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Abstract. Model checking based on the causal partial order seman-
tics of Petri nets is an approach widely applied to cope with the state
space explosion problem. One of the ways to exploit such a semantics
is to consider (finite prefixes of) net unfoldings, which contain enough
information to reason about the reachable markings of the original Petri
nets. In this paper, we propose several improvements to the existing
algorithms for generating finite complete prefixes of net unfoldings. Ex-
perimental results demonstrate that one can achieve significant speedups
when transition presets of a net being unfolded have overlapping parts.
Keywords: Model checking, Petri nets, unfolding, concurrency.

1 Introduction

A distinctive characteristic of reactive concurrent systems is that their sets of
local states have descriptions which are both short and manageable, and the
complexity of their behaviour comes from highly complicated interactions with
the external environment rather than from complicated data structures and ma-
nipulations thereon. One way of coping with this complexity problem is to use
formal methods and, especially, computer aided verification tools implementing
model checking [2] — a technique in which the verification of a system is carried
out using a finite representation of its state space. The main drawback of model
checking is that it suffers from the state space explosion problem. That is, even a
relatively small system specification can (and often does) yield a very large state
space. To help in coping with this, a number of techniques have been proposed,
which can roughly be classified as aiming at an implicit compact representation
of the full state space of a reactive concurrent system, or at an explicit genera-
tion of its reduced (though sufficient for a given verification task) representation.
Techniques aimed at reduced representation of state spaces are typically based
on the independence (commutativity) of some actions, often relying on the par-
tial order view of concurrent computation. Such a view is the basis for algorithms
employing McMillan’s (finite prefixes of) Petri net unfoldings ([7, 14]), where the
entire state space of a system is represented implicitly, using an acyclic net to
represent relevant system’s actions and local states.

In view of the development of fast model checking algorithms employing un-
foldings ([10–12]), the problem of efficiently building them is becoming increas-
ingly important. Recently, [6–8] addressed this issue — considerably improving
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the original McMillan’s technique — but we feel that the problem of generating
net unfoldings deserves further investigation. Though there are negative theoret-
ical results concerning this problem ([5, 10]), in practice unfoldings can often be
built quite efficiently. [7] stated that the slowest part of their unfolding algorithm
was building possible extensions of the branching process being constructed (the
decision version of this problem is NP-complete, see [10]). To compute them, [6]
suggests to keep the concurrency relation and provides a method of maintaining
it. This approach is fast for simple systems, but soon deteriorates as the amount
of memory needed to store the concurrency relation may be quadratic in the
number of conditions in the already built part of the unfolding.

In this paper, we propose another method of computing possible extensions
and, although it is compatible with the concurrency relation approach, we de-
cided to abandon this data structure in order to be able to construct larger
prefixes. We show how to find new transition instances to be inserted in the
unfolding, not by trying the transitions one-by-one, but several at once, merging
the common parts of the work. Moreover, we provide some additional heuristics.
Experimental results demonstrate that one can achieve significant speedups if
the transitions of a safe Petri net being unfolded have overlapping parts. All
missing proofs can be found in [13].

2 Basic Notions

A net is a triple N
df

= (P, T, F ) such that P and T are disjoint sets of respectively
places and transitions, and F ⊆ (P × T )∪ (T ×P ) is a flow relation. A marking
of N is a multiset M of places, i.e. M : P → N = {0, 1, 2, . . .}. We adopt
the standard rules about drawing nets, viz. places are represented as circles,
transitions as boxes, the flow relation by arcs, and markings are shown by placing

tokens within circles. As usual, we will denote •z
df

= {y | (y, z) ∈ F} and z•
df

=

{y | (z, y) ∈ F}, for all z ∈ P ∪ T , and •Z
df

=
⋃

z∈Z
•z and Z• df

=
⋃

z∈Z z•, for all
Z ⊆ P ∪ T . We will assume that •t 6= ∅ 6= t•, for every t ∈ T .

A net system is a pair Σ
df

= (N,M0) comprising a finite net N = (P, T, F )
and an initial marking M0. A transition t ∈ T is enabled at a marking M if for
every p ∈ •t, M(p) ≥ 1. Such a transition can be executed, leading to a marking

M ′ df

= M − •t + t•. We denote this by M [t〉M ′. The set of reachable markings of
Σ is the smallest (w.r.t. set inclusion) set [M0〉 containing M0 and such that if
M ∈ [M0〉 and M [t〉M ′ (for some t ∈ T ) then M ′ ∈ [M0〉. Σ is safe if for every
reachable marking M , M(P ) ⊆ {0, 1}; and bounded if there is k ∈ N such that
M(P ) ⊆ {0, . . . , k}, for every reachable marking M . Unless stated otherwise, we
will assume that a net system Σ to be unfolded is safe, and use PreMax to
denote the maximal size of transition preset in Σ.

