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ABSTRACT Fruit and vegetable harvesting robots have been widely studied and developed in recent

years. However, despite extensive research commercial tomato harvesting robots still remain a challenge.

In this paper, we propose an efficient tomato harvesting robot that combines the principle of 3D perception,

Manipulation, and an End-effector. For this robot, tomatoes are detected based on deep learning, after

which 3D coordinates of the target crop are extracted and motion control of the manipulator based on 3D

coordination. In addition, a suction pad featuring the kirigami pattern, which is a part of the suction gripper,

was developed to grip individual tomatoes in clusters. A scissor-shaped cutting module with an assist unit,

which is used to overcome structural limitations and implement effective cutting, was also desinged and

tested. The proposed tomato harvesting robot was validated and evaluated on a laboratory testbed basd on

the performance of each component. Therefore, in this study, we propose and verify a new robot design for

the effective harvesting of tomatoes.

INDEX TERMS Harvesting robot, end-effector, 3D perception, tractional cutting unit.

I. INTRODUCTION

Smart farms offer an advantage in terms of being able to

provide stable supplies of produce throughout the year, and

because they can manage crops more efficiently, research

on smart farms is ongoing worldwide. Some of the crops

cultivated in smart farms, such as tomatoes, are manually

harvest; however, the available labor is insufficient because

of the declining population of agriculture workers. Therefore,

a number of researchers have begun investigating methods

to harvest fresh fruit using agricultural robots in a green-

house [1], [2]. To reduce the labor required, many attempts

have been made to apply harvesting robots to the field, but it

was reported in [3] that there were was not commercialized.

In agriculture, crops and fruits are grown in an unknown

and unstructured environment. Because the physical proper-

ties of a crop, such as surface strength, weight, and size, differ

depending on the type of crop and its shape, and damage to the

fruit tree or crop plant can be reduced only with consideration

of the characteristics of the crop. Because of the irregular
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characteristics of crops, most harvesting robots have been

developed for specific crops. Therefore, several researchers

have begun investigating methods to harvest fresh fruit, such

as tomatoes, using agricultural robots in greenhouses. How-

ever, performing fast, accurate and intact harvesting of fruit

grown in greenhouses is still a problem for robots [4].

For robots to be able to perform effective harvesting they

should have the ability to detect and locate target crops, via

deep learning-based fruit recognition and 3D perception of

the access to target crops. When the 3D position of the target

crop is acquired, the coordinates are then used for the motion

control of the manipulator.

However, for tomatoes in particular, because the plants

grow in clusters, the detection of target crops is more diffi-

cult. Furthermore, tomatoes possess weak surface strength

and slippery surfaces, making it considerably difficult to

grasp commercial-grade fruits. Careful gripping of the fruit

is critical, because the value of a tomato decreases when

a small sharp object blemishes its appearance. In addition,

clusters of tomatoes usually grow in unpredictable direc-

tions, making it very likely for the fruit to be damaged by

the end-effector during the harvesting process. Therefore,
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developing an end-effector that considers the growth envi-

ronment and physical properties of tomatoes is essential to

preventing crop damage during harvesting. Because there

should be no damage to the target crop and surrounding crops,

it is necessary for a robot to be able to accurately estimate the

3D coordinates of the fruit and access to the target crops.

In this paper, we propose a harvesting robot that combines

the elements of each if these challenges for the effective

harvesting of tomatoes. In this robot, 3D perception based

on deep learning detects the tomato fruit and approaches the

fruit throughmotion control of the manipulator.With the end-

effector, the harvesting is completed using a soft material

gripper module and a scissor type cutting module.

II. RELATED WORK

Fruit harvesting offers important opportunities in the field

of agricultural robotics and has received significant attention

from researchers in recent decades. Several robots have been

developed for harvesting fruits and vegetables such as apples,

sweet peppers, cucumbers, kiwi fruit, strawberries, and toma-

toes. Research related to harvesting robots can be classified

into fruit perception [5]–[12], manipulation [13]–[15], end-

effectors [7], [16]–[18].

