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Abstract: Arc welding has been widely explored for additive manufacturing of large metal 

components over the last three decades due to its lower capital cost, an unlimited build 

envelope, and higher deposition rates. Although significant improvements have been made, 

an arc welding process has yet to be incorporated in a commercially available additive 

manufacturing system. The next step in exploiting “true” arc-welding-based additive 

manufacturing is to develop the automation software required to produce CAD-to-part 

capability. This study focuses on developing a fully automated system using robotic gas 

metal arc welding to additively manufacture metal components. The system contains several 

modules, including bead modelling, slicing, deposition path planning, weld setting, and post-

process machining. Among these modules, bead modelling provides the essential database for 

process control, and an innovative path planning strategy fulfils the requirements of the 

automated system. A user friendly interface has been developed for non-experts to operate 

the developed system. Finally, a thin-walled aluminum structure has been fabricated 

automatically using only a CAD model as the informational input to the system. This exercise 

demonstrates that the developed system is a significant contribution towards the ultimate goal 

of producing a practical and highly automated arc-welding-based additive manufacturing 

system for industrial application. 

 

Keywords: arc welding, additive manufacturing, aerospace components, metal deposition, 

automated process planning. 

 

1. Introduction 

Additive manufacturing (AM) has been used successfully for single-unit production in 

various sectors, owing to the paradigm shift that the process provides over conventional 

manufacturing. When it comes to metal AM, aerospace appears to be leading the way, seeing 

opportunities to produce light-weight components, reduce manufacturing lead-times, and 

improve the buy-to-fly ratios [1-5]. While much development is focused on powder-based 

processes for fine detail in small parts, commercially available equipment is limited in terms 

of part build envelope and build rate, especially in aerospace applications [6]. As a 

consequence, robotic wire-feed AM processes have attracted extensive research interest due to 

their ability to produce large parts (up to 5.8 m × 1.2 m × 1.2 m was reported) with high 

deposition rate (ranges from 3 to 9 kg/hr) [7]. 

Arc-welding-based additive manufacturing is one of the wire-feed AM technologies, and 

uses either the gas metal arc welding process (GMAW) or the gas tungsten arc welding 



process (GTAW) [8]. The advantages of such a system over existing additive manufacturing 

systems include lower capital cost, a much larger build envelop, higher production rates, and a 

strong supply chain capability in industry [9]. A large amount of work has been done over the 

previous three decades to develop the ability to produce parts from weld deposits using a 

layer-by-layer approach. Early studies exploring arc welding for AM have been reported by 

European researchers [10-12]. The ability of arc welding to produce high quality near-net 

shapes has been confirmed. A preliminary automated system for welding-based AM was 

developed by Zhang et al. [13]. The deposition parameters, including the travel speed, welding 

current, and arc voltage were discussed in detail. Hybrid approaches to “3D welding and 
milling” have been established to fabricate parts with a high quality surface finish [14, 15]. 

The effects of bead modelling and process optimization in arc-welding-based AM were also 

investigated [16-18]. Recently, vision-sensing systems have been designed to on-line monitor 

and control the robotic arc welding process to deposit the desired geometry [19-21]. Several 

other organizations throughout the world continue to work in this exciting field of arc-

welding-based AM [22-27]. 

Although several advancements have been made, an arc welding process has yet to be 

incorporated in a commercially available additive manufacturing system. This is due to the 

lack of an automated process planning strategy that is able to set all of the process parameters 

[7]. Process parameters such as deposition path, wire-feed rate, and travel speed, as far as we 

know, are mainly set by an experienced AM technologist depending upon part geometry, 

energy source, and the material selected. Accordingly, the next step towards a “true” wire-feed 

additive manufacturing system is to develop the automation software needed to produce 

seamless CAD-to-part capability. 

This study aims at the development of a fully automated arc-welding-based AM system, 

which reads only the CAD model as an input and produces the finished part without human 

intervention. Section 2 introduces briefly the developed automated arc-welding-based AM 

system. Section 3 establishes bead modelling, followed by the MAT-based path planning in 

Section 4. Section 5 describes the experiments that validate the system and discusses the 

result. 

 

2. Automated arc-welding-based additive manufacturing system 

An automated process planning algorithm for an arc-welding-based additive manufacturing 

system from CAD model inputs to finished parts is shown in Fig.1. Several modules are 

essential including slicing, path planning, welding parameter setting, post-process machining, 

and the robot code generation module. 

