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Abstract

Purpose Confronting the pandemic of COVID-19 is nowadays one of the most prominent challenges of the human species. A

key factor in slowing down the virus propagation is the rapid diagnosis and isolation of infected patients. The standardmethod for

COVID-19 identification, the Reverse transcription polymerase chain reaction method, is time-consuming and in short supply

due to the pandemic. Thus, researchers have been looking for alternative screening methods, and deep learning applied to chest

X-rays of patients has been showing promising results. Despite their success, the computational cost of these methods remains

high, which imposes difficulties to their accessibility and availability. Thus, the main goal of this work is to propose an accurate

yet efficient method in terms of memory and processing time for the problem of COVID-19 screening in chest X-rays.

Methods To achieve the defined objective, we propose a new family of models based on the EfficientNet family of deep artificial

neural networks which are known for their high accuracy and low footprints. We also exploit the underlying taxonomy of the

problem with a hierarchical classifier. A dataset of 13,569 X-ray images divided into healthy, non-COVID-19 pneumonia, and

COVID-19 patients is used to train the proposed approaches and other 5 competing architectures.We also propose a cross-dataset

evaluation with a second dataset to evaluate the method generalization power.

Results The results show that the proposed approach was able to produce a high-quality model, with an overall accuracy of

93.9%, COVID-19 sensitivity of 96.8%, and positive prediction of 100%while having from 5 to 30 times fewer parameters than

the other tested architectures. Larger and more heterogeneous databases are still needed for validation before claiming that deep

learning can assist physicians in the task of detecting COVID-19 in X-ray images, since the cross-dataset evaluation shows that

even state-of-the-art models suffer from a lack of generalization power.

Conclusions We believe the reported figures represent state-of-the-art results, both in terms of efficiency and effectiveness, for

the COVIDx database, a database of 13,800 X-ray images, 183 of which are from patients affected by COVID-19. The current

proposal is a promising candidate for embedding in medical equipment or even physicians’ mobile phones.
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Introduction

The COVID-19 is an infection caused by the SARS-CoV-2

virus and may manifest itself as a flu-like illness potentially

progressing to an acute respiratory distress syndrome. The

disease severity resulted in a global public health effort to

contain person-to-person viral spread by early detection

(Davarpanah et al. 2020).

The Reverse-Transcriptase Polymerase Chain Reaction

(RT-PCR) is currently the gold standard for a definitive diag-

nosis of COVID-19. However, false negatives have been re-

ported (due to insufficient cellular content in the sample or

inadequate detection and extraction techniques) in the
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presence of positive radiological findings (Araujo-Filho et al.

2020). Therefore, effective exclusion of the COVID-19 infec-

tion requiresmultiple negative tests, possibly exacerbating test

kit shortage (American College of Radiology 2020).

As COVID-19 spreads in the world, there is growing inter-

est in the role and suitability of chest X-Rays (CXR) for

screening, diagnosis, and management of patients with

suspected or known COVID-19 infection (Huang et al.

2020; Ai et al. 2020; Ng et al. 2020). Besides, there have been

a growing number of publications describing the CXR appear-

ance in patients with COVID-19 (American College of

Radiology 2020).

The accuracy of CXR diagnosis of COVID-19 infection

strongly relies on radiological expertise due to the complex

morphological patterns of lung involvement which can

change in extent and appearance over time. The limited

number of sub-specialty trained thoracic radiologists ham-

pers reliable interpretation of complex chest examinations,

especially in developing countries, where general radiolo-

gists and occasionally clinicians interpret chest imaging

(Davarpanah et al. 2020).

Deep learning is a subset of machine learning in artificial

intelligence (AI) concerned with algorithms inspired by the

structure and function of the brain called artificial neural net-

works. Since deep learning techniques, in particular

convolutional neural networks (CNNs), have been beating

humans in various computer vision tasks (LeCun et al. 2015;

Touvron et al. 2020; Rajpurkar et al. 2017), it becomes a

natural candidate for the analysis of chest radiography images.

Deep learning has already been explored for the detection

and classification of pneumonia and other diseases on radiog-

raphy (Rajpurkar et al. 2017; Wang et al. 2017; Jaiswal et al.

2019). In this context, this work aims to investigate deep

learning models that are capable of finding patterns of X-ray

images of the chest, even if the patterns are imperceptible to

the human eye, and to advance on a fundamental issue: com-

putational cost.

Finding a model of low computational cost is important

because it allows the exploitation of input images of much

higher resolutions without making the processing time prohib-

itive. Besides, it becomes easier and cheaper to embed these

models in equipment with more restrictive settings such as

smartphones. We believe that a mobile application that inte-

grates deep learning models for the task of recognizing pat-

terns in X-rays must be easily accessible and readily available

to the medical staff. For such aim, the models must have a low

footprint and low latency, that is, the models must require little

memory and perform inference quickly to allow use on em-

bedded devices and large scale, enabling integration with

smartphones and medical equipment.

To find such cost-efficient models, in this work, the family

of EfficientNets, recently proposed in Tan and Le (2019), is

investigated. These models have shown high performance in

the classic ImageNet dataset (Deng et al. 2009) while present-

ing only a small fraction of the cost of other popular architec-

tures such as the ResNets and VGGs. We also exploit the

natural taxonomy of the problem and investigate the use of

hierarchical classification. In this case, low computational cost

is even more critical since multiple models have to be built.