A. FRUIT PERCEPTION

Fruit perception is defined as image processing and

sensor-based determination of status and location of the

status and location of a fruit tree. Because the presence

of many undesirable factors, such as non-uniform lighting,

unstructured fields, occlusion, and other unpredictable fac-

tors, in actual environments, it is considerably difficult to

determine the exact state and location of a fruit tree [5]. Nev-

ertheless, research efforts continue to attempt to solve these

problems. For example, a machine vision system based on

color thresholding methods- [6], [7] employed to distinguish

between ripe strawberries and other strawberries and plants.

As reported in [8], for strawberry detection, image processing

based on color threshold values is a method that is often

applied in research. Also color, depth, shape information is

used to detect spherical or cylindrical properties of fruit.

Fluctuating illumination and weather conditions, compli-

cated environments, and dense fruits make it difficult to apply

robotics to agriculture. With the development of machine

learning, many studies focusing of the application of deep

learning to agriculture have been conducted. Deep learning

has been used for leaf classification [9], yield estimation via

machine learning [10], and fruit detection in orchards using

Faster R-CNN [12]. However, the speeds of these methods

are notably low, thus making these methods unsuitable for

real-time detection with high image resolution in actual har-

vesting scenarios. On the other hand, the You Only Look

Once (YOLO) [11]method enables high-speed detectionwith

high accuracy; thus, it is widely used for real-time detection.

It is used for leaf classification [9], yield estimation using

machine learning [10], fruit detection in orchards using Faster

R-CNN [12]. However the speed of these method is so slow

that it is not proper to real-time detection with high image

resolution in harvesting condition. The You Only Look Once

(YOLO) [11] method not only provides high accuracy detec-

tion but also has fast speed. It is widely used for real-time

detection.

B. MANIPULATION

Because of unknown and unstructured environments, such as

the presence of clusters of fruits and canopies, manipulation

is considered one of the major challenges in the development

of harvesting robots [13]. Harvesting from clusters is difficult

because surrounding fruits, leaves, stems, and other obstacles

are difficult to isolate from the target during detection and

manipulation.

For harvesting fruits or vegetables without damage to the

surrounding environment, a number of studies focus on the

path planning and motion planning of manipulators. Based

on the detected fruit, the end-effector of the robotic arm must

move to a position where it can harvest fruit, while avoiding

obstacles. However this problem is further complicated by the

necessity of controlling both the position and orientation of

the end-effector.

Manipulator motion planning is performed using visual

servoing to maintain a predetermined position while moving

to the image center coordinates of the detected fruit [14].

To avoid and harvest obstacles in the work environment,

the manipulator path is planned by modeling of the sur-

rounding obstacles. Different motion plans are established

according to the pose of the fruit and the end-effector [15].

C. END-EFFECTOR

End-effectors for harvesting have been developed accord-

ing to the different methods used to harvest existing crops.

In general, a blade is used to harvest the fruit. It was devel-

oped mainly for the purpose of separating fruits from stems,

specifically as a scissors-type end-effector [7], [16]. In [17],

the fruit was separated from the stem through the rotation

of the end effector’s infinite rotation joint, such that a blade

is not required. Harvesting methods that use a blade neces-

sitate accuracy in estimating the stem whereas harvesting

mechanisms using rotation do not consider the stem direction

and are robust against estimation errors. For paprika, another

harvesting method was developed, wherein the stem and fruit

are separated using a high-temperature arc generated by a

connection with an electrode wire [18]. Compared to cutting

with scissors, this approach has an advantage in terms of

delaying or reducing infections such as viral diseases.

III. HARVESTING ROBOT SYSTEM

The harvesting robot system proposed in this paper was

designed and developed based on the following concepts: per-

ception, manipulation, and end-effector. The harvesting robot

system is shown in Fig. 1. Fruit detection, motion control,

cutting modules and grasping modules for efficient tomato

harvesting robots are described in detail in the subsequent

subsections. The flow-chart for the overall operation of the
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FIGURE 1. Harvesting robot system setup comprising UR3 arm, Intel
Realsense D435 RGB-D camera, and an end-effector.

harvesting robot, show in Fig. 2, provides an overview of

the sub-steps, including motion control, of the harvesting

process.

