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1 Introduction

The study of fluid dynamics is a centuries-old discipline that still seems nowhere near clo-

sure. The “classical” relativistic fluid dynamics can be derived by requiring conservation of

the energy-momentum tensor and global symmetry currents [1]. In modern understanding,

these conservation equations should be constructed order by order in the derivative expan-

sion of the hydrodynamic variables, similar to the derivative expansion in effective field

theory. Truncating the derivative expansion at first order, second order and higher order

one obtains ideal fluid dynamics (Euler equations), viscous fluid dynamics (Navier-Stokes

equations), and higher-order dissipative hydrodynamics [2, 3]. The classical hydrodynamic

correlation functions can then be obtained by varying with respect to external sources, see

e.g. [4].

In non-relativistic fluids, it is well known that there are correlation functions of the

hydrodynamic variables which can not be reproduced by such classical hydrodynamic equa-

tions, even when the frequency and momentum are arbitrarily small [5]. The reason is that

while the classical equations describe flows generated by external sources, they neglect hy-

drodynamic excitations generated by thermal fluctuations within the fluid. These effects

may be taken into account by supplementing the classical hydrodynamic equations with

stochastic noise terms whose correlation functions are taken to be Gaussian white noise [5].

It is natural to expect that a similar stochastic modification is required for relativistic fluids

in order to correctly reproduce physical observables.

In linear non-relativistic hydrodynamics, such noise terms were introduced long ago

by Landau and Lifshitz [6]. When considering the full non-linear theory of stochastic

hydrodynamics, one finds that the interactions lead to changes in the basic parameters of

the classical theory, such as the shear viscosity coefficient [7]. More generally, correlation
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functions evaluated in stochastic hydrodynamics will differ from their classical counterparts

by fluctuation corrections involving loops of the hydrodynamic modes. Stochastic equations

for hydrodynamic variables can be readily converted to a functional integral form [8],

providing one with an effective field theory. The purpose of this note is to write down an

effective action for dissipative relativistic fluids.

We emphasize that our interest is not in an action that will give rise to the classical

hydrodynamic equations upon using a variational procedure. Rather, we are interested in

an action which can be used in a standard way in the functional integral to evaluate hydro-

dynamic correlation functions. While it is straightforward to derive such an effective action

for the linearized viscous relativistic hydrodynamics [4], the full non-linear hydrodynamics

and the derivative expansion require more work. The fields in the effective theory include

the hydrodynamic variables (fluid velocity, temperature etc), and we will refer to this effec-

tive theory as “statistical hydrodynamics”, to distinguish it from classical hydrodynamics

which ignores fluctuations. The 1PI effective action of statistical hydrodynamics should

give rise to the classical hydrodynamic equations at tree level, but will contain corrections

to classical hydrodynamics once the loops are taken into account. The loops here are not

the quantum loops (as one is not quantizing the classical hydrodynamics), but rather reflect

statistical fluctuations of the hydrodynamic variables.

We pause to comment on previous work addressing related questions. A variational

formulation of classical ideal relativistic hydrodynamics (neglecting the derivative expan-

sion, fluctuations, and dissipation) is an old subject discussed by many authors in various

forms, see e.g. [9–11]. As mentioned above, we don’t expect such classical constructions

to be helpful for statistical hydrodynamics. Refs. [12, 13] studied effective actions for rela-

tivistic fluids, taking into account the derivative expansion, however the resulting effective

action only captured non-dissipative information. Similarly, refs. [14, 15] derived gener-

ating functionals of relativistic fluids coupled to external sources in equilibrium. Again,

this allowed a systematic construction to any order in the derivative expansion, but only

captured static non-dissipative physics. For variational approaches aiming to incorporate

dissipation in classical hydrodynamics, see e.g. [16–18].

Recently, there have also been efforts to understand dissipation in relativistic statistical

hydrodynamics (with fluctuation corrections), partly motivated by the experimental study

of the quark-gluon plasma in heavy-ion collisions. Refs. [4, 19–21] looked at statistical one-

loop corrections to the shear viscosity, but lacked a systematic field-theoretic framework.

See [22–25] for other recent work on relativistic fluctuating hydrodynamics, including the

Israel-Stewart formulation. It is worth pointing out that the fluctuation corrections ren-

der the derivative expansion in purely classical relativistic hydrodynamics ill-defined [21].