The results show that it is indeed possible to build much

smaller models without compromising accuracy. Thus, em-

bedding the proposed neural network model in a mobile de-

vice to make fast inferences becomes more feasible. Despite

its low computational cost, the proposed model achieves high

accuracy (93.9%) and detects infection caused by COVID-19

on chest X-rays with a sensitivity of 96.8% and positivity

prediction of 100% (without false positives). Regarding the

hierarchical model, in addition to consuming more computa-

tional resources than the flat classification, it showed to be less

effective for minority classes, which is the case for the

COVID-19 class in this work. However, we believe that the

hierarchical method is very suitable for the application. It may

suffer less from bias in the evaluation protocols (Maguolo and

Nanni 2020), since images from different sources (datasets)

are mixed to build the superclasses according to the taxonomy

of the problem (Silla and Freitas 2011).

The development of this work may allow the future con-

struction of an application for use by the medical team,

through a camera on a regular cell phone. The source codes

as the pre-trained models are available in https://github.com/

ufopcsilab/EfficientNet-C19.

In summary, the contributions of this work are:

& An effective yet compact new family of models, based on

the state-of-the-art EfficientNet architecture, for COVID-

19 screening in chest X-ray images. In particular, we high-

light the model which we call B3-X, due to its compact

size and high accuracy, which can favor the use of the

model in systems with low computational power, such

as cell phones and medical equipment.

& A hierarchical approach study. We believe that this study

allows the evaluation of methods with less interference

regarding the problems of mixed datasets.

& A cross-dataset study. To the best of our knowledge, this

work is the first to conduct a cross-dataset analysis of the

problem.We believe a cross-dataset study is of paramount

importance to assess the generalization power of the

models.

The remainder of this work consists of six sections.

Section 2 presents a review of related works. Section 3 defines

the problem tackled in this paper. The methodology and the

dataset are described in Section 4. In Section 5, the results of a

comprehensive set of computational experiments are present-

ed. In Section 6, propositions for future research in the area are

addressed. Finally, conclusions are pointed out in Section 7.
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Related works

Several works have been proposed for the task of COVID-19

classification in X-ray images to date. In this section, we list

some seminal works that, in our opinion, have a robust and

reproducible methodology.

Addressing the COVID-19, in Hemdan et al. (2020), a

comparison among seven different well-known deep learning

neural network architectures was presented. In the experi-

ments, they use a small dataset with only 50 images in which

25 samples are from healthy patients and 25 from COVID-19-

positive patients. The models were pre-trained with the

ImageNet dataset (Deng et al. 2009), which is a generic image

dataset with over 14 million images of all sorts, and only the

classifier is trained with the radiography. In their experiments,

the VGG19 (Simonyan and Zisserman 2014) and the

DenseNET201 (Huang et al. 2019) were the best performing

architectures. Following a similar approach, in Al-Bawi et al.

(2020), an extension of the VGG architecture was proposed,

with the addition of the convolutional COVID block

(CCBlock). The model was evaluated using a mixed dataset,

composed of images from two public datasets, totaling 1887

images. Among the images, 300 of them belong to the

COVID-19 class, 864 to the pneumonia class, and 654 images

are of the normal class. The authors reported accuracy of

95.34% for the three-class classification problem.

In Wang et al. (2020), a new architecture of CNN, called

COVID-net, is created to classify CXR images into normal,

pneumonia, and COVID-19. Differently from the previous

work, they use a much larger dataset consisting of 13,800

CXR images across 13,645 patient cases from which 182

images belong to COVID-19 patients. The authors report an

accuracy of 92.4% overall and sensitivity of 80% for

COVID-19.

In Farooq and Hafeez (2020), the ResNet50 (Szegedy et al.

2017) is fine-tuned for the problem of classifying CXRs into

normal, COVID-19, bacterial-pneumonia, and viral pneumo-

nia. The authors report better results when compared with the

COVID-net, 96.23% accuracy overall, and 100% sensitivity

for COVID-19. Nevertheless, it is important to highlight that

the problem in Farooq and Hafeez (2020) has an extra class

and that its dataset is a subset of the dataset used inWang et al.

(2020). In Farooq and Hafeez (2020), the dataset consists of

68 COVID-19 radiographs from 45 COVID-19 patients, 1203

healthy patients, 931 patients with bacterial pneumonia, and

660 patients with nonCOVID-19 viral pneumonia.

In Pereira et al. (2020), the authors also performed a hier-

archical analysis for the task of detecting COVID-19 patterns

on CXR images. A dataset was built, from other public

datasets, containing 1144 X-ray images, of which only 90

were related to COVID-19 and the remaining belonging to

six other classes: five types of pneumonia and one normal

(healthy) type. Several techniques were used to extract

features from the images, including one based on deep

convolutional networks (Inception-V3 (Szegedy et al.

2016)). For classification, the authors explored classifiers such

as SVM, Random Forest, KNNs, MLPs, and Decision Trees.

A F1-Score of 0.89 for the COVID-19 class is reported. In

spite of having a strong relation to the present work, we em-

phasize that a direct comparison is not possible, due to the

different nature of the datasets employed on both works.

In (Khan et al. 2020), the authors propose a convolutional

neural network-based model to automate the detection of

COVID-19 infection from chest X-ray images, named

CoroNet. The proposed model uses the Xception CNN archi-

tecture (Chollet 2017), pre-trained on ImageNet dataset (Deng

et al. 2009). CoroNet was trained and tested on the prepared

dataset from two different publically available image data-

bases (available at https://github.com/ieee8023/covid-

ches tx ray-da tase t and ht tps : / /www.kaggle .com/

paultimothymooney/chest-xray-pneumonia). The CoroNet

model achieved an accuracy of 89.6%, with precision and

recall rate for COVID-19 cases of 93 and 98.2% for 4-class

cases (COVID vs Pneumonia bacterial vs Pneumonia viral vs

Normal) with a fourfold cross-validation scheme. Also, the

authors evaluate their model on a second dataset, though this

second dataset apparently contains the same COVID-19 im-

ages used during training.

