continuous at the interface, the correction of the impulse field

FΓ is �FΓ such that

X�FΓ =

nsd∑

E=1

AΓ E VE = [V ]|Γ (9)

the last term being the residual on the interface, i.e. the

velocity jump [V ]|Γ . As for many domain decomposition

approaches, the goal is to be able to localize the same typi-

cal problem that is under consideration on each subdomain

independently, while designing a suited coupling recovery

algorithm between subdomains, i.e. on the interface.

Here, the formulation described in Algorithm 1 has

been implemented into the LMGC90 platform [8] for time-

evolution problems. At each new time step of the incremental

solving procedure, the mapping H and the contact graph have

to be updated within a contact detection phase. Eventually,

the domain could also be repartitioned according to the new

contact graph.

3 Augmented interface problem

The NSCDD method exhibits good parallel efficiency for

dense granular dynamics problems [24]. We exemplified in

[25] that the global behavior and the micromechanical struc-

ture of large-scale dense granular systems under biaxial load-

ing are not disturbed by NSCDD substructuring. Moreover,

extensibility is recovered when the number of particle dof

is large compared to the number of interface dof. Neverthe-

less the number of iterations increases with the number of

particles (both for sequential and parallel algorithms). This

phenomenon is related to the nonsmoothness of the consid-

ered interactions. Indeed, because of the nonsmooth relations

between the internal dof of a subdomain, no condensation
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Algorithm 1 NonSmooth Contact Domain Decomposition

(NSCDD)

for i = 1, . . . , N do

Contact detection (eventually parallelized) and

possible new decomposition of the domain

Initialize unknowns at time ti : (rE , vE , FΓ )

while (convergence criterion not satisfied) do

Stage 1: In parallel for E = 1, . . . , nsd

Disassemble interface impulses FΓ into local impulses FE

Compute the velocity v̄d
E = vd

E − H T
E M̃−1

E FE

Compute (r̄E ,v̄E ) with nGS non-linear Gauss-Seidel (NLGS)

iterations on:

{
W̃E r̄E − v̄E = −v̄d

E

R(v̄E , r̄E ) = 0

Update (rE , vE ) ← (r̄E , v̄E )

Compute R̄E and correct the velocity on interface grains to

get AŴE V̄E

Stage 2: In sequential, but may be parallelized,

Compute �FŴ as: X�FŴ =
∑nsd

E=1 AŴE V̄E and update

interface impulses FŴ

end while

Update grain positions in parallel

end for

process on the interface is allowed. The NSCDD method

defines a quasi-diagonal linear interface problem without

coupling the different interfaces of a subdomain.

To tackle this phenomenon, the developments reported in

[3] proposed to introduce a numerical tangent search direc-

tion for contact unknowns (̃rE , ṽE ), once an iterate (rE , vE )

is obtained from the nonsmooth reduced dynamics, satisfy-

ing the dynamic equations and verifying

R̃E = G E r̃E et ṽE = GT
E ṼE ,

(̃rE − rE ) + ℓE (̃vE − vE ) = 0,
(10)

with ℓE a numerical scalar parameter of the method (homo-

geneous to a mass) and G E a compatibility operator that can

be different from the predicted operator HE . Note that ℓE

could be defined as a diagonal matrix with tuned coefficients

for each contact. This ‘tangent’ numerical search direction

is not a physical one, due to the nonsmooth nature of the

frictional contact behavior. Choosing this search direction is

therefore not trivial and different possibilities can be tested.

Herein, we study the properties of the augmented, or

enriched, interface problem with respect to the chosen com-

patibility operator for the tangent search direction. A generic

compatibility operator is G E = HE , i.e. the compatibility

operator used for solving the nonsmooth dynamics inside

the subdomains given by the contact detection phase. The

asymptotic study done in [3] shows that—at least without

friction—the optimal compatibility operator is the restriction

of HE to the only active (r > 0) contacts, but this optimal

operator is a priori unknown.

