
OpenMP 02/02/2010

Towards an Error Model for OpenMP

Michael Wong, Michael Klemm, Alejandro
Duran, Tim Mattson, Grant Haab, Bronis R.
de Supinski, and Andrey Churbanov

2 Template Documentation 7/28/2010

Some of the usual suspects (who have photos)

3 Template Documentation 7/28/2010

Current problems with OpenMP 3.0 Error Handling

Historically limited to HPC, but need to expand into industrial
applications
Limited by the three key requirements:
– Must not throw exceptions outside of parallel region
– Single Entry Single Exit
– Must not escape structured block

We will study examples and work around
Offer a roadmap to design a state of the art exception handling
system
Offer specific recommendation for beyond 3.1, and future
proposals

4 Template Documentation 7/28/2010

What other popular concurrent languages have done
STATE OF THE
ART

1 Kill, Violence is
THE answer

2 Don’t take NO
for an answer

3 Ask politely,
accept rejection

4 Set flag, let it
poll

What? Shoot First, ask
question later

Fire him, but let him
clean his desk

Fire him, but let him
get a lawyer

Fire him, by email!

How? Violence is not the
answer because it

Randomly corrupt
states

Interrupt at well-
defined points and
allow handler (but
target can’t refuse)

Interrupt at well-
defined points,
allow handler, can
be ignored

Target can check
between well-
defined points,
manually, or as part
of #2, #3

Pthreads pthread_kill,
pthread_cancel
(async)

Pthread_cancel
(deferred mode)

NA Manual

Java Thread.destroy,
Thread.stop

NA Thread.interrupt Manual or
Thread.interrupt

.NET Thread.Abort NA Thread.interrupt Manual or Sleep(0)

C++0x NA NA NA Manual

Why? Avoid, unless you
know for sure

OK for exception-
unaware language

Good, automated
for exception-aware
languages

Same as #3 but
need more
cooperative effort

5 Template Documentation 7/28/2010

Overview of current problems and workarounds

Throwing an exception from a parallel region, some worksharing:
– Use an if flag to test for err condition, set the err and flush, record a ptr to the exception,

and handle it outside of the parallel region
Throwing from a structured block like master directive:
– Break out the master directive into an if test
Synchronization constructs such as critical
– Use RAII or scope locks
NO WORKAROUND: tasks, sections and ordered

if you want to throw an exception out of a critical-region in OpenMP - use
guard objects (scoped locking)
if you want to throw an exception out of a master region in OpenMP - use if
(omp_get_thread_num () == 0)
if you want to throw an exception out of any other scope that was opened
by an OpenMP-construct, you are out of luck

6 Template Documentation 7/28/2010

Design Goals of the Exception Handling System

Compatible with current and possible future
OpenMP base languages
Provide exception handling for all base languages
– Exception handling is the state of the art in clean,

separation of concerns, error handling

Support system-level and user-defined errors
Flexible models that provide the best tools to
handle an exception
Backwards compatible with existing code

7 Template Documentation 7/28/2010

Classification of Error Handling Strategies

Goal: support Extreme and Cooperative Strategy
Intermediate Strategy: needs Transactional Memory support in OpenMP, and is not in
our scope
– But is the subject of current and past research, stay tuned!
Step 1: provide a construct to support the Abrupt Termination pattern
– DONE construct will terminate an OpenMP region
Step 2: additionally support Ignore and continue, Retry, Delegate to handlers
– Studying an Error code and a Callback proposal

8 Template Documentation 7/28/2010

Done Proposal

Planned for beyond 3.1
Allow user to Terminate innermost region
Use-case: concurrent search that should stop when the first
instance is found by a thread
Syntax:
– #pragma omp done [clause−l i s t]
– clause-list being one or more of parallel, alltasks, taskgroup
– binding set of the done construct is the current thread team
– applies to the innermost enclosing OpenMP construct(s) of the

types specified in the clause (i. e., parallel or task).