Branching processes Two nodes (places or transitions), y and y′, of a net
N = (P, T, F ) are in conflict, denoted by y#y′, if there are distinct transitions
t, t′ ∈ T such that •t∩ •t′ 6= ∅ and (t, y) and (t′, y′) are in the reflexive transitive
closure of the flow relation F , denoted by �. A node y is in self-conflict if y#y.
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An occurrence net is a net ON
df

= (B,E,G) where B is a set of conditions
(places) and E is a set of events (transitions). It is assumed that: ON is acyclic
(i.e. � is a partial order); for every b ∈ B, |•b| ≤ 1; for every y ∈ B ∪E, ¬(y#y)
and there are finitely many y′ such that y′ ≺ y, where ≺ denotes the irreflexive
transitive closure of G. Min(ON ) will denote the set of minimal elements of
B ∪ E with respect to �. The relation ≺ is the causality relation. Two nodes
are concurrent, denoted y co y′, if neither y#y′ nor y � y′ nor y′ � y. We also
denote by x co C, where C is a set of pairwise concurrent nodes, the fact that
a node x is concurrent to each node from C. Two events e and f are separated
if there is an event g such that e ≺ g ≺ f .

A homomorphism from an occurrence net ON to a net system Σ is a mapping
h : B ∪ E → P ∪ T such that: h(B) ⊆ P and h(E) ⊆ T ; for all e ∈ E, the
restriction of h to •e is a bijection between •e and •h(e); the restriction of h
to e• is a bijection between e• and h(e)•; the restriction of h to Min(ON ) is
a bijection between Min(ON ) and M0; and for all e, f ∈ E, if •e = •f and
h(e) = h(f) then e = f . If h(x) = y then we will often refer to x as y-labelled.

A branching process of Σ ([4]) is a quadruple π
df

= (B,E,G, h) such that
(B,E,G) is an occurrence net and h is a homomorphism from ON to Σ. A
branching process π′ = (B′, E′, G′, h′) of Σ is a prefix of a branching process
π = (B,E,G, h), denoted by π′ v π, if (B′, E′, G′) is a subnet of (B,E,G) such
that: if e ∈ E′ and (b, e) ∈ G or (e, b) ∈ G then b ∈ B′; if b ∈ B′ and (e, b) ∈ G
then e ∈ E′; and h′ is the restriction of h to B′ ∪ E′. For each Σ there exists
a unique (up to isomorphism) maximal (w.r.t. v) branching process, called the
unfolding of Σ.

A configuration of an occurrence net ON is a set of events C such that for all
e, f ∈ C, ¬(e#f) and, for every e ∈ C, f ≺ e implies f ∈ C. The configuration

[e]
df

= {f | f � e} is called the local configuration of e ∈ E. A set of conditions B ′

such that for all distinct b, b′ ∈ B′, b co b′, is called a co-set. A cut is a maximal
(w.r.t. set inclusion) co-set. Every marking reachable from Min(ON ) is a cut.

Let C be a finite configuration of a branching process π. Then Cut(C)
df

=

(Min(ON ) ∪ C•) \ •C is a cut; moreover, the multiset of places Mark(C)
df

=
h(Cut(C)) is a reachable marking of Σ. A marking M of Σ is represented in π
if the latter contains a finite configuration C such that M = Mark(C). Every
marking represented in π is reachable, and every reachable marking is repre-
sented in the unfolding of Σ.

A branching process π of Σ is complete if for every reachable marking M of
Σ: (i) M is represented in π; and (ii) for every transition t enabled by M , there
is a finite configuration C and an event e 6∈ C in π such that M = Mark(C),
h(e) = t and C ∪ {e} is a configuration. Although, in general, the unfolding
of a finite bounded net system Σ may be infinite, it is possible to truncate it
and obtain a finite complete prefix, UnfΣ . [15] proposes a technique for this,
based on choosing an appropriate set Ecut of cut-off events, beyond which the
unfolding is not generated. One can show ([7, 9]) that it suffices to designate
an event e newly added during the construction of UnfΣ as a cut-off event, if
the already built part of the prefix contains a corresponding configuration C
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input : Σ = (N, M0) — a bounded net system
output : Unf

Σ
— a finite and complete prefix of Σ’s unfolding

Unf
Σ
← the empty branching process

add instances of the places from M0 to Unf
Σ

pe ← PotExt(Unf
Σ

)
cut off ← ∅
while pe 6= ∅ do

choose e ∈ pe such that [e] ∈ min�{[f ] | f ∈ pe}
if [e] ∩ cut off = ∅
then

add e and new instances of the places from h(e)• to Unf
Σ

pe ← PotExt(Unf
Σ

)
if e is a cut-off event of Unf

Σ
then cut off ← cut off ∪ {e}

else pe ← pe \ {e}

Fig. 1. The unfolding algorithm presented in [7].

without cut-off events, such that Mark(C) = Mark([e]) and C � [e], where � is
an adequate order on the finite configurations of a branching process (see [7] for
the definition of �).

The unfolding algorithm presented in [7, 8] is parameterised by an adequate
order �, and can be formulated as in figure 1. It is assumed that the function
PotExt finds the set of possible extensions of the already constructed part of
a prefix, which can be defined in the following way (see [7]).

Definition 1. Let π be a branching process of a net system Σ. A possible ex-
tension of π is a pair (t,D), where D is a co-set in π and t is a transition of Σ,
such that h(D) = •t and π contains no t-labelled event with the preset D.

For simplicity, in figure 1 and later in this paper, we do not distinguish between
a possible extension (t,D) and a (virtual) t-labelled event e with the preset D,
provided that this does not create an ambiguity.