A. HARDWARE SETUP

The harvesting robot system consists of a 6-DOF manip-

ulator(UR3), a custom end-effector and embedded board

(Jetson TX2), and RGB-D camera(Intel Realsense D435).

The RGB-D camera is attached to the end-effector, and is

used to transmit the pose data of the detected tomato to

the embedded board via USB communication. The Embed-

ded software environment of the harvesting robot system

consists of an Dual-Core NVIDIA Densor 2 64-Bit CPU

and Quad-Core ARMrCortexr-A57 MPCore, a 8G 128 bit

LPDDR4Memory 1866 MHx RAM, 256-core NVIDIA Pas-

cal GPU architecturewith 245NVIDIACUDAcores, Jetpack

SDK 4.2, Ubuntu 18.04 LTS 64-bit, and CUDA vesrion 10.2.

B. SOFTWARE SETUP

The software system is defined based on the Robot Operating

System (ROS) framework. The system comprises customized

subsystems shaped as a node, as shown in Fig. 3. Various open

software libraries were tested for each function implementa-

tion and linkage, and motion control was enabled based on

a selection of appropriate package that were linked with the

robot’s controller.

Software is written in Python and C++ mostly, running

on ROS melodic on Ubuntu 18.04. Most programs, such as

detection and planning is executed on the embedded board

mounted on the system. The complicated function is running

on the board’s GPU andCUDA10.2 is installed to accelerated

it. The system has customized subsystems shaped as node

shown as Fig 3.

Various open software libraries tested for each function

implementation and linkage, and motion control is enabled

by selecting appropriate packages and linking them with the

robot’s controller. The motion control software ROS Moveit!

packagewas used tomake a appropriate order tomovemanip-

ulator and solve kinematics.

C. TOMATO DETECTION

Fruit detection is a central function of the proposed

tomato-harvesting system. To detect a particular fruit in the

real world, robust data regarding the fruit are required. From

the viewpoint of a vision camera, fluctuating illumination

and weather conditions of the surroundings make it difficult

to detect the fruit [14], because the same color can appear

as differently colored pixels depending on the environment.

To solve this problem and obtain robust results, it is necessary

to use a deep-learning model.

1) YOLOV3 MODEL

YOLO is not only suitable for real-time detection with any

other CNN model but also features high accuracy [19].

In comparison to R-CNN, YOLO describes the detection

work as a single regression problem. YOLOV3 [20] was

developed from YOLO [11] and YOLOV2 [21]. Compared

with the network used in YOLO and YOLOV2, the network

used in YOLOV3 is Darknet-53 composed of 53 convolu-

tional layers. Its run time is shorter, and its accuracy is high.

The YOLO detection model is presented in Fig. 4. The

network divides the input image as a training set into S × S

grids. If the center of an target ground truth lies in a grid,

FIGURE 2. The flowchart of harvesting.
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FIGURE 3. System architecture illustrating software nodes connected by
ROS: darknet_ros node detects the tomato using the YOLOV3 deep
learning model; Jsk_pcl node constructs centroid_pose_array with the
detected image and point cloud data; harvesting construction is operated
by path planner, robot arm controller, and end-effector control nodes.

FIGURE 4. YOLO object detector pipeline.

the grid cell is responsible for detecting the target. Each grid

cell predictsB bounding boxes and confidence scores, as well

as C class conditional probabilities. Confidence is defined as

follows:

confidence = pr ( Object ) × IoU truth
pred , pr ( Object ) ∈ {0, 1}

If the target is in the grid, pr (Object) = 1; otherwise, it is 0.

IoU truth
pred represents the juncture between the predicted box

and the ground truth. Confidence denotes whether the objects

are in the grid and the accuracy of the predicted bounding box

if it contains objects [11].

2) DATASET

In this study, the image data were acquired from a tomato

farm located in Gimje-si, Jeollabuk-do, Republic of Korea,

using an RGB-D camera with a resolution of 1920 × 1080.

The dataset was acquired from a facility horticulture farm in

June 2019. From the tomato farm, 770 images were collected

among them 70 images were randomly selected for the test

dataset. The tomatoes were labeled with bounding boxes in

advance using marking boundary software Yolo_mark. After

training the model 4000 times in portion to the number of

classes, we obtained weights for which the loss was close to

zero.