The 3D CAD model in STL format is firstly sliced into a set of 2.5D layers through the 

slicing module. Slicing algorithm of 3D STL model has been widely reported [28]. In this 

paper, a tolerant slicing algorithm was used and detailed information could be found elsewhere 

[29].  

Then the path planning module generates deposition paths for each of the sliced layers. 

After the paths are generated, the desired bead geometries along the path are determined 

accordingly. 

Bead modelling controls two of the key slicing and path planning variables, namely layer 

thickness and step-over distance (to be defined in Section 4), respectively. In addition, it 

determines the optimum welding parameters corresponding to the desired bead geometry. 

Welding parameters are mainly wire-feed rate, travel speed, and stick-out length for the 

GMAW process in this study.  



The post-process machining module generates machining tool paths for the post-weld 

machining process. With the geometries of the sliced layers, the machining paths are easily 

generated by outside offsetting the boundaries of the layers with the half of the machining tool 

diameter. 

 

Fig.1 A schematic diagram of the automated process planning algorithm of an arc-welding-

based additive manufacturing system 

Subsequently, the welding deposition paths together with the automatically-selected 

welding parameters and the machining tool paths are transformed into an integrated robot code 

file through the robot code generation module.  

Finally, a near-net shape deposit is produced automatically by the robotic arc welding 

system and the finished component with the desired dimensional tolerances is obtained 

through robotic machining. 

For arc-welding-based processes, the bead geometry is highly dependent on both material 

and processing parameters. Therefore, accurate bead models are required to be established 

through experiments. In this study, aluminium material and the GMAW process are chosen as 

the experimental example. The automated process planning strategy in its current form can be 

applied to other materials (mainly steels) and also the GTAW deposition process. 

In the operation of this automated system, automatic path planning required special 

attention to accommodate the geometrical complexity of parts that need to be manufactured in 



practice. Therefore, the bead modelling and path planning modules are selectively presented in 

the following Section 3 and Section 4, respectively. 

 

 

3. Bead modelling 

A. Inputs and Responses 

Figure 2 shows the typical weld bead geometry with bead height (h) and bead width (w). 

Through adjusting process parameters such as wire-feed rate and travel speed, different bead 

profiles can be obtained. Based on the effect on weld bead geometry of aluminium material, 

the chosen input factors for this study are wire-feed rate (F), travel speed (S), and stick-out 

length (L); the responses are bead height (h) and bead width (w). The values of the chosen 

process variables at various levels are presented in Table 1. 

 

Fig.2 Weld bead geometry 

Table 1 Input process parameters 

Parameters Factor levels 

Level 1 Level 2 Level 3 Level 4 

Wire-feed rate, F (m/min) 5.0 5.7 6.4 7.0 

Travel speed, S (m/min) 0.35 0.46 0.58 0.7 

Stick-out, L (mm) 9 11 13 15 

 

B. Artificial Neural Network (ANN) 

The artificial neural network has been demonstrated to be a powerful tool for representing 

complex relations between multiple inputs and responses, especially for the welding process 

which exhibits strong nonlinearity. In this work, a neural network is used to characterize the 

relationship between process parameters and aluminium bead geometry, as schematically 

shown in Fig.3. The network is composed of an input layer, a hidden layer, and an output 

layer. Neurons in the hidden layer are computational elements accomplishing nonlinear 

mapping between process variables and responses. The artificial neural network can find 

multi-dimensional dependencies between process parameters by learning. However, the data 

for teaching or training the artificial neural network need to be carefully selected. 



 

Fig.3 Schematic diagram of the artificial neural network for aluminium weld bead 

modelling 

 

C. Taguchi Method 

The Taguchi method, which is one of the fractional factorial designs, has a good 

reappearance of experiment concerned only with the main effects of design parameters. 

Therefore, if the training data for the artificial neural network are selected using an orthogonal 

array table in the statistical design of experiments, and the process characteristics as output 

data of the  artificial neural network are transformed by the Taguchi method, then this method 

has been shown to produce more accurate data using a smaller training set than other methods. 

Using the four levels of inputs selected in Table 1, the optimum parameter design for artificial 

neural network training is obtained as 16 test runs provided in Table 2 denoted in blue. A 

further 7 parameter test runs (No.17 to No.23 denoted in green in Table 2) are randomly 

chosen to test the performance of the trained network. 