For enrichment of the NSCDD method, (̃rE , ṽE ) must

ensure compatibility of velocity across the interface. The

substructured dynamics for these quantities reads

M̃E ṼE − HE r̃E = Rd
E − AT

Γ E FΓ . (11)

Substituting r̃E from Eq. (10), we get

M̃ℓ,E ṼE − G E (rE + ℓEvE ) = Rd
E − AT

Γ E FΓ , (12)

with M̃ℓ,E = M̃E +ℓE KE and KE = G E GT
E ; this last matrix

contains information of the contact network thanks to con-

nectivity matrices G E and GT
E . As for the generic NSCDD

method, dynamic equations are condensed on the interface

and the continuity equation
∑

E AΓ E ṼE = 0 allows to

express the enriched interface equation for FΓ :

XℓFΓ =

nsd∑

E=1

AΓ E M̃−1
ℓ,E

[
Rd

E + G E (rE + ℓEvE )

]
, (13)

with the enriched interface operator,

Xℓ =

nsd∑

E=1

AΓ E M̃−1
ℓ,E AT

Γ E . (14)

Discussion The NSCDD enrichment leads to a coupled

interface problem. Solving the NSCDD enriched interface

problem is time consuming as it requires to solve a global

linear problem on the whole domain viewed as a lattice struc-

ture with the same connectivity as the contact graph. Due to

the distribution of the database per subdomain, and to avoid

a costly direct solve, we choose to design a parallel con-

jugate gradient algorithm close to the one used in classical

distributed parallel approach (cf. Appendix).

4 Algorithmic strategies for the enriched NSCDD

To study the properties of the augmented interface problem,

at a first hand, different solving algorithms are compared

on a single time step, for cases without friction (µ = 0)

and with a dry friction coefficient µ = 0.3. Additionally,

two compatibility operators are considered for the enriched

interface problem:

• G E such that G ErE = HErE ; therefore, only active con-

tacts are taken into account in building KE = G E GT
E ,

• G ′
E such that G ′T

E VE = 0; with taking into account only

normal components of active contacts in building K ′
E =

G ′
E G ′T

E .

To exhibit an eventual convergence rate acceleration for

the enriched interface problem depending on parameter ℓE ,

two augmented algorithms are compared. The first one,

named as ‘Fully enriched algorithm’—FEA, consists of a

123



Comp. Part. Mech. (2014) 1:15–26 19

direct extension of the generic Algorithm 1 for which the

now enriched interface problem is solved after a single NLGS

iteration (nGS = 1) and the convergence is tested on the

interface and inside the subdomains. This is summarized in

Algorithm 2.

Algorithm 2 NSCDD ‘Fully enriched algorithm’—FEA

for k1 = 1, . . . , I tmax1 do

Stage 1: In parallel for E = 1, . . . , nsd

NLGS iteration

Stage 2: On the interface

Solving augmented interface problem

if (Convergence within the body and on the interface) then

I t1 = k1 and terminate for loop

end if

end for

The second studied algorithm, named as ‘Relaxed enriched

algorithm’—REA in the following, consists at a first step

in iterating on the contacts (stage 1) then on the inter-

face (stage 2) until convergence is reached on the inter-

face. The convergence test is thus restricted to the inter-

face, so the convergence criterium is relaxed. The second

step consists in interating only on contacts (independently

for each subdomain), until convergence within the body.

Thus this second step refines the solution at the micro scale.

This is summarized on Algorithm 3. It allows to focus

on the convergence rate of the interface problem depend-

ing on the enrichment parameter ℓE , more precisely the

dimensionless parameter ℓ = ℓE

m E
, where m E is a reference

mass.

For both algorithms, the compatibility operator G E or G ′
E

is redefined after each NLGS stage, to update the contact

status.