3) YOLOV3 RESULTS

Tomatoes that were detected above the 0.95 threshold were

identified by a bounding box. We evaluated performance

using the area under the precision recall curve [22]. The

precision and- recall equations are as follows:

Precision =
TP

TP+ FP
, (1)

Recall =
TP

TP+ FN
, (2)

where TP is the number of true positives (correct detections),

FP is the number of false positives(wrong detections), and

FN is the number of false negatives(mis-detections). AP

is the value of the average precision for class. The results

in Table 1 show the performance of the learned deep-learning

model.

TABLE 1. Performance of learned deep-learning model.

D. POSE DETECTION

For its end effector to reach the fruit, it has to view the scene

as a three-dimensional(3D) world to determine the pose of

the fruit. A pose is composed of a position vector and an

orientation vector [23]. An RGB-D camera is used to obtain

the pose of the target. It generates point cloud data that

indicate the distance between the target and the camera. The

point cloud data are an assemble of mass from wasted time

and distance data from the object and are obtained using Lidar

sensor or an RGB-D sensor. We used an open-source point

cloud library to easily handle the point cloud data, enabling

the robot to perceive the 3D world. An algorithm that esti-

mates features is then incorporated [24]. By using this library,

we combine the target image detected byYOLOV3with point

cloud data. Fig. 5 describes the method of obtaining the pose

array of a detected tomato. When tomato is perceived by the

YOLOV3 model, the center of the detected box is denoted as

a tool center point(TCP) coordinate. Using point cloud data,

we can determine a centroid pose array for the detected fruit.

E. MANIPULATION

After the tomatoes are detected, the target and sequence of the

harvesting process are determined. To harvest the tomatoes

according to the determined method, the manipulator con-

taining the developed gripper module needs to bemoved to an

operable position. Fig. 6 shows the mapping process between

the end-effector attached to the manipulator and the tomatoes

targeted for harvesting.
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FIGURE 5. Method of estimating fruit 3D coordination: (a) Original color
image; (b) Detecting fruit using YOLOV3 model; (c) Point cloud data;
(d) 3D coordinate of fruit.

FIGURE 6. Mapping for motion control.

The end-effector has an RGB-D camera attached to it

for the detection of tomatoes. Because the interrelationship

between the end effector and camera affects the success rate

of harvesting, hand-eye transformation is essential. Hand-eye

cameras and end-effectors are characterize by rigid trans-

formation relationships that include rotation and translation,

which enable hand-eye calibration through calculations. Cal-

ibration effectively reduces errors in the positioning system.

We performed it based on the position and posture where

the end-effector can be moved for cutting up to the center

point of the tomato. The relationship for calibration between

the robot base and object is modeled [25] in Eq (3):

DA = CB (3)

where D is a simple representation of cDo for the trans-

formation from the object coordinate frame to the camera

coordinate frame. In addition, A is oAb for the transfor-

mation from the robot base coordinate frame to the object

coordinate frame, and C is cCe for the transformation from

the end-effector coordinate frame to the camera coordinate

frame. Finally, B is eBb for the transformation of the robot

base frame to the end-effector coordinate frame. Each matrix

is expressed in Eq. (4) based on the decomposition of the

rotational partR of dimensions 3×3 and the translation vector

t of dimensions 3 × 1:
[

RD tD

0
T 1

] [

RA tA

0
T 1

]

=

[

RC tC

0
T 1

] [

RB tB

0
T 1

]

(4)

As a result, the object coordinate can be estimated using

Eq. (5) for the relationship and condition of the variables:

Ai = CBiD
−1 (5)

Furthermore, the robot arm should be able to move in a

specific posture to the converted position coordinates. The

specific posturewas set based on optimum state the robots can

solve kinematics. And it should be able to relocate continu-

ously along the generated path. By changing the joint angle of

eachmotor, the robot moves to a specific position, andmotion

control is achieved as a the result.

F. END-EFFECTOR

1) CUTTING MODULE DESIGN

Cutting from the pedicel is one of the most necessary tasks

in tomato harvesting. By removing the pedicel as close to the

fruit surface as possible, a robot can prevent damage to the

tomatoes during the transfer process and preserve the value

of the fruit as a commodity. For this purpose, we used a pair

of scissors, which is the tool used in traditional harvesting,

as a cutting tool of our robot. Basically, the principle of the

lever was applied to the scissor mechanism, and this can be

expressed as shown in Fig. 7.