Table 2 Welding process input parameters (blue, green) and responses (orange) 

No. Parameter design Bead 

height h, 

(mm) 

Bead 

width w, 

(mm) 

Wire feed 

rate F, 

(m/min) 

Travel 

speed S, 

(m/min) 

Stick-out  

L, (mm) 

1 5.0 0.35 9 3.43 6.74 

2 5.0 0.46 11 2.96 5.97 

3 5.0 0.58 13 2.59 5.48 

4 5.0 0.70 15 2.33 5.32 

5 5.7 0.35 11 3.36 7.70 

6 5.7 0.46 9 2.82 6.81 

7 5.7 0.58 15 2.57 6.19 

8 5.7 0.70 13 2.21 5.70 

9 6.4 0.35 13 3.42 8.53 

10 6.4 0.46 15 2.91 7.53 

11 6.4 0.58 9 2.38 7.07 

12 6.4 0.70 11 2.11 6.39 

13 7.0 0.35 15 3.21 9.22 

14 7.0 0.46 13 2.86 8.17 

15 7.0 0.58 11 2.56 7.79 

16 7.0 0.70 9 2.29 7.28 

17 6.0 0.50 12 2.75 7.04 

18 6.5 0.60 10 2.50 7.27 

19 5.5 0.40 11 2.94 7.34 

20 5.8 0.48 11 2.56 7.12 

21 6.2 0.52 10 2.49 7.45 

22 6.2 0.35 13 3.26 8.86 

23 6.2 0.70 11 2.17 6.65 



 

D. Bead Geometry Measurement 

One single bead was produced for each parameter set in Table 2. Weld beads deposited for 

No.16-23 are shown in Fig.4a as examples. A 3D laser profile scanner with a resolution of 

0.02 mm, projecting a laser line on the weld bead cross-section, was used to measure the bead 

height and width, as shown in Fig.4b. The scanner was carried by a robot moving along the 

deposited weld beads. Each bead having a total length of 60 mm was cross-sectioned three 

times, i.e. at a length of 15 mm, 30 mm, and 45 mm as shown in Fig.4a. Curve fitting with 

detailed bead cross-sectional measurements instead of only employing the bead height and 

width was used to model the generated bead geometry. Subsequently, the bead height and 

bead width are obtained and listed in Table 2 as columns coloured in orange. 

 

Fig.4 (a) Single beads (60 mm long) deposited onto aluminium substrate with parameter 

sets No.17-23; welding direction runs from left to right; the red lines represent the locations of 

cross-sectioning away from arc starting and extinguishing points to eliminate the start and end 

effects. (b) Schematic diagram of bead geometry measurement using the 3D laser profile 

scanner. 

 

E. Verification of Bead Model 

The performance of the trained ANN bead model (using data No.1-16 from Table 2) was 

evaluated using 7 independent testing data sets (No.17-23 from Table 2). A comparison of the 

predicted bead geometry using the trained ANN and measured bead geometry is shown in 

Fig.5.  

 

Fig.5 Comparison between predicted and measured weld bead geometry (normalised) 



In Fig.5, the horizontal axis represents the measured bead height and bead width, and the 

vertical axis represents the predicted bead height and bead width. The linear solid line 

represents the case where the measured values are equal to the predicted values. It can be seen 

that most of the data points lie on or near the solid line, indicating the ANN model is able to 

predict bead height and bead width within the range of reliable accuracy. Note that to train and 

test the network accurately, all inputs and outputs are normalised within the range of -1 and 

+1. The normalised value (Xi) for each raw input or output (Ri) was calculated as 

 

where, Rmax and Rmin are the maximum and minimum values of the raw data, respectively. The 

trained ANN bead modelling is used as the essential database to determine the optimum 

welding parameters corresponding to the desired bead geometry (bead height and bead width). 

Besides of single bead modelling, previously developed tangent overlapping model (TOM) 

[18] was implemented to determine the optimal step-over distance for multi-bead and multi-

layer deposition of complex components. Through depositing multi-bead and multi-layer 

structures, it was demonstrated that the traditional flat-top overlapping model [17] tends to 

under-estimate the optimal step-over distance, while TOM produces more stable deposition. 

Details of TOM could be found in the reference [18].  

 

4. Path planning 

A. Challenges in Path Planning 

One of the crucial requirements for an automated AM system is the development of an 

elaborate path planning strategy [30-33]. Primarily, path planning must be able to generate 

reasonable deposit paths automatically for different geometries of layers. Existing popular 

path planning methods, such as raster paths and contour paths, have been well reported. 