Problem setting

The problem addressed by the proposed approach can be de-

fined as follows: given an chest X-ray, determine if it belongs

to a healthy patient, a patient with COVID-19, or a patient

with other forms of pneumonia. Figure 1 shows typical chest

X-ray samples in COVIDx dataset (Wang et al. 2020). As can

be seen, the model should not make assumptions regarding the

view in which the X-ray was taken.

Thus, given an image similar to these ones, a model must

output one of the following three possible labels:

– Normal—for healthy patients

– COVID-19—for patients with COVID-19

– Pneumonia—for patients with non-COVID-19

pneumonia

Following the rationale in Wang et al. (2020), choosing

these three possible predictions can help clinicians in deciding

who should be prioritized for PCR testing for COVID-19 case

confirmation. Moreover, it might also help in treatment selec-

tion since COVID-19 and non-COVID-19 infections require

different treatment plans.

We analyze the problem from two perspectives: (1) the

traditional flat classification, in which we disregard the rela-

tionship between the classes, and (2) the hierarchical
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classification approach, in which we assume the classes to be

predicted are naturally organized into a taxonomy.

Methodology

In this section, we present the methodology for COVID-19

detection bymeans of a chest X-ray image.We detail the main

datasets and briefly describe the COVID-Net (Wang et al.

2020), our baseline method. Also, we describe the employed

deep learning techniques as well as the learning methodology

and evaluation.

Datasets

RSNA pneumonia detection challenge dataset

The RSNA Pneumonia Detection Challenge (Radiological

Society of North America 2020) is a competition that aims

to locate lung opacities on chest radiographs. Pneumonia is

associated with opacity in the lung, and some conditions such

as pulmonary edema, bleeding, volume loss, and lung cancer

can also lead to opacity in lung radiography. Finding patterns

associated with pneumonia is a hard task. In that sense, the

Radiological Society of North America (RSNA) has promoted

the challenge, providing a rich dataset. Although The RSNA

challenge is a segmentation challenge, here we are using the

dataset for a classification problem. The dataset offers images

for two classes: Normal and Pneumonia (non-normal). We are

using a total of 16,680 images of this dataset, of which 8066

are from normal class and 8614 from the pneumonia class.

COVID-19 image data collection

The “COVID-19 Image Data Collection” (Cohen et al. 2020)

is a collection of anonymized COVID-19 images, acquired

from websites of medical and scientific associations

(Giovagnoni 2020; Società Italiana di Radiologia Medica e

Interventistica 2020) and research papers. The dataset was

created by researchers from the University of Montreal with

the help of the international research community to assure that

it will be continuously updated. Nowadays, the dataset in-

cludes more than 183 X-ray images of patients who were

affected by COVID-19 and other diseases, such as MERS,

SARS, and ARDS. The dataset is public and also includes

CT scan images. According to the authors, the dataset can

be used to assess the advancement of COVID-19 in infected

individuals and also allow the identification of patterns related

to COVID-19 helping in differentiating it from other types of

pneumonia. Besides, CXR images can be used as an initial

screening for the COVID-19 diagnostic processes. So far,

most of the images are from male individuals (approx. 60/

40% of males and females, respectively), and the age group

that concentrates most cases is from 50 to 80 years old. The

dataset has four views: the posteroanterior (PA),

anteroposterior (AP), supine (AP supine), and lateral (L).

There are images from the same subject with different views

and different acquisition sessions.

COVIDx dataset

In Wang et al. (2020), a new dataset is proposed by merging

two other public datasets: “RSNA Pneumonia Detection

Challenge dataset” and “COVID-19 Image Data Collection.”

The new dataset, called COVIDx, is designed for a classifica-

tion problem and contemplates three classes: normal, pneu-

monia, and COVID-19. Most instances of the normal and

pneumonia classes come from the “RSNA Pneumonia

Detection Challenge dataset,” and all instances of the

COVID-19 class come from the “COVID-19 Image Data

Collection.” The dataset has a total of 13,800 images from

13,645 individuals and is split into two partitions, one for

training purposes and one for testing (model evaluation).

The distribution of images between the partitions is shown

in Table 1, and the source code to reproduce the dataset is

publicly available (https://github.com/lindawangg/COVID-

)b()a(

Fig. 1 Radiograph example of

images from COVID-19 image

data collection (Cohen et al.

2020). (a) X-ray of a 54-year-old

male, infected with COVID-19

(Cohen et al. 2020). (b) X-ray of a

70-year-old female, infected with

COVID-19 (Cohen et al. 2020)
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Net). The resolution of images ranges from 156 × 157 to

4032 × 3024 pixels.

HCV-UFPR COVID-19 dataset

Brazil is one of the countries most affected by covid-19, with

over 6 million confirmed cases, to date. The Hospital da Cruz

Vermelha from Curitiba, located in the state of Paraná, south-

ern Brazil, received and documented some of those cases (See

Fig. 2). The data collection consists of 281 X-ray images of

people infected with COVID-19 and 232 of people who ob-

tained negative results that are not infected. All images have 3

eight-bit color channels (RGB) and image resolution ranges

from 2974 × 2612 to 4248 × 3480 pixels. The images are

labeled in two classes, COVID-19 and non-COVID, and there

are no annotations regarding the image angle view. The

dataset is private, but it can be made available upon request.