Clearly, one needs a unified calculational framework that takes into account the full non-

linearity of relativistic hydrodynamics, the derivative expansion, and fluctuations of the

hydrodynamic variables. The present paper is a step in this direction.

2 Noisy hydrodynamics

2.1 Setup

Classical relativistic hydrodynamics [1] is a set of partial differential equations for the hy-

drodynamic fields uµ(x), T (x), and (for fluids with a global U(1) charge) µ(x). Collectively
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denoting these hydrodynamic fields as φ, we will write the classical hydrodynamic equa-

tions in the form Ea(φ) = 0, where Eµ = ∂νT
νµ
cl , Ed+1 = u2 +1, Ed+2 = ∂µJ

µ
cl, and d is the

number of spatial dimensions. Here Tµνcl and Jµcl are the (symmetric) energy-momentum

tensor and the U(1) global symmetry current, given in terms of φ. The fluid velocity is

normalized1 as u2 = −1, T is the temperature, and µ is the chemical potential. The con-

stitutive relations expressing Tµνcl and Jµcl in terms of φ are normally written in a given

“frame” (a particular out-of equilibrium definition of φ), to a given order in the deriva-

tives of φ. The starting point for the stochastic hydrodynamics is the modification of the

classical hydrodynamic equations by “noise” terms which are interpreted as microscopic

stresses and currents [6], so that the hydrodynamic equations take the form ∂µT
µν = 0,

and ∂µJ
µ = 0, where Tµν = Tµνcl + τµν , and Jµ = Jµcl + rµ. The microscopic contributions

τµν(φ, ξ) and rµ(φ, ξ) are functionals of both the hydrodynamic fields φ and the noise fields

collectively denoted as ξ, so that the hydrodynamic equations become stochastic equations

Ea(φ) + fa(φ, ξ) = 0 , (2.1)

where fµ = ∂ντ
νµ and fd+2 = ∂µr

µ. The form of the force fa and the dynamics of the

noise fields need to be determined by the problem at hand. In particular, they must be

such that the fluctuation-dissipation theorem is satisfied in equilibrium.

One can convert eq. (2.1) to a functional integral form. Let us denote the solution to

eq. (2.1) as φξ. Upon solving eq. (2.1), the energy-momentum tensor and the current will

become functionals of the noise, Tµν [φξ, ξ], J
µ[φξ, ξ]. For a general function O(φξ) we have

O(φξ) =

∫
Dφ δ(Ea(φ) + fa(φ, ξ)) J(φ, ξ)O(φ) ,

where the Jacobian is J = det δ(E
a+fa)
δφb

. If the dynamics of ξ is independent of φ, so that the

noise average is performed with some φ-independent action Sn[ξ], the correlation functions

can be written as

〈TµνTαβ . . . 〉 =

∫
DξDφDφ̃ e i

∫
φ̃a[Ea(φ)+fa(φ,ξ)] J(φ, ξ) e−Sn[ξ] Tµν [φ, ξ]Tαβ[φ, ξ] . . . .

(2.2)

The corresponding partition function is

Z =

∫
DξDφDφ̃ e i

∫
φ̃a[Ea(φ)+fa(φ,ξ)] J(φ, ξ) e−Sn[ξ] . (2.3)

Alternatively, one can define stochastic hydrodynamics by the functional integral represen-

tation,

Z =

∫
DξDφDφ̃ e i

∫
φ̃a[Ea(φ)+fa(φ,ξ)] e−Sξ[φ,ξ] , (2.4)

where the auxiliary fields φ̃a ensure that eq. (2.1) is satisfied, and the noise action Sξ needs

to be specified. Normally, the central limit theorem is invoked to argue that the noise

is Gaussian, hence the noise action is quadratic in ξ. In this case ξ can be integrated

1Our metric signature is [−+++], e.g., space-positive.
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out, leaving one with the effective action Seff(φ, φ̃). A proposal for the effective action in

stochastic hydrodynamics amounts to a choice of fa and Sξ.