However, each path planning method is only suitable for a subset of part geometries. The 

example of a thin-walled structure is shown in Fig.6. Fig.6a illustrates the 3D CAD model and 

the coordinates. z represents the building direction. Through slicing along the building 

direction, the cross-section of the sliced geometry is shown in Fig.6b. Raster paths would 

contain a number of short discontinuous paths, as shown in Fig.6c, requiring the deposition 

process to start and stop frequently. This behaviour is not desirable in arc-welding-based AM, 

because the welding process requires a certain time to stabilise and during this time the 

deposited material does not correspond well to the steady-state bead behaviour that has been 

modelled. A continuous deposition path is desired.  



 

Fig.6 Illustration of automatic path planning. Green lines represent the generated paths, and 

black lines represent the boundary of the geometry. (a) CAD model. (b) A slice. (c) Raster 

paths (green). (d) Contour paths (red). 

However, applying a contour path planning algorithm to this example is likely to fail since 

the thin-walled areas would not allow sufficient width for a contour path to be applied. As 

shown in Fig.6d, after applying contour path planning with a step-over distance of 3 mm (a 

typical minimum value for the arc welding process), paths for the thin-walled areas are lost. 

Step-over distance is defined as the distance between a deposition track and the previous one. 

Typical step-over distance for powder-based AM ranges from 0.1 mm to 1mm, while for arc-

welding-based AM ranges, from 3 mm to 8 mm depending on the chosen material and wire 

diameter. To automatically generate paths for the geometry (as shown in Fig.6b), the challenge 

is to develop an adaptable strategy that can cater for variable geometry and use the 

information to produce paths that are appropriate to the limitations of the arc welding 

deposition process. 

Crossings in thin-walled structures make path planning more complex. Thin-walled 

structures are most commonly seen in aerospace components, which are attractive applications 

for AM due to their high buy-to-fly ratios. Crossings always exist in the case of these 

structures, as shown in Fig.7. Experiments reveal that directly crossing paths produce peaks 

where the weld beads overlap at the crossing points, as shown in Fig.7a. In addition, sharp 

angles in the intersections can concentrate stresses. The path pattern of opposite angle, as 



shown in Fig.7b, has been demonstrated to produce the best crossings with smooth radii in 

corners [34].  

An alternative approach is shown in Fig.7c in the red circle [7]. The crossing is fabricated 

through one central deposition and two crossing branches. The two branches are always 

deposited tangentially to existing material, so no crossing occurs. Both strategies solve the 

issue of crossings, however, it is quite complex to design the program for the path planning 

algorithm so that it functions automatically and correctly for all situations. 

 

Fig.7 Concerns of crossings in thin-walled structures. (a) Direct crossing induces peaks. (b) 

Path pattern of opposite angles [34]. (c) One direct and two crossing method [7]. (d) Finished 

part [7]. 

 

B. MAT-based Path Planning 

Medial axis transformation (MAT) –based path planning is able to generate a set of closed 

loop paths which cover entirely the sliced layers. The detailed path planning methodology has 

been reported in our previous publication [29]. Here, the path planning strategy is described 

through an example and its capability of fulfilling the requirements for an arc-welding-based 

system is explained. 

There are the main steps for generating MAT-based paths: 

Compute the medial axis: The cross-section of a sliced layer with a thin-walled structure is 

shown in Fig.8a. The medial axis or skeleton of the geometry is computed and represented 

using red lines. The computed skeleton is the crucial information, which describes the shape of 

the geometry. 

Decompose the geometry: Using the computed medial axis, the geometry is decomposed 

into several domains. As the geometry with N holes needs to be decomposed into N+1 

domains [27], this geometry is decomposed into 10 domains as shown in Fig.8b. As displayed 

in different colours, each domain is bounded by a portion of medial axis (red lines in Fig.8a) 

and a boundary loop (black line loop in Fig.8a). 

Generate path for the domain: Deposition paths for each domain are generated by 

offsetting the medial axis loop (red line loop in Fig.8c for domain 3) towards the 

corresponding boundary loop (black line loop in Fig.8c) with an appropriate step-over 

distance. The offsetting is repeated and terminates when the domain is fully covered. Green 

line loops in Fig.8c, represent the generated deposition paths. 



Complete the deposition paths: A complete set of MAT-based deposition paths is obtained 

by repeating step 3) for all the decomposed domains. The generated paths are a set of closed 

loop lines without start/stop sequences, which is preferred for the arc welding system. 

 

Fig.8 Illustration of MAT-based path planning. (a) The medial axis computing (red lines). 