EfficientNet

The EfficientNet (Tan and Le 2019) is in fact a family of

models defined on the baseline network described in

Table 2. This base architecture (B0) is found with the aid of

a network architecture search (NAS) method.

Its main component (or block) is known as the Mobile

Inverted Bottleneck Conv (MBconv) Block introduced in

(Sandler et al. 2018) and depicted in Fig. 3.

The rationale behind the EfficientNet family is to start from

a high-quality yet compact baseline model and uniformly

scale each of its dimensions systematically with a fixed set

of scaling coefficients. Formally, an EfficientNet is defined

by three dimensions: (i) depth, (ii) width, and (iii) resolutions

as illustrated in Fig. 4.

Starting from the baseline model in Table 2, each dimen-

sion is scaled by the parameter according to Eq. 1

depth ¼ αϕ

widht ¼ βϕ

resolution ¼ γϕ

s:t:α⋅β2
⋅γ2≈2

α≥1;β≥1; γ≥1

ð1Þ

where α, β, and γ are constants obtained by a grid search

experiment conducted in Tan and Le (2019). As stated in Tan

and Le (2019), Eq. 1 provides a nice balance between perfor-

mance and computational cost. The coefficient controls the

available resources. Equation 1 determines the increase or

decrease of model FLOPS when depth, width, and resolution

are modified.

Architectures B1 to B7 are derived from architecture B0.

Using the same methodology (network architecture search),

more blocks were included at the top of the B0 model, making

it deeper and wider. Thus, new efficient models were found

and labeled (B1 to B7) during the search.

Notably, in Tan and Le (2019), a model from

EfficientNet family was able to beat the powerful GPipe

Network (Huang et al. 2019) on the ImageNet dataset

(Russakovsky et al. 2015) running with 8.4x fewer param-

eters and being 6.1x faster.

Table 1 COVIDx Images distribution among classes and partitions.

The dataset is proposed in (Wang et al. 2020)

Type Normal Pneumonia COVID-

19

Total

Train 7966 5421 152 13,569

Test 100 100 31 231

)b()a(

Fig. 2 Radiograph example of

images from HCV-UFPR

COVID-19Dataset. (a) X-ray of a

subject infected with COVID-19.

(b) X-ray of a subject without

COVID-19

Table 2 EfficientNet baseline network: B0 architecture

Stage Operator Resolution #channels #layers

1 Conv 3×3 224×224 32 1

2 MBConv1,k3x3 112×112 16 1

3 MBConv6,k3x3 112×112 24 2

4 MBConv6,k5x5 56×56 40 2

5 MBConv6,k3x3 28×28 80 3

6 MBConv6,k5x5 14×14 112 3

7 MBConv6,k5x5 14×14 192 4

8 MBConv6,k3x3 7×7 320 1

9 Conv1x1/Pooling/FC 7×7 1280 1
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Hierarchical classification

In classification problems, it is common to have some sort

of relationship among classes. Very often, on real problems,

the classes (the category of an instance) are organized hier-

archically, like a tree structure. According to Silla and

Freitas (2011), one can have three types of classification:

flat classification, which ignores the hierarchy of the tree;

local classification, in which there is a set of classifiers for

each level of the tree (one classifier per node or level); and

finally, global classification, in which one single classifier

is built with the ability to classify any node in the tree,

besides the leaves.

The most popular type of classification in the literature is

the flat one. However, here we propose the use of local clas-

sification, which we call hierarchical classification. Thus, the

target classes are located in the leaves of the tree, and in the

intermediate nodes, we have classifiers. In this work, we need

two classifiers, one at the root node, dedicated to discriminate

between the Normal and Pneumonia classes and another one

in the next level dedicated to discriminate between pneumonia

types. The problem addressed here can be mapped as the

topology depicted in Fig. 5 in which there are two levels of

classification. To make the class inference for a new instance,

first, the instance is presented to the first classifier (in the root

node). If it is predicted as “Normal,” the inference ends there.

If the instance is considered “Pneumonia,” it is then presented

to the second classifier, which will discern whether it is a

pneumonia caused by “COVID-19” or “Not.”

Training

Deep learning models are complex and therefore require a

large number of instances to avoid overfitting, i.e., when the

learned network performs well on the training set but

underperforms on the test set. Unfortunately, for most prob-

lems in real-world situations, data is not abundant. In fact,

there are few scenarios in which there is an abundance of

Fig. 3 MBConv Block (Sandler et al. 2018). DWConv stands for depth-

wise conv, k3 × 3/k5x5 defines the kernel size, BN is batch norm, HxW

xF means tensor shape (height, width, depth), and ×1/2/3/4 is the multi-

plier for number of repeated layers (Figure created by the authors)

Fig. 4 Efficient net compound

scaling on three parameters

(Adapted from (Tan and Le

2019))

Fig. 5 Natural topology of the classes: normal, pneumonia, and COVID-

19. It illustrates the Local-Per-Node hierarchical approach, in which there

is a classifier on each parent node (Figure created by the authors)
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training data, such as the ImageNet (Russakovsky et al. 2015),

in which there are more than 14 million images of 21,841

classes/categories. To overcome this issue, researchers rely

on two techniques: data augmentation and transfer learning.

We also detail here the proposed models, based on

EfficientNet.

Image pre-processing and data augmentation

Several pre-processing techniques may be used for image

cleaning, noise removal, outlier removal, etc. The only pre-

processing applied in this work is a simple intensity normaliza-

tion of the image pixels to the range [0; 1]. In this manner, we

rely on the filters of the convolutional network itself to perform

possible data cleaning. Also, all images are resized according to

the architecture resolution parameter (See Table 2).