9 Template Documentation 7/28/2010

Throwing exceptions out of parallel region

10 Template Documentation 7/28/2010

Done Example

11 Template Documentation 7/28/201011 Template Documentation 7/28/2010

Cancellation Points

Immediate termination of regions is not possible
– Would lead to inconsistent program state

– Discouraged by most threading libraries

The done construct signals termination at (the
next) cancellation point
– Threads need to actively check at these CPs for active

termination requests

– Possible cancellation points: barriers

12 Template Documentation 7/28/2010

Flavors of the done construct

12 Template Documentation 7/28/2010

Flavor Semantics
done abort inner-most region without restricting the type

(e.g. task, for, etc.)
done parallel terminate inner-most parallel region
done alltasks Terminate all active and schedule tasks.

Executing tasks may not create new tasks.
done taskgroup Abort all tasks of the current task group. (May be

added when OpenMP defines taskgroups.)

13 Template Documentation 7/28/2010

Error Code Proposal

Similar to posix
Program continues at first statement following end of innermost
construct when error occurs inside any OpenMP construct
Any variables created or modified inside construct are undefined
Error is communicated through variable shared between thread
team members
– omp-error-var variable is of type omp_error_t
– stores an error code that identifies whether any thread that executed

the preceding OpenMP construct or runtime library routine
encountered an error

– If concurrent errors occur, the runtime system may arbitrarily select
one error code and store it in the shared variable.

14 Template Documentation 7/28/2010

Error Code Proposal query

query the value of this variable by calling a new OpenMP runtime
support routine
– omp_error_t omp_get_error (char ∗ omp_err_string , int bufsize)
– Return any value of a set of constants that are defined in the standard

OpenMP include file
– Minimal set which can be added by implementation:

• • OMP ERR NONE
• • OMP ERR THREAD CREATION
• • OMP ERR THREAD FAILURE
• • OMP ERR STACK OVERFLOW
• • OMP ERR RUNTIME LIB

– Also returns an implementation-defined, zero terminated string in the
memory area pointed to by omp_err_string

15 Template Documentation 7/28/2010

Error Code Example

16 Template Documentation 7/28/2010

Callback Proposal

Based on previous IWOMP proposal by Duran et al, but expanded based on
our discussion
Use callback notifications and supports both exception-aware and exception-
unaware languages
Adds an onerror clause that overrides OpenMP’s default error-handling behavior
handler can take any necessary actions and notify the OpenMP runtime about
how to proceed with execution
a set of default handlers that the program can specify with the onerror clause to
implement common error responses.
the context directive associates error classes and error handlers with sequential
code regions to support errors that arise in OpenMP runtime routines.
Users are not required to define any callbacks in which case the implementation
will provide backward compatibility with the current best effort approach

17 Template Documentation 7/28/2010

Callback extensions

This proposal extends the onerror proposal to meet our OpenMP
error handling model requirements

add the error class OMP USER CANCEL to associate error
handlers with termination requests of done constructs

provide the error class OMP EXCEPTION RAISED, so that error
handlers can catch and handle C++ exceptions, either locally or
globally by re-throwing

exploring extensions such as specifying a default handler with an
environment variable so that applications can take appropriate
actions for errors that occur during initialization of the OpenMP
runtime or from invalid states of internal control variables

18 Template Documentation 7/28/2010

Callback example

19 Template Documentation 7/28/2010

Further Committee discussions since publication

Cancellation points
– Implementation defined
– Minimal set: entry, exit of regions, critical section, loop

chunk completion, runtime calls
Orphaned DONE and barriers?
– Add NoCancellation clause to Parallel region to improve

optimization
Cancel any parallel region, by name?
SHOULD NOT allow listing parallel, worksharing and task at
the same time, but only one of them - outermost among
those we want to terminate.

	Towards an Error Model for OpenMP�
	Some of the usual suspects (who have photos)
	Current problems with OpenMP 3.0 Error Handling
	What other popular concurrent languages have done
	Overview of current problems and workarounds
	Design Goals of the Exception Handling System
	Classification of Error Handling Strategies
	Done Proposal
	Throwing exceptions out of parallel region
	Done Example
	Cancellation Points
	Flavors of the done construct
	Error Code Proposal
	Error Code Proposal query
	Error Code Example
	Callback Proposal
	Callback extensions
	Callback example
	Further Committee discussions since publication