The functional integral eq. (2.4) can in principle be used to compute correlation func-

tions of the hydrodynamic fields, and hence of Tµν and Jµ. As the order of the fields does

not matter inside the functional integral, these are unordered (or symmetrized) correlation

functions.2 The effective action given by eq. (2.4) contains extra fields, in addition to the

hydrodynamic fields φ. The extra fields can be thought of as “degrees of freedom” giv-

ing rise to dissipation. As the effective theory eq. (2.4) describes dissipative physics, the

effective action need not be real.

In what follows we will apply the formulation eq. (2.4) to the first-order hydrodynamics

in the Landau-Lifshitz “frame” [1]. The classical constitutive relations can be taken as

Tµνcl = εuµuν + p∆µν −Gµναβ∂αuβ , (2.5a)

Jµcl = nuµ − σT∆µν∂ν(µ/T ) , (2.5b)

with ε, p, and n the equilibrium energy density, pressure, and charge density, and with

the last terms describing the dissipative part of the dynamics. Here ∆µν ≡ ηµν + uµuν is

the projector to the space components of the local rest frame, and Gµναβ ≡ 2ηSµναβT +

dζSµναβL , where SµναβT ≡ 1
2(∆µα∆νβ + ∆µα∆νβ − 2

d∆µν∆αβ) and SµναβL ≡ 1
d∆µν∆αβ are

transverse and longitudinal spatial projectors. η(T, µ) is the shear viscosity, ζ(T, µ) is the

bulk viscosity, and σ(T, µ) is the charge conductivity. Working in the Landau-Lifshitz

frame, we will impose uµτ
µν = 0 and uµr

µ = 0.

2.2 Linear fluctuations in equilibrium

To illustrate the general procedure, let us look at small fluctuations in thermal equilibrium

with constant T̄ , constant µ̄ = 0, and constant ūµ = (1,0). To linear order in fluctuations

in the Landau-Lifshitz frame τ0µ = 0, r0 = 0, and the constitutive relations become

Tij = δij(p̄+ s̄ δT )− η̄
(
∂ivj + ∂jvi −

2

d
δij∂kv

k

)
− ζ̄δij∂kvk + τij ,

Ji = −σ̄∂iµ+ ri .

To linear order in fluctuations, τij and ri do not depend on the hydrodynamic fields and

can be treated as external sources. For the Fourier components it is then straightforward

to find

δT (ω,k) =
1

∂ε̄/∂T̄

kikjτ
ij

ω2 − v2
s k2 + iγsωk2

,

vi(ω,k) =

(
δij − kikj

k2

)
kmτ

jm

w̄(ω + iγηk2)
+
ki

k2

ω

w̄

kmknτ
mn

ω2 − v2
s k2 + iγsωk2

,

2 The effective theory discussed here is supposed to be valid in the hydrodynamic limit ω → 0. In

equilibrium, the difference between unordered and symmetrized functions is O(ω/T ) for ω � T . Out of

equilibrium, we assume that there is a scale ω0 such that the difference between unordered and symmetrized

functions is negligible for ω � ω0.
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µ(ω,k) =
kmr

m

χ̄(ω + iDk2)
,

where v2
s = s/(∂ε̄/∂T̄ ) is the speed of sound squared, γη ≡ η̄/w̄, γζ ≡ ζ̄/w̄, γs ≡ γζ+ 2d−2

d γη,

w̄ ≡ ε̄ + p̄ is the equilibrium enthalpy density, χ̄ ≡ (∂n̄/∂µ)µ=0 is the equilibrium charge

susceptibility, and D = σ̄/χ̄ is the charge diffusion constant. The symmetrized two-point

functions can be evaluated provided one specifies the dynamics of τ ij and ri. In our case

they are taken as Gaussian fields with [26]

〈ri(x)rj(y)〉 = 2T̄ σ̄δijδ(x− y) , (2.6a)

〈τij(x)τkl(y)〉 = 2T̄Gijklδ(x− y) , (2.6b)

where Gijkl = 2η̄ST ijkl + dζ̄SL ijkl as above. Choosing k along z gives the usual Kubo

formula in terms of the symmetrized function of Txy,

GSxy,xy(ω,k) = 2T̄ η̄ .

