
 Open access Proceedings Article DOI:10.1109/GIOTS.2017.8016222

Towards an emulated IoT test environment for anomaly detection using NEMU
— Source link

Shane Brady, Adriana Hava, Philip Perry, John Murphy ...+2 more authors

Institutions: University College Dublin, University of Bordeaux

Published on: 06 Jun 2017 - The Internet of Things

Topics: Smart objects and Testbed

Related papers:

 Architectures and Experiences in Testing IoT Communications

 Provisional process migration from IoT devices: A performance study

 MAMMOTH: A massive-scale emulation platform for Internet of Things

 Framework for rapid prototyping of distributed IoT applications powered by WebRTC

 Security Testbed for Internet-of-Things Devices

Share this paper:

View more about this paper here: https://typeset.io/papers/towards-an-emulated-iot-test-environment-for-anomaly-
3xajro7v6t

https://typeset.io/
https://www.doi.org/10.1109/GIOTS.2017.8016222
https://typeset.io/papers/towards-an-emulated-iot-test-environment-for-anomaly-3xajro7v6t
https://typeset.io/authors/shane-brady-2uz6ywd69a
https://typeset.io/authors/adriana-hava-2880h2ov45
https://typeset.io/authors/philip-perry-4p6aj0g8ap
https://typeset.io/authors/john-murphy-1dh0gi8hxg
https://typeset.io/institutions/university-college-dublin-2uzykgj9
https://typeset.io/institutions/university-of-bordeaux-3ftv4yiu
https://typeset.io/conferences/the-internet-of-things-2h19syo0
https://typeset.io/topics/smart-objects-vebaat9y
https://typeset.io/topics/testbed-v7ebpyad
https://typeset.io/papers/architectures-and-experiences-in-testing-iot-communications-1dmrozl9ye
https://typeset.io/papers/provisional-process-migration-from-iot-devices-a-performance-5cxolbdvzb
https://typeset.io/papers/mammoth-a-massive-scale-emulation-platform-for-internet-of-1e2byico48
https://typeset.io/papers/framework-for-rapid-prototyping-of-distributed-iot-mymjp4lj03
https://typeset.io/papers/security-testbed-for-internet-of-things-devices-2uzc88lf9e
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/towards-an-emulated-iot-test-environment-for-anomaly-3xajro7v6t
https://twitter.com/intent/tweet?text=Towards%20an%20emulated%20IoT%20test%20environment%20for%20anomaly%20detection%20using%20NEMU&url=https://typeset.io/papers/towards-an-emulated-iot-test-environment-for-anomaly-3xajro7v6t
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/towards-an-emulated-iot-test-environment-for-anomaly-3xajro7v6t
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/towards-an-emulated-iot-test-environment-for-anomaly-3xajro7v6t
https://typeset.io/papers/towards-an-emulated-iot-test-environment-for-anomaly-3xajro7v6t

Provided by the author(s) and University College Dublin Library in accordance with publisher

policies. Please cite the published version when available.

Title Towards an emulated IoT test environment for anomaly detection using NEMU

Authors(s) Brady, Shane; Hava, Adriana; Perry, Philip; Murphy, John; Magoni, Damien; Portillo

Dominguez, Andres Omar

Publication date 2017-06-09

Publication information Proceedings of the Global Internet of Things Summit (GIoTS) 2017

Conference details Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6-9 June, 2017

Publisher IEEE

Item record/more information http://hdl.handle.net/10197/9051

Publisher's statement © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works

Publisher's version (DOI) 10.1109/GIOTS.2017.8016222

Downloaded 2022-05-30T10:51:40Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1109%2FGIOTS.2017.8016222&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F9051

Towards an Emulated IoT Test Environment for

Anomaly Detection using NEMU

Shane Brady∗, Adriana Hava∗, Philip Perry∗, John Murphy∗, Damien Magoni†, and A. Omar Portillo-Dominguez∗

∗Lero, School of Computer Science, University College Dublin, Ireland

Email: shane.brady.1@ucdconnect.ie, {adriana.hava,philip.perry,j.murphy,andres.portillodominguez}@ucd.ie
†LaBRI, University of Bordeaux, France