Algorithm 3 NSCDD ‘Relaxed enriched algorithm’—REA

for k2 = 1, . . . , I tmax2 do

Stage 1: In parallel for E = 1, . . . , nsd

NLGS iteration

Stage 2: On the interface

Solving augmented interface problem

if (Convergence on the interface) then

I t2 = k2 and terminate for loop

end if

end for

for k3 = 1, . . . , I tmax3 do

Stage 1: In parallel for E = 1, . . . , nsd

NLGS iteration

if (Convergence within the body) then

I t3 = k3 and terminate for loop

end if

end for

4.1 Granular test case

In order to illustrate the study on a single time step, a limited

size example is proposed.

Setup phase The sample is constituted with 730 disks previ-

ously packed in a rigid box whose walls are clusters of disks.

The final state is obtained after a vertical gravity load g is

prescribed until the sample is stabilized.

Prescribed loading The considered simulation consists in

prescribing a rotation of the sample. This rotation is mod-

eled with a rotated gravity vector as in Fig. 2: g′ =

[sin(θ),− cos(θ)]T × ||g||.

Discussion Results on the number of iterations at conver-

gence are collected in Fig. 3 for a domain decomposition

with two subdomains using a partitioning grid (1 × 2). The

number of iterations I t2 for the frictionless case (Fig. 3a, b):

– is constant for ℓ < 1 (even with ℓ = 0, i.e. a standard

NSCDD interface problem), with I t2 < I t1,

– decreases for 1 < ℓ < 100,

– diverges for ℓ > 500 (not depicted).

For the frictional case, similar results are obtained, though

with a less decreasing trend for 1 < ℓ < 100. For all cases,

I t2 + I t3 < I t1: algorithms FEA and REA are not equivalent

with respect to the number of iterations. But globally the gain

in terms of iteration number is too weak for compensating

the cost of the enriched interface resolution.

For ℓ < 10, the compatibility operator G ′
E leads to similar

results as for KE = G E GT
E , but the number of iterations is

more stable for larger values of ℓ. In the following, G ′
E is

therefore selected.

Fig. 2 Example of 730 disks with inclined gravity, one time step;

geometry and prescribed loading
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Fig. 3 Example of 730 disks with inclined gravity, one time step:

number of iterations to converge as a function of ℓ. a frictionless con-

tact (µ = 0) and K ′
E = G ′

E G ′T
E . b frictionless contact (µ = 0) and

KE = G E GT
E . c contact with friction (µ = 0.3) and K ′

E = G ′
E G ′T

E . d

contact with friction (µ = 0.3) and KE = G E GT
E

5 A fully multiscale resolution

5.1 Test on a full process (with or without friction)

Consider now the simulation of the behavior of the same

granular test bed along a full time evolution process, for

which the gravity vector g(θ) incrementally rotates from π/8

up to −π/8, as depicted in Fig. 4.

Figures 5 and 6 show that the two augmented algorithms

do not allow a significant reduction of the number of iter-

ations needed to converge, when compared to the refer-

ence algorithms NSCD (without substructuring) and NSCDD

(without enrichment). Moreover, mean and maximal inter-

penetrations (a measure of the quality of the numerical solu-

tion produced) are larger (though still small when compared

to the mean disk radius that was selected to 1).

This trend is similar for cases without and with friction,

Figs. 5 and 6, for a substructuring in two subdomains with

a partitioning grid (1 × 2). Due to the additional cost of the

augmented interface problem, the algorithms FEA and REA

are inefficient for such a granular evolution process problem.

Such a numerical behavior may be explained by the rigid

nature of the particles and the non smoothness of the interac-

tions. In other words a large-scale nonsmooth problem with

exact steric exclusions cannot be correctly enough predicted

Fig. 4 Test with 730 disks under rotating gravity: evolution process

during with the gravity vector incrementally rotates up to π/4, with 50

time steps

by a linear problem because the local non smooth correc-

tions strongly perturb the global dynamics relayed by the

interfaces. Except if we accept to solve coarsely the global

interface problem at each time step, before correcting, once

and for all, the non smooth local interactions. Hence the moti-

vation of the following section.
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Fig. 5 Test with 730 disks and a rotating gravity, without friction

(µ = 0), and K ′
E = G ′

E G ′T
E . Number of iterations to convergence

as a function of time step for ℓ = 10 (a) and ℓ = 100 (b). Mean inter-

penetration as a function of time step for ℓ = 10 (c) and ℓ = 100 (d).