Data augmentation consists of expanding the training set

with transformations of the images in the dataset (Goodfellow

et al. 2016) provided that the semantic information is not lost.

In this work, we applied three transformations to the images:

rotation, horizontal flip, and scaling, as such transformations

would not hinder, for example, a physician to interpret the

radiography. Figure 6 presents an example of the applied data

augmentation. The transformations applied to the images are

rotation (range 0 to 15 degrees clockwise or anticlockwise),

Zoom with a range of 0–20%, and horizontal flipping (50%

chance). All or none changes may be applied/combined ac-

cording to a probability.

Proposed family of models

The EfficientNet family has models of high performance and

low computational cost. Since this research aims to find effi-

cient models capable of being embedded in conventional

smartphones, the EfficietNet family is a natural choice. We

explore the EfficientNets by addingmore operator blocks atop

of it. More specifically, we add four new blocks, as detailed in

Table 3. Thus, we proposed six new architectures, varying the

base model. We add the suffix “X” to differentiate the pro-

posed architectures from original EfficientNet base

architectures.

Since the original EfficientNets were built to work on a

different classification problem, we add new fully connected

layers (FC) responsible for the last steps of the classification

process. We also use batch normalization (BN), dropout, and

swish activation functions for the following reasons.

Fig. 6 Data augmentation applied

using the Augmentor python

package. The transformations

applied to the images are rotation

(0 to 15 degrees clockwise or

anticlockwise), 20% zoom, or

horizontal flipping. All or none

changes may be applied/

combined according to a proba-

bility (Figure created by the

authors)

Table 3 Proposed family architectures, considering one EfficientNet

model as the base model. (NC =Number of Classes)

Stage Operator Resolution #channels #layers

1–9 EfficientNet BASE

(B0 to B5)

224×224 32 1

10 BN/Dropout 7×7 1280 1

11 FC/BN/Swich/Dropout 1 512 1

12 FC/BN/Swich 1 128 1

13 FC/Softmax 1 NC 1

155Res. Biomed. Eng. (2022) 38:149–162



The batch normalization constrains the output of the last

layer in a range, forcing zero mean and standard deviation

one. That acts as regularization, increasing the stability of

the neural network, and accelerating the training (Ioffe and

Szegedy 2015).

The Dropout (Srivastava et al. 2014) is perhaps the most

powerful method of regularization. The practical effect of

dropout operation is to emulate a bagged ensemble of multiple

neural networks by inhibiting a few neurons, at random, for

each mini-batch during training. The number of inhibited neu-

ronal units is defined by the dropout parameter, which ranges

between 0 and 100%.

The most popular activation function is the Rectified

Linear Unit (ReLU), which can be formally defined as

f(x) = max(0; x). However, in the added block, we have opted

for the switch activation function (Ramachandran et al. 2017)

defined as:

f xð Þ ¼ x⋅ 1þ e−xð Þ−1 ð2Þ

Differently from the ReLU the swish activation produces a

smooth curve during the minimization loss process when a

gradient descent algorithm is used. Another advantage of the

swish activation regarding the ReLU is that it does not zero

out small negative values which may still be relevant for cap-

turing patterns underlying the data (Ramachandran et al.

2017).

Transfer learning

Instead of training a model from scratch, one can take advan-

tage of using the weights from a pre-trained network and ac-

celerate or enhance the learning process. As discussed in

Oquab et al. (2014), the initial layers of a model can be seen

as feature descriptors for image representation, and the latter

ones are related to instance categories. Thus, in many appli-

cations, several layers can be reused. The task of transfer

learning then defines how and what layers of a pre-trained

model should be used. This technique has proved to be effec-

tive in several computer vision tasks, even when transferring

weights from completely different domains (Goodfellow et al.

2016; Luz et al. 2018).

The steps for transfer of learning are:

1. Copying the weights from a pre-trained model to a new

model

2. Modifying the architecture of the new model to adapt it to

the new problem, possibly including new layers

3. Initializing the new layers

4. Defining which layers will pass through a new the learn-

ing process

5. Training (updating the weights according to the loss func-

tion) with a suitable optimization algorithm

We apply transfer learning to the EfficientNets pre-trained

on the ImageNet dataset (Russakovsky et al. 2015). It is clear

that the ImageNet domain is much broader than the chest X-

rays that will be presented to the models in this work. Thus,

the imported network weights are taken just as an initial solu-

tion and are all fine-tuned (i.e., the weights from all layers) by

the optimizer over the new training phase. The rationale is that

the imported models already have a lot of knowledge about all

sorts of objects. By permitting all the weights to get fine-

tuned, we allow the model to specialize to the problem in

hands. In the training phase, the weights are updated with

the Adam Optimizer and a schedule rule decreasing the learn-

ing rate by a factor of 10 in the event of stagnation (“pa-

tience = 2”). The learning rate started with 10−4, and the num-

ber of epochs fixed at 20.

Model evaluation and metrics

The final evaluation is carried out with the COVIDx dataset,

and since the COVIDx comprises a combination of two other

public datasets, we follow the script (https://github.com/

lindawangg/COVID-Net) provided in Wang et al. (2020) to

load the training and test sets. The data is then distributed

according to Table 1.