(b) Domain decomposition (each domain is described in one different colour. (c) Path 

generation for domain 3. (d) MAT-based paths at the crossing area. 

From the above description, the MAT-based path planning algorithm for an arc welding 

process is able to be automated for any complex geometry; just as the existing commercially 

available raster and contour path planning strategies have been automatically applied to 

powder-based AM. In addition, the process to form crossings is shown in Fig.8d, where no 

direct crossings occur. The issue of crossings is inherently solved using MAT-based path 

planning since it produces crossings in a manner similar to opposite angle deposition [34]. 

Note that the proposed MAT-based path planning algorithm is universal and particularly 

feasible for arc-welding-based additive manufacturing of complex geometries. 

 

5. Experiments and discussion 

A. Experimental Set-up 

Experiments were conducted using a robotic welding system and robotic machining system 

at the University of Wollongong, as shown in Fig.9. An ABB 1400 industrial robot arm with 

six degrees of freedom was used to generate the movement of the welding torch relative to the 

substrate, as shown in Fig.9a. A larger ABB 6660 robot was used for post-process machining, 

since it is able to withstand high process forces and enables high-performance applications of 

finishing and milling. For a detailed description of this experimental arc welding system, refer 

to [18]. The pulse-spray GMAW transfer model was used to minimize the heat input. The wire 

electrode was aluminium (5% Mg) wire with a diameter of 1.2 mm. Argon shielding gas with 



a flow rate of 15 L/min was used. The experimental conditions were the same as those used to 

determine the weld bead model in Section 3.4. 

 

Fig.9 Experimental set-up: (a) ABB 1400 robot with Fronius welder for additive 

manufacturing, (b) ABB 6660 robot with motor spindle for machining. 

 

B. Interface 

Based on the developed automated process planning described in Section 2, the following 

user friendly interface has been established for a non-expert operator to use the system. The 

main interface is shown in Fig.10. A total of seven steps are required, from loading the STL 

model to generating the robot code. 

Step 1, load STL model: The experimental input is a digital 3D STL file. After loading the 

STL model, the structure is obtained as shown in Fig.6a. 

Step 2, bead modelling: By adding experimental results of weld bead profile tests (as 

provided in Table 2) into the list, the bead model is trained using the artificial neural network 

(ANN). The bead database is saved for the following steps. 

Step 3, slicing: After slicing the 3D STL model, 2D slices (layers) are obtained as shown in 

Fig.6b. The desired component is a thin-walled structure with varied wall thickness. The width 

of the thinnest wall is approximately 2 mm, while that the thickest wall is almost 12 mm. 

Step 4, path planning: MAT-based paths are automatically generated with appropriate step-

over distances according to the information contained in the bead database. The optimal step-

over distance of weld beads is determined to obtain a smooth upper surface for each deposited 

layer [18]. The final deposition paths are 15 closed loops, as shown in Fig.11. Note that it 

seems the generated paths haven’t envelope the geometry in some edge areas (such as top left 
corner), while materials with certain bead width are deposited along the path enables fully 

covering of the geometry. The optimum step-over distance for each path are listed in Table 3. 

Step 5, weld setting: Weld settings (wire-feed rate, travel speed, and stick-out length) along 

each of the generated deposition paths are selected automatically based on the established 

ANN bead model. The welding parameters for each path are listed in Table 3. 

 Step 6, post-process machining: Machining paths are also generated automatically by 

offsetting the boundary of the geometry with a distance equal to the half of the diameter of the 

machining tool. Fig.12 shows the tool path for side milling. This single path indicates that the 

excess material will be removed in a single cut, and that the machining robot has the capacity 

to perform this action. 

Step 7, robot code generation: An integrated file with robot code is generated, where the 

information of deposition paths, the welding parameters along the paths, and the machining 

tool paths are included. 



 

Fig.10 User friendly interface of the arc-welding-based additive manufacturing system. A 

total of 7 steps from S1 to S7 are described. 

 

Fig.11 Final MAT-based paths for the thin-walled structure 



 

Fig.12 Tool paths for side milling 

Table 3 Process variables 

 

 

C. Results 

After the deposition of 8 layers, the near-net shape with a 20 mm height is automatically 

fabricated. Fig.13a shows the near-net shape of the produced aluminium component. Details 

of crossings, start/stop sections and corners are shown in Fig.13b and Fig.13c. Fig.14a shows 

the process of post machining, and the final finished part with the desired dimensional 

tolerances is shown in Fig.14b. 