Maximal interpenetration as a function of time step for ℓ = 10 (e) and

ℓ = 100 (f)

5.2 Incomplete resolution

The proposal in this section is to combine (i) an explicit

resolution of the (linear) interface problem at the subdomain

scale (macro scale), based on the active contact network as

stated at the beginning of the time step, with (ii) an implicit

resolution of nonsmooth problems within each subdomain,

for each contact (micro scale).

This strategy relies on the assumption that interface forces

traducing the global behavior of the media evolve slower than

local impulses ruled by nonsmooth dynamics. The works in

[22] on bimodality of the contact network exemplify that the

strong network is ruled by normal impulses in the contacts

hardly involving tangential sliding.

It is then possible to choose a different compatibility oper-

ator G E for determining (̃rE , ṽE ) for the different stages of

the augmented algorithms; a first selection for this operator

is to choose G E such that GT
E VE = 0, by selecting nor-

mal components of active contacts. The Algorithm 4, named

as ‘Incomplete enriched algorithm’—IEA, is a proposal for

the implementation of such a scheme, with an update stage

of active contacts at the beginning of each time step, using

a single NLGS iteration. In other words the IEA algorithm

consists in restricting the first step of the REA algorithm to

a single iteration (I tmax2 = 1).

5.3 Slow dynamic test

In order to test the algorithm IEA, the same problem of gran-

ular sample with 730 disks and rotation of gravity vector is

reused. This test indeed belongs to the category of problems

where the contact network is relatively persistent though the

123



22 Comp. Part. Mech. (2014) 1:15–26

0 10 20 30 40 50

Time step

0

1000

2000

3000

4000

5000

It
er

at
io

n
s

NSCD
NSCDD
FEA
REA (It

2
+It

3
)

REA interface iterations(It
2
)

0 10 20 30 40 50

Time step

0

1000

2000

3000

4000

5000

It
er

at
io

n
s

NSCD
NSCDD
FEA
REA (It

2
+It

3
)

REA interface iterations (It
2
)

0 10 20 30 40 50

Time step

0

5e-07

1e-06

1,5e-06

M
ea

n
 i

n
te

rp
en

et
ra

ti
o
n
 (

m
)

NSCD
NSCDD
FEA
REA

0 10 20 30 40 50

Time step

0

5e-07

1e-06

1,5e-06

M
ea

n
 i

n
te

rp
en

et
ra

ti
o
n
 (

m
)

NSCD
NSCDD
FEA
REA

0 10 20 30 40 50

Time step

0

2e-05

4e-05

6e-05

8e-05

M
ax

 i
n
te

rp
en

et
ra

ti
o
n
 (

m
)

NSCD
NSCDD
FEA
REA

0 10 20 30 40 50

Time step

0

5e-05

0,0001

0,00015

M
ax

 i
n

te
rp

en
et

ra
ti

o
n

 (
m

)

NSCD
NSCDD
FEA
REA

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Test with 730 disks and a rotating gravity, with friction (µ =

0.3), and K ′
E = G ′

E G ′T
E . Number of iterations to convergence as a

function of time step for ℓ = 10 (a) and ℓ = 100 (b). Mean interpen-

etration as a function of time step for ℓ = 10 (c) and ℓ = 100 (d).

Maximal interpenetration as a function of time step for ℓ = 10 (e) and

ℓ = 100 (f)

contact force distribution notably evolves. Therefore it suits

the assumptions favorable to the incomplete solve strategy

previously described. This incomplete solve requires also to

assess the quality of the obtained solution, by checking a

quality control indicator. This indicator is the mean or max-

imal interpenetration.