Email: damien.magoni@u-bordeaux.fr

Abstract—The advent of the Internet of Things (IoT) has led
to a major change in the way we interact with increasingly
ubiquitous connected devices such as smart objects and cyber-
physical systems. It has also led to an exponential increase in
the number of such Internet-connected devices over the last
few years. Conducting extensive functional and performance
testing is critical to assess the robustness and efficiency of IoT
systems in order to validate them before their deployment in
real life. However, creating an IoT test environment is a difficult
and expensive task, usually requiring a significant amount of
physical hardware and human effort to build it. This paper
proposes a method to emulate an IoT environment using the
Network Emulator for Mobile Universes (NEMU), itself built
on the popular QEMU system emulator, in order to construct
a testbed of inter-connected, emulated Raspberry Pi devices.
Additionally, we experimentally demonstrate how our method
can be successfully applied to IoT by showing how such an
emulated environment can be used to detect anomalies in an
IoT system.

Index Terms—Internet of Things, Emulation, Testing, NEMU.

I. INTRODUCTION

Internet of Things (IoT) has become a major technological

revolution which is leading to an explosive growth in the num-

ber of internet-connected devices globally. Experts estimate

that IoT will consist of approximately 50 billion devices by

2020 [1]. Consequently, IoT is gradually impacting every busi-

ness area and industry field. Moreover, how effectively these

devices are able to communicate (particularly over potentially

heavily congested networks) can have a major impact on the

quality of the services provided, as well as in their degree

of success (or failure). Therefore, properly testing such IoT

services is essential [2]. However, testing in IoT is a very

challenging task. This is because the intrinsic characteristics

of IoT (e.g., the normally vast number of devices and the

complex nature of the inter-connectivity among the devices)

make the creation of an appropriate test environment of

real devices particularly effort-intensive and costly. Likewise,

monitoring the health and performance of an IoT system

presents similar challenges. This is the result of producing and

transmitting huge amounts of data, which makes considerably

more complex the detection of anomalous behaviours within

the system.

To address these challenges, our research work has focused

on developing techniques to improve the processes involved

in testing IoT solutions, with a special interest on anomaly

detection. In particular, this work presents a novel method to

create an emulated IoT environment based on the Network

Emulator for Mobile Universes (NEMU), which is a powerful

state-of-the-art tool used to create highly customisable virtual

networks of virtual machines [3]. This work also shows,

through experimental evaluation, how the emulated environ-

ment can produce similar results when used at specific settings

(compared to a real one), while also significantly simplifying

the effort required to build a test environment. This was

assessed within an anomaly detection scenario, in which the

health of the IoT systems was monitored with log analytic

techniques.

II. RELATED WORK

Several research works have focused on developing tech-

niques to simulate IoT environments. For example, the authors

of [4] presented an approach to improve the scaling capa-

bilities of the NS3 simulator, so that it is usable for large

problem sizes (such as IoT). Despite the fact that simulations

are useful to test IoT advancements to a certain degree, they

are not suitable for all scenarios. For instance, when the IoT

services need to be tested in real-time to assess if they can

fulfill their expected Service Level Agreements. Consequently,

other works have focused on emulating IoT environments

where applications can be deployed and executed exactly as

they would in real life. Despite the progress in this area,

there is still a need for approaches that allow to create more

easily, and with less effort, emulated IoT systems [5]. This is

because most of the current alternatives are typically hard to

use, and difficult (or impossible) to configure at run-time. In

2015, Bagula and Erasmus have proposed an IoT emulation

environment with COOJA [6]. However, this environment is

targeted only at Contiki systems and emulate motes such

as Tmote Sky, Z1 mote, MicaZ mote, etc. It can not be

used for Raspberry Pi emulation. More recently, Le-Trung

has proposed an IoT testbed emulated over an OpenStack

Cloud infrastructure [7]. However, his testbed is based on the

QOMET emulator which uses wireconf, a software only

available on RHEL6 systems.