The efficiency of the algorithm in figure 1 heavily depends on a good adequate
order �, allowing early detection of cut-off events. It is advantageous to choose
‘dense’ (ideally, total) orders. [7, 8] propose such an order for safe net systems,
and show that if a total order is used, then the number of the non-cut-off events
in the resulting prefix will never exceed the number of reachable markings in the
original net system (though usually it is much smaller). Using a total order allows
one to simplify some parts of the unfolding algorithm in figure 1, e.g., testing
whether an event is a cut-off event can be reduced to a single look-up in a hash
table if only local corresponding configurations are allowed (using non-local ones
can be very time consuming, see [9]).
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3 Finding possible extensions

Almost all the steps of the unfolding algorithm in figure 1 can be implemented
quite efficiently. The only hard part is to calculate the set of possible extensions,
PotExt(UnfΣ), and we will make it the focus of our attention. As the decision
version of the problem is NP-complete in the size of the already built part of the
prefix ([10]), it is unlikely that we can achieve substantial improvements in the
worst case for a single call to the PotExt procedure. However, the following
approaches can still be attempted: (i) using heuristics to reduce the cost of a
single call; and (ii) merging the common parts of the work performed to insert
individual instances of transitions. An excellent example of a method aimed at
reducing the amount of work is the improvement, proposed in [7], where a total
order on configurations is used to reduce both the size of the constructed com-
plete prefix and the number of calls to PotExt. Another method is outlined
in [6, 15], where the algorithm does not have to recompute all the possible ex-
tensions in each step: it suffices to update the set of possible extensions left from
the previous call, by adding events consuming conditions from e•, where e is the
last inserted event.

Definition 2. Let π be a branching process of a net system Σ, and e be one of
its events. A possible extension (t,D) of π is a (π, e)-extension if e• ∩ D 6= ∅,
and e and (t,D) are not separated.

With this approach, the set pe in the algorithm in figure 1 can be seen as a
priority queue (with the events ordered according to the adequate order � on
their local configurations) and implemented using, e.g., a binary heap. The call
to PotExt(UnfΣ) in the body of the main loop of the algorithm is replaced by
UpdatePotExt(pe,UnfΣ , e), which finds all (π, e)-extensions and inserts them
into the queue. Note that in the important special case of binary synchronisation,
when the size of transition preset is at most 2, say •t = {h(c), p} and c ∈ e•,
the problem becomes equivalent to finding the set {c′ ∈ h−1(p) | c′ co c},
which can be efficiently computed (the problem is vacuous when |•t| = 1). This
technique leads to a further simplification since now we never compute any
possible extension more then once, and so we do not have to add the cut-off
events (and their postsets) into the the prefix being built until the very end of
the algorithm. Hence, we can altogether avoid checking whether a configuration
contains a cut-off event.

We now observe that in definition 2, e and (t,D) are not separated events,
which basically suggests that any sufficient condition for being a pair of separated
events may help in reducing the computational cost involved in calculating the
set of (π, e)-extensions. In what follows, we identify two such cases.

In the pseudo-code given in [15], the conditions c ∈ e• are inserted into the
unfolding one by one, and the algorithm tries to insert new instances of transi-
tions from h(c)• with c in their presets. Such an approach can be improved as
the algorithm is sub-optimal in the case when a transition t can consume more
then one condition from e•. Indeed, t is considered for insertion after each con-
dition from e• it can consume has been added, and this may lead to a significant
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overhead when the size of t’s preset is large. Therefore, it is better to insert
into the unfolding the whole post-set e• at once, and use the following simple
result, which essentially means that possible extensions being added consume as
many conditions from e• as possible (note that this results in an improvement
whenever there is a (π, e)-extension, which can consume more than one condition
produced by e).

Proposition 1. Let e and f be events in the unfolding of a safe net system such
that f ∈ (e•)• and h(e• ∩ •f) 6= h(e)• ∩ •h(f). Then e and f are separated.

Corollary 1. Let π be a branching process of a safe net system, e be an event
of π, and (t,D) be a (π, e)-extension. Then |e• ∩ D| = |h(e)• ∩ •t|.

Another way of reducing the number of calls to PotExt is to ignore some
of the transitions from (u•)•, which the algorithm attempts to insert after a u-
labelled event e. For in a safe net system, if the preset •t of a transition t ∈ (u•)•

has non-empty intersection with •u \u•, then t cannot be executed immediately
after u. Therefore, in the unfolding procedure, an instance f of t cannot be
inserted immediately after a u-labelled event e (though f may actually consume
conditions produced by e, as shown in figure 2; note that in such a case e and f
are separated).

Proposition 2. Let e and f be events in the unfolding of a safe net system such
that f ∈ (e•)• and (•h(e) \ h(e)•) ∩ •h(f) 6= ∅. Then e and f are separated.

Corollary 2. Let π be a branching process of a safe net system, e be an event
of π, and (t,D) be a (π, e)-extension. Then (•h(e) \ h(e)•) ∩ •t = ∅.

In view of the above corollary, the algorithm may consider only transitions
from the set (h(e)•)• \ (•h(e)\h(e)•)• rather than (h(e)•)• as the candidates for
insertion after e.

The resulting algorithm for updating the set of possible extensions after
inserting an event e into the unfolding is fairly straightforward ([13]); moreover,
it is possible not to maintain the concurrency relation, as suggested in [6], by
rather to mark conditions which are not concurrent to a constructed part of a
transition preset as unusable, and to unmark them during the backtracking.