FIGURE 7. The mechanism of scissor structure.

The force required to cut the pedicel can be calculated

based on these mechanisms [26]. Fig. 7 can be expressed as

Eq. (6) by moment parallelism, and the required acting force

based on the relationship of each variable is calculated:

F(e)L(e) = F(a)L(a) (6)

However, the required force varies depending on the posi-

tion of the cutting object. The required force for the change
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in variables can be expressed based on Eq. (6) to Eq. (7):

F(e)min ≥
F(r)maxL(a)

L(e)
(7)

where the acting force F(a) that actuates at the cutting posi-

tion L(a) can only cut it the stalk if it is greater than the

cutting resistance F(r) of the pedicel. Additionally, the min-

imum acting force must be greater than the maximum cut-

ting resistance for stable cutting. Based on this relationship,

the minimum exerted force F(e)min for cutting at the point

L(e) is defined.

According to this the relationship, for the cutting process to

be efficient, it must be performed as close to the rotating shaft

as possible. However, depending on the surface characteris-

tics of the cutting target, the pedicle may not be easily cut and

may be pushed out. In particular, this is likely to occur with

hard or tough objects such as tomato stems. Because of the

possibility of slippage occurring during the cutting process,

a momentary large force will also be necessary. Despite this

measures, it is possible that the pedicle is not cut completely.

Fig. 8 shows a cutting module applying the tractional cutting

unit (TCU) developed to ensure clear-cutting performance in

the scissor structure.

FIGURE 8. The tractional cutting unit for scissors.

The operational process of the TCU with the scissors is

depicted in detail in Fig. 9. First, the winch part and scissor

blade begin to rotate via the motor drive, and simultaneously,

the support moves along the central axis. Second, the pedicel

is towed in the direction of the central axis, which prevents it

from being pushed out of the scissor blade. With the scissor

blades completely overlapping, the pedicel is then cut and

separated. Finally, after complete cutting, the support moves

to its initial position by means of the reverse rotation of the

motor and the elasticity of the spring.

The rotation of the scissors and the operation of the TCU

can be performed simultaneously using one motor. When

the scissors blade rotates for cutting, the supporter transmits

the rotational force as traction force through the cable con-

nected to the handle guide. The pedicel is prevented from

being pushed out from the cutting area by the supporter, and

complete cutting is performed as the scissor blades overlap.

This mechanism can compensate for problems that can occur

during the cutting process and enable efficient cutting for

harvesting robots that use scissors.

FIGURE 9. Detailed image of the TCU operation: (a) The rotating scissor
blade and the moving support; (b) The towing pedicel; (c) The overlapping
scissor blades and cutting pedicel; (d) The moving support to its initial
position.

In addition, the connecting structure of the handle and

guide was selected to deliver sufficient cutting power to the

scissors. handle and guide are connected at a position as far as

possible from the rotation axis of the scissor blades. Through

this design, a greater acting force and torque are generated

Fig. 9. Furthermore, to transmit a relatively high torque from

the motor, the structure was designed such that the center of

motor rotation is approached as closely as possible.

Applying the motor was applied with the same specifica-

tions, it was not easy for the previously designed prototype,

with a general rotating structure, to cut a pedicel with a

diameter of 3.5mm. However, when the modified structure

design was applied, even stems with diameters of up to 6mm

were successfully cut.

2) GRIPPER MODULE DESIGN

The design of the end-effector for tomato harvesting is one

of the main factors that determine the performance of the

harvesting robot. In particular, the surfaces of tomatoes are

slippery and moist, making it difficult to grip the fruits.

To minimize damage to the crops suction grippers with, a soft

material are used to pick the fruit. When not under excessive

pressure, grasping through suction is one of the methods that

can minimize damage to cause by negligence.