For these reasons, this paper presents a method that lever-

ages on NEMU to improve that process. NEMU is a tool

to create (and manage) realistic virtual dynamic networks,

allowing practitioners to test and evaluate prototypes of com-

plex applications (such as IoT services) with a complete

control over the characteristics of the emulated environment

(e.g., network topology and link parameters). Also, NEMU

can create such environments with relatively limited hardware

resources, without any administrative rights, and/or distributed

over several physical machines [3]. As NEMU uses QEMU for

system emulation, it can run a large variety of hardware includ-

ing Raspberry Pis. For these reasons, NEMU is an attractive

candidate to be used in the IoT domain. Finally, anomaly

detection is a relevant scenario in IoT, where sensor data

and sensor faults are continuously monitored. For instance,

the authors of [8] presents a comprehensive list of potential

solutions to discover anomalies (e.g., using supervised and

unsupervised machine learning techniques). In contrast to

other works in the area, this work proposes the usage of log

analytic techniques to detect such anomalies.

III. PROPOSED METHOD

A. Testbed Architecture

The architecture of the IoT testbed (i.e., the emulated IoT

environment) contains multiple components:

1) NEMU is used for the creation and management of

a network of virtual machines (VM). An important

characteristic of NEMU is that it allows to modify the

system at run-time. For instance, by allowing to add

(or remove) devices to the network, as well as network

links between the devices. This capability allows the

introduction of anomalies into the IoT system.

2) QEMU is used to emulate the IoT devices (e.g., Rasp-

berry Pis in our case). QEMU was chosen because

it is an open source machine emulator that allows to

accurately emulate an IoT device (especially the proces-

sor, such as the ARM family of low power processors

typically used in SoC-based boards). Alternatively, the

practitioner can also use real IoT devices and hook them

to the virtual network. This is useful if some specific

hardware can not be emulated, such as specific shields.

These components are shown in Fig. 1, which depicts the

high-level architecture of the testbed.

B. Testbed Generation

The following steps are required to create a working emu-

lated IoT environment:

1) Define the network topology. For this work, we focused

on the widely-used tree topology [9], [10] typically used

to manage large scale networks. However, any topology

can be built with NEMU. At the bottom of the tree

structure, there are sensors constantly monitoring and

reporting their measured values. On the next layer up

there are a series of Raspberry Pis, each responsible

for a cluster of sensors. Raspberry Pis are used as

Fig. 1. High-Level Architecture

they are small, affordable computers, widely deployed

in IoT environments. As we proceed up the tree, each

higher level Raspberry Pi is responsible for a number

of Raspberry Pis below it in the tree. Each Raspberry

Pi will report both the sensor data it receives, as well

as metrics about the performance of the device itself up

the tree. These metrics, including the CPU and memory

usage of the device as well as network statistics (such

as throughput, packet loss and latency) provide insight

into the health of the system as a whole, enabling the

detection of anomalies in the network.

2) Create Virtual Host Configurations (VHostConf object

in NEMU). Each VHostConf acts as a template For

Virtual Hosts (VHost object in NEMU) to expedite the

generation of VMs (based on the templates).

3) Specify the architecture (e.g., ARM), the processor (e.g.,

arm1176) and to provide the kernel for the chosen

operating system.

4) Create VHosts that represent the devices (i.e., Raspberry

Pis). For each VHost, the experimenter can modify the

configuration parameters defined on the VHostConf. A

virtual drive image must be provided for the host (i.e.,

Raspbian Wheezy).

5) Specify the parameters for the virtual Network Interface

Cards (VNics). These virtual network interface cards can

be attached to a virtual node (VHost) in order to allow it

to communicate with other virtual nodes through virtual

switches. A VHost can have multiple VNics. As optional

parameters, each VNic can be set to a specific card

model and hardware address (otherwise, default values

are used).

6) Create VLinks, which are virtual networking elements to

inter-connect the other virtual entities. A commonly used

type of VLink is the VSwitch. A VSwitch is a virtual

Ethernet switch device with a configurable number of

interfaces. Using NEMU’s link command, one can link

virtual hosts and virtual Ethernet elements to create

various network topologies. For instance, VSwitches,

can be used at appropriate position in our scenario,

to create a tree topology to connect a set of emulated

Raspberry Pis.

7) NEMU provides pre-configured virtual routers

(VRouters) to simplify the management of the

network. A VRouter provides services such as DHCP

and IP forwarding. A VRouter can also be linked to

a VSlirp. A Slirp is a particular virtual point-to-point

link which enables a VHost to communicate with the

Internet through NAT emulation inside QEMU. Slirp

links also contain internal DHCP and DNS servers.