Merging computation common to several calls The presets of candidate
transitions for inserting after an event e often have overlapping parts besides the
places from h(e)•, and the algorithm may be looking for instances of the same

p u
e p

t

f

Fig. 2. A t-labelled event f cannot be inserted immediately after a u-labelled event e
if p ∈ (•u \ u•) ∩ •t 6= ∅, even though it can consume a condition produced by e.
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places in the unfolding several times. To avoid this, one may identify the common
parts of the presets, and treat them only once. The main idea is illustrated below.

Let e be the last event inserted into the prefix being built and h(e)• = {p}.
Moreover, let t1, t2, t3 and t4 be possible candidates for inserting after e such
that •t1 = {p, p1, p2, p3, p4},

•t2 = {p, p1, p2, p3},
•t3 = {p, p1, p2, p3, p5}, and

•t4 = {p, p2, p3, p4, p5}. The condition labelled by p in each case comes from the
postset of e. To insert ti, the algorithm has to find a co-set Ci such that e co Ci

and h(Ci) = •ti \ {p} (if there are several such co-sets, then several instances
of ti should be inserted). By gluing the common parts of the presets, one can
obtain a tree shown in figure 3(a), which can then be used to reduce the task of
finding the co-sets Ci. Formally, we proceed as follows.

Definition 3. Let u be a transition of a net system Σ and U = (u•)•\(•u\u•)•.
A preset tree of u, PTu, is a directed tree satisfying the following:

– Each vertex is labelled by a set of places, so that the root is labelled by ∅, and
the sets labelling the nodes of any directed path are pairwise disjoint.

– Each transition t ∈ U has an associated vertex v, such that the union of all
the place sets along the path from the root to v is equal to •t \ u• (different
transitions may have the same associated vertex).

– Each leaf is associated to at least one transition (unless the tree consists of
one vertex only).

The weight of PTu is defined as the sum of the weights of all the nodes, where
the weight of a node is the cardinality of the set of places labelling it.

Having built a preset tree, we can use the algorithm in figure 4 to update the
set of possible extensions, aiming at avoiding redundant work (sometimes there
are gains even when PreMax = 2 and no two transitions have the same preset,
see [13]). Note that we only need one preset tree PT u per transition u of the net
system, and it can be built during the preprocessing stage.

Building preset trees Two problems which we now address are: (i) how to
evaluate the ‘quality’ of preset trees, and (ii) how to efficiently construct them.
If we use the ‘totally non-optimised’ preset tree shown in figure 3(b) instead of
that in figure 3(a) as an input to the algorithm in figure 4, it will work in a way
very similar to that of the standard algorithm trying the candidate transitions
one-by-one. However, gluing the common parts of the presets decreases both the
weight of the preset tree and the number of times the algorithm attempts to
find new conditions concurrent to the already constructed part of event presets.
This suggests that preset trees with small weight should be preferred. Such a
‘minimal weight’ criterion may be seen as rather rough, since it is hard to predict
during the preprocessing stage which preset tree will be better, as different ones
might be better for different instances of the same transition. Another problem
is that the reduction of the weight of a preset tree leads to the creation of new
vertices and splitting of the sets of places among them, effectively decreasing
the weight of a single node. This may reduce the efficiency of the heuristics,
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∅

{p2, p3}

t2

{p1}

t1
{p4}

t3
{p5}

t4
{p4, p5}

(a)
∅

t1
{p1..p4}

t2
{p1..p3}

t3
{p1..p3, p5}

t4
{p2..p5}

(b)

∅

{p1}

{p2..p10} {p11} {p12}

{p2..p10}

(c)
∅

{p1}

{p11} {p12}

{p2..p10}

{p1}

(d)

∅

{p2}

{p4} {p5}

{p1, p6}

{p3}

{p1} {p2}

(e)
∅

{p1}

{p3} {p6}

{p2}

{p3} {p4} {p5}

(f)

Fig. 3. An optimised (a) and non-optimised (b) preset trees of weight 7 and 15; (c) a
tree of weight 21, produced by the bottom-up algorithm with A1 = {p1, . . . , p10}, A2 =
{p2, . . . , p10}, A3 = {p1, p11}, and A4 = {p1, p12} (p1 was chosen on the first iteration of
the algorithm), and (d) a tree of weight 13, corresponding to the same sets; (e) a tree of
weight 8, produced by the top-down algorithm for the sets A1 = {p1, p3}, A2 = {p1, p6},
A3 = {p2, p3}, A4 = {p2, p4}, and A5 = {p2, p5} (the intersection {p3} = A1 ∩ A3 was
chosen on the first iteration), and (f) a tree of weight 7, corresponding to the same
sets.

which potentially might be used for finding co-sets in the algorithm in figure 4.
But this drawback is usually more than compensated for by the speedup gained
by merging the common parts of the work spent on finding co-sets forming the
presets of newly inserted events.