The proposed suction gripper creates a pressure difference

between the inner and outer surfaces, thereby enabling the

grasping of objects such as tomatoes. The capacity of the

suction pad depends on the time required to create a vac-

uum between the object and the suction gripper [27]. A soft

material suction pad has an advantage in terms of flexibly

adapting to the surface, but may require structural changes

when heavy objects need to be lifted. Therefore, our goal

was to study the design form of the suction pad to enable

it to grip non-structured objects, specifically tomatoes, more

smoothly. However, soft elastic materials can bend, twist,
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compress, or stretch, which makes their modeling difficult.

Therefore, a gripper that utilizes a single suction pad, rather

than a large number of suction pads, to improve its suction

capacity should be constructed. The suction pad is adaptable

for contact with the round surface of the tomato and is con-

structed with a kirigami structure as shown in Fig. 10.

FIGURE 10. Kirigami-based suction pad.

In theory, a suction pad with an extremely small, flat cir-

cular opening would fit any surface because it could approxi-

mate an infinite planar surface [28]. The suction cup holding

force is directly proportional to the opening surface area,

expressed by

F = P A (8)

where F is the holding force, P is the vacuum pressure, and

A is the suction pad opening surface area.

FIGURE 11. Testbed setup according to growing type: case A: isolated
ripe tomato; case B: two ripe tomatoes; case C: three ripe tomatoes; case
D: four ripe tomates.

IV. EXPERIMENT

A. EXPERIMENTAL SETUP

The experiment was conducted on an testbed in the labora-

tory, using the setup described in Chapter 3. The testbed was

constructed in an environment similar to that of an actual

tomato farm in order to evaluate the performance of the

harvesting robot in practical harvesting scenarios as shown

in Fig. 11. Typically, tomatoes grow from stems, forming

clusters containing up to four tomatoes. Thus, the stems

used in the experiment carried clusters containing one to

four tomatoes. Although it is not possible to determine the

distributions of all tomatoes by a specific type, the tomatoes

that for a cluster can be classified. The experiments can be

divided into cases where there are only 1, 2, 3, or 4 in a cluster.

The greater the number of tomatoes in a cluster, the more

difficult it is to harvest them. Additionally, if a tomato has

a pedicel attached to it, the difficult involved on harvesting is

further increase. It was found that the numbers of tomatoes in

the clusters affected the experimental results.

B. EXPERIMENTAL RESULT

The harvesting cycle includes all the sequences that operate to

successfully harvest the fruit. To evaluate the performance of

the robot, two main performance measures, i.e., success rate

and cycle time, were determined. The total cycle time can be

obtained via the addition of the amounts of time consumed for

each subtask. For a successful harvest, and time consumed

in each step: perception, manipulation, and harvesting is

logged. The amounts of time recorded for the subtasks and

the total cycle time are listed in Table 2.Manipulation divided

the trajectory sequence into sub-steps to avoid obstacles,

and additional time was required due to the path planning

involved in each step. After approaching the fruit, the process

of detaching the fruit was regarded as harvesting. The total

cycle time was 5.9 seconds, and in the testbed, the fruit was

located close to the robot arm, so the harvesting speed was

relatively fast.

In general, harvest success indicates that fruit is harvested

without damage. Therefore, one of the important points

when using harvesting robots is to harvest target fruits and

surrounding crops without damage. The experiment result

performed on the testbed to verify the performance of the

proposed harvesting robot are shown in Fig. 12 and Table 3.

The performance was indicated by defining a score according

to the damage occurring on the surface of tomatoes during

the harvesting process. If the damage does not occur, it is

expressed as O and defined as a 100 score. Among the

damages, weak damage on the surface were marked with
a

and defined as 50 score, and those that gave strong damage

such as tearing were expressed as ×, and defined as 0 score.

According to experiment result, the tendency to create

damage increased as the number of clusters increased. In the

case of A, the tomato was alone, so there were no obstacle

such as surrounding fruits, which did not cause damages

during the harvest process. However case B, C, and D, as the

number of tomatoes in the cluster increases, neighboring

tomatoes other than the target tomato can be considered as

obstacles. Non-target tomatoes can be dynamically swing

during the harvesting process. Such swings can cause damage

by generating the movement of the target crop, and even if the

target crop is harvested without damage, it can cause damage

to non-target crops.