This capability is needed to send information from the

emulated IoT system to a machine outside of the virtual

network (e.g., on the Internet).

8) An optional step is to connect real hardware devices

to the emulated network (as shown in Fig. 1). This is

done by creating a Linux bridge and a TAP interface on

the machine hosting the testbed (i.e., where the QEMU

devices are being created). The TAP interface allows

software in the Linux user space to be able to use a

virtual Ethernet interface on the host machine. A real

device can be connected to the host either straight into

the host physical NIC or through a physical switch

as shown on the figure. Both the host’s NIC and the

TAP are then connected to the Linux virtual bridge thus

creating an hybrid virtual/real network.

Finally, to complement the previous discussion, Fig. 2 presents

an exemplary tree topology created using the above discussed

method.

Fig. 2. NEMU Scripting Components

C. Anomaly Detection Use Case

Among the range of available use cases, our work has

initially focused on anomaly detection due to its relevance to

IoT. In this scenario, an IoT system, composed of multiple de-

vices interconnected through a network topology, periodically

transmits their data to a consumer layer such as a NodeRED

application. This layer is then responsible for consolidating the

received data (potentially from several IoT systems) before

sharing it to an analytics service, such as Logentries’s log

analytics platform, with the aim of identifying abnormal

behaviours that might occur in the system.

D. Log Analytics Platform

To interface with the anomaly detection logic, the device

at the top of the topology (i.e., the root of the tree) is

set responsible for forwarding the sensor data and usage

metrics of all devices in the topology from the IoT system

to a NodeRED application. It runs independently on its own

machine and is used to share the data to a real-time log

analytics platform (e.g., Logentries), where the data is anal-

ysed to detect anomalies in the IoT system. The NodeRED

application can also generate logs (i.e., reflecting its own

performance), information which can be correlated with the

other logs to deepen the detection of anomalies. Fig. 3 shows

the temperature values and anomalies reported in the log

analytics system (i.e., Logentries). Temperatures below 19.6C

and above 20.4C are flagged as warnings (see section IV).

Fig. 3. Temperature data reported at the log analytics platform

IV. EXPERIMENTAL EVALUATION

The performed experiments aimed to assess how well an

emulated IoT system created with our proposed method and

software was able to act as a real one. For this purpose,

experiments addressed three scenarios:

1) Measurements of an IoT application using the MQTT

protocol.

2) Processor and memory usage of a benchmark applica-

tion.

3) Network throughput of iperf and FTP applications.

A. Setup

Three types of experiments were done:

1) The first type used a real IoT system built with Rasp-

berry Pi hardware. This real environment was composed

of Raspberry Pi 3, model B, and connected by a 100

Mbps Ethernet switch.

2) The second type used an emulated IoT system built

with ARM emulation software performed by the QEMU

system emulator. The emulated environment was com-

posed of the same number of equivalent emulated Rasp-

berry Pis, using a QEMU specific kernel1 and Raspbian

Wheezy as the Operating System (OS).

3) The third one used a virtualized IoT system built with

x86-64 virtualization performed by the QEMU-KVM

virtualization software.The virtualized environment was

1https://github.com/dhruvvyas90/qemu-rpi-kernel

composed of x86-64 virtual machines leveraging VT-

x hardware acceleration through the KVM module and

running Debian Wheezy as OS. As the Raspbian distri-

bution used on Raspberry Pis is based on the Debian

distribution, these VMs may run code compiled for the

same major release without problems.

Both emulated and virtualized environments were running

on a Dell Precision T5500 workstation equipped with an

Intel Xeon at 2.40Ghz (4 cores/8 threads), 24 GB of RAM,

under Linux Ubuntu 15.10 64-bit. All experiments were done

in isolation, so that all load was controlled. Also, we used

LogEntries as real-time log analytics platform due to its strong

analytic capabilities [11].