Since there may exist a whole family of minimal-weight preset trees for the
same transition, one could improve the criterion by taking into account the
remark about heuristics for resolving the non-deterministic choice, and prefer
minimal weight preset trees which also have the minimal number of nodes. Fur-
thermore, we could assign coefficients to the vertices, depending on the distance
from the root, the cardinality of the labelling sets of places, etc., and devise
more complex optimality criterion. However, this may get too complicated and
the process of building preset trees can easily become more time consuming then
the unfolding itself. And, even if a very complicated criterion is used, the time
spent on building a highly optimised preset tree can be wasted: the transition
may be dead, and the corresponding preset tree will never be used by the un-
folding algorithm. Therefore, in the actual implementation, we decided to adopt
the simple ‘minimal weight’ criterion and, in the view of the next result, it was
justifiable to implement a relatively fast greedy algorithm aiming at ‘acceptably
light’ preset trees.
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procedure UpdatePotExt(pe,Unf
Σ

, e)
tree ← preset tree for h(e) /* pre-calculated */
C ← all conditions concurrent to e
Cover(C, tree, e, ∅)

procedure Cover(C, tree, e, preset)
for all transitions t labelling the root of tree do

pe ← pe ∪ {(t, (e• ∩ h−1(•t)) ∪ preset)}
for all sons tree ′ of tree do

R← places labelling the root of tree ′

for all co-sets CO ⊆ C such that h(CO) = R do
Cover({c ∈ C | c co CO}, tree ′, e, preset ∪ CO)

Fig. 4. An algorithm for updating the set of possible extensions.

Proposition 3. Building a minimal-weight preset tree is an NP-complete prob-
lem in the size of a Petri net, even if PreMax = 3.

Proof. The decision version of this problem is to determine whether there exists
a preset tree of the weight at most w, where w is given. It is in NP as the size
of a preset tree is polynomial in the size of a Petri net, and we can guess it and
check its weight in polynomial time.

The proof of NP-hardness is by reduction from the vertex cover problem.
Given an undirected graph G = (V,E), construct a Petri net as follows: take
V ∪{p} as the set of places, and for each edge {v1, v2} ∈ V take a transition with
{p, v1, v2} as its preset. Moreover, take another transition t with the postset {p}
(note that all the other transitions belong to (t•)•). There is a bijection between
minimal weight preset trees for t and minimal size vertex covers for G. Therefore,
the problem of deciding whether there is a preset tree of at most a given size is
NP-hard. ut

In figure 5, we outlined simple bottom-up and top-bottom algorithms for
constructing ‘light’ preset trees. In each case, the input is a set of sets of places
{A1, . . . , Ak} = {•t\u• | t ∈ U}∪{∅} and, as it is obvious how to assign vertices
to the transitions, we omit this part. Tree(v, {Tr 1, . . . ,Tr l}) is a tree with the
root v and the sons Tr1, . . . ,Tr l, which are also trees, and ‘·’ stands for a set of
son trees if their identities are irrelevant.

The two algorithms do not necessarily give an optimal solution, but in most
cases the results are acceptable. We implemented both, to check which approach
performs better. The tests indicated that in most cases the resulting trees had
the same weight, but sometimes a bad choice on the first step(s) causes the
bottom-up approach to yield very poor results, as illustrated in figure 3(c,d).
The top-down algorithm appeared to be more stable, and only in rare cases (see
figure 3(e,f)) produced ‘heavier’ trees then the bottom-up one. Therefore, we
will focus our attention on its efficient implementation.

A sketch of a possible implementation of the top-down algorithm for building
preset trees is shown in figure 6. It computes all pairwise intersections of the sets
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function BuildTree(S = {A1, ..., Ak}) / ∗ bottom− up ∗ /
root ←

⋂
A∈S

A
S ← {A1 \ root , . . . , Ak \ root}
TS ← ∅
while

⋃
A∈S

A 6= ∅ do /* while there are non-empty sets */
choose p ∈

⋃
A∈S

A such that |{A ∈ S | p ∈ A}| is maximal
Tree(v, ts)← BuildTree({A \ {p} | A ∈ S ∧ p ∈ A})
TS ← TS ∪ {Tree(v ∪ {p}, ts)}
S ← {A ∈ S | p /∈ A}

return Tree(root ,TS)

function BuildTree({A1, ..., Ak}) / ∗ top− down ∗ /
TS ← {Tree(A1, ∅), . . . ,Tree(Ak, ∅)}
while |TS| > 1 do

choose Tree(A′, ·) ∈ TS and Tree(A′′, ·) in TS

such that A′ 6= A′′ and |A′ ∩A′′| is maximal
I ← A′ ∩A′′

T⊂ ← {Tree(B \ I, ts) | Tree(B, ts) ∈ TS ∧ I ⊂ B}
T= ←

⋃
{ts | Tree(I, ts) ∈ TS ∧ ts 6= ∅}

TS ← TS \ {Tree(B, ·) ∈ TS | I ⊆ B}
TS ← TS ∪ {Tree(I, T⊂ ∪ T=)}

/* |TS | = 1 */
return the remaining tree Tr ∈ TS

Fig. 5. Two algorithms for building trees.

Ai before the main loop starts, and then maintain this data structure. On each
step, the algorithm chooses a set I of maximal cardinality from Intersec, and
updates the variables TS and Intersec in the following way: (i) it finds all the
supersets of I in TS , and removes them; (ii) it removes from Intersec all the
intersections corresponding to these sets; (iii) the intersections of I with the sets
remaining in TS are added into Intersec; and (iv) I is inserted into TS .

Proposition 4. The worst case time complexity of the top-down algorithm is
O(PreMax·k2· log k). It is also possible to implement it so that the average case
complexity is given by O(PreMax·k2) (see [13] for implementation details).