 

Fig.13 Experimental results. (a) Near-net shape of the produced aluminium component. (b) 

Details of crossings and start/strop sections. (c) Details at a croner. 

Process variables Deposition path 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Step-over distance (mm) 4.0 4.0 3.5 3.5 3.5 3.5 6.3 6.3 5.4 5.4 4.0 4.0 4.0 4.0 5.3 

Wire-feed rate, F (m/min) 5.7 5.7 5.3 5.3 5.3 5.3 6.0 6.0 5.1 5.1 5.7 5.7 5.7 5.7 6.3 

Travel speed, S (m/min) 0.55 0.55 0.47 0.47 0.47 0.47 0.50 0.50 0.39 0.39 0.55 0.55 0.55 0.55 0.59 

Stick-out Length, L (mm) 14 14 14 14 14 14 13 13 11 11 14 14 14 14 14 



 

Fig.14 (a) Process of post machining. (b) Final finished part with the desired dimensional 

accuracy 

 

D. Discussion 

The near-net shape part that has been deposited automatically from the CAD model using 

the robotic arc welding AM system has verified the operation of the proposed automated 

system. The excellent appearance of the produced shape at crossings (shown in Fig.13b in the 

red circle) indicates that the path planning algorithm has effectively solved the issues at 

crossings of thin-walled structures. Height errors at start/stops (shown in Fig.13b in the blue 

circle) are minimised due to the closed loop of the paths. Good quality deposition is also 

evident at corners, as shown in Fig.13c. 

In conducting this experiment, a few observations are worth mentioning. For example, the 

condition of the substrate, including temperature and geometrical shape, has a remarkable 

influence on the deposition accuracy and surface quality of the following layers. Furthermore, 

disturbances to the welding process may occasionally occur, depending on the materials, 

equipment, and deposition process selected, and also the previously deposited layers. The 

deposition process is sensitive to disturbances from the surface condition of the previously 

deposited layer. Consequently, defects may be produced as shown in Fig.13a in the red circles. 

Further online monitoring and control are required to be integrated to the proposed system for 

automatic in-process control of the deposition. In the event that a disturbance is detected 

during the deposition of a layer, an intermediate milling operation is required to maintain the 

surface quality. 

In this study, different robots are used for deposition and machining. This results in 

additional calibration and re-fixturing steps, which imposes difficulties for post-process 

machining. Therefore, to produce components with high accuracy it is preferable to have an 

integrated system with the ability to generate a final part using a single machine. 

In this particular case study, the machining process was performed after the near-net shape 

was completely deposited. For other component designs, it may not be possible to delay all 

machining until the part is entirely deposited due to the limitations of the machining tool or 

spindle collision issues. Machining from time to time during the deposition process may be 

required. This will need to be determined through analysing the geometry of the input CAD 

parts. So, future work concerning optimization of the machining process is necessary to 

further develop CAD-to-part arc-welding-based additive manufacturing systems. 

 

6. Conclusions 

This study has produced an example of an aircraft component having thin-walled structures 

of varying thickness and containing several crossings. This structure provides significant 



challenges for the arc-welding-based additive manufacturing process, which has several 

specific requirements that should be met for optimum results: 

 Continuous deposits should be performed in closed loops to minimise start/stops that 
can otherwise give rise to height errors over multiple layers. As shown in Fig.13b in 
the blue circle, where the loops are closed, there are no adverse start/stops effects on 
the deposited surface. 

 There should be no cross-over of weld paths that create large localised variations in 
build height at crossings. 

 Deposition paths which appropriate step-over distances should be generated 
automatically without human intervention. 

 Welding parameters are entirely selected automatically, based on the established ANN 
bead model for the relevant material and wire diameter. 

 Automated post weld machining enables the final finished part to meet the dimensional 
specifications. 

 A suitable interface should enable a non-expert operator to use the arc welding AM 
process to additively manufacture metal components directly from the 3D digital 
model. 

The automated path design, welding parameter selection, machining code generation, 

program code generation, and final deposition and machining of the experimental component 

in this study indicates that the proposed arc-welding-based additive manufacturing system is 

capable of producing metal components from CAD models. The resulting deposition using the 

automated system produces a near-net shape, and a finished part having the required 

geometrical accuracy is obtained after minimal post-process milling. This entire process is 

performed automatically, and hence contributes to the ultimate goal of producing a practical, 

computationally efficient and highly automated system for industrial application. 
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