Two representative anomaly detection scenarios were evalu-

ated: sensor temperature warnings and processor and memory

load warnings as already discussed in section III-C. The

sensor temperature data was simulated by using a script which

randomly generated temperature values by following a normal

distribution centered at 20 C and a 2σ of 0.2 C. It ran on the

devices found on the leaf nodes of the network, transmitting

this information along with the other metrics. To generate

processor and memory loads, we introduced some controlled

noise to the system by running on the devices a subset of the

widely-used Java Dacapo benchmarks [12].

As evaluation criteria, the main metrics were temperature

measurements and anomaly detection, processor and memory

usage (in %), and network throughput (in Mbps). These

metrics were collected with the following tools: wireshark

(for MQTT packets) and Logentries (for anomalies), htop

and psutils (for processor and memory usage), iperf and

the GNU/Linux ftp client (for network throughput). Moni-

tored events (i.e., detected anomalies) were retrieved from

LogEntries’ reports, which was fed by the NodeRED node.

Temperature readings below or above 2σ of the mean were

considered as anomalies and flagged as warnings.

B. Results

1) Experiment 1 – MQTT-based IoT application: The

MQTT protocol was used to send messages from fake temper-

ature sensors running on the Raspberry Pis to an MQTT broker

(server). MQTT runs on the TCP protocol thus it is reliable

at the transport layer. We have used the QoS setting of 0 for

MQTT which means that messages are send in best effort

mode at the application layer. Fig. 4 shows the temperature

measured and sent in the real IoT system over time. Fig. 5

shows the temperature measured and sent in the emulated IoT

system. For this experiment, each run fired 1800 messages

(lasting around 30 mn when firing 1 message per second),

and 10 runs were performed per testbed type. Min, max and

average values are shown on the figures. We can observe

that the received values are similar and not affected by the

type of testbed used. We have observed that for each type no

messages were lost and no messages were delivered out of

order. This means that the server has not lost any received

message. Only the fact that random values produced by a

normal distribution were used as inputs (temperature values)

explains the variations on the figures. We haven’t shown the

results produced by the virtualized testbed as they are similar

to both figures already shown.

Fig. 4. Temperatures reported by the Physical Raspberry Pi Network

Fig. 5. Temperatures reported by the Emulated Raspberry Pi Network

We have also observed the total duration for firing the

1800 messages. We have tested with various message rates

from 0.1 to 100 per second. We have collected those values

in Table I. We notice that the total time for sending those

messages are matching the frequency parameter for the real

and virtualized testbeds. The virtualized testbed is a bit faster

because hardware accelerated x86 virtual machines are faster

than real RPis. The emulated testbed performs similarly at

low message frequencies but shows an increased lag when

the frequency increases. At 100 messages per second, the

emulated testbed is 86% slower than the real one. This issue

must be taken into account when using the emulated testbed

and depends on the IoT application used. In most cases, 1

message per second would be considered high, but in some

cases, monitoring may require up to 100 messages per second,

maybe more.

To understand the behaviour of the systems across the

evaluated experimental configurations, our analysis focused on

comparing the number of anomalies detected per environment

as shown in Table II. It can be noticed how the number

of detected anomalies over half-an-hour (at 1 message/s)

exhibited a comparable behaviour regardless of the type of

TABLE I
AVERAGE DURATION FOR SENDING 1800 MQTT MESSAGES

Testbed Real Emulated Virtualized

1 message/10s 5:00:09.742 5:00:13.297 5:00:08.840
∆ vs Real +0.02% -0.005%
1 message/5s 2:30:05.894 2:30:08.066 2:30:04.777
∆ vs Real +0.024% -0.012%
1 message/s 30:02.772 30:17.073 30:01.663
∆ vs Real +0.8% -0.1%
5 messages/s 06:01.706 06:17.801 06:00.822
∆ vs Real +4.4% -0.3%
10 messages/s 03:01.972 03:17.902 03:00.733
∆ vs Real +8.7% -0.7%
50 messages/s 00:37.279 00:53.978 00:36.700
∆ vs Real +44% -1.5%
100 messages/s 00:19.278 00:35.982 00:18.701
∆ vs Real +86% -3%

test environment. Results for the real network are more spread

out as shown by the higher standard deviation values, due

to the use of real network hardware. An example of the

observed anomalies (i.e., temperature thresholds) at Logentries

is depicted in Fig. 3.