It is essential for the correctness of the algorithm that Intersec is a multiset,
and we have to handle duplicates in our data structure. It is better to implement
this by maintaining a counter for each set inserted into Intersec, rather then by
keeping several copies of the same set, since the multiplicity of simple sets (e.g.,
singletons or the empty set) can by very high. Moreover, if multiplicities are
calculated, we often can reduce the weights of produced trees. The idea is to
choose in figure 6 among the sets with maximal cardinality those which have
the maximal number of supersets in TS (note that this would improve the tree
in figure 3(e), forcing {p2} to be chosen on the first iteration). Such sets have
the highest multiplicity among the sets with the maximal cardinality. Indeed,
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function BuildTree({A1, ..., Ak})
TS ← {Tree(A1, ∅), . . . ,Tree(Ak, ∅)}
/* Intersec is a multiset of sets */
Intersec ← {A′ ∩A′′ | A′ 6= A′′ ∧ Tree(A′, ·) ∈ TS ∧ Tree(A′′, ·) ∈ TS}
while |TS| > 1 do

choose I ∈ Intersec such that |I| is maximal
T⊂ ← {Tree(B \ I, ts) | Tree(B, ts) ∈ TS ∧ I ⊂ B}
T= ←

⋃
{ts | Tree(I, ts) ∈ TS ∧ ts 6= ∅}

for all Tree(A, ts) ∈ TS such that I ⊆ A do
TS ← TS \ {Tree(A, ts)}
for all Tree(B, ·) ∈ TS do

Intersec ← Intersec \ {A ∩B}
for all Tree(A, ·) ∈ TS do

Intersec ← Intersec ∪ {I ∩A}
TS ← TS ∪ {Tree(I, T⊂ ∪ T=)}

/* |TS | = 1 */
return the remaining tree Tr ∈ TS

Fig. 6. A top-down algorithm for building preset trees.

each time this choice is made by the algorithm, the values of TS and Intersec are
‘synchronised’ in the sense that Intersec contains all pairwise intersections of the
sets marking the roots of the trees from TS , with the proper multiplicities. Now,
let I ∈ Intersec be a set with the maximal cardinality, which has n supersets
in TS (note that n ≥ 2). The intersection of two sets can be equal to I only
if they both are supersets of I. Moreover, since there is no set in Intersec with
cardinality greater then |I|, the intersections of any two distinct supersets of
I from TS is exactly I. Hence the multiplicity of I is C2

n = n(n − 1)/2. This
function is strictly monotonic for all positive n, and so there is a monotonic
one-to-one correspondence between the multiplicities of sets with the maximal
cardinality from Intersec and the numbers of their supersets in TS . Thus, among
the sets of maximal cardinality, those having the maximal multiplicity have
the maximal number of supersets in TS . One can implement this improvement
without affecting the asymptotic running time given by proposition 4 ([13]).

4 Experimental results

The results of our experiments are summarised in tables 1 and 2, where we
use time to indicate that the test had not stopped after 15 hours, and mem
to indicate that the test terminated because of memory overflow. They were
measured on a PC with PentiumTM III/500MHz processor and 128M RAM.
For comparison, the ERVunfold 4.5.1 tool, available from the Internet, was
used. The methods implemented in it are described in [6, 7]; in particular, it
maintains the concurrency relation.

The meaning of the columns in the tables is as follows (from left to right):
the name of the problem; the number of places and transitions, and the aver-
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age/maximal size of transition presets in the original net system; the number of
conditions, events and cut-off events in the complete prefix; the time spent by
the ERVunfold tool (in seconds); the time spent by our algorithm on building
the preset trees and unfolding the net; the ratio Wrat = Wopt/W , where Wopt is
the sum of the weights of the constructed preset trees, and W is the sum of the
weights of the ‘totally non-optimised’ preset trees as in figure 3(b). This ratio
may be used as a rough approximation of the effect of employing preset trees:
Wrat = 1 means that there is no optimisation. Note that when transition presets
are large enough, employing preset trees gives certain gains, even if this ratio is
close to 1 (see, e.g., the Dme(n) series).

We attempted (table 1) the popular set of benchmark examples, collected
by J.C. Corbett ([3]), K. McMillan, S. Melzer, S. Römer (this set was also used
in [6, 9, 10, 12, 16]), and available from K. Heljanko’s homepage.

The transitions in these examples usually have small sizes of presets (in fact,
they do not exceed 2 for most of the examples in table 1; the only example
in this set with a big maximal preset is Byz(4,1), but it in fact has only one
transition with the preset of size 30, and one transition with the the preset of
size 13; the sizes of the other transition presets in this net do not exceed 5).
Thus, the advantage of using preset trees is not substantial, and ERVunfold is
usually faster as it maintains the concurrency relation. But when the size of this
relation becomes greater then the amount of the available memory, ERVunfold
slows down because of page swapping (e.g., in Ftp(1), Gasnq(5), and Key(4)
examples). As for our algorithm, it is usually slower for these examples, but its
running time is acceptable. Moreover, sometimes it scales better (e.g., for the
Dme(n), Elev(n) and Mmgt(n) series).