The above noise average can be represented with a Gaussian functional integral,

〈. . . 〉 =

∫
Dτij
i6j

Drk e
−Sξ[r,τ ] . . .

where

Sξ[r, τ ] =
1

2

∫
dt ddx

(
riσ̄
−1ri

2T̄
+
τijG

−1
ijklτkl

2T̄

)
,

and G−1
ijkl = 1

2η̄ST ijkl + 1
dζ̄
SL ijkl. The action Sξ is positive definite (except for the trivial

configuration ri = 0, τij = 0), and in the case of linear fluctuations does not depend on the

hydrodynamic fields φ. Integrating out the noise fields ri and τij in eq. (2.4) gives

Z =

∫
DφDφ̃ e−Seff [φ,φ̃] ,

where

Seff [φ, φ̃] =

∫
dt ddx

[
i ∂µφ̃ν T

µν
cl + T̄ ∂iφ̃jGijkl ∂kφ̃l + i ∂µφ̃d+2 J

µ
cl + T̄ σδij∂iφ̃d+2 ∂jφ̃d+2

]
(2.7)

is the effective action for linear viscous hydrodynamics [4]. The hydrodynamic fields are

φ = (vi, δT, µ), and the stress tensor and the current are given by the classical linear

constitutive relations, e.g. T ijcl = δij(p̄ + s̄ δT ) − Gijkl∂kvl. The equilibrium correlation

functions of Tµν and Jµ are straightforwardly evaluated using the effective action eq. (2.7).

As expected, the effective action is local, but not real. Integrating out auxiliary fields φ̃a
will give rise to an action which is real, but non-local. If the auxiliary fields are rescaled

as φ̃ → T̄ φ̃, the action can be written as Seff = (1/T̄ )
∫
. . . , signifying that T̄ determines

the strength of thermal fluctuations.
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2.3 The covariant form

Beyond the linear approximation, we use φ = (uλ, T, µ) as the hydrodynamic fields. The

quadratic effective action eq. (2.7) näıvely generalizes to

Seff [φ, φ̃] =

∫
dt ddx

[
i ∂µφ̃ν T

µν
cl + T∂µφ̃νG

µναβ ∂αφ̃β + i ∂µφ̃5 J
µ
cl + Tσ∆µν∂µφ̃5∂ν φ̃5

]
.

(2.8)

Here Tµνcl and Jµcl are given by eq. (2.5), φ̃5 ≡ φ̃d+2, and the constraint u2 = −1 is implied.

The effective action is not real, nor should it be. The action is invariant under complex

conjugation combined with φ̃µ → −φ̃µ, φ̃5 → −φ̃5.

The auxiliary fields φ̃µ and φ̃5 are derivatively coupled, suggesting a Goldstone-boson

interpretation, similar to ref. [17]. The Noether currents of the shift symmetry are

Tµν = Tµνcl − 2iTGµναβ∂αφ̃β , (2.9a)

Jµ = Jµcl − 2iTσ∆µν∂ν φ̃5 , (2.9b)

and correspond to the full energy-momentum tensor and the current.

While this development is suggestive, we have not derived it, and in fact there are

some problems, which we now enumerate:

• The relativistic version of eq. (2.6) is

〈rµ(x)rν(y)〉 = 2Tσ∆µνδ(x− y) , (2.10a)

〈τµν(x)ταβ(y)〉 = 2TGµναβδ(x− y) , (2.10b)

indicating that the noise is not independent of φ, contrary to the assumptions made

before eq. (2.2). This can be fixed by rescaling the noise fields rµ and τµν by the

“square root” of the coefficients appearing in the right-hand side of eq. (2.10). The

conservation equations ∂µ(Tµνcl +τµν) = 0 and ∂µ(Jµcl +rµ) = 0 become stochastic dif-

ferential equations with multiplicative noise. Ambiguities in defining such stochastic

differential equations must then be resolved in establishing the form of the functional

integral.

• If an effective action is to be derived from a stochastic differential equation, there has

to be the corresponding Jacobian, as indicated in eq. (2.3). In linear hydrodynamics,

the Jacobian can be dropped because it is field-independent, which is not the case in

non-linear hydrodynamics. Such a Jacobian is ignored in eq. (2.8).

We now turn to the above points.