TABLE II
AVERAGE NUMBER OF ANOMALIES REPORTED

Testbed Low Temp High Temp
Anomalies Anomalies

Average (Std-Dev) Average (Std-Dev)

Real 85.4 (12.8) 86.9 (12.5)
Emulated 85.1 (6.3) 82.7 (8.6)
Virtualized 82.2 (7.8) 83.7 (7.5)

2) Experiment 2 – processor and memory intensive ap-

plication: A second set of experiments was performed to

assess the behaviour of our solution in more resource-intensive

scenarios, where one or more resources, such as CPU or

memory, would frequently reach 100% usage. Even though

such scenarios might not be the most commonly found in

IoT (as the data gathering and processing usually tend to be

light-weight in terms of CPU and memory), the aim was to

strengthen the validation of our solution by identifying either

other potentially applicable usage scenarios or limitations on

its usage. The experimental set-up was similar to that used

in the previous experiment, with the following difference:

instead of using MQTT, the tested devices ran a subset of

the widely-used Java Dacapo Benchmarks [12]. This strategy

allowed us to diversify the assessed behaviours (i.e., CPU

and memory usage) by introducing some variability on the

workloads processed by the system. The chosen benchmark

programs were luindex, sunflow and eclipse, which used three

considerably different levels of resource utilization. Each test

run lasted 10 minutes and was repeated 10 times. All the plots

show for each timed data point (one per second), its average,

min and max values over the 10 runs.

Obtained results are illustrated in Figures 6, 7, and 8.

They show how an experimental configuration behaved on

each of the three tested types of environments. Intuitively,

Fig. 6. Test Load of the Physical Raspberry Pi Network

Fig. 7. Test Load of the Emulated Raspberry Pi Network

Fig. 8. Test Load of the Virtualized x86-64 Network

if the figures depicted similar shapes among them (like in

the previous experiment), the environments would exhibit a

comparable behaviour. However, it can be easily seen, by

visually inspecting the figures, that it is not the case. Figure 6

depicts the real Raspberry Pi, hence, this exemplifies a baseline

behaviour. Meanwhile, Figure 7 and 8 depict the emulated

and virtualized Raspberry Pi networks, respectively. It can

be noticed how the trends in Figure 8 (i.e. the three peaks

caused by the execution of the chosen benchmarks) resemble

the ones of the real Raspberry Pi, although they are less sharp.

Furthermore, it can be noticed how the trends depicted on 7

considerably differentiate against the other two figures. In the

case of the CPU, its usage practically reaches 100% during the

three peaks, situation which indirectly influenced the memory

usage (which showed a relatively flat behaviour). This is due

to the software-only emulation of the ARM processor which

is very demanding for the host environment.

3) Experiment 3 – network intensive application: The last

experiment focused on measuring network throughput between

the devices in each testbed type and also between different

types (e.g., between a physical Raspberry Pi (RPi) and an emu-

lated RPi). These results are summarized in Table III, depicting

the throughput obtained for each combination of the three

tested environment types. Considering that the first line in the

table (i.e., RPi → RPi) is the performance baseline, it can be

noticed how, whenever an emulated RPi is involved, there is a

drastic reduction in throughput (e.g., of approximately 75% in

the case of the FTP traffic). This is because in these scenarios,

the relatively slowness of the emulated RPi makes it to become

a bottleneck in the system (hence provoking the observed

impact on throughput). In contrast, it is worth noticing that,

even in such saturated scenario, a virtualized x86-64 works

fine as a replacement of a real Raspberry Pi. This is reflected in

the fact that all combinations using a virtualized x86 achieved

levels of throughput comparable to the corresponding baseline

value. The only exception was the experimental configuration

which only used virtualized environments. This was the result

of using hardware acceleration and not capping the NEMU

links (i.e., letting them reach maximum throughput), which

made the system achieve a throughput higher than what would

be actually possible with the real hardware.