In this work, three metrics are used to evaluate models:

accuracy (Acc), COVID-19 sensitivity (SeC), and COVID-

19 positive prediction (+PC), i.e.,

Acc ¼
TPN þ TPP þ TPC

#samples

SeC ¼
TPC

TPC þ FNC

þPC ¼
TPC

TPC þ FPC

ð3Þ

wherein TPN, TPP, TPC, FNC, and FPC stand for the normal

samples correctly classified, non-COVID-19 samples correct-

ly classified, the COVID-19 samples correctly classified, the

COVID-19 samples classified as normal or non-COVID-19,

the non-COVID-19, and normal samples classified as

COVID-19. The number of multiply-accumulate (MAC) op-

erations are used to measure the computational cost.

Experiments and discussion

In this section, we present the dataset setup, experimental

settings, and results, which can be divided into three-fold: (i)

flat vs hierarchical approaches, (ii) ablation study, and (iii)

cross-dataset evaluation. Finally, we discuss the results. The

execution environment of the computational experiments was
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conducted on an Intel(R) Core(TM) i7-5820K CPU @

3.30GHz, 64Gb Ram, two Titan X with 12Gb, and the

TensorFlow/Keras framework for Python.

Dataset setup 1

Three different training set configurations were analyzed with

the COVIDx dataset: (i) (Raw Dataset), the raw dataset with-

out any pre-processing; (ii) (Raw Dataset + Data

Augmentation), the raw dataset with a data augmentation of

1000 new images on COVID-19 samples and a limitation of

4000 images for the two remaining classes; and (iii) (Balanced

Dataset), the dataset with a 1000 images per class achieved by

data augmentation on COVID-19 samples and under-

sampling the other two classes to 1000 samples each one.

Learning with an unbalanced dataset could bias the prediction

model towards the classes with more samples, leading to in-

ferior classification models.

In this work, we evaluate two scenarios: flat and hierarchi-

cal. Regardless of the scenarios, the three training sets remain

the same (Raw, Raw + Data Augmentation, and Balanced).

However, for the hierarchical case, there is an extra process to

split the sets into two parts: the first part, the instances of

pneumonia and COVID-19 classes are joined and receive

the same label (Pneumonia). In the second part, the instances

related to the normal class are removed, leaving in the set only

instances related to Pneumonia and COVID-19. Thus, two

classifiers are built for the hierarchical case, and each one

works with a different set of data (see Section 4.3 for more

details). The ablation study also uses this dataset setup.

Dataset setup 2

In order to assess the impact of learning a model in one data

distribution and evaluate on another one, the COVIDx dataset

is only used for training/validation, and the HCV-UFPR

COVID-19 Dataset is entirely reserved for testing. This sce-

nario, the cross-dataset evaluation, is closer to reality since in a

real-world situation, the models should face samples acquired

from different sensors, individuals, and environment.

Experimental settings and results

Flat vs hierarchical

We evaluate four families of convolutional neural networks:

EfficientNet, MobileNet, VGG and, ResNet on Dataset Setup

1. Our method includes EfficientNet architectures as base

building blocks (B0-B5) with the insertion of 4 custom blocks

at the top, as detailed in the Methodology section. These new

architectures, we call B0-X, B1-X, B2-X, B4-X, and B5-X.

Their features are summarized in Table 4. Among the

presented models, we highlight the low footprint of

MobileNet and EfficientNet based models.

Regarding the base models (B0-B5 models of the

EfficientNet family), the simplest one is the EfficientNet-B0.

Thus, we assess the impact of the different training sets and

the two forms of classification (flat and hierarchical) for our

models derived from B0 (B0-X). The results are shown in

Table 5.

Since there are more pneumonia, and normal x-ray samples

than COVID-19, the neural network learning process tends to

improve the classification of the majoritarian classes because

they will have more weight in the loss calculation. This may

justify the results obtained by balancing the data. As described

in Section 4.3, the hierarchical approach is also evaluated

here. First, classes of COVID-19 and common pneumonia

are combined and presented to the first level of classification

(normal vs pneumonia). At the second level, another model

classifies instances into pneumonia caused by COVID-19 or

other causes.

It is possible to see on Table 5 that better results are

achieved with the flat approach on balanced data. This

Table 4 Base models footprint details. (Mb =Megabytes)

Model Input shape #params Memory usage(MB)

EfficientNet B0-X 224, 224, 3 5,330,564 21

EfficientNet B1-X 240, 240, 3 7,856,232 31

EfficientNet B2-X 260, 260,3 9,177,562 36

EfficientNet B3-X 300, 300, 3 12,320,528 48

EfficientNet B4-X 380, 380, 3 19,466,816 76

EfficientNet B5-X 456, 456, 3 30,562,520 118

MobileNet 224, 224, 3 4,253,864 17

MobileNet V2 224, 224, 3 3,538,984 14

RESNET 50 224, 224, 3 25,636,712 99

VGG-16 224, 224, 3 138,357,544 528

VGG-19 224, 224, 3 143,667,240 549

Table 5 EfficientNet B0-X results over the three proposed training sets.

(Acc: = Accuracy; SeC = COVID-19 Sensitivity; +PC =COVID-19 pos-

itive prediction)

Approach Training dataset Acc SeC +PC

Flat Raw dataset 92.2% 67.7% 100.0%

Raw dataset + data

augmentation

93.0% 83.8% 100.0%

Balanced dataset 90.0% 93.5% 100.0%

Hierarchical Raw dataset 54.1% 83.8% 100.0%

Raw dataset + data

augmentation

90.4% 70.9% 91.6%

Balanced dataset 85.7% 93.5% 82.8%
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scenario is used to evaluate the remaining network base archi-

tectures. The training loss for this scenario is presented in

Fig. 7.