The obtained iteration numbers at convergence, i.e. I t4
in Algorithm 4, as well as the interpenetrations are depicted

in Fig. 7, for the same partitioning grid for the subdomains

(1 × 2), and for a friction coefficient µ = 0.3.

Figure 7a compares the number of iterations for algo-

rithm IEA with respect to the references (algorithms NSCD

and NSCDD). A moderate reduction is obtained, with a non

monotonous dependence on parameter ℓ. For readability rea-

sons, only cases ℓ = 0, 10, 100 are depicted.

Concerning mean and maximal interpenetrations, Fig. 7b,

c depict a series of curves corresponding to ℓ ∈ [0, 105].

These interpenetrations largely decrease with ℓ. For ℓ ∈

[0, 103] they significantly evolve with an increasing trend

as the time steps are progressing, whereas for ℓ ∈ [104, 105]

they are stabilizing after a reduced number of time steps. Nev-

ertheless, these interpenetrations are larger than their coun-

terparts for the algorithms NSCD and NSCDD (Fig. 6) but

remain acceptable with respect to the mean radius of grains

that was selected to 1.

Algorithm IEA is somehow a multiscale approach; con-

cerning space using a domain decomposition method provid-

ing the subdomain scale and the grain scale, and also concern-

ing time evolution using different time integrations depend-

ing on the spatial scale. The linear interface problem couples
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Algorithm 4 NSCDD ‘Incomplete enriched algorithm’—

IEA
for i = 1, . . . , N do {Loop on time steps}

Eventual new subdomain decomposition

Contact detection, setting of external impulses and prescribed

velocities

Explicit interface problem

In parallel for E = 1, . . . , nsd

Update the contact status

On the interface

Solving the augmented interface problem

NSCD solves per subdomain

for k4 = 1, I tmax4 do

In parallel for E = 1, . . . , nsd

NLGS iteration

if (Convergence within the body) then

I t4 = k4 and terminate for loop

end if

end for

Compute velocities and position of the grains

end for

the whole set of subdomains, but is solved in an explicit

manner, while nonsmooth problems per subdomains are iter-

atively solved to capture the local configuration changes. The

correction along time steps of the interpenetration is allowed

with this semi-implicit strategy, though only an incomplete

solve is performed at each time step (Fig. 8).

5.4 Dynamic flow test

We now consider a granular flow with an horizontal main

velocity, and with a periodic boundary condition in the same

direction. Thus the sample is sloped with an angle θ equal

to π/6. Two subdomains are defined as previously, Fig. 10.

This problem exhibits a large modification of the contact

graph along the evolution process and a convection from the

right to the left direction.

The evolution of the mean interpenetration in Fig. 9 is sim-

ilar to the previous test with a decrease then a stabilization

with respect to the ℓ factor. This is particularly true for the

end of the process whereas the classification of the curves is

not obvious in a first period. The maximal interpenetration

evolves quite differently and sometimes up to values that are

less acceptable than for the previous test. More precisely,

for ℓ = 103, the maximal interpenetration stabilizes to an

excessive value whereas, for ℓ = 105, the maximal interpen-

etration evolves with large variations but tends to decrease

until to an acceptable value. Such a behavior is related to the

evolution of the contact network with the flow. As an illus-

tration in Fig. 10 the interpenetrations are generated nearby

the interface because of the incomplete resolution, then they
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Fig. 7 Test with 730 disks, a rotating gravity and a friction coefficient µ = 0.3; number of iterations to reach convergence (a), mean interpenetration

(b) and maximal interpenetration (c) according to ℓ ∈ [0, 105]
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Fig. 8 Test of 730 disks under rotating gravity: a first and b final time step. The multiplicity is: 1 for a gray particle and 2 for a dark particle. Red

(dark) segments indicate disk overlaps δα satisfying δn ≥ 0.9 max δn . (Color figure online)
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Fig. 9 Test of a 750 disk granular flow: evolution of a mean interpenetration and b maximal interpenetration according to ℓ ∈ [0, 105]

Fig. 10 Test of a 750 disks granular flow with ℓ = 103: a beginning and b final time step (200). The multiplicity is: 1 for a gray particle and 2 for

a dark particle. Red (dark) segments indicate disks overlap δα satisfying δn ≥ 0.9 max δn . (Color figure online)

migrate inside the subdomains. These interpenetrations hold

as long as the contacts persist and are erased as soon as the

contacts release. This process explains the high level and

the oscillations of the maximal interpenetrations in a highly

dynamic test.