TABLE III
NETWORK THROUGHPUTS IN MBPS BETWEEN DEVICES

Link iPerf FTP

RPi → RPi 95.1 80.04
RPi → Emulated RPi 24.1 19.76
Emulated RPi → RPi 20.4 16.32
Emulated RPi → Emulated RPi 20.2 20.16
RPi → Virtualized x86 94.0 89.6
Virtualized x86 → RPi 95.6 88.32
Virtualized x86 → Virtualized x86 280 277.6

V. CONCLUSION

Performing proper testing in IoT is very challenging. In

particular, creating a real testing environment is difficult and

expensive. This is because a large amount of human effort and

investment in hardware are typically required to create such

environments. To address this problem, this paper proposed

a novel method to create a realistic emulated IoT testing

environment, based on NEMU (a state-of-the-art network em-

ulator). The aim is to increase IoT practitioners’ productivity

by facilitating the creation of suitable IoT testing environments

in which IoT advancements can be easily tested during their

research and development cycles. That is, before their level

of maturity justify the costs involved on testing in a real IoT

environment.

Our experimental results have shown how such emulated

environment closely resembles a real IoT environment, as both

types of environments produced similar results when used for

IoT applications. However, results also showed that processing

and memory intensive applications shall not be evaluated by

emulation as the performances are still widely different from a

real system. Practitioners should therefore check that the IoT

application under test is not stressing the devices in terms of

processing, memory or network bandwidth, otherwise results

obtained on the emulated testbed will be incorrect.

These experiments were done within a log analysis context,

where the aim was to monitor and detect anomalies in the

IoT environments in real-time. The overall results showed

that the emulated IoT system worked well, as the behaviours

of the detected anomalies (across all the tested experimental

configurations) were similar between the two environments, as

they achieved comparable numbers of anomalies.

Future work will focus on strengthening the experimental

validation of our approach. For instance, by diversifying the

characteristics of the emulated environment (e.g., topologies,

number of nodes, link characteristics). Additionally, we plan

to investigate ways to improve the detection (and potentially

the alleviation and/or elimination) of the anomalies discovered

in the IoT system.

ACKNOWLEDGMENT

Supported, in part, by Science Foundation Ireland grant

13/RC/2094. Supported, in part, by Agence Nationale de la

Recherche grant ANR-10-IDEX-03-02.

REFERENCES

[1] D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” Cisco, Tech. Rep.

[2] R. H. Weber, “Internet of things new security and privacy challenges,”
Computer Law & Security Review, vol. 26, no. 1, pp. 23–30, 2010.

[3] V. Autefage and D. Magoni, “Nemu: A distributed testbed for the
virtualization of dynamic, fixed and mobile networks,” Computer Com-

munications, vol. 80, pp. 33–44, 2016.
[4] P. M. d. Silva, J. Dias, and M. Ricardo, “Cidrarchy: Cidr-based ns-3

routing protocol for large scale network simulation,” ICSTT, pp. 267–
272, 2015.

[5] Y. D. A. Y.-J. Vilen Looga, Zhonghong Ou, “Mammoth: A massive-scale
emulation platform for internet of things,” ICCCIS, 2012.

[6] B. Bagula and Z. Erasmus, “Iot emulation with cooja,” in Workshop on

Scientific Applications for the Internet of Things, ICTP, Ed.
[7] Q. Le-Trung, “Towards an iot network testbed emulated over openstack

cloud infrastructure,” in 2017 International Conference on Recent Ad-

vances in Signal Processing, Telecommunications Computing (SigTel-

Com), Jan 2017, pp. 246–251.
[8] S. M. M. P. Jayavardhana Gubbi, Rajkumar Buyya, “Internet of things

(iot): A vision, architectural elements, and future directions,” FGCS,
vol. 29, pp. 1645–1660, 2013.

[9] U. W. Bishnu Kumar Maharjan and R. Zandian, “Tree network based on
bluetooth 4.0 for wireless sensor network applications,” EEDER, 2014.

[10] S.-k. K. Joonkyo Kim and J. Park, “Bluetooth-based tree topology
network for wireless industrial applications,” ICCAS, 2015.

[11] B. Siniarski, P. A. Perry, C. Olariu, J. Murphy, and T. Parsons, “Real-
time monitoring of sdn networks using non-invasive cloud-based logging
platforms,” PIMRC, 2016.

[12] A. O. Portillo-Dominguez, P. Perry, D. Magoni, M. Wang, and J. Mur-
phy, “Trini: an adaptive load balancing strategy based on garbage
collection for clustered java systems,” Software: Pract. and Exp., 2016.