The results of all evaluated architectures are summarized in

Table 6. We stress that we adapted all architectures by placing

the same four blocks on top. It can be seen that all the net-

works have comparable performances in terms of accuracy.

However, the more complex the model is, the worse is the

performance for the minority class, the COVID-19 class.

The cost of a model is related to the number of parameters.

The higher the number of parameters, the higher the amount

of data the model needs to adjust them. Thus, we hypothesized

that the lack of a bigger dataset may explain the difficulties

faced by the more complex models.

Table 7 presents a comparison of the proposed approach

and the one proposed by Wang et al. (2020) (COVID-net)

under the same evaluation protocol. Even though the accuracy

is comparable, the proposed approach presents an improve-

ment on positive prediction without losing sensitivity.

Besides, a significant reduction both in terms of memory

(our model is 15 times smaller) and latency is observed. It is

worth highlighting thatWang et al. (2020) apply data augmen-

tation to the dataset, but it is not clear in their manuscript how

many new images are created.

The COVID-Net (Wang et al. 2020) is a very complex

network, which demands a memory of 2.1GB (for the smaller

model) and performs over 3.5 billion MAC operations imply-

ing three main drawbacks: computation-cost, time-consump-

tion, and infrastructure costs. A 3.59 billion MAC operations

model takes much more time and computations than a 11.5

million MAC model (in the order of almost 300 times), and

the same GPU necessary to run one COVID-Net model can

run more than 15 models of the proposed approach (B3-X flat

approach) keeping a comparable (or even better) figures. The

improvements, in terms of efficiency, are even greater using

the B0-X - with a small trade-off in terms of the sensitivity

metric. The complexity can hinder the use of the model in the

future, for instance, on mobile phones or common desktop

computers (without GPU).

Ablation study

In order to customize the network architectures to best

suit the problem, in this work, we propose the addition

of new blocks on top of the networks. To assess the ef-

fectiveness of the proposal, we performed an ablation

study, training the B3-based architecture with and without

the proposed blocks under the same conditions (same set

of batch data, same hyperparameters, and same random

seed). The study showed that the inclusion of the 4 pro-

posed blocks improves the total accuracy of the model by

2.3% (from 91.77 to 93.0%). Also, the inclusion of the

blocks allows a better trade-off between the metrics SeC
and + PC. With the addition of the proposed blocks, the

+PC increased from 74.19 to 100%; however, SeC
dropped from 100 to 96.8%.

Cross-dataset evaluation

Cross-evaluation between databases is of paramount impor-

tance to ascertain the power of generalization of the model

regarding variations in images (due to different equipment

and sensors). Thus, the Dataset Setup 2 is used for that aim.

Table 8 summarizes the experimental results. The proposed

approach (B3-X) overcomes the COVID-Net (version CXR

Large) proving to be more robust than the other approaches

evaluated.

Fig. 7 Loss during training-time, EfficientNet-B0, and balanced data.

Epochs vs Loss

Table 6 Results on different network architectures as base model. Best

scenario for COVID-19: all experiments with a balanced training set and

flat classification. (Acc: = accuracy; SeC = COVID-19 sensitivity; +PC =

COVID-19 positive prediction)

Model Acc SeC +PC

EfficientNet B0-X 90.0% 93.5% 100.0%

EfficientNet B1-X 91.8% 87.1% 100.0%

EfficientNet B2-X 90.0% 77.4% 100.0%

EfficientNet B3-X 93.9% 96.8% 100.0%

EfficientNet B4-X 93.0% 90.3% 93.3%

EfficientNet B5-X 92.2% 93.5% 90.6%

MobileNet 90.4% 83.8% 100.0%

MobileNet V2 90.0% 87.1% 96.4%

RESNET 50 83.5% 70.9% 81.4%

VGG-16 77.0% 67.7% 63.64%

VGG-19 75.3% 77.4% 50.0%
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Discussion

In Fig. 8, we present two X-ray images of COVID-19-infected

individuals. Those images are from the test set and, therefore,

were not seen by the model during training. According to

studies (Ng et al. 2020), the presence of the COVID-19 infec-

tion can be observed through some opacity (white spots) on

chest radiography imaging. In the first row of Fig. 8, one can

see the corrected classified image and its respective activation

maps generated by our model. The activation map corre-

sponds to opaque points in the image, which may correspond

to the presence of the disease. For the second row images, it is

observed that the model failed to find opaque points in the

image and the activation map highlights non-opaque regions.

In Fig. 9, the confusion matrices of flat and hierarchical

approaches are presented. It is possible to observe that the

hierarchical model classifies the normal class better, though

it also shows a noticeable reduction in terms of sensitivity and

positive prediction for the COVID-19 class. One hypothesis is

that both Pneumonia and COVID-19 classes are similar (both

kinds of pneumonia) and share key features. Thus, the lack of

normal images on second classification level reduces the di-

versity of the training set, interfering with model training.

Besides, the computational cost is twice as higher than flat

classification since two models are required. However, we

believe that the hierarchical approach has a key aspect: it suf-

fers less from bias in the dataset/protocol. In Maguolo and

Nanni (2020), a critical evaluation of the test protocols and

databases for methods aiming at classifying COVID-19 in X-

ray images is presented. According to Maguolo and Nanni

(2020), the considered datasets are mostly composed of im-

ages from different distributions and different databases, and

this may favor the deep learning models to learn patterns re-

lated to the image acquisition process, instead of focusing only

on disease patterns.