3 The effective action

3.1 The noise

In order to arrive at the effective action, one can start from classical hydrodynamics aug-

mented with noise terms. Rather than using the correlations eq. (2.10), one has to redefine

– 6 –
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the noise so that the noise action does not depend on the hydrodynamic variables. To

do so, we introduce a noise field ξµ with 〈ξα(x)ξβ(x′)〉 = ηαβδ(x − x′), and a symmetric

noise field ξµν with 〈ξµν(x)ξαβ(x′)〉 = 1
2(ηµαηνβ + ηναηµβ)δ(x − x′). The corresponding

contributions to the energy-momentum tensor and the current are

τµν =
√

2TG
1/2
µναβ ξ

αβ , rµ =
√

2Tσ∆µν ξ
ν , (3.1)

where G
1/2
µναβ =

√
2η STµναβ +

√
dζ SLµναβ satisfies G

1/2
µναβG

1/2αβρσ = G ρσ
µν , and Gµνρσ

is defined below eq. (2.5). The construction of the effective action can now proceed as

described in section 2.1, with3

Sn[ξ] =
1

2

∫
dt ddx (ξµξ

µ + ξµνξ
µν) .

Ignoring the Jacobian in eq. (2.3) and integrating out ξµ and ξµν gives the effective action

eq. (2.8).

3.2 The discretization

Equation (2.1) as written is ambiguous because Langevin equations must generally be

written as discrete-time equations, and the continuous time limit can depend on the manner

of the discretization. This is particularly true for the case of multiplicative noise (see for

instance ref. [27]). The essential feature of hydrodynamic equations is that current and

stress conservation must be exact statements. For a discretization with time spacing ∆t

and spatial spacing ∆x, and with φ defined on sites, we believe this should be achieved by

defining Jµ and Tµν on the µ-link, so that

∂µJ
µ(x) ≡

∑
µ

Jµ(x+ µ̂∆µ/2)− Jµ(x− µ̂∆µ/2)

∆µ
, (3.2)

and similarly for ∂µT
µν .

Current conservation at a site is the vanishing of the signed sum of currents onto and

off of that site, which implements conservation exactly. This is illustrated in figure 1. The

current on a link should be defined using the average of φ at each end of the link, e.g.,4

J0(x+ t̂∆t/2) =

(
n(x) + n(x+ t̂∆t)

2

)(
u0(x) + u0(x+ t̂∆t)

2

)
− . . . .

We will assume that this is the prescription for defining the discrete equations of motion.

The subsequent steps we describe should then be performed on these spacetime-discretized

equations, with the continuum limit taken at the end (if at all). We expect this procedure

to resolve discretization ambiguities, and we implicitly assume that it has been used in the

following.

3Note that ξµ and ξµν contain negative-norm components. We implicitly assume that this is handled

through continuation of some noise components to imaginary values, so the functional weight bounds the

integrals. The projection operators ensure that wrong-norm components are never physically relevant.
4One feature of this definition is that particle number and 4-momentum density are not defined on sites,

but on the temporal links between sites. Charge conservation means that J0 summed over temporal links

at time t−∆t/2 equals J0 summed over temporal links at t+ ∆t/2.
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T 0ν
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6

6
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Figure 1. How Tµν should be discretized. Tµν is the flux of P ν from one site to the neighboring

site in the µ-direction. Stress-energy conservation at a site is the equality of the sum of all incoming

P ν contributions and the sum of all outgoing P ν contributions.

3.3 The Jacobian

We next turn to the incorporation of the Jacobian of eq. (2.3) into the effective action. The

Jacobian is J = det Jab(φ, ξ), where Jab = δ(Ea+fa)/δφb is a differential operator linear

in ξ. The Jacobian can be exponentiated by using ghost fields ψ̄a, ψa as

J =

∫
Dψ̄Dψ e−Sdet ,

where Sdet =
∫
dt ddx ψ̄aJabψb. As Jab is linear in ξ, this action can be written as