In order to test the algorithms on nets with larger presets, we have built a set
of examples Rnd(m,n) in the following way. First, we created m loops consisting
of n places and n transitions each; the first place of each loop was marked with
one token. Then 500 additional transitions were added to this skeleton, so that
each of them takes a token from a randomly chosen place in each loop and puts
it back on another randomly chosen place in the same loop (thus, the net has
m·n transitions with presets of size 1 and 500 transitions with presets of size
m). It is easy to see that the nets built in this way are safe. The experimental
results are shown in table 2.

To test a practical example with large transition presets, we looked at a
data intensive application (where processes being modelled compute functions
depending on many variables), namely the priority arbiter circuit described in [1].
We generated two series of examples: Spa(n) for n processes and linear priorities,
and Spa(m,n) for m groups and n processes in each group. The results are
summarised in table 2. Our algorithm scales better and is able to produce much
larger unfoldings. We expect that other areas, where Petri nets with large presets
are needed, will be identified (such nets may result from net transformations,
e.g. adding complementary places or converting bounded nets into safe ones, see
[8]). But even for nets with small transition presets our algorithm is quite quick,
and may be used if the size of the finite prefix is expected to be large (note
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that it was slower than ERVunfold for some of the examples because we did
not maintain the concurrency relation, trading speed for a possibility of building
large prefixes — in principle, maintaining concurrency relation is compatible
with all the described heuristics).

Future work We plan to develop an effective parallel algorithm for constructing
large unfoldings. Another promising direction is to consider non-local correspon-
dent configurations proposed in [9].
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Problem Net Unfolding Time, [s]
|S| |T | a/m |•t| |B| |E| |Ecut| ERV p-trees Unf Wrat

Bds(1) 53 59 1.88/2 12310 6330 3701 1.30 <0.01 3.87 0.53
Byz(1,4) 504 409 3.33/30 42276 14724 752 126 0.14 231 0.71
Ftp(1) 176 529 1.98/2 178085 89046 35197 time 0.16 2625 0.52
Q(1) 163 194 1.89/2 16123 8417 1188 8.69 0.03 39.43 0.81

Dme(7) 470 343 3.24/5 9542 2737 49 6.37 0.19 7.28 0.93
Dme(8) 537 392 3.24/5 13465 3896 64 14.12 0.09 16.08 0.92
Dme(9) 604 441 3.24/5 18316 5337 81 27.78 0.11 31.82 0.92
Dme(10) 671 490 3.24/5 24191 7090 100 51.67 0.13 58.14 0.92
Dme(11) 738 539 3.24/5 31186 9185 121 89.18 0.16 98.96 0.92

Dpd(4) 36 36 1.83/2 594 296 81 0.01 <0.01 0.02 0.71
Dpd(5) 45 45 1.82/2 1582 790 211 0.04 <0.01 0.16 0.71
Dpd(6) 54 54 1.81/2 3786 1892 499 0.22 <0.01 0.83 0.71
Dpd(7) 63 63 1.81/2 8630 4314 1129 1.16 <0.01 5.49 0.71

Dpfm(5) 27 41 1.98/2 67 31 20 0.00 0.01 <0.01 1.00
Dpfm(8) 87 321 2/2 426 209 162 0.01 0.08 0.01 1.00
Dpfm(11) 1047 5633 2/2 2433 1211 1012 0.05 89.35 0.74 1.00

Dph(5) 48 67 1.97/2 2712 1351 547 0.10 <0.01 0.36 1.00
Dph(6) 57 92 1.98/2 14590 7289 3407 2.16 <0.01 9.74 1.00
Dph(7) 66 121 1.98/2 74558 37272 19207 57.43 0.01 263 1.00

Elev(2) 146 299 1.95/2 1562 827 331 0.02 0.13 0.14 0.60
Elev(3) 327 783 1.97/2 7398 3895 1629 0.61 1.59 2.73 0.60
Elev(4) 736 1939 1.99/2 32354 16935 7337 16.15 25.57 68.43 0.61

Furn(1) 27 37 1.65/2 535 326 189 0.01 <0.01 0.02 0.50
Furn(2) 40 65 1.71/2 4573 2767 1750 0.19 <0.01 0.54 0.44
Furn(3) 53 99 1.75/2 30820 18563 12207 8.18 <0.01 29.10 0.41

Gasnq(3) 143 223 1.97/2 2409 1205 401 0.09 0.03 0.36 0.96
Gasnq(4) 258 465 1.98/2 15928 7965 2876 4.54 0.10 18.45 0.97
Gasnq(5) 428 841 1.99/2 100527 50265 18751 785 0.32 817 0.98

Gasq(2) 78 97 1.95/2 346 173 54 <0.01 <0.01 0.02 0.93
Gasq(3) 284 475 1.99/2 2593 1297 490 0.11 0.12 0.40 0.97
Gasq(4) 1428 2705 2/2 19864 9933 4060 7.93 7.91 29.70 0.99

Key(2) 94 92 1.97/2 1310 653 199 0.06 0.01 0.15 0.93
Key(3) 129 133 1.98/2 13941 6968 2911 2.51 0.03 10.48 0.94
Key(4) 164 174 1.98/2 135914 67954 32049 6247 0.06 864 0.94

Mmgt(2) 86 114 1.95/2 1280 645 260 0.03 0.03 0.08 0.64
Mmgt(3) 122 172 1.95/2 11575 5841 2529 1.75 0.07 6.09 0.64
Mmgt(4) 158 232 1.95/2 92940 46902 20957 188 0.14 504 0.64