In the first stage of the hierarchical classification, images

related to COVID-19 and non-COVID pneumonia are given

the same classification label. Thus images from different

datasets are combined which forces the method to disregard

patterns related to the acquisition process or sensors at the first

classification stage. An example of the hierarchical model

application can be seen in Fig. 10. It can be seen from the

confusion matrix of the first stage (Fig. 10 (left)) that the

model is able to classify most instances correctly, and for that,

we believe it has focused on the patterns that may help dis-

criminate among different types of pneumonia.

Results of the ablation study showed that the inclusion of

the additional blocks significantly improved the trade-off be-

tween SeC and + PC, increasing the total accuracy of the mod-

el, which justifies the increase in computational cost.

Regarding cross-dataset evaluation, the results showed that

even the models considered state-of-the-art suffer from varia-

tions caused by the difference in sensors, equipment and ac-

quisition protocols. These findings reveal that, in order to have

a model able to work in the field, one must train (or adjust) the

model with representative local data.

Findings and future direction

We summarize our findings as follows.

– An efficient and low computational family of models was

proposed to detect COVID-19 patients from chest X-ray

images. Even with only a few images of the COVID-19

Table 8 Comparison of the proposed approach against SOTA on Dataset 2 Setup: A cross-dataset evaluation on HCV-UFPR COVID-19 Dataset.

(Acc: = Accuracy; SeC = COVID-19 Sensitivity; +PC = COVID-19 Positive Prediction)

Method Acc SeC +PC #Params (millions) MACs (millions) Memory required

Approach Flat EfficientNet B3-X 52.63% 55.43% 69.04% 11.6 11.5 134 Mb

DenseNet201

(Huang et al. 2019)

45.22% 50.00% 20.49% 18.3 18.1 212 Mb

COVID-Net(Wang et al. 2020) 51.27% 41.64% 57.64% 127.4 3500.0 3.5Gb

Table 7 Comparison of the proposed approach against SOTA. (Acc: = Accuracy; SeC = COVID-19 Sensitivity; +PC = COVID-19 Positive Prediction)

Method Acc SeC +PC #Params (millions) MACs (millions) Memory required

Approach Flat EfficientNet B3-X 93.9% 96.8% 100.0% 11.6 11.5 134 Mb

Approach Hierarchical EfficientNet B3-X 93.5% 80.6% 100.0% 23.2 23.0 268 Mb

COVID-Net (Wang et al. 2020) 94.3% 96.8% 90.9% 126.6 3500.0 2.1Gb
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class, insightful results with a sensitivity of 90% and a

positive prediction of 100% were obtained, with the eval-

uation protocol proposed in (Wang et al. 2020).

– Regarding the hierarchical analysis, we conclude that

there are significant gains that justify the use of the pres-

ent task. We believe that it suffers less from the bias

present in the evaluation protocols, already discussed in

(Maguolo and Nanni 2020).

– The proposed network blocks, put on top of the base

models, showed to be very effective for the CRX detec-

tion problem, in particular, CRX related to COVID-19.

– The evaluation protocol proposed inWang et al. (2020) is

based on the public dataset “COVID-19 Image Data

Collection” (Cohen et al. 2020), which is being expanded

by the scientific community. With more images from the

COVID-19 class, it will be possible to improve the train-

ing. However, the test partition tends to become more

challenging. For sake of reproducibility and future com-

parisons of results, our code is available at https://github.

com/ufo pcsilab/EfficientNet-C19.

– The cross-dataset evaluation showed that even models

considered state-of-the-art to detect COVID-19 in X-ray

have their performance severely deteriorated by variation

in images caused by differences in sensors or acquisition

protocols. To overcome such an issue and increase gen-

eralization power, models should be re-trained or fine-

tuned on more representative data.

– The Internet of Medical Things (IOMT) (Joyia et al.

2017) is now a hot topic in industry. However, the

Internet can be a major limitation for medical equipment,

Fig. 8 Original images and their

activation maps according to the

proposed approach. First row

presents a patient with COVID-19

(a corrected classified image and

its respective activation maps

generated by our model), the sec-

ond, from a healthy chest x-ray

sample (the model failed to find

opaque points in the image and

the activationmap highlights non-

opaque regions)

Fig. 9 Confusion matrix of flat

(left) and hierarchical (right) ap-

proaches respectively with bal-

anced training set. Class zero is

the normal images (1) pneumonia

non-COVID-19 and (2) COVID-

19
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especially in poor countries. Our proposal is to move

towards a model that can be fully embedded in conven-

tional smartphones (edge computing), eliminating the use

of the Internet or cloud services. In that sense, the model

achieved in this work requires only 55 Mb of memory

and has a viable inference time for a conventional cell

phone processor.

Conclusion

In this paper, we exploit an efficient convolutional network

architecture for detecting any abnormality caused by COVID-

19 through chest radiography images. Experiments were con-

ducted to evaluate the neural network performance on the

COVIDx dataset, using two approaches: flat classification

and hierarchical classification. Although the datasets are still

incipient and, therefore, limited in the number of COVID-19-

related images, effective training of the deep neural networks

has been made possible with the application of transfer learn-

ing and data augmentation techniques.

Concerning evaluation, the proposed approach brought im-

provements compared with baseline work, with an accuracy

of 93.9%, COVID-19 sensitivity of 96.8%, and positivity pre-

diction of 100%with a computational efficiency more than 30

times higher.

We believe that the current proposal is a promising candi-

date for embedding in medical equipment or even physicians’

mobile phones. However, larger and more heterogeneous da-

tabases are still needed to validate the methods before

claiming that deep learning can assist physicians in the task

of detecting COVID-19 in X-ray images.
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