To further improve the performance of the robot, the

following problems are addressed in the discussion and con-

sidered as challenges to be overcome in the future: inaccu-

rate fruit localization due to errors in the detection of fruit;
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TABLE 2. For a successful harvest, and time consumed in each step.

FIGURE 12. Harvesting result according to the number of clusters.

TABLE 3. Harvesting score according to the number of clusters.

incorrect path planning; unsolved kinematics of the manipu-

lator for moving toward detected tomatoes; and obstruction

to target tomatoes.

V. DISCUSSION

In this paper, we proposed combination of 3D perception,

manipulation, and gripper modules for realizing an efficient

tomato harvesting robot. To evaluate the proposed harvesting

robot, experiments were conducted in a laboratory testbed

environment for each substep. However, the system has a

limitation in terms of not being able to apply several variables

that exist in actual environments, such as stem localization

and obstacles. In the future, we need to address the following

challenges:

A. STEM DETECTION

The detection procedure of the proposed system is composed

of only one step. This detection procedure only produces the

TCP, i.e., the center point of the bounding box generated by

the YOLOV3 model. The end- effector then moves to the tar-

get point. Thismethod causes the success rate to be dependent

on the size and pose of the detected tomato. To successfully

harvest the fruit, it must be cut precisely, and therefore stem

detection is essential. In addition, the manipulator is contin-

ually moved following the detected pose of the tomato stem.

Also working continuous work, the picking and cutting action

affect the position and pose of the other tomato by vibration

and small crash. To effectively follow the changes of target

fruit and cut it, visual servoing for the pose control of the

robot arms should be explored in future research [29].

B. REINFORCEMENT LEARNING-BASED PATH PLANNING

To control the motion of the manipulator, open source soft-

ware was used, for the application of Cartesian path planning

and solution of complicated kinematics. However, for some

specific poses, the manipulator can not solve the problem;

therefore, movement is blocked, and an appropriate trajectory

is not produced. In order to create an appropriate trajec-

tory, we need to determine the optimal harvesting sequence
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that can be harvested more easily, and path planning that

has changed accordingly is a way to shorten the harvesting

time. The planning trajectory is randomly generated, and

thus, either surrounding obstacles hinder movement or the

the harvesting time is changed depending on the produced

trajectory. In future research, to successfully reach the tar-

get point, the motion planning algorithm must be improved

via reinforcement learning. For the robots to execute rein-

forcement learning based on earned rewards from several

repeated several trials and errors, the manipulator should be

able to determine the optimal trajectory by itself [30]. Also

the manipulators decide the order to target fruit according to

produced optimal trajectory based on reinforcement learning.

This technique consumes less time and can enables the robots

to avoid obstacles.

C. END-EFFECTOR

We developed a scissor-type cutting module in which a trac-

tional cutting unit was utilized to ensure cutting performance.

The proposed cutting module of end-effector has advantage

in cluster. When a movement occurs in a crop other than the

target, target tomato also occurs movement. The TCU in the

cutting module minimized the movement of the stem, making

cutting smooth. However, the cutting scissors had a sharp tip,

which caused damage to the fruit on approach. Therefore,

another cutting mechanism must be developed. The structure

of the cutting module should not feature protrusions, and the

structure of the surrounding environment should be devel-

oped in a form that is relatively less affected by the system.

VI. CONCLUSION

In this paper, we propose an efficient tomato-harvesting robot

that combines the principles of 3D perception, manipulation,

and an end-effector. With this robot, deep-learning-based

detection and 3D perception are performed considering toma-

toes as the target. Motion control of the manipulator was

implemented based on 3D perception, whereas the developed

end-effector comprised two parts: a grasping module and a

cutting module. The grasping module grips tomatoes in a

cluster and is based on a suction gripper using soft robotics.

The suction gripper allows suction pads, which were based

on the kirigami pattern, to grip unstructured shapes more

easily. The cutting module, which has the shape of scis-

sors, is equipped with a tractional cutting unit to overcome

structural limitations and improve cutting. The proposed

tomato-harvesting robot was evaluated and verified using a

laboratory testbed. Although the proposed harvesting robot

did not exhibit high performance, it could be sufficiently

improved if further research is conducted, as explained in the

discussion.
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