For this test case, we moreover use a parallelization of the

interface problem, as described in the following section.

5.5 Parallel resolution of the interface problem

The augmented interface problem (13) is a global problem

involving the whole force network of the sample. Its structure

is similar to the one of a linear elastic problem in quasi-

static evolution. To solve efficiently this global problem, an

iterative approach is an appealing alternative. Since matrix

Xℓ is symmetric and definite positive, and since the data are

distributed among the subdomains, the conjugate gradient

algorithm is a suited choice.

Algorithm 5 proposes a detailed version of the augmented

version of Algorithm 2 for one time step. This resolution

involves two embedded domain decomposition methods:

• global iterations of NSCDD approach,

• parallel conjugate gradient on the augmented interface

gluing problem.

The augmented interface problem cannot be solved with

an incremental formulation as in the generic algorithm (Algo-

rithm 1). The specific implementation of this parallel con-

jugate gradient for the granular interface problem on the
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Algorithm 5 NSCDD—augmented version with two embed-

ded DDM
while (convergence criteria in the body and on the interface are not

satisfied) do

Stage 1: In parallel for E = 1, . . . , nsd

Evaluation of v̄d
E = vd

E − H T
E M̃−1

E FE

Compute (rE ,vE ) with nGS NLGS iterations on:

{
W̃ErE − vE = −v̄d

E

R(vE , rE ) = 0

Stage 2: On the interface

while (convergence criteria of the conjugate gradient are not satis-

fied) do

Parallel iterates of the conjugate gradient algorithm on FΓ :

Xℓ FΓ =
∑nsd

E=1 AΓ E M−1
ℓ,E

[
Rd

E + HE (rE + ℓvE )
]

end while

end while

LMGC90 platform is recalled in Algorithm 6 as an “Appen-

dix”. The overall stages are standard ones and leads to mes-

sage passing exchanges between subdomains for the distrib-

uted memory parallelization paradigm underlying the sam-

ple available substructuration. Note that the matrix-vector

products at the subdomain level are performed with a linear

system solving on each subdomain independently. The local

solving of the linear systems of the form,

M̃ℓ,E x = b, (15)

are performed using the sparsity properties of matrix M̃ℓ,E ,

with the MUMPS library [4].

This strategy is efficient from a computational cost point

of view, as indicated in Table 1, and additional optimiza-

tions can be performed on the implementation of the parallel

conjugate gradient (decentralized communications, precon-

ditionning, etc.)

6 Conclusions

Domain decomposition methods are usually very well suited

to implementations on distributed memory architectures,

since the data locality is ensured with the geometrical domain

substructuring, and is mapped to the local memories of the

different processors. Therefore, favorite message passing

Table 1 CPU time; sample of 730 disks with rotating gravity and

µ = 0.3

Algorithm CPU (s)

NSCD 117

NSCDD 63

EA3—ℓ = 0 46

EA3—ℓ = 106 51

librairies such as MPI are useful for this kind of implementa-

tion. The OpenMP paradigm is more suited to shared memory

parallelization, with minimal intrusivity in the parallelized

code. Nevertheless, an organization with data locality such as

domain decomposition usually exhibits better performances

on this kind of architecture as well (though the efficient use

of parallel architecture lead usually to a smaller number of

processors than for the previous approach). Load balancing is

an issue for each kind of parallelization strategies, and recent

advances in this study are available, see [23] for instance.