Sdet =

∫
dt ddx

(
ξµF

µ(φ, ψ̄, ψ) + ξαβF
αβ(φ, ψ̄, ψ) + ψ̄a

δEa

δφb
ψb

)
,

where Fµ(φ, ψ̄, ψ) and Fαβ(φ, ψ̄, ψ) are straightforward to evaluate, for given a choice of

the hydro variables φa. Choosing φ = (u, T, µ), we have

Fµ = −∂λψ̄d+2

[
δCλµ

δuν
ψν +

δCλµ

δT
ψd+1 +

δCλµ

δµ
ψd+2

]
,

Fαβ = −∂λψ̄µ
[
δCλµαβ

δuν
ψν +

δCλµαβ

δT
ψd+1 +

δCλµαβ

δµ
ψd+2

]
,

with Cµν ≡
√

2Tσ∆µν , Cµναβ ≡
√

2TG
1/2
µναβ . Integrating out the noise ξµ and ξµν gives

the effective Lagrangian

Leff = i ∂µφ̃ν T
µν
cl −

1

2
(Fαβ+iPαβ)(Fαβ+iPαβ)

+ i ∂µφ̃5 J
µ
cl −

1

2
(Fµ+iPµ)(Fµ+iPµ) + ψ̄a

δEa

δφb
ψb , (3.3)

where Pµ ≡
√

2Tσ∆µλ∂λφ̃5, and Pµν ≡
√

2T G1/2µνλσ∂λφ̃σ.

4 Conclusions

Our proposal for the effective action in stochastic relativistic hydrodynamics is

Seff [φ, φ̃, . . . ] =

∫
dt ddx

[
i∂µφ̃ν T

µν
cl + TGµνλσ∂µφ̃ν ∂λφ̃σ + i∂µφ̃5 J

µ
cl + Tσ∆µν∂µφ̃5 ∂ν φ̃5 + . . .

]
(4.1)
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where the classical energy-momentum tensor and the current are given by eq. (2.5). The

hydrodynamic variables are φa = (uλ, T, µ), and the φ̃’s are the corresponding auxiliary

fields. The constraint u2 = −1 is implied. The dots in eq. (4.1) denote ghost terms. The

derivation of eq. (4.1) parallels existing work in simpler hydrodynamic systems. Several

comments are in order.

• Evaluating the 1PI effective action in a given background in the theory eq. (4.1)

should give rise to classical hydrodynamic equations plus loop corrections. Among

other things, the loop corrections will renormalize the transport coefficients η, ζ, and

σ, similar to what happens in simpler systems [7, 28].

• In the simplest case of a scale-invariant uncharged fluid in thermal equilibrium, the

effective action has only three parameters: equilibrium temperature T , equilibrium

entropy density s, and equilibrium shear viscosity η. There is only one combination,

λ ≡ (T/s1/d) (η/s)−1, which is dimensionless in the natural units c = 1 (the effective

theory is classical, so there is no ~). In a large-N gauge theory, λ → 0 as N → ∞.

One expects that fluctuation corrections will be suppressed by a positive power of λ,

as happens in simpler models.

• We have only taken into account first-order gradient terms in the hydrodynamic

equations of motion eq. (2.5). In principle, one can add second-order terms to the

constitutive relations and repeat the derivation. Even without doing so, it is natural

to expect that higher-order terms will be “generated” by the hydrodynamic loop

corrections.

• We have assumed a particular convention for an off-equilibrium definition of hy-

drodynamic variables, the Landau-Lifshitz “frame”. The correlation functions of

the energy-momentum tensor and the current are independent of our choosing one

or another frame, and it is desirable to have an effective action formulation where

frame-invariance is manifest.

• We have checked that, for smooth fields, the discrete-space expression reproduces the

continuum expressions we have written up to terms with 2 extra derivatives. But

the loop expansion under this effective action will likely encounter UV divergences

for which the discretization will matter. It is not clear to us how to deal with UV

divergences in the effective theory. Also, the discretization we propose does not

manifestly preserve the symmetry of Tµν = T νµ. It is not clear to us whether this

could cause any problems.

• The ghost part of the action has unusual properties; in particular, the F 2 terms in

eq. (3.3) are quartic in the ghosts, that is, there are nonlinear ghost interactions. The

ghost part of the action could presumably be made quadratic by introducing more

auxiliary fields, similar to what is done in other interacting fermion models.

• We have neglected the coupling of the hydrodynamic degrees of freedom to external

sources. While it is straightforward to couple the action eq. (4.1) to the external
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gauge field and the metric, one would like to have an effective action which provides

us with the full set of n-point real-time correlation functions. This means that the

action needs to be coupled to two sets of external sources, corresponding to the two

branches of the Schwinger-Keldysh contour.

We plan to return to the above points in the future.
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