Rw(6) 33 85 1.99/2 806 397 327 0.01 0.01 0.01 1.00
Rw(9) 48 181 1.99/2 9272 4627 4106 0.21 0.03 0.34 1.00
Rw(12) 63 313 2/2 98378 49177 45069 14.46 0.10 15.30 1.00

Sync(2) 72 88 1.89/3 3884 2091 474 0.29 <0.01 1.38 0.91
Sync(3) 106 270 2.21/4 28138 15401 5210 14.15 0.06 74.84 0.77

Table 1. Experimental results: nets with small transition presets.
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Problem Net Unfolding Time, [s]
|S| |T | a/m |•t| |B| |E| |Ecut| ERV p-trees Unf Wrat

Rnd(5,5) 25 525 4.81/5 55698 14029 11689 11.45 7.36 3.66 0.39
Rnd(5,6) 30 530 4.77/5 84451 21774 17269 31.43 8.68 12.21 0.44
Rnd(5,7) 35 535 4.74/5 144700 36019 28922 82.92 8.90 30.69 0.50
Rnd(5,8) 40 540 4.70/5 235600 56691 46559 196 8.79 62.96 0.54
Rnd(5,9) 45 545 4.67/5 304656 72895 59840 324 7.43 105 0.58
Rnd(5,10) 50 550 4.64/5 419946 98477 82279 554 9.07 160 0.60
Rnd(5,11) 55 555 4.60/5 573697 132344 112310 994 6.20 246 0.63
Rnd(5,12) 60 560 4.57/5 627303 145378 122465 1187 5.72 322 0.65
Rnd(5,13) 65 565 4.54/5 718762 166093 140147 1560 5.27 420 0.67
Rnd(5,14) 70 570 4.51/5 802907 185094 156417 1952 5.58 507 0.69
Rnd(5,15) 75 575 4.48/5 842181 195228 163722 6685 6.63 616 0.70
Rnd(5,16) 80 580 4.45/5 886158 206265 171957 time 7.10 717 0.71
Rnd(5,17) 85 585 4.42/5 987605 229284 191576 — 3.78 863 0.72
Rnd(5,18) 90 590 4.39/5 1025166 239069 198524 — 5.62 998 0.73

Rnd(10,2) 20 520 9.65/10 34884 7136 6125 12.46 7.34 1.14 0.25
Rnd(10,3) 30 530 9.49/10 1415681 153628 144548 1638 3.90 82 0.49
Rnd(10,4) 40 540 9.33/10 2344821 252320 237000 mem 3.51 207 0.59
Rnd(10,5) 50 550 9.18/10 2485903 271083 250600 — 7.90 331 0.64
Rnd(10,6) 60 560 9.04/10 2535070 280560 255010 — 11.32 485 0.67
Rnd(10,7) 70 570 8.89/10 2537646 285323 254767 — 11.91 663 0.70
Rnd(10,8) 80 580 8.76/10 2534970 289550 254000 — 14.84 872 0.72

Rnd(15,2) 30 530 14.21/15 1836868 135307 128358 mem 32.28 70.24 0.37
Rnd(15,3) 45 545 13.84/15 3750719 271074 255560 — 14.69 259 0.57
Rnd(15,4) 60 560 13.50/15 3787575 280560 257515 — 7.54 456 0.67
Rnd(15,5) 75 575 13.17/15 3795090 288075 257515 — 6.38 718 0.73

Rnd(20,2) 40 540 18.59/20 4744587 256197 245750 mem 46.71 176 0.43
Rnd(20,3) 60 560 17.96/20 5040080 280560 260020 — 16.36 427 0.61
Rnd(20,4) 80 580 17.38/20 5050100 290580 260020 — 9.03 771 0.71

Spa(4) 98 81 2.77/5 1048 421 96 0.04 0.01 0.07 0.72
Spa(5) 121 113 3.34/6 3594 1362 457 0.26 0.03 0.53 0.63
Spa(6) 144 161 4.20/7 13334 4860 2145 3.79 0.08 5.51 0.56
Spa(7) 167 241 5.38/8 52516 18712 9937 64.22 0.28 75.54 0.49
Spa(8) 190 385 6.82/9 216772 76181 45774 time 1.26 943 0.43
Spa(9) 213 657 8.35/10 920270 320582 209449 — 6.66 12571 0.38

Spa(2,1) 52 37 2.16/4 111 52 4 <0.01 <0.01 <0.01 0.87
Spa(2,2) 98 81 2.77/5 1206 476 110 0.04 0.01 0.10 0.72
Spa(2,3) 144 161 4.20/7 15690 5682 2512 5.53 0.08 8.28 0.56
Spa(2,4) 190 385 6.82/9 253219 88944 52826 time 1.29 1326 0.43

Spa(3,1) 75 57 2.40/4 324 141 19 0.01 <0.01 0.02 0.79
Spa(3,2) 144 161 4.20/7 15690 5682 2512 5.49 0.08 9.09 0.56
Spa(3,3) 213 657 8.35/10 1142214 398850 256600 time 6.67 20594 0.38

Spa(4,1) 98 81 2.77/5 1048 421 96 0.04 0.01 0.09 0.72
Spa(4,2) 190 385 6.82/9 253219 88944 52826 time 1.27 1326 0.43

Table 2. Experimental results: nets with larger transition presets.