With the use of coarse space (or augmented algorithms), the

parallel part of these algorithms are decreasing, due to the

advent of a global coarse problem on the whole physical

domain (though it may also be parallelized, as done in this

article).

This first attempt to enrich a domain decomposition strat-

egy coupled with the contact dynamics underlines the dif-

ficulty to improve the convergence of a nonsmooth solver

with an enriched linear predictor. Indeed the convergence

rate should be significantly increased for compensating for

the cost of the solution of the augmented interface problem.

Such a goal cannot be reached with a complete resolution at

all the scales and at each time step as proved in Sect. 4.1.

With the present approach, the gain is not in the scalability

performance that the algorithm enrichment may produce, but

on the possibility to add a dedicated computational strategy

based on a multiscale sequential strategy (using the coarse

problem as a macroscopic scale): the incomplete resolution

strategy. This strategy leads to admissible solutions if the

contact network is stable enough to limit the interpenetra-

tion errors. This topic remains an open question for dynamic

flow problems, specially if the granular medium is confined,

restricting the contact releases.

The present approach has first to be tested on large-scale

3D examples with several subdomains as presented in [24].

But the main improvement concerns the correction of the

interpenetration during the process. The velocity formula-

tion of the unilateral contact law used in the standard NSCD

approach [20] leads to local interpenetrations which may be

large if we use an averaged criterion and they are not cor-

rected in the following time steps because no elastic restor-

ing force is introduced. Without changing the contact law we

propose to investigate the enrichment of the linear numerical

step with an elastic contribution. Such an approach joins the

conclusions in [1] for a related investigation.

7 Appendix: Parallel conjugate gradient

The domain decomposition distributed database is herein

used in a parallel conjugate gradient algorithm. In Algorithm

6, Xℓ,E is the interface operator reduced to the contribution

of the E th subdomain and BΓ ΓE
is a boolean mapping from
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the local interface ΓE belonging to the E th subdomain to the

global interface Γ .

Algorithm 6 Parallel conjugate gradient on augmented inter-

face problem

Initialization

Right-hand-side: parallel contribution of each subdomain,

sequential assembling, back to each subdomain

CΓE
← AΓE E M̃−1

ℓ,E

(
RE + ℓEvE + Rd

E

)

CΓ ←
∑

E

BΓ ΓE
CΓE

C ′
ΓE

← BT
Γ ΓE

CΓ

First iterate, residual and search direction

F0
ΓE

← 0 R0
ΓE

← CΓE
D0

Γ E ← C ′
ΓE

Dot product: local contribution per subdomain and assembling

ρ0 ←
∑

E

(R0
ΓE

)T D0
ΓE

Matrix-vector product: contribution per subdomain (requires a

global solve per subdomain)

Q0
ΓE

← Xℓ,E D0
Γ E

First update: contribution per subdomain, assembling the dot

product, update per subdomain

α0 ← ρ0/
∑

E

(Q0
Γ E )T D0

Γ E F0
ΓE

← F0
ΓE

+ α0 D0
ΓE

Iterations

for k=1,. . . , Iter_max do

Residual: Rk
ΓE

← Rk
ΓE

− αk−1 Qk
ΓE

Rk
Γ ←∑

E BΓ ΓE
Rk

ΓE
R′k

ΓE
← BT

Γ ΓE
Rk

Γ

Dot product: ρk ←
∑

E (Rk
ΓE

)T R′k
ΓE

if (ρk/ρ0 < ǫ) then

Terminate conjugate gradient iterations

end if

Conjugate parameter: βk ← ρk/ρk−1

Search direction: Dk
ΓE

← R′k
ΓE

+ βk Dk−1
ΓE

Matrix-vector product: Qk
ΓE

← Xℓ,E Dk
ΓE

Update: αk ← ρk/
∑

E (Qk
Γ E )T Dk

Γ E Fk
ΓE

← Fk−1
ΓE

+ αk Dk
ΓE

